1
|
Vethe Hernes I, Jansdatter A, Nordsteien A, Haraldsen Normann M. Illuminating the hidden cost: A systematic review of cognitive late effects regarding cancer-related fatigue in treated paediatric brain tumors. Tech Innov Patient Support Radiat Oncol 2025; 33:100291. [PMID: 39759484 PMCID: PMC11699426 DOI: 10.1016/j.tipsro.2024.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 01/07/2025] Open
Abstract
Objective Globally, in 2022, 30,871 children were diagnosed with CNS-tumors. Many have been treated with radiotherapy, and a significant number suffer from chronic late effects, including fatigue. This study aims to investigate previous research on the impact of cancer-related fatigue for neurocognitive function that can be related to radiotherapy in patients who have undergone primary brain radiotherapy before the age of 18. Methods Conducted under PRISMA-S framework, this systematic review searched MEDLINE ALL (Ovid), EMBASE (Ovid), CINAHL (EBSCO), and PsycINFO (Ovid) for relevant studies. Criteria for inclusion were children under 18 who underwent radiotherapy for primary brain cancer, focusing on late cognitive side effects, published 2000-2023. Results From 4,067 records, 10 studies were included, examining Proton Radiation Therapy (n = 4), X-ray Radiation Therapy (n = 3), and their comparisons (n = 3). The studies used various cognitive tests, and late effects that emerged were neurocognitive functions and disorders, intellectual functioning, specific cognitive functions and daily life, social functioning, and performance. These themes can be encompassed by cancer-related fatigue. Conclusions The findings underscore critical need for more in-depth research to understand the health perception variations among children post-primary brain radiotherapy. Furthermore, detailed insights of treatment specifics, disease progression, target volume sizes, and doses to surrounding organs at risk are imperative.
Collapse
Affiliation(s)
| | | | - Anita Nordsteien
- University of South-Eastern, Faculty of Health and Social Sciences, Norway
| | | |
Collapse
|
2
|
Alrasheed AS, Aleid AM, Alharbi RA, Alhodibi MH, Alhussain AA, Alessa AA, Almalki SF. Brainstem Toxicity Following Proton Beam Radiation Therapy in Pediatric Brain Tumors: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:3655. [PMID: 39518092 PMCID: PMC11545066 DOI: 10.3390/cancers16213655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Proton beam radiation therapy (PBRT) is an advanced cancer treatment modality that utilizes the distinctive physical properties of protons to precisely deliver radiation to tumor targets while sparing healthy tissue. This cannot be obtained with photon radiation. In this systematic review and meta-analysis, we aimed to comprehensively assess the risk of brainstem toxicity in pediatric brain tumor patients undergoing PBRT. Methods: With adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a predetermined search strategy was used to identify eligible articles from PubMed, Web of Science, Scopus, and Cochrane Library through July 2024. Results: The current study included a total of 11 eligible articles. The pooled prevalence of patients who suffered from brainstem toxicity was 1.8% (95% CI: 1%, 2.6%). The pooled prevalences of patients with Grade 1 to Grade 5 brainstem toxicity were found to be 10.6% (95% CI: 8.8%, 30%), 1.5% (95% CI: 0.6%, 2.5%), 0.7% (95% CI: 0.3%, 1.1%), 0.4% (95% CI: 0.1%, 0.7%), and 0.4% (95% CI: 0.1%, 0.8%), respectively, with an overall pooled prevalence of 0.7% (95% CI: 0.4%, 1%). Conclusions: This study revealed a relatively low incidence of symptomatic brainstem toxicity and its related mortality in the pediatric population undergoing PBRT. However, further research is encouraged to study the broader effects of PBRT and to explore various factors that may influence the risk of brainstem toxicity in patients treated with PBRT.
Collapse
Affiliation(s)
| | | | - Reema Ahmed Alharbi
- Department of Neurosurgery, Faculty of Medicine, University of Tabuk, Tabuk 31982, Saudi Arabia;
| | - Mostafa Habeeb Alhodibi
- Department of Family Medicine, Alfudhool Primary Healthcare, Al-Ahsa Health Cluster, Alahsa 31982, Saudi Arabia;
| | | | - Awn Abdulmohsen Alessa
- Department of Neurosurgery, King Fahad Hospital, Hofuf 36441, Saudi Arabia; (A.A.A.); (A.A.A.)
| | - Sami Fadhel Almalki
- Department of Neurosurgery, College of Medicine, King Faisal University, Alahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Lægdsmand P, Matysiak W, Muren LP, Lassen-Ramshad Y, Maduro JH, Vestergaard A, Righetto R, Pettersson E, Kristensen I, Dutheil P, Demoor-Goldschmidt C, Charlwood F, Whitfield G, Feijoo MM, Vela A, Missohou F, Vennarini S, Mirandola A, Orlandi E, Rombi B, Goedgebeur A, Van Beek K, Bannink-Gawryszuk A, Campoo FC, Engellau J, Toussaint L. Variations in linear energy transfer distributions within a European proton therapy planning comparison of paediatric posterior fossa tumours. Phys Imaging Radiat Oncol 2024; 32:100675. [PMID: 39803348 PMCID: PMC11718416 DOI: 10.1016/j.phro.2024.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/10/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Purpose Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres. Materials and Methods Ten European PT centres using spot-scanning PT planned two paediatric posterior fossa cases: One overlapping partly with the brainstem and upper spinal cord, prescribed 54 Gy(RBE), and the second wrapping around these organs, prescribed 59.4 Gy(RBE). Dose-averaged LET distributions were assessed in volumes of the brainstem and spinal cord irradiated to over 50 Gy(RBE = 1.1). The maximum hinge angle effect on near-maximum RBE-weighted doses using the Unkelbach RBE model was also investigated. Results In the first case, the mean LET in brainstem volumes receiving more than 50 Gy(RBE = 1.1) ranged from 2.8 keV/µm to 3.6 keV/µm across centres (median: 3.3 keV/µm). In the second case, treatment plans showed a narrower range of mean LET in the brainstem, from 2.5 keV/µm to 2.8 keV/µm (median: 2.7 keV/µm). There was no statistically significant impact of the maximum hinge angle. Conclusions LET distributions vary across centres due to different techniques but are also influenced significantly by factors like shape and position of the target volume.
Collapse
Affiliation(s)
- Peter Lægdsmand
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | - Witold Matysiak
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | - Ludvig P. Muren
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | | | - John H. Maduro
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | - Anne Vestergaard
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
| | | | - Erik Pettersson
- Sahlgrenska University Hospital, Department of Therapeutic Radiation Physics, Gothenburg, Sweden
- University of Gothenburg, Department of Medical Radiation Sciences, Gothenburg, Sweden
| | - Ingrid Kristensen
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Pauline Dutheil
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Charlotte Demoor-Goldschmidt
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
- Angers University Hospital, Department of Paediatric Oncology, Angers, France
| | - Frances Charlwood
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Gillian Whitfield
- The Christie Proton Beam Therapy Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
- University of Manchester, Royal Manchester Children’s Hospital, The Children’s Brain Tumour Research Network, Manchester, United Kingdom
| | | | - Anthony Vela
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Fernand Missohou
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Sabina Vennarini
- Fondazione IRCCS Instituto Nazionale Tumori, Paediatric Radiotherapy Unit, Milano, Italy
| | - Alfredo Mirandola
- CNAO National Center for Oncological Hadrontherapy, Medical Physics Unit, Clinical Department, Pavia, Italy
| | - Ester Orlandi
- CNAO National Center for Oncological Hadrontherapy, Clinical Department, Pavia, Italy
- University of Pavia, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, Pavia, Italy
| | - Barbara Rombi
- Proton Therapy Centre, Hospital S. Chiara, APSS, Trento, Italy
| | | | - Karen Van Beek
- Particle UZLeuven, Department of Radiation Oncology, Leuven, Belgium
| | - Agata Bannink-Gawryszuk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, Netherlands
| | | | - Jacob Engellau
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Laura Toussaint
- Aarhus University Hospital, Danish Centre for Particle Therapy, Aarhus N, Denmark
- Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| |
Collapse
|
4
|
Chamseddine I, Shah K, Lee H, Ehret F, Schuemann J, Bertolet A, Shih HA, Paganetti H. Decoding Patient Heterogeneity Influencing Radiation-Induced Brain Necrosis. Clin Cancer Res 2024; 30:4424-4433. [PMID: 39106090 PMCID: PMC11444871 DOI: 10.1158/1078-0432.ccr-24-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity. EXPERIMENTAL DESIGN We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables. We processed data from a cohort of 130 patients treated with proton therapy for brain and head and neck tumors, utilizing an expert-augmented Bayesian network to understand variable interdependencies and assess structural dependencies. Critical evaluation involved a three-level grading system for each network connection and a Markov blanket analysis to identify variables directly impacting necrosis risk. Statistical assessments included log-likelihood ratio, integrated discrimination index, net reclassification index, and receiver operating characteristic (ROC). RESULTS The analysis highlighted tumor location and proximity to critical structures such as white matter and ventricles as major determinants of necrosis risk. The majority of network connections were clinically supported, with quantitative measures confirming the significance of these variables in patient stratification (log-likelihood ratio = 12.17; P = 0.016; integrated discrimination index = 0.15; net reclassification index = 0.74). The ROC curve area was 0.66, emphasizing the discriminative value of nondosimetric variables. CONCLUSIONS Key patient variables critical to understanding brain necrosis post-RT were identified, aiding the study of dosimetric impacts and providing treatment confounders and moderators. This pipeline aims to enhance outcome assessments by revealing at-risk patients, offering a versatile tool for broader applications in RT to improve treatment personalization in different disease sites.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keyur Shah
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Corrales-García EM, Aristu-Mendioroz JJ, Castro-Novais J, Matute-Martín R, Learra-Martínez MC, Delgado-López PD. Current state of proton therapy for tumors of the central nervous system in Spain: physical bases, indications, controversies and perspectives. Clin Transl Oncol 2024:10.1007/s12094-024-03624-z. [PMID: 39207674 DOI: 10.1007/s12094-024-03624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
The unique biophysical properties of proton therapy (PT), regarding the precise dose distribution, a remarkable better sparing of surrounding normal tissues, and the decreasing costs have promoted the spread of this technique worldwide. In Spain, eleven new PT centers, added to the currently two in function, are expected to be available in the near future. Indications for PT are currently evolving. The suitability of PT in central nervous system tumors of the adult population has been extrapolated from the favorable experience in children and adolescents. Given the lack of appropriate randomized trials, controversies remain regarding its use in lower grade tumors, re-irradiation, and other clinical scenarios in which an a priori dose distribution benefit is expected compared to photon-based radiotherapy. PT is a reasonable option in many brain and spinal tumors associating long life expectancy, in which cognitive decline, and the appearance of radiation-induced neoplasms can be minimized.Estado actual de la terapia con protones en los tumores del sistema nervioso central en España: bases físicas, indicaciones, controversias y perspectivas.
Collapse
Affiliation(s)
| | | | - Juan Castro-Novais
- Servicio de Radiofísica y Protección Radiológica, Centro de Protonterapia. Hospital Universitario Quironsalud, Madrid, Spain
| | - Raúl Matute-Martín
- Servicio Oncología Radioterápica, Centro de Protonterapia, Hospital Quironsalud, Madrid, Spain
| | - María Concepción Learra-Martínez
- Comisión de Protonterapia de La Comunidad de Castilla y LeónServicio de Atención Hospitalaria y CoordinaciónDirección Técnica de Asistencia SanitariaDirección General de Asistencia Sanitaria y HumanizaciónGerencia Regional de Salud de Castilla y León, Valladolid, Spain
| | - Pedro David Delgado-López
- Servicio de Neurocirugía, Hospital Universitario de Burgos, Avda Islas Baleares 3, 09006, Burgos, Spain.
| |
Collapse
|
6
|
Timmermann B, Alapetite C, Dieckmann K, Kortmann RD, Lassen-Ramshad Y, Maduro JH, Ramos Albiac M, Ricardi U, Weber DC. ESTRO-SIOPE guideline: Clinical management of radiotherapy in atypical teratoid/rhabdoid tumors (AT/RTs). Radiother Oncol 2024; 196:110227. [PMID: 38492671 DOI: 10.1016/j.radonc.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE Treatment of patients with atypical teratoid/rhabdoid (AT/RT) is challenging, especially when very young (below the age of three years). Radiotherapy (RT) is part of a complex trimodality therapy. The purpose of this guideline is to provide appropriate recommendations for RT in the clinical management of patients not enrolled in clinical trials. MATERIALS AND METHODS Nine European experts were nominated to form a European Society for Radiotherapy and Oncology (ESTRO) guideline committee. A systematic literature search was conducted in PubMed/MEDLINE and Web of Science. They discussed and analyzed the evidence concerning the role of RT in the clinical management of AT/RT. RESULTS Recommendations on diagnostic imaging, therapeutic principles, RT considerations regarding timing, dose, techniques, target volume definitions, dose constraints of radiation-sensitive organs at risk, concomitant chemotherapy, and follow-up were considered. Treating children with AT/RT within the framework of prospective trials or prospective registries is of utmost importance. CONCLUSION The present guideline summarizes the evidence and clinical-based recommendations for RT in patients with AT/RT. Prospective clinical trials and international, large registries evaluating modern treatment approaches will contribute to a better understanding of the best treatment for these children in future.
Collapse
Affiliation(s)
- Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium (DKTK), Germany.
| | - Claire Alapetite
- Department of Radiation Oncology and Proton Therapy Center, Institut Curie, Paris-Orsay, France
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Rolf-Dieter Kortmann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium (DKTK), Germany; University of Leipzig Medical Center, Leipzig, Germany
| | | | - John H Maduro
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen-PSI, Switzerland; Department of Radiation Oncology. Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
7
|
Güney Yılmaz G, Tanrıverdi M, Şahin S, Çakır FB. Cross-cultural adaptation, reliability, and validity of the Turkish Pediatric Quality of Life Inventory-Cognitive Functioning Scale (PedsQL TM-CFS) in children with cancer. Child Neuropsychol 2024:1-15. [PMID: 38832834 DOI: 10.1080/09297049.2024.2364205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
The Pediatric Quality of Life Inventory-Cognitive Functioning Scale (PedsQLTM-CFS) was developed as a brief, general, symptom-specific tool to measure cognitive function. The 6-item PedsQL™ Cognitive Functioning Scale and PedsQL 3.0 Cancer Module answered 369 parents and 330 children with 5-18 years. Parents also completed Behavior Rating Inventory of Executive Function (BRIEF). The PedsQL™ Cognitive Functioning Scale evidenced excellent reliability (parent proxy-report α = 0.980/Fleiss Kappa: 0.794; children self-report α = 0.963/Fleiss Kappa: 0.790). Both child self-report and parent proxy-report PedsQL™ Cognitive Functioning Scale scores exhibited significant correlations with all parent-report BRIEF summary and subscale scores (p < .05). Both child self-report and parent proxy-report PedsQL™ Cognitive Functioning Scale scores exhibited significant correlations with PedsQL 3.0 Cancer Module total score and subscale scores (p < .05). The PedsQLTM-CFS can be used in high-risk populations with substantial to perfect reliability, both in regards to total/subcategory scores as well as in children with cancer.
Collapse
Affiliation(s)
- Güleser Güney Yılmaz
- Faculty of Health Sciences, Department of Occupational Therapy, Hacettepe University, Ankara, Türkiye
| | - Müberra Tanrıverdi
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Bezmialem Vakıf University, İstanbul, Türkiye
| | - Sedef Şahin
- Faculty of Health Sciences, Department of Occupational Therapy, Hacettepe University, Ankara, Türkiye
| | - Fatma Betül Çakır
- Faculty of Medicine, Department of Pediatric Hematology and Oncology, Bezmialem Vakıf University, İstanbul, Türkiye
| |
Collapse
|
8
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
9
|
Bates JE, Marples B, Hudson MM, Williams AM, Marcus K, Howell R, Paulino A, Constine LS. Biodevelopmental Considerations in Pediatric Patients With Cancer and Childhood Cancer Survivors: A PENTEC Introductory Review. Int J Radiat Oncol Biol Phys 2024; 119:354-359. [PMID: 37966404 DOI: 10.1016/j.ijrobp.2023.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 11/16/2023]
Affiliation(s)
- James E Bates
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| | - Brian Marples
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Melissa M Hudson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - AnnaLynn M Williams
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Karen Marcus
- Department of Radiation Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Rebecca Howell
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arnold Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis S Constine
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
10
|
Hua CH, Bentzen SM, Li Y, Milano MT, Rancati T, Marks LB, Constine LS, Yorke ED, Jackson A. Improving Pediatric Normal Tissue Radiation Dose-Response Modeling in Children With Cancer: A PENTEC Initiative. Int J Radiat Oncol Biol Phys 2024; 119:369-386. [PMID: 38276939 DOI: 10.1016/j.ijrobp.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024]
Abstract
The development of normal tissue radiation dose-response models for children with cancer has been challenged by many factors, including small sample sizes; the long length of follow-up needed to observe some toxicities; the continuing occurrence of events beyond the time of assessment; the often complex relationship between age at treatment, normal tissue developmental dynamics, and age at assessment; and the need to use retrospective dosimetry. Meta-analyses of published pediatric outcome studies face additional obstacles of incomplete reporting of critical dosimetric, clinical, and statistical information. This report describes general methods used to address some of the pediatric modeling issues. It highlights previous single- and multi-institutional pediatric dose-response studies and summarizes how each PENTEC taskforce addressed the challenges and limitations of the reviewed publications in constructing, when possible, organ-specific dose-effect models.
Collapse
Affiliation(s)
- Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yimei Li
- Department of Biostatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
11
|
Bentzen SM, Vogelius IR, Hodgson D, Howell R, Jackson A, Hua CH, Olch AJ, Ronckers C, Kremer L, Milano M, Marks LB, Constine LS. Radiation Dose-Volume-Response Relationships for Adverse Events in Childhood Cancer Survivors: Introduction to the Scientific Issues in PENTEC. Int J Radiat Oncol Biol Phys 2024; 119:338-353. [PMID: 38760115 DOI: 10.1016/j.ijrobp.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 05/19/2024]
Abstract
At its very core, radiation oncology involves a trade-off between the benefits and risks of exposing tumors and normal tissue to relatively high doses of ionizing radiation. This trade-off is particularly critical in childhood cancer survivors (CCS), in whom both benefits and risks can be hugely consequential due to the long life expectancy if the primary cancer is controlled. Estimating the normal tissue-related risks of a specific radiation therapy plan in an individual patient relies on predictive mathematical modeling of empirical data on adverse events. The Pediatric Normal-Tissue Effects in the Clinic (PENTEC) collaborative network was formed to summarize and, when possible, to synthesize dose-volume-response relationships for a range of adverse events incident in CCS based on the literature. Normal-tissue clinical radiation biology in children is particularly challenging for many reasons: (1) Childhood malignancies are relatively uncommon-constituting approximately 1% of new incident cancers in the United States-and biologically heterogeneous, leading to many small series in the literature and large variability within and between series. This creates challenges in synthesizing data across series. (2) CCS are at an elevated risk for a range of adverse health events that are not specific to radiation therapy. Thus, excess relative or absolute risk compared with a reference population becomes the appropriate metric. (3) Various study designs and quantities to express risk are found in the literature, and these are summarized. (4) Adverse effects in CCS often occur 30, 50, or more years after therapy. This limits the information content of series with even very extended follow-up, and lifetime risk estimates are typically extrapolations that become dependent on the mathematical model used. (5) The long latent period means that retrospective dosimetry is required, as individual computed tomography-based radiation therapy plans gradually became available after 1980. (6) Many individual patient-level factors affect outcomes, including age at exposure, attained age, lifestyle exposures, health behaviors, other treatment modalities, dose, fractionation, and dose distribution. (7) Prospective databases with individual patient-level data and radiation dosimetry are being built and will facilitate advances in dose-volume-response modeling. We discuss these challenges and attempts to overcome them in the setting of PENTEC.
Collapse
Affiliation(s)
- Søren M Bentzen
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Ivan R Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Denmark
| | - David Hodgson
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chia-Ho Hua
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Arthur J Olch
- Department of Radiation Oncology, University of Southern California Keck School of Medicine and Children's Hospital Los Angeles, Los Angeles, California
| | - Cecile Ronckers
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Leontien Kremer
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Michael Milano
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester, Rochester, New York
| | - Lawrence B Marks
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Louis S Constine
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester, Rochester, New York
| |
Collapse
|
12
|
Ajithkumar T, Avanzo M, Yorke E, Tsang DS, Milano MT, Olch AJ, Merchant TE, Dieckmann K, Mahajan A, Fuji H, Paulino AC, Timmermann B, Marks LB, Bentzen SM, Jackson A, Constine LS. Brain and Brain Stem Necrosis After Reirradiation for Recurrent Childhood Primary Central Nervous System Tumors: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:655-668. [PMID: 38300187 DOI: 10.1016/j.ijrobp.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Reirradiation is increasingly used in children and adolescents/young adults (AYA) with recurrent primary central nervous system tumors. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) reirradiation task force aimed to quantify risks of brain and brain stem necrosis after reirradiation. METHODS AND MATERIALS A systematic literature search using the PubMed and Cochrane databases for peer-reviewed articles from 1975 to 2021 identified 92 studies on reirradiation for recurrent tumors in children/AYA. Seventeen studies representing 449 patients who reported brain and brain stem necrosis after reirradiation contained sufficient data for analysis. While all 17 studies described techniques and doses used for reirradiation, they lacked essential details on clinically significant dose-volume metrics necessary for dose-response modeling on late effects. We, therefore, estimated incidences of necrosis with an exact 95% CI and qualitatively described data. Results from multiple studies were pooled by taking the weighted average of the reported crude rates from individual studies. RESULTS Treated cancers included ependymoma (n = 279 patients; 7 studies), medulloblastoma (n = 98 patients; 6 studies), any CNS tumors (n = 62 patients; 3 studies), and supratentorial high-grade gliomas (n = 10 patients; 1 study). The median interval between initial and reirradiation was 2.3 years (range, 1.2-4.75 years). The median cumulative prescription dose in equivalent dose in 2-Gy fractions (EQD22; assuming α/β value = 2 Gy) was 103.8 Gy (range, 55.8-141.3 Gy). Among 449 reirradiated children/AYA, 22 (4.9%; 95% CI, 3.1%-7.3%) developed brain necrosis and 14 (3.1%; 95% CI, 1.7%-5.2%) developed brain stem necrosis with a weighted median follow-up of 1.6 years (range, 0.5-7.4 years). The median cumulative prescription EQD22 was 111.4 Gy (range, 55.8-141.3 Gy) for development of any necrosis, 107.7 Gy (range, 55.8-141.3 Gy) for brain necrosis, and 112.1 Gy (range, 100.2-117 Gy) for brain stem necrosis. The median latent period between reirradiation and the development of necrosis was 5.7 months (range, 4.3-24 months). Though there were more events among children/AYA undergoing hypofractionated versus conventionally fractionated reirradiation, the differences were not statistically significant (P = .46). CONCLUSIONS Existing reports suggest that in children/AYA with recurrent brain tumors, reirradiation with a total EQD22 of about 112 Gy is associated with an approximate 5% to 7% incidence of brain/brain stem necrosis after a median follow-up of 1.6 years (with the initial course of radiation therapy being given with conventional prescription doses of ≤2 Gy per fraction and the second course with variable fractionations). We recommend a uniform approach for reporting dosimetric endpoints to derive robust predictive models of late toxicities following reirradiation.
Collapse
Affiliation(s)
- Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - Michele Avanzo
- Division of Medical Physics, Centro di Riferimento Oncologico Aviano IRCCS, Aviano, Italy
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Derek S Tsang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Arthur J Olch
- Department of Radiation Oncology and Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Hiroshi Fuji
- National Center for Child Health and Development, Tokyo, Japan
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, West German Cancer Center, Essen, Germany
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Soren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Radiation Oncology, and University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
13
|
Jackson A, Hua CH, Olch A, Yorke ED, Rancati T, Milano MT, Constine LS, Marks LB, Bentzen SM. Reporting Standards for Complication Studies of Radiation Therapy for Pediatric Cancer: Lessons From PENTEC. Int J Radiat Oncol Biol Phys 2024; 119:697-707. [PMID: 38760117 DOI: 10.1016/j.ijrobp.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 05/19/2024]
Abstract
The major aim of Pediatric Normal Tissue Effects in the Clinic (PENTEC) was to synthesize quantitative published dose/-volume/toxicity data in pediatric radiation therapy. Such systematic reviews are often challenging because of the lack of standardization and difficulty of reporting outcomes, clinical factors, and treatment details in journal articles. This has clinical consequences: optimization of treatment plans must balance between the risks of toxicity and local failure; counseling patients and their parents requires knowledge of the excess risks encountered after a specific treatment. Studies addressing outcomes after pediatric radiation therapy are particularly challenging because: (a) survivors may live for decades after treatment, and the latency time to toxicity can be very long; (b) children's maturation can be affected by radiation, depending on the developmental status of the organs involved at time of treatment; and (c) treatment regimens frequently involve chemotherapies, possibly modifying and adding to the toxicity of radiation. Here we discuss: basic reporting strategies to account for the actuarial nature of the complications; the reporting of modeling of abnormal development; and the need for standardized, comprehensively reported data sets and multivariate models (ie, accounting for the simultaneous effects of radiation dose, age, developmental status at time of treatment, and chemotherapy dose). We encourage the use of tools that facilitate comprehensive reporting, for example, electronic supplements for journal articles. Finally, we stress the need for clinicians to be able to trust artificial intelligence models of outcome of radiation therapy, which requires transparency, rigor, reproducibility, and comprehensive reporting. Adopting the reporting methods discussed here and in the individual PENTEC articles will increase the clinical and scientific usefulness of individual reports and associated pooled analyses.
Collapse
Affiliation(s)
- Andrew Jackson
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Arthur Olch
- Radiation Oncology Department, University of Southern California and Children's Hospital, Los Angeles, California
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York; Pediatrics, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Soren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
14
|
Lo AC, Ronckers C, Aznar MC, Avanzo M, van Dijk I, Kremer LCM, Gagliardi G, Howell RM, Rancati T, Constine LS, Marcus KJ. Breast Hypoplasia and Decreased Lactation From Radiation Therapy in Survivors of Pediatric Malignancy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:549-559. [PMID: 34627655 DOI: 10.1016/j.ijrobp.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Breast hypoplasia and impaired lactation are poorly studied sequelae of chest radiation therapy (RT) in children. The Pediatric Normal Tissue Effects in the Clinic female breast task force aimed to quantitate the radiation dose-volume effects on these endpoints. METHODS AND MATERIALS A literature search was conducted of peer-reviewed manuscripts evaluating breast hypoplasia and lactation after chest RT in children, yielding 789 abstracts. Only 2 studies on children irradiated at <4 years of age for angioma of the breast provided dosimetric data correlated with breast hypoplasia. For patients who received brachytherapy, the dose was converted to external beam RT in equivalent 2 Gy fractions (DEBRT), although the limitations of this type of mathematical conversion need to be recognized. We calculated relative risks (RR) and 95% confidence intervals (95% CIs) based on these data. Only 1 study was relevant to the lactation endpoint, in which patients were given RT for Hodgkin lymphoma at age 14 to 40 years. RESULTS The 3 studies involved 206 patients in total. In patients <4 years old at the time of RT, the prevalence of patient-perceived breast hypoplasia was 38% (RR 2.5; 95% CI, 1.3-4.6) after DEBRT of <0.34 Gy, 61% (RR 4.0; 95% CI, 2.1-7.4) after DEBRT 0.34-0.97 Gy, and 97% (RR 6.3; 95% CI, 3.6-10.8) after DEBRT ≥0.97 Gy to the breast anlage. A simple linear regression model (r = 0.72; P < .001) showed that the treated breast was smaller than the untreated breast by 13% at DEBRT = 0.5 Gy, 20% at DEBRT = 1 Gy, 32% at DEBRT = 2 Gy, 51% at DEBRT = 4 Gy, 66% at DEBRT = 6 Gy, 79% at DEBRT = 8 Gy, and 90% at DEBRT = 10 Gy. The risk of unsuccessful breastfeeding was 39% after a median mediastinal dose of 41 Gy, compared with 21% in a sibling control group (P = .04). RT dose of ≥42 Gy was not associated with less breastfeeding success compared with <42 Gy, and data on lower doses were unavailable. CONCLUSIONS Based on extremely limited data, young adults exposed to thoracic RT as children seem to be at significant risk of breast hypoplasia and impaired lactation. Doses as low as 0.3 Gy to immature breasts can cause breast hypoplasia. Additional studies are needed to quantify dose and technique effects with modern RT indications. Prospective collection of clinical outcomes and dosimetric factors would enhance our understanding of RT-induced breast hypoplasia and impaired lactation.
Collapse
Affiliation(s)
- Andrea C Lo
- Department of Radiation Oncology, BC Cancer, Vancouver, British Columbia, Canada.
| | - Cecile Ronckers
- Department of Pediatric Oncology, Prinses Maxima Centrum, Utrecht, the Netherlands
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Irma van Dijk
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Leontien C M Kremer
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Giovanna Gagliardi
- Department of Medical Physics, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Rebecca M Howell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Karen J Marcus
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
15
|
Hoeltgen L, Meixner E, Hoegen-Saßmannshausen P, Kim JY, Deng M, Seidensaal K, Held T, Herfarth K, Haberer T, Debus J, Mairani A, Harrabi S, Tessonnier T. Helium Ion Therapy for Advanced Juvenile Nasopharyngeal Angiofibroma. Cancers (Basel) 2024; 16:1993. [PMID: 38893114 PMCID: PMC11171253 DOI: 10.3390/cancers16111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Helium ion therapy (HRT) is a promising modality for the treatment of pediatric tumors and those located close to critical structures due to the favorable biophysical properties of helium ions. This in silico study aimed to explore the potential benefits of HRT in advanced juvenile nasopharyngeal angiofibroma (JNA) compared to proton therapy (PRT). We assessed 11 consecutive patients previously treated with PRT for JNA in a definitive or postoperative setting with a relative biological effectiveness (RBE) weighted dose of 45 Gy (RBE) in 25 fractions at the Heidelberg Ion-Beam Therapy Center. HRT plans were designed retrospectively for dosimetric comparisons and risk assessments of radiation-induced complications. HRT led to enhanced target coverage in all patients, along with sparing of critical organs at risk, including a reduction in the brain integral dose by approximately 27%. In terms of estimated risks of radiation-induced complications, HRT led to a reduction in ocular toxicity, cataract development, xerostomia, tinnitus, alopecia and delayed recall. Similarly, HRT led to reduced estimated risks of radiation-induced secondary neoplasms, with a mean excess absolute risk reduction of approximately 30% for secondary CNS malignancies. HRT is a promising modality for advanced JNA, with the potential for enhanced sparing of healthy tissue and thus reduced radiation-induced acute and long-term complications.
Collapse
Affiliation(s)
- Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ji-Young Kim
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- Partner Site, German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Centro Nazionale di Adroterapia Oncologica (CNAO), Medical Physics Department, 27100 Pavia, Italy
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (L.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Sienna J, Kahalley LS, Mabbott D, Grosshans D, Santiago AT, Paulino ADC, Merchant TE, Manzar GS, Dama H, Hodgson DC, Chintagumpala M, Okcu MF, Whitehead WE, Laperriere N, Ramaswamy V, Bartels U, Tabori U, Bennett JM, Das A, Craig T, Tsang DS. Proton Therapy Mediates Dose Reductions to Brain Structures Associated With Cognition in Children With Medulloblastoma. Int J Radiat Oncol Biol Phys 2024; 119:200-207. [PMID: 38040059 PMCID: PMC11023754 DOI: 10.1016/j.ijrobp.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Emerging evidence suggests proton radiation therapy may offer cognitive sparing advantages over photon radiation therapy, yet dosimetry has not been compared previously. The purpose of this study was to examine dosimetric correlates of cognitive outcomes in children with medulloblastoma treated with proton versus photon radiation therapy. METHODS AND MATERIALS In this retrospective, bi-institutional study, dosimetric and cognitive data from 75 patients (39 photon and 36 proton) were analyzed. Doses to brain structures were compared between treatment modalities. Linear mixed-effects models were used to create models of global IQ and cognitive domain scores. RESULTS The mean dose and dose to 40% of the brain (D40) were 2.7 and 4.1 Gy less among proton-treated patients compared with photon-treated patients (P = .03 and .007, respectively). Mean doses to the left and right hippocampi were 11.2 Gy lower among proton-treated patients (P < .001 for both). Mean doses to the left and right temporal lobes were 6.9 and 7.1 Gy lower with proton treatment, respectively (P < .001 for both). Models of cognition found statistically significant associations between higher mean brain dose and reduced verbal comprehension, increased right temporal lobe D40 with reduced perceptual reasoning, and greater left temporal mean dose with reduced working memory. Higher brain D40 was associated with reduced processing speed and global IQ scores. CONCLUSIONS Proton therapy reduces doses to normal brain structures compared with photon treatment. This leads to reduced cognitive decline after radiation therapy across multiple intellectual endpoints. Proton therapy should be offered to children receiving radiation for medulloblastoma.
Collapse
Affiliation(s)
- Julianna Sienna
- Juravinski Cancer Centre, Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Lisa S Kahalley
- Division of Psychology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Donald Mabbott
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Theresa Santiago
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gohar S Manzar
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hitesh Dama
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David C Hodgson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Murali Chintagumpala
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Mehmet Fatih Okcu
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - William E Whitehead
- Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Normand Laperriere
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Bartels
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie M Bennett
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anirban Das
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tim Craig
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Brandt AE, Rø TB, Finnanger TG, Hypher RE, Lien E, Lund B, Catroppa C, Andersson S, Risnes K, Stubberud J. Intelligence and executive function are associated with age at insult, time post-insult, and disability following chronic pediatric acquired brain injury. Front Neurol 2024; 14:1192623. [PMID: 38249741 PMCID: PMC10796693 DOI: 10.3389/fneur.2023.1192623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pediatric acquired brain injury (pABI) profoundly affects cognitive functions, encompassing IQ and executive functions (EFs). Particularly, young age at insult may lead to persistent and debilitating deficits, affecting daily-life functioning negatively. This study delves into the intricate interplay of age at insult, time post-insult, and their associations with IQ and EFs during chronic (>1 year) pABI. Additionally, we investigate cognitive performance across different levels of global function, recognizing the multifaceted nature of developmental factors influencing outcomes. Methods Drawing upon insult data and baseline information analyzing secondary outcomes from a multicenter RCT, including comprehensive medical and neuropsychological assessments of participants aged 10 to 17 years with pABI and parent-reported executive dysfunctions. The study examined associations between age at insult (early, EI; ≤7y vs. late, LI; > 7y) and time post-insult with IQ and EFs (updating, shifting, inhibition, and executive attention). Additionally, utilizing the Pediatric Glasgow Outcome Scale-Extended, we explored cognitive performance across levels of global functioning. Results Seventy-six participants, median 8 years at insult and 5 years post-insult, predominantly exhibiting moderate disability (n = 38), were included. Notably, participants with LI demonstrated superior IQ, executive attention, and shifting compared to EI, [adjusted mean differences with 95% Confidence Intervals (CIs); 7.9 (1.4, 14.4), 2.48 (0.71, 4.24) and 1.73 (0.03, 3.43), respectively]. Conversely, extended post-insult duration was associated with diminished performances, evident in mean differences with 95% CIs for IQ, updating, shifting, and executive attention compared to 1-2 years post-insult [-11.1 (-20.4, -1.7), -8.4 (-16.7, -0.1), -2.6 (-4.4, -0.7), -2.9 (-4.5, -1.2), -3.8 (-6.4, -1.3), -2.6 (-5.0, -0.3), and -3.2 (-5.7, -0.8)]. Global function exhibited a robust relationship with IQ and EFs. Conclusion Early insults and prolonged post-insult durations impose lasting tribulations in chronic pABI. While confirmation through larger studies is needed, these findings carry clinical implications, underscoring the importance of vigilance regarding early insults. Moreover, they dispel the notion that children fully recover from pABI; instead, they advocate equitable rehabilitation offerings for pABI, tailored to address cognitive functions, recognizing their pivotal role in achieving independence and participation in society. Incorporating disability screening in long-term follow-up assessments may prove beneficial.
Collapse
Affiliation(s)
- Anne Elisabeth Brandt
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torstein B. Rø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Torun G. Finnanger
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ruth E. Hypher
- Department of Clinical Neurosciences for Children, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Lien
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bendik Lund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cathy Catroppa
- Brain and Mind, Clinical Sciences, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Psychology, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | | | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Stubberud
- Department of Clinical Neurosciences for Children, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Research, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|
18
|
Hoeltgen L, Tessonnier T, Meixner E, Hoegen P, Kim JY, Deng M, Seidensaal K, Held T, Herfarth K, Debus J, Harrabi S. Proton Therapy for Advanced Juvenile Nasopharyngeal Angiofibroma. Cancers (Basel) 2023; 15:5022. [PMID: 37894389 PMCID: PMC10605854 DOI: 10.3390/cancers15205022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To provide the first report on proton radiotherapy (PRT) in the management of advanced nasopharyngeal angiofibroma (JNA) and evaluate potential benefits compared to conformal photon therapy (XRT). METHODS We retrospectively reviewed 10 consecutive patients undergoing PRT for advanced JNA in a definitive or postoperative setting with a relative biological effectiveness weighted dose of 45 Gy in 25 fractions between 2012 and 2022 at the Heidelberg Ion Beam Therapy Center. Furthermore, dosimetric comparisons and risk estimations for short- and long-term radiation-induced complications between PRT plans and helical XRT plans were conducted. RESULTS PRT was well tolerated, with only low-grade acute toxicities (CTCAE I-II) being reported. The local control rate was 100% after a median follow-up of 27.0 (interquartile range 13.3-58.0) months. PRT resulted in considerable tumor shrinkage, leading to complete remission in five patients and bearing the potential to provide partial or complete symptom relief. Favorable dosimetric outcomes in critical brain substructures by the use of PRT translated into reduced estimated risks for neurocognitive impairment and radiation-induced CNS malignancies compared to XRT. CONCLUSIONS PRT is an effective treatment option for advanced JNA with minimal acute morbidity and the potential for reduced radiation-induced long-term complications.
Collapse
Affiliation(s)
- Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ji-Young Kim
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site, 69120 Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (S.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Lo Greco MC, Milazzotto R, Liardo RLE, Foti PV, Palmucci S, Basile A, Pergolizzi S, Spatola C. The Role of Reirradiation in Childhood Progressive Diffuse Intrinsic Pontine Glioma (DIPG): An Ongoing Challenge beyond Radiobiology. Brain Sci 2023; 13:1449. [PMID: 37891817 PMCID: PMC10605436 DOI: 10.3390/brainsci13101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
To investigate the clinical impact of multiple courses of irradiation on pediatric patients with progressive diffuse intrinsic pontine glioma (DIPG), we conducted a retrospective case series on three children treated at our institution from 2018 to 2022. All children were candidates to receive systemic therapy with vinorelbine and nimotuzumab. Radiotherapy was administered to a total dose of 54 Gy. At any disease progression, our local tumor board evaluated the possibility of offering a new course of radiotherapy. To determine feasibility and assess toxicity rates, all children underwent clinical and hematological evaluation both during and after the treatment. To assess efficacy, all children performed contrast-enhanced MRI almost quarterly after the end of the treatment. In all children, following any treatment course, neurological improvement (>80%) was associated with a radiological response (41.7-46%). The longest overall survival (24 months) was observed in the child who underwent three courses of radiotherapy, without experiencing significant side effects. Even though it goes beyond the understanding of conventional radiobiology, first and second reirradiation in pediatric patients with progressive DIPG may represent a feasible and safe approach, capable of increasing overall survival and disease-free survival in selected patients and improving their quality of life.
Collapse
Affiliation(s)
- Maria Chiara Lo Greco
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Roberto Milazzotto
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Rocco Luca Emanuele Liardo
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| | - Pietro Valerio Foti
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Palmucci
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Antonio Basile
- Radiology I Unit, Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (P.V.F.); (S.P.); (A.B.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Corrado Spatola
- Radiation Oncology Unit, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (R.M.); (R.L.E.L.); (C.S.)
| |
Collapse
|
20
|
Liu KX, Haas-Kogan DA, Elhalawani H. Radiotherapy for Primary Pediatric Central Nervous System Malignancies: Current Treatment Paradigms and Future Directions. Pediatr Neurosurg 2023; 58:356-366. [PMID: 37703864 DOI: 10.1159/000533777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Central nervous system tumors are the most common solid tumors in childhood. Treatment paradigms for pediatric central nervous system malignancies depend on elements including tumor histology, age of patient, and stage of disease. Radiotherapy is an important modality of treatment for many pediatric central nervous system malignancies. SUMMARY While radiation contributes to excellent overall survival rates for many patients, radiation also carries significant risks of long-term side effects including neurocognitive decline, hearing loss, growth impairment, neuroendocrine dysfunction, strokes, and secondary malignancies. In recent decades, clinical trials have demonstrated that with better imaging and staging along with more sophisticated radiation planning and treatment set-up verification, smaller treatment volumes can be utilized without decrement in survival. Furthermore, the development of intensity-modulated radiotherapy and proton-beam radiotherapy has greatly improved conformality of radiation. KEY MESSAGES Recent changes in radiation treatment paradigms have decreased risks of short- and long-term toxicity for common histologies and in different age groups. Future studies will continue to develop novel radiation regimens to improve outcomes in aggressive central nervous system tumors, integrate molecular subtypes to tailor radiation treatment, and decrease radiation-associated toxicity for long-term survivors.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Zaghloul MS, Hunter A, Mostafa AG, Parkes J. Re-irradiation for recurrent/progressive pediatric brain tumors: from radiobiology to clinical outcomes. Expert Rev Anticancer Ther 2023; 23:709-717. [PMID: 37194207 DOI: 10.1080/14737140.2023.2215439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Brain tumors are the most common solid tumors in children. Neurosurgical excision, radiotherapy, and/or chemotherapy represent the standard of care in most histopathological types of pediatric central nervous system (CNS) tumors. Even though the successful cure rate is reasonable, some patients may develop recurrence locally or within the neuroaxis. AREA COVERED The management of these recurrences is not easy; however, significant advances in neurosurgery, radiation techniques, radiobiology, and the introduction of newer biological therapies, have improved the results of their salvage treatment. In many cases, salvage re-irradiation is feasible and has achieved encouraging results. The results of re-irradiation depend upon several factors. These factors include tumor type, extent of the second surgery, tumor volume, location of the recurrence, time that elapses between the initial treatment, the combination with other treatment agents, relapse, and the initial response to radiotherapy. EXPERT OPINION Reviewing the radiobiological basis and clinical outcome of pediatric brain re-irradiation revealed that re-irradiation is safe, feasible, and indicated for recurrent/progressive different tumor types such as; ependymoma, medulloblastoma, diffuse intrinsic pontine glioma (DIPG) and glioblastoma. It is now considered part of the treatment armamentarium for these patients. The challenges and clinical results in treating recurrent pediatric brain tumors were highly documented.
Collapse
Affiliation(s)
- Mohamed S Zaghloul
- Radiation Oncology department. National Cancer Institute, Cairo University & Children's Cancer Hospital, Cairo, Egypt
| | - Alistair Hunter
- Division of Radiobiology, Radiation Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Ayatullah G Mostafa
- Department of Radiology, Faculty of Medicine, Egypt and Department of Diagnostic Imaging, Cairo University, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeannette Parkes
- Radiation Oncology Department, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Vassantachart A, Olch AJ, Jones M, Marques C, Ronckers C, Constine LS, Maduro JH, de Boer C, Wong K. A comprehensive review of 30 years of pediatric clinical trial radiotherapy dose constraints. Pediatr Blood Cancer 2023; 70:e30270. [PMID: 36880707 DOI: 10.1002/pbc.30270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Radiation therapy normal tissue dose constraints are critical when treating pediatric patients. However, there is limited evidence supporting proposed constraints, which has led to variations in constraints over the years. In this study, we identify these variations in dose constraints within pediatric trials both in the United States and in Europe used in the past 30 years. PROCEDURE All pediatric trials from the Children's Oncology Group website were queried from inception until January 2022 and a sampling of European studies was included. Dose constraints were identified and built into an organ-based interactive web application with filters to display data by organs at risk (OAR), protocol, start date, dose, volume, and fractionation scheme. Dose constraints were evaluated for consistency over time and compared between pediatric US and European trials RESULTS: One hundred five closed trials were included-93 US trials and 12 European trials. Thirty-eight separate OAR were found with high-dose constraint variability. Across all trials, nine organs had greater than 10 different constraints (median 16, range 11-26), including serial organs. When comparing US versus European dose tolerances, the United States constraints were higher for seven OAR, lower for one, and identical for five. No OAR had constraints change systematically over the last 30 years. CONCLUSION Review of pediatric dose-volume constraints in clinical trials showed substantial variability for all OAR. Continued efforts focused on standardization of OAR dose constraints and risk profiles are essential to increase consistency of protocol outcomes and ultimately to reduce radiation toxicities in the pediatric population.
Collapse
Affiliation(s)
- April Vassantachart
- Department of Radiation Oncology, LAC+USC Medical Center, Los Angeles, California, USA
| | - Arthur J Olch
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Marjorie Jones
- USC/CHLA Summer Oncology, Research Fellowship, Children's Hospital Los Angeles, Los Angeles, California, USA
- University of South Alabama College of Medicine, Mobile, Alabama, USA
| | - Christophe Marques
- Department of Radiation Oncology, The Gayle and Tom Benson Cancer Center, Ochsner Health System, New Orleans, Louisiana, USA
| | - Cécile Ronckers
- Princess Máxima, Utrecht, The Netherlands
- Department of Health Services Research, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Louis S Constine
- Departments of Radiation Oncology and Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - John H Maduro
- Princess Máxima, Utrecht, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Charlotte de Boer
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kenneth Wong
- Department of Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Radiation Oncology Program, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
23
|
Beijer JGM, Kok JL, Janssens GO, Streefkerk N, de Vries ACH, Slagter C, Maduro JH, Kroon PS, Grootenhuis MA, van Dulmen‐den Broeder E, Loonen JJ, Wendling M, Tissing WJE, van der Pal HJ, Louwerens M, Bel A, den Hartogh J, van der Heiden‐van der Loo M, Kremer LCM, Teepen JC, Ronckers CM. Adverse late health outcomes among children treated with 3D radiotherapy techniques: Study design of the Dutch pediatric 3D-RT study. Cancer Rep (Hoboken) 2023; 6:e1620. [PMID: 36715495 PMCID: PMC9939987 DOI: 10.1002/cnr2.1620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Adverse late health outcomes after multimodal treatment for pediatric cancer are diverse and of prime interest. Currently available evidence and survivorship care guidelines are largely based on studies addressing side-effects of two dimensional planned radiotherapy. AIMS The Dutch pediatric 3D-planned radiotherapy (3D-RT) study aims to gain insight in the long-term health outcomes among children who had radiotherapy in the 3D era. Here, we describe the study design, data-collection methods, and baseline cohort characteristics. METHODS AND RESULTS The 3D-RT study represents an expansion of the Dutch Childhood Cancer Survivor study (DCCSS) LATER cohort, including pediatric cancer patients diagnosed during 2000-2012, who survived at least 5 years after initial diagnosis and 2 years post external beam radiotherapy. Individual cancer treatment parameters were obtained from medical files. A national infrastructure for uniform collection and archival of digital radiotherapy files (Computed Tomography [CT]-scans, delineations, plan, and dose files) was established. Health outcome information, including subsequent tumors, originated from medical records at the LATER outpatient clinics, and national registry-linkage. With a median follow-up of 10.9 (interquartile range [IQR]: 7.9-14.3) years after childhood cancer diagnosis, 711 eligible survivors were identified. The most common cancer types were Hodgkin lymphoma, medulloblastoma, and nephroblastoma. Most survivors received radiotherapy directed to the head/cranium only, the craniospinal axis, or the abdominopelvic region. CONCLUSION The 3D-RT study will provide knowledge on the risk of adverse late health outcomes and radiation-associated dose-effect relationships. This information is valuable to guide follow-up care of childhood cancer survivors and to refine future treatment protocols.
Collapse
Affiliation(s)
| | - Judith L. Kok
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Geert O. Janssens
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Radiation OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nina Streefkerk
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Andrica C. H. de Vries
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric OncologyErasmus Medical CenterRotterdamThe Netherlands
| | - Cleo Slagter
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
| | - John H. Maduro
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Radiation Oncology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Petra S. Kroon
- Department of Radiation OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Eline van Dulmen‐den Broeder
- Department of Pediatric Oncology/HematologyAmsterdam University Medical Center/Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jacqueline J. Loonen
- Department of HematologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Markus Wendling
- Department of Radiation OncologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Wim J. E. Tissing
- Department of Pediatric Oncology, Beatrix Children's HospitalUniversity Medical Center GroningenGroningenThe Netherlands
| | | | - Marloes Louwerens
- Department of Internal MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Arjan Bel
- Department of Radiation OncologyAmsterdam University Medical Center/University of AmsterdamAmsterdamThe Netherlands
| | - Jaap den Hartogh
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Dutch Childhood Cancer Parent OrganizationNieuwegeinThe Netherlands
| | | | - Leontien C. M. Kremer
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatrics, Emma Children's HospitalAmsterdam University Medical Center/University of AmsterdamAmsterdamThe Netherlands
- University Medical Center Utrecht, Wilhelmina Children's HospitalUtrechtThe Netherlands
| | - Jop C. Teepen
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | |
Collapse
|
24
|
Dose-Volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An "All-in-One" Multicenter-Multidisciplinary Practical Summary. Curr Oncol 2022; 29:7021-7050. [PMID: 36290829 PMCID: PMC9600677 DOI: 10.3390/curroncol29100552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The safe use of radiotherapy (RT) requires compliance with dose/volume constraints (DVCs) for organs at risk (OaRs). However, the available recommendations are sometimes conflicting and scattered across a number of different documents. Therefore, the aim of this work is to provide, in a single document, practical indications on DVCs for OaRs in external beam RT available in the literature. MATERIAL AND METHODS A multidisciplinary team collected bibliographic information on the anatomical definition of OaRs, on the imaging methods needed for their definition, and on DVCs in general and in specific settings (curative RT of Hodgkin's lymphomas, postoperative RT of breast tumors, curative RT of pediatric cancers, stereotactic ablative RT of ventricular arrythmia). The information provided in terms of DVCs was graded based on levels of evidence. RESULTS Over 650 papers/documents/websites were examined. The search results, together with the levels of evidence, are presented in tabular form. CONCLUSIONS A working tool, based on collected guidelines on DVCs in different settings, is provided to help in daily clinical practice of RT departments. This could be a first step for further optimizations.
Collapse
|
25
|
Mak DY, Siddiqui Z, Liu ZA, Dama H, MacDonald SM, Wu S, Murphy ES, Hall MD, Malkov V, Onar-Thomas A, Ahmed S, Dhall G, Tsang DS. Photon versus proton whole ventricular radiotherapy for non-germinomatous germ cell tumors: A report from the Children's Oncology Group. Pediatr Blood Cancer 2022; 69:e29697. [PMID: 35373903 PMCID: PMC9329212 DOI: 10.1002/pbc.29697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To determine if proton therapy reduces doses to cranial organs at risk (OARs) as compared to photon therapy in children with non-germinomatous germ cell tumors (NGGCT) receiving whole ventricular radiotherapy (WVRT). METHODS AND MATERIALS Dosimetric data for patients with NGGCT prospectively enrolled in stratum 1 of the Children's Oncology Group study ACNS1123 who received 30.6 Gy WVRT were compared. Target segmentation was standardized using a contouring atlas. Doses to cranial OARs were compared between proton and photon treatments. Clinically relevant dose-volume parameters that were analyzed included mean dose and dose to 40% of the OAR volume (D40). RESULTS Mean and D40 doses to the supratentorial brain, cerebellum, and bilateral temporal, parietal, and frontal lobes were statistically significantly lower amongst proton-treated patients, as compared to photon-treated patients. In a subgroup analysis of patients uniformly treated with a 3-mm planning target volume, patients who received proton therapy continued to have statistically significantly lower doses to brain OARs. CONCLUSIONS Children treated with proton therapy for WVRT had lower doses to normal brain structures, when compared to those treated with photon therapy. Proton therapy should be considered for patients receiving WVRT for NGGCT.
Collapse
Affiliation(s)
- David Y. Mak
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Zain Siddiqui
- Division of Radiation Oncology, Cancer Center of Southeastern Ontario, Kingston, Ontario
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Hitesh Dama
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Shannon M. MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shengjie Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin S. Murphy
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Victor Malkov
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sameera Ahmed
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Girish Dhall
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Children's of Alabama, University of Alabama at Birmingham, Birmingham, Alabama
| | - Derek S. Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario
| |
Collapse
|
26
|
A systematic review of clinical studies on variable proton Relative Biological Effectiveness (RBE). Radiother Oncol 2022; 175:79-92. [PMID: 35988776 DOI: 10.1016/j.radonc.2022.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Recently, a number of clinical studies have explored links between possible Relative Biological Effectiveness (RBE) elevations and patient toxicities and/or image changes following proton therapy. Our objective was to perform a systematic review of such studies. We applied a "Problem [RBE], Intervention [Protons], Population [Patients], Outcome [Side effect]" search strategy to the PubMed database. From our search, we retrieved studies which: (a) performed novel voxel-wise analyses of patient effects versus physical dose and LET (n = 13), and (b) compared image changes between proton and photon cohorts with regard to proton RBE (n = 9). For each retrieved study, we extracted data regarding: primary tumour type; size of patient cohort; type of image change studied; image-registration method (deformable or rigid); LET calculation method, and statistical methodology. We compared and contrasted their methods in order to discuss the weight of clinical evidence for variable proton RBE. We concluded that clinical evidence for variable proton RBE remains statistically weak at present. Our principal recommendation is that proton centres and clinical trial teams collaborate to standardize follow-up protocols and statistical analysis methods, so that larger patient cohorts can ultimately be considered for RBE analyses.
Collapse
|
27
|
Can We Compare the Health-Related Quality of Life of Childhood Cancer Survivors Following Photon and Proton Radiation Therapy? A Systematic Review. Cancers (Basel) 2022; 14:cancers14163937. [PMID: 36010929 PMCID: PMC9405962 DOI: 10.3390/cancers14163937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Proton radiation therapy is a radiation oncology innovation expected to produce superior health-related quality of life (HRQoL) outcomes for children with cancer, compared to conventional photon radiation therapy. The review aim is to identify if clinical evidence exists to support the anticipated HRQoL improvements for children receiving proton radiation therapy. HRQoL outcomes of 1986 childhood cancer survivors are described. There is insufficient quality evidence to compare HRQoL outcomes between proton and photon radiation therapy. Therefore, the current state of the literature does not conclude that proton radiation therapy produces superior HRQoL outcomes for childhood cancer survivors. Despite recommendations, no evidence of routine HRQoL assessment using patient-reported outcomes in paediatric radiation oncology are identified. Further rigorous collection and reporting of HRQoL data is essential to improve patient outcomes, and to adequately compare HRQoL between radiation therapy modalities. Abstract Paediatric cancer patients have a risk of late side effects after curative treatment. Proton radiation therapy (PRT) has the potential to reduce the incidence and severity of toxicities produced by conventional photon radiation therapy (XRT), which may improve the health-related quality of life (HRQoL) in children. This systematic review aimed to identify the evidence of HRQoL outcomes in childhood cancer survivors following XRT and PRT. Medline, Embase, and Scopus were systematically searched. Thirty studies were analysed, which described outcomes of 1986 childhood cancer survivors. Most studies (n = 24) described outcomes for children with a central nervous system (CNS) tumour, four studies reported outcomes for children with a non-CNS tumour, and two studies combined CNS and non-CNS diagnoses within a single cohort. No studies analysed routine HRQoL collection during paediatric radiation oncology clinical practice. There is insufficient quality evidence to compare HRQoL outcomes between XRT and PRT. Therefore, the current state of the literature does not conclude that PRT produces superior HRQoL outcomes for childhood cancer survivors. Standardised clinical implementation of HRQoL assessment using patient-reported outcomes is recommended to contribute to improvements in clinical care whilst assisting the progression of knowledge comparing XRT and PRT.
Collapse
|
28
|
Olsthoorn IM, Holland AA, Hawkins RC, Cornelius AE, Baig MU, Yang G, Holland DC, Zaky W, Stavinoha PL. Sleep Disturbance and Its Association With Sluggish Cognitive Tempo and Attention in Pediatric Brain Tumor Survivors. Front Neurosci 2022; 16:918800. [PMID: 35812214 PMCID: PMC9259867 DOI: 10.3389/fnins.2022.918800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Pediatric brain tumor (PBT) survivors are at risk for developing sleep disturbances. While in other pediatric populations sleep disturbance has been associated with worse cognitive functioning, it is unclear to what extent this relationship generalizes to PBT survivors. The aim of the current study was to assess the relationship between sleep disturbance and aspects of cognition, including sluggish cognitive tempo (SCT) as well as attention and working memory. Materials and Methods Eighty-three PBT survivors 6–18 years of age who were at least 3 months post-treatment were included in the present cross-sectional study. Level of sleep disturbance was measured as a composite score reflecting various sleep problems as rated by caregivers. Cognitive measures included caregiver-ratings of sluggish cognitive tempo and attention problems, as well as performance-based cognitive measures assessing attention and executive functioning. Hierarchical regression analysis was used to assess associations between sleep and cognition. Results Of all caregivers, 32.5% reported one or more sleep disturbances as “very/often true” and over 68% of caregivers rated at least one sleep-related item as “somewhat true.” Of all cognitive variables, scores were most frequently impaired for SCT (30%). A higher level of sleep disturbance was associated with worse SCT and parent-rated attention problems. Associations between sleep and performance-based cognitive measures assessing attention and working memory were not statistically significant. Conclusion Findings of the current study highlight the importance of further investigation into the relationship between sleep and cognition in PBT survivors, which may assist efforts to maximize cognitive outcome and health-related quality of life in PBT survivors. The current study additionally suggests further investigation of SCT in this population is warranted, as it may be more sensitive to detecting possible associations with sleep disturbance relative to discrete measures that assess cognitive performance under ideal circumstances.
Collapse
Affiliation(s)
- Ineke M. Olsthoorn
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston (UT Health), Houston, TX, United States
| | - Alice Ann Holland
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
- Department of Psychiatry, Children’s Medical Center of Dallas, Dallas, TX, United States
| | - Raymond C. Hawkins
- School of Psychology, Fielding Graduate University, Santa Barbara, CA, United States
| | - Allen E. Cornelius
- School of Psychology, Fielding Graduate University, Santa Barbara, CA, United States
| | - Muhammad Usman Baig
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Grace Yang
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel C. Holland
- School of Psychology, Fielding Graduate University, Santa Barbara, CA, United States
| | - Wafik Zaky
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peter L. Stavinoha
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Peter L. Stavinoha,
| |
Collapse
|
29
|
Paganetti H. Mechanisms and Review of Clinical Evidence of Variations in Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2022; 112:222-236. [PMID: 34407443 PMCID: PMC8688199 DOI: 10.1016/j.ijrobp.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Proton therapy is increasingly being used as a radiation therapy modality. There is uncertainty about the biological effectiveness of protons relative to photon therapies as it depends on several physical and biological parameters. Radiation oncology currently applies a constant and generic value for the relative biological effectiveness (RBE) of 1.1, which was chosen conservatively to ensure tumor coverage. The use of a constant value has been challenged particularly when considering normal tissue constraints. Potential variations in RBE have been assessed in several published reviews but have mostly focused on data from clonogenic cell survival experiments with unclear relevance for clinical proton therapy. The goal of this review is to put in vitro findings in relation to clinical observations. Relevant in vivo pathways determining RBE for tumors and normal tissues are outlined, including not only damage to tumor cells and parenchyma but also vascular damage and immune response. Furthermore, the current clinical evidence of varying RBE is reviewed. The assessment can serve as guidance for treatment planning, personalized dose prescriptions, and outcome analysis.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
30
|
Stavinoha PL, Trinh-Wong T, Rodriguez LN, Stewart CM, Frost K. Educational Pain Points for Pediatric Brain Tumor Survivors: Review of Risks and Remedies. CHILDREN 2021; 8:children8121125. [PMID: 34943320 PMCID: PMC8700207 DOI: 10.3390/children8121125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/29/2023]
Abstract
Evolving treatment paradigms have led to increased survival rates for children diagnosed with a brain tumor, and this has increasingly shifted clinical and research focus to morbidity and quality of life among survivors. Among unfavorable outcomes, survivors of pediatric brain tumors are at risk for academic failure and low educational attainment, which may then contribute to lower health related quality of life, lower income and vocational status, and a greater likelihood of dependence on others in adulthood. Several specific risk factors for lower educational performance and attainment have been investigated. These are typically examined in isolation from one another which clouds understanding of the full range and potential interplay of contributors to educational difficulties. This review integrates and summarizes what is known about the direct and indirect barriers to educational success and performance (i.e., educational pain points) to enhance clinician knowledge of factors to consider when working with pediatric brain tumor survivors. Specific barriers to educational success include neurocognitive difficulties, school absences, psychosocial challenges, challenges to knowledge and communication, and physical and sensory difficulties. Finally, we discuss the current state of educational interventions and supports and offer recommendations for future research to improve educational outcomes for pediatric brain tumor survivors.
Collapse
|
31
|
Hoeben BAW, Wong JYC, Fog LS, Losert C, Filippi AR, Bentzen SM, Balduzzi A, Specht L. Total Body Irradiation in Haematopoietic Stem Cell Transplantation for Paediatric Acute Lymphoblastic Leukaemia: Review of the Literature and Future Directions. Front Pediatr 2021; 9:774348. [PMID: 34926349 PMCID: PMC8678472 DOI: 10.3389/fped.2021.774348] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Total body irradiation (TBI) has been a pivotal component of the conditioning regimen for allogeneic myeloablative haematopoietic stem cell transplantation (HSCT) in very-high-risk acute lymphoblastic leukaemia (ALL) for decades, especially in children and young adults. The myeloablative conditioning regimen has two aims: (1) to eradicate leukaemic cells, and (2) to prevent rejection of the graft through suppression of the recipient's immune system. Radiotherapy has the advantage of achieving an adequate dose effect in sanctuary sites and in areas with poor blood supply. However, radiotherapy is subject to radiobiological trade-offs between ALL cell destruction, immune and haematopoietic stem cell survival, and various adverse effects in normal tissue. To diminish toxicity, a shift from single-fraction to fractionated TBI has taken place. However, HSCT and TBI are still associated with multiple late sequelae, leaving room for improvement. This review discusses the past developments of TBI and considerations for dose, fractionation and dose-rate, as well as issues regarding TBI setup performance, limitations and possibilities for improvement. TBI is typically delivered using conventional irradiation techniques and centres have locally developed heterogeneous treatment methods and ways to achieve reduced doses in several organs. There are, however, limitations in options to shield organs at risk without compromising the anti-leukaemic and immunosuppressive effects of conventional TBI. Technological improvements in radiotherapy planning and delivery with highly conformal TBI or total marrow irradiation (TMI), and total marrow and lymphoid irradiation (TMLI) have opened the way to investigate the potential reduction of radiotherapy-related toxicities without jeopardising efficacy. The demonstration of the superiority of TBI compared with chemotherapy-only conditioning regimens for event-free and overall survival in the randomised For Omitting Radiation Under Majority age (FORUM) trial in children with high-risk ALL makes exploration of the optimal use of TBI delivery mandatory. Standardisation and comprehensive reporting of conventional TBI techniques as well as cooperation between radiotherapy centres may help to increase the ratio between treatment outcomes and toxicity, and future studies must determine potential added benefit of innovative conformal techniques to ultimately improve quality of life for paediatric ALL patients receiving TBI-conditioned HSCT.
Collapse
Affiliation(s)
- Bianca A. W. Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, United States
| | - Lotte S. Fog
- Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Christoph Losert
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andrea R. Filippi
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Søren M. Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adriana Balduzzi
- Stem Cell Transplantation Unit, Clinica Paediatrica Università degli Studi di Milano Bicocca, Monza, Italy
| | - Lena Specht
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
33
|
Frankart AJ, Breneman JC, Pater LE. Radiation Therapy in the Treatment of Head and Neck Rhabdomyosarcoma. Cancers (Basel) 2021; 13:3567. [PMID: 34298780 PMCID: PMC8305800 DOI: 10.3390/cancers13143567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
The use of radiation therapy is an important part of multimodality treatment for rhabdomyosarcoma. The specific doses, treatment volumes, and techniques used in radiation therapy can vary dramatically based upon a number of factors including location, tumor size, and molecular characteristics, resulting in complex decisions in treatment planning. This article reviews the principles of evaluation and management for head and neck rhabdomyosarcoma including a summary of the historical studies upon which current management is based.
Collapse
Affiliation(s)
| | | | - Luke E. Pater
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45267, USA; (A.J.F.); (J.C.B.)
| |
Collapse
|
34
|
Gabriel M, Hoeben BAW, Uhlving HH, Zajac-Spychala O, Lawitschka A, Bresters D, Ifversen M. A Review of Acute and Long-Term Neurological Complications Following Haematopoietic Stem Cell Transplant for Paediatric Acute Lymphoblastic Leukaemia. Front Pediatr 2021; 9:774853. [PMID: 35004543 PMCID: PMC8734594 DOI: 10.3389/fped.2021.774853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Despite advances in haematopoietic stem cell transplant (HSCT) techniques, the risk of serious side effects and complications still exists. Neurological complications, both acute and long term, are common following HSCT and contribute to significant morbidity and mortality. The aetiology of neurotoxicity includes infections and a wide variety of non-infectious causes such as drug toxicities, metabolic abnormalities, irradiation, vascular and immunologic events and the leukaemia itself. The majority of the literature on this subject is focussed on adults. The impact of the combination of neurotoxic drugs given before and during HSCT, radiotherapy and neurological complications on the developing and vulnerable paediatric and adolescent brain remains unclear. Moreover, the age-related sensitivity of the nervous system to toxic insults is still being investigated. In this article, we review current evidence regarding neurotoxicity following HSCT for acute lymphoblastic leukaemia in childhood. We focus on acute and long-term impacts. Understanding the aetiology and long-term sequelae of neurological complications in children is particularly important in the current era of immunotherapy for acute lymphoblastic leukaemia (such as chimeric antigen receptor T cells and bi-specific T-cell engager antibodies), which have well-known and common neurological side effects and may represent a future treatment modality for at least a fraction of HSCT-recipients.
Collapse
Affiliation(s)
- Melissa Gabriel
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Hilde Hylland Uhlving
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Olga Zajac-Spychala
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznań, Poland
| | - Anita Lawitschka
- Haematopoietic Stem Cell Transplant Unit, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marianne Ifversen
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|