1
|
Meyers JL, Brislin SJ, Kamarajan C, Plawecki MH, Chorlian D, Anohkin A, Kuperman S, Merikangas A, Pandey G, Kinreich S, Pandey A, Edenberg HJ, Bucholz KK, Almasy L, Porjesz B. The collaborative study on the genetics of alcoholism: Brain function. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12862. [PMID: 37587903 PMCID: PMC10550791 DOI: 10.1111/gbb.12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Alcohol use disorder (AUD) and related health conditions result from a complex interaction of genetic, neural and environmental factors, with differential impacts across the lifespan. From its inception, the Collaborative Study on the Genetics of Alcoholism (COGA) has focused on the importance of brain function as it relates to the risk and consequences of alcohol use and AUD, through the examination of noninvasively recorded brain electrical activity and neuropsychological tests. COGA's sophisticated neurophysiological and neuropsychological measures, together with rich longitudinal, multi-modal family data, have allowed us to disentangle brain-related risk and resilience factors from the consequences of prolonged and heavy alcohol use in the context of genomic and social-environmental influences over the lifespan. COGA has led the field in identifying genetic variation associated with brain functioning, which has advanced the understanding of how genomic risk affects AUD and related disorders. To date, the COGA study has amassed brain function data on over 9871 participants, 7837 with data at more than one time point, and with notable diversity in terms of age (from 7 to 97), gender (52% female), and self-reported race and ethnicity (28% Black, 9% Hispanic). These data are available to the research community through several mechanisms, including directly through the NIAAA, through dbGAP, and in collaboration with COGA investigators. In this review, we provide an overview of COGA's data collection methods and specific brain function measures assessed, and showcase the utility, significance, and contributions these data have made to our understanding of AUD and related disorders, highlighting COGA research findings.
Collapse
Affiliation(s)
- Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Sarah J. Brislin
- Department of Psychiatry, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | | | - David Chorlian
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Andrey Anohkin
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Samuel Kuperman
- Department of PsychiatryUniversity of IowaIowa CityIndianaUSA
| | - Alison Merikangas
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gayathri Pandey
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Sivan Kinreich
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Ashwini Pandey
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular BiologyIndiana UniversityBloomingtonIndianaUSA
| | - Kathleen K. Bucholz
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Laura Almasy
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| |
Collapse
|
2
|
Parker CC, Philip VM, Gatti DM, Kasparek S, Kreuzman AM, Kuffler L, Mansky B, Masneuf S, Sharif K, Sluys E, Taterra D, Taylor WM, Thomas M, Polesskaya O, Palmer AA, Holmes A, Chesler EJ. Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcohol Clin Exp Res 2022; 46:941-960. [PMID: 35383961 DOI: 10.1111/acer.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Daniel M Gatti
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Steven Kasparek
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Andrew M Kreuzman
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lauren Kuffler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Benjamin Mansky
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Kayvon Sharif
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Erica Sluys
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Dominik Taterra
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Walter M Taylor
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
3
|
Smit DJA, Andreassen OA, Boomsma DI, Burwell SJ, Chorlian DB, de Geus EJC, Elvsåshagen T, Gordon RL, Harper J, Hegerl U, Hensch T, Iacono WG, Jawinski P, Jönsson EG, Luykx JJ, Magne CL, Malone SM, Medland SE, Meyers JL, Moberget T, Porjesz B, Sander C, Sisodiya SM, Thompson PM, van Beijsterveldt CEM, van Dellen E, Via M, Wright MJ. Large-scale collaboration in ENIGMA-EEG: A perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity. Brain Behav 2021; 11:e02188. [PMID: 34291596 PMCID: PMC8413828 DOI: 10.1002/brb3.2188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability.
Collapse
Affiliation(s)
- Dirk J A Smit
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Scott J Burwell
- Department of Psychology, Minnesota Center for Twin and Family Research, University of Minnesota, Minneapolis, MN, USA.,Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Reyna L Gordon
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Jeremy Harper
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Ulrich Hegerl
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Goethe Universität Frankfurt am Main, Frankfurt, Germany
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany.,LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,IU International University, Erfurt, Germany
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Philippe Jawinski
- LIFE - Leipzig Research Center for Civilization Diseases, Universität Leipzig, Leipzig, Germany.,Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erik G Jönsson
- TOP-Norment, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Outpatient Second Opinion Clinic, GGNet Mental Health, Apeldoorn, The Netherlands
| | - Cyrille L Magne
- Psychology Department, Middle Tennessee State University, Murfreesboro, TN, USA.,Literacy Studies Ph.D. Program, Middle Tennessee State University, Mufreesboro, TN, USA
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jacquelyn L Meyers
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, USA.,Department of Psychiatry, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Torgeir Moberget
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | | | - Edwin van Dellen
- Department of Psychiatry, Department of Intensive Care Medicine, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marc Via
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, and Institute of Neurosciences (UBNeuro), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Jawinski P, Kirsten H, Sander C, Spada J, Ulke C, Huang J, Burkhardt R, Scholz M, Hensch T, Hegerl U. Human brain arousal in the resting state: a genome-wide association study. Mol Psychiatry 2019; 24:1599-1609. [PMID: 29703947 DOI: 10.1038/s41380-018-0052-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p < 5E-8), although seven loci were suggestive (p < 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer's Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.
Collapse
Affiliation(s)
- Philippe Jawinski
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany. .,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany. .,Depression Research Centre, German Depression Foundation, Leipzig, Germany.
| | - Holger Kirsten
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christian Sander
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Janek Spada
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Christine Ulke
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| | - Jue Huang
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Markus Scholz
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Tilman Hensch
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Hegerl
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.,Depression Research Centre, German Depression Foundation, Leipzig, Germany
| |
Collapse
|
5
|
Meda SA, Narayanan B, Chorlian D, Meyers JL, Gelernter J, Hesselbrock V, Bauer L, Calhoun VD, Porjesz B, Pearlson GD. Multivariate Analyses Reveal Biological Components Related to Neuronal Signaling and Immunity Mediating Electroencephalograms Abnormalities in Alcohol-Dependent Individuals from the Collaborative Study on the Genetics of Alcoholism Cohort. Alcohol Clin Exp Res 2019; 43:1462-1477. [PMID: 31009096 DOI: 10.1111/acer.14063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The underlying molecular mechanisms associated with alcohol use disorder (AUD) risk have only been partially revealed using traditional approaches such as univariate genomewide association and linkage-based analyses. We therefore aimed to identify gene clusters related to Electroencephalograms (EEG) neurobiological phenotypes distinctive to individuals with AUD using a multivariate approach. METHODS The current project adopted a bimultivariate data-driven approach, parallel independent component analysis (para-ICA), to derive and explore significant genotype-phenotype associations in a case-control subset of the Collaborative Study on the Genetics of Alcoholism (COGA) dataset. Para-ICA subjects comprised N = 799 self-reported European Americans (367 controls and 432 AUD cases), recruited from COGA, who had undergone resting EEG and genotyping. Both EEG and genomewide single nucleotide polymorphism (SNP) data were preprocessed prior to being subjected to para-ICA in order to derive genotype-phenotype relationships. RESULTS From the data, 4 EEG frequency and 4 SNP components were estimated, with 2 significantly correlated EEG-genetic relationship pairs. The first such pair primarily represented theta activity, negatively correlated with a genetic cluster enriched for (but not limited to) ontologies/disease processes representing cell signaling, neurogenesis, transmembrane drug transportation, alcoholism, and lipid/cholesterol metabolism. The second component pair represented mainly alpha activity, positively correlated with a genetic cluster with ontologies similarly enriched as the first component. Disease-related enrichments for this component revealed heart and autoimmune disorders as top hits. Loading coefficients for both the alpha and theta components were significantly reduced in cases compared to controls. CONCLUSIONS Our data suggest plausible multifactorial genetic components, primarily enriched for neuronal/synaptic signaling/transmission, immunity, and neurogenesis, mediating low-frequency alpha and theta abnormalities in alcohol addiction.
Collapse
Affiliation(s)
- Shashwath A Meda
- Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut
| | - Balaji Narayanan
- Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut
| | - David Chorlian
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jacquelyn L Meyers
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Lance Bauer
- Department of Psychiatry, UConn Health, Farmington, Connecticut
| | | | - Bernice Porjesz
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Smit DJA, Wright MJ, Meyers JL, Martin NG, Ho YYW, Malone SM, Zhang J, Burwell SJ, Chorlian DB, de Geus EJC, Denys D, Hansell NK, Hottenga J, McGue M, van Beijsterveldt CEM, Jahanshad N, Thompson PM, Whelan CD, Medland SE, Porjesz B, Lacono WG, Boomsma DI. Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity. Hum Brain Mapp 2018; 39:4183-4195. [PMID: 29947131 PMCID: PMC6179948 DOI: 10.1002/hbm.24238] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023] Open
Abstract
Oscillatory activity is crucial for information processing in the brain, and has a long history as a biomarker for psychopathology. Variation in oscillatory activity is highly heritable, but current understanding of specific genetic influences remains limited. We performed the largest genome-wide association study to date of oscillatory power during eyes-closed resting electroencephalogram (EEG) across a range of frequencies (delta 1-3.75 Hz, theta 4-7.75 Hz, alpha 8-12.75 Hz, and beta 13-30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based analysis and brain-expression analyses. GABRA2-a known genetic marker for alcohol use disorder and epilepsy-significantly affected beta power, consistent with the known relation between GABAA interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05). SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and ITIH4 in the frontal cortex-genes that were previously implicated in schizophrenia and bipolar disorder. In sum, we identified several novel genetic variants associated with oscillatory brain activity; furthermore, we replicated and advanced understanding of previously known genes associated with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopathological liability genes affect brain functioning, linking the genes' expression to specific cortical/subcortical brain regions.
Collapse
Affiliation(s)
- Dirk J. A. Smit
- Psychiatry departmentAmsterdam Neuroscience, Academic Medical Center, University of AmsterdamThe Netherlands
| | - Margaret J. Wright
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
- Centre of Advanced Imaging, University QueenslandBrisbaneAustralia
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | | | | | | | - Jian Zhang
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | - Scott J. Burwell
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesota
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | - Eco J. C. de Geus
- Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit AmsterdamThe Netherlands
| | - Damiaan Denys
- Psychiatry departmentAmsterdam Neuroscience, Academic Medical Center, University of AmsterdamThe Netherlands
| | | | - Jouke‐Jan Hottenga
- Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit AmsterdamThe Netherlands
| | - Matt McGue
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesota
| | | | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern CaliforniaMarina del ReyCalifornia
| | - Paul M. Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern CaliforniaMarina del ReyCalifornia
| | - Christopher D. Whelan
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern CaliforniaMarina del ReyCalifornia
| | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab., Department of PsychiatryState University of New York Downstate Medical CenterBrooklynNew York
| | | | - Dorret I. Boomsma
- Biological Psychology, Amsterdam Public Health research institute, Vrije Universiteit AmsterdamThe Netherlands
| |
Collapse
|
7
|
Anokhin AP. The genetics of brain function and psychophysiology: An introduction to the special issue. Int J Psychophysiol 2017; 115:1-3. [PMID: 28259534 DOI: 10.1016/j.ijpsycho.2017.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|