1
|
Arnaud L, Chasset F, Martin T. Immunopathogenesis of systemic lupus erythematosus: An update. Autoimmun Rev 2024; 23:103648. [PMID: 39343084 DOI: 10.1016/j.autrev.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by dysregulated immune responses leading to widespread inflammation and damage in various organs. Environmental factors such as infections, hormonal influences and exposure to ultraviolet light can trigger the disease in genetically predisposed individuals. Genome-wide association studies have identified over 100 susceptibility loci linked to immune regulation, interferon (IFN) signaling and antigen presentation in SLE. In addition, rare cases of monogenic lupus have been instrumental in understanding critical underlying disease mechanisms. Several immunological abnormalities contribute to the loss of self-tolerance and the perpetuation of autoimmune responses in SLE. In particular, defective clearance of apoptotic cells due to defective phagocytosis and complement activation leads to accumulation of self-antigens. Dysregulated innate immune responses activate the adaptive immune system, amplifying the inflammatory response with an important role for type I IFNs. Abnormalities in B cell development and activation lead to the production of autoreactive antibodies, forming immune complexes that cause tissue damage. Similarly, disturbances in T-cell compartments, altered regulatory T-cell functions and altered cytokine production, particularly IFN-α, contribute to tissue damage. Understanding of the immunopathogenesis of SLE is evolving rapidly, with ongoing research identifying new molecular pathways and potential therapeutic targets. Future classifications of SLE are likely to be based on underlying biological pathways rather than clinical and serological signs alone. This review aims to provide a detailed update on the most recent findings regarding the immunopathogenesis of SLE, focusing on the variability of biological pathways and the implications for future therapeutic strategies, in particular chimeric antigen receptor T (CAR T) cells.
Collapse
Affiliation(s)
- Laurent Arnaud
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares Est Sud-Ouest, INSERM UMRS-1109, Université de Strasbourg, Strasbourg, France.
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, AP-HP, Service de Dermatologie et Allergologie, Hôpital Tenon, INSERM U1135, CIMI, Paris, France
| | - Thierry Martin
- Service d'immunologie Clinique et de médecine interne, Hôpitaux Universitaires de Strasbourg, Centre National de Référence des Maladies Systémiques Auto-immunes Rares, Strasbourg, France
| |
Collapse
|
2
|
Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024; 43:196. [PMID: 39020402 PMCID: PMC11253500 DOI: 10.1186/s13046-024-03121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells executing various innate immunological functions. Their first line of defence consists in type I interferons (I-IFN) production upon nucleic acids sensing through endosomal Toll-like receptor (TLR) 7- and 9-dependent signalling pathways. Type I IFNs are a class of proinflammatory cytokines that have context-dependent functions on cancer immunosurveillance and immunoediting. In the last few years, different studies have reported that pDCs are also able to sense cytosolic DNA through cGAS-STING (stimulator of interferon genes) pathway eliciting a potent I-IFN production independently of TLR7/9. Human pDCs are also endowed with direct effector functions via the upregulation of TRAIL and production of granzyme B, the latter modulated by cytokines abundant in cancer tissues. pDCs have been detected in a wide variety of human malignant neoplasms, including virus-associated cancers, recruited by chemotactic stimuli. Although the role of pDCs in cancer immune surveillance is still uncompletely understood, their spontaneous activation has been rarely documented; moreover, their presence in the tumor microenvironment (TME) has been associated with a tolerogenic phenotype induced by immunosuppressive cytokines or oncometabolites. Currently tested treatment options can lead to pDCs activation and disruption of the immunosuppressive TME, providing a relevant clinical benefit. On the contrary, the antibody-drug conjugates targeting BDCA-2 on immunosuppressive tumor-associated pDCs (TA-pDCs) could be proposed as novel immunomodulatory therapies to achieve disease control in patients with advance stage hematologic malignancies or solid tumors. This Review integrate recent evidence on the biology of pDCs and their pharmacological modulation, suggesting their relevant role at the forefront of cancer immunity.
Collapse
Affiliation(s)
- Matilde Monti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Giorgia Ferrari
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, P.Le Spedali Civili 1, 25123, Brescia, Italy.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Vazquez T, Patel J, Kodali N, Diaz D, Bashir MM, Chin F, Keyes E, Sharma M, Sprow G, Grinnell M, Dan J, Werth VP. Plasmacytoid Dendritic Cells Are Not Major Producers of Type 1 IFN in Cutaneous Lupus: An In-Depth Immunoprofile of Subacute and Discoid Lupus. J Invest Dermatol 2024; 144:1262-1272.e7. [PMID: 38086428 DOI: 10.1016/j.jid.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 03/12/2024]
Abstract
The immunologic drivers of cutaneous lupus erythematosus (CLE) and its clinical subtypes remain poorly understood. We sought to characterize the immune landscape of discoid lupus erythematosus and subacute CLE using multiplexed immunophenotyping. We found no significant differences in immune cell percentages between discoid lupus erythematosus and subacute CLE (P > .05) with the exception of an increase in TBK1 in discoid lupus erythematosus (P < .05). Unbiased clustering grouped subjects into 2 major clusters without respect to clinical subtype. Subjects with a history of smoking had increased percentages of neutrophils, disease activity, and endothelial granzyme B compared with nonsmokers. Despite previous assumptions, plasmacytoid dendritic cells (pDCs) did not stain for IFN-1. Skin-eluted and circulating pDCs from subjects with CLE expressed significantly less IFNα than healthy control pDCs upon toll-like receptor 7 stimulation ex vivo (P < .0001). These data suggest that discoid lupus erythematosus and subacute CLE have similar immune microenvironments in a multiplexed investigation. Our aggregated analysis of CLE revealed that smoking may modulate disease activity in CLE through neutrophils and endothelial granzyme B. Notably, our data suggest that pDCs are not the major producers of IFN-1 in CLE. Future in vitro studies to investigate the role of pDCs in CLE are needed.
Collapse
Affiliation(s)
- Thomas Vazquez
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jay Patel
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nilesh Kodali
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Felix Chin
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Dan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Marques ERMDC, Hsieh R, Lourenço SV, Nico MMS. Oral lupus erythematosus: Immunohistochemical evaluation of CD1a, CD21, CD123, and langerin expression in dendritic cells. J Cutan Pathol 2024; 51:368-378. [PMID: 38287771 DOI: 10.1111/cup.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/04/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Dendritic cells participate in the pathophysiology of lupus erythematosus (LE), which are studied in systemic and cutaneous forms; however, little is known about their oral manifestations. METHODS The expressions of dendritic cell markers (including CD1a, CD21, CD123, and langerin) were investigated by immunohistochemistry technique. Sixty intraoral and lower lip LE lesions, and additional 10 control samples were collected from 2003 to 2019. They were topographically analyzed in the epithelium (EP), lamina propria (LP), epithelial junction (JUN), and deep perivascular (PV) areas. RESULTS The expression of CD1a was decreased in the EP (p = 0.003) and increased in the deep PV area (p = 0.002). Langerin immunostaining showed no significant decrease in EP (p = 0.944); however, it increased in LP (p = 0.012) and JUN (p = 0.006). CD21 was expressed in only two specimens (EP, p = 0.012; LP, p < 0.001; deep PV area, p = 0.018). CD123 expression increased in all topographies (EP, p < 0.005; LP, p < 0.001, JUN, p < 0.001; deep PV, p < 0.001). The comparison between vermilion and intraoral mucosa LE lesions suggested that sun-exposed sites showed higher expression of CD123 (EP, p = 0.024; LP, p = 0.047; JUN, p = 0.001). CONCLUSIONS CD1a, langerin, and CD123 expressions were detected coincidently surrounding the inflammatory infiltrate in oral LE, suggesting that these cells may play an important role in immune response. Interestingly, plasmacytoid dendritic cells showed increased CD123 expression in sun-exposed site lesions, which point out a possible function in their pathogenesis. Further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
| | - Ricardo Hsieh
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Silvia Vanessa Lourenço
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Marcello Menta Simonsen Nico
- Department of Dermatology, Medical School, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Affolter VK. Cytotoxic dermatitis: Review of the interface dermatitis pattern in veterinary skin diseases. Vet Pathol 2023; 60:770-782. [PMID: 37650259 DOI: 10.1177/03009858231195080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Interface dermatitis or lichenoid interface dermatitis refers to a cutaneous inflammatory pattern in which keratinocyte cell death is the essential feature. These terms have evolved from the originally described lichenoid tissue reaction. These lesions are the basis for an important group of skin diseases in animals and people where cytotoxic T-cell-mediated epidermal damage is a major pathomechanism. Yet, for largely historical reasons these commonly used morphological diagnostic terms do not reflect the essential nature of the lesion. An emphasis on subsidiary lesions, such as the presence of a lichenoid band, and definitions based on anatomical features, such as location at the dermo-epidermal location, may cause confusion and even misdiagnosis. This review covers historical aspects of the terminology, including the origin of terms such as "lichenoid." The types of cell death involved and the histopathologic lesions are described. Etiopathogenesis is discussed in terms of aberrations of immune/inflammatory mechanisms focusing on cutaneous lupus erythematosus, erythema multiforme, and Stevens-Johnson syndrome/toxic epidermal necrolysis. Mechanisms have most extensively been studied in humans and laboratory animals and the discussion is centered on these species. As interface dermatitis is firmly entrenched in dermatological parlance, rather than using "cytotoxic" as its substitute, the terminologies "interface cytotoxic dermatitis" and "panepidermal cytotoxic dermatitis" are recommended, based on location and extent of epithelium affected.
Collapse
|
6
|
Holtkamp HU, Aguergaray C, Prangnell K, Pook C, Amirapu S, Grey A, Simpson C, Nieuwoudt M, Jarrett P. Raman spectroscopy and mass spectrometry identifies a unique group of epidermal lipids in active discoid lupus erythematosus. Sci Rep 2023; 13:16452. [PMID: 37777584 PMCID: PMC10542761 DOI: 10.1038/s41598-023-43331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Discoid lupus erythematosus (DLE) is the most common form of cutaneous lupus1. It can cause permanent scarring. The pathophysiology of is not fully understood. Plasmacytoid dendritic cells are found in close association with apoptotic keratinocytes inferring close cellular signalling. Matrix Associated Laser Desorption Ionisation (MALDI) combined with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) is an exquisitely sensitive combination to examine disease processes at the cellular and molecular level. Active areas of discoid lupus erythematosus were compared with normal perilesional skin using MALDI combined with FT-ICR-MS. A unique set of biomarkers, including epidermal lipids is identified in active discoid lupus. These were assigned as sphingomyelins, phospholipids and ceramides. Additionally, increased levels of proteins from the keratin, and small proline rich family, and aromatic amino acids (tryptophan, phenylalanine, and tyrosine) in the epidermis are observed. These techniques, applied to punch biopsies of the skin, have shown a distinctive lipid profile of active discoid lupus. This profile may indicate specific lipid signalling pathways. Lipid rich microdomains (known as lipid rafts) are involved in cell signalling and lipid abnormalities have been described with systemic lupus erythematosus which correlate with disease activity.
Collapse
Affiliation(s)
- Hannah U Holtkamp
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Claude Aguergaray
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Kalita Prangnell
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher Pook
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Angus Grey
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Cather Simpson
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Michel Nieuwoudt
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Paul Jarrett
- Department of Dermatology, Middlemore Hospital, Auckland, New Zealand.
- Department of Medicine, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Niebel D, de Vos L, Fetter T, Brägelmann C, Wenzel J. Cutaneous Lupus Erythematosus: An Update on Pathogenesis and Future Therapeutic Directions. Am J Clin Dermatol 2023; 24:521-540. [PMID: 37140884 PMCID: PMC10157137 DOI: 10.1007/s40257-023-00774-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 05/05/2023]
Abstract
Lupus erythematosus comprises a spectrum of autoimmune diseases that may affect various organs (systemic lupus erythematosus [SLE]) or the skin only (cutaneous lupus erythematosus [CLE]). Typical combinations of clinical, histological and serological findings define clinical subtypes of CLE, yet there is high interindividual variation. Skin lesions arise in the course of triggers such as ultraviolet (UV) light exposure, smoking or drugs; keratinocytes, cytotoxic T cells and plasmacytoid dendritic cells (pDCs) establish a self-perpetuating interplay between the innate and adaptive immune system that is pivotal for the pathogenesis of CLE. Therefore, treatment relies on avoidance of triggers and UV protection, topical therapies (glucocorticosteroids, calcineurin inhibitors) and rather unspecific immunosuppressive or immunomodulatory drugs. Yet, the advent of licensed targeted therapies for SLE might also open new perspectives in the management of CLE. The heterogeneity of CLE might be attributable to individual variables and we speculate that the prevailing inflammatory signature defined by either T cells, B cells, pDCs, a strong lesional type I interferon (IFN) response, or combinations of the above might be suitable to predict therapeutic response to targeted treatment. Therefore, pretherapeutic histological assessment of the inflammatory infiltrate could stratify patients with refractory CLE for T-cell-directed therapies (e.g. dapirolizumab pegol), B-cell-directed therapies (e.g. belimumab), pDC-directed therapies (e.g. litifilimab) or IFN-directed therapies (e.g. anifrolumab). Moreover, Janus kinase (JAK) and spleen tyrosine kinase (SYK) inhibitors might broaden the therapeutic armamentarium in the near future. A close interdisciplinary exchange with rheumatologists and nephrologists is mandatory for optimal treatment of lupus patients to define the best therapeutic strategy.
Collapse
Affiliation(s)
- Dennis Niebel
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Luka de Vos
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany
| | - Tanja Fetter
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany
| | | | - Jörg Wenzel
- Department of Dermatology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Zheng M, Hu Z, Zhou W, Kong Y, Wu R, Zhang B, Long H, Jia S, Lu Q, Zhao M. Single-cell transcriptome reveals immunopathological cell composition of skin lesions in subacute cutaneous lupus erythematosus. Clin Immunol 2022; 245:109172. [DOI: 10.1016/j.clim.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
|
10
|
Maz MP, Martens JWS, Hannoudi A, Reddy AL, Hile GA, Kahlenberg JM. Recent advances in cutaneous lupus. J Autoimmun 2022; 132:102865. [PMID: 35858957 PMCID: PMC10082587 DOI: 10.1016/j.jaut.2022.102865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.
Collapse
Affiliation(s)
- Mitra P Maz
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Hannoudi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alayka L Reddy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace A Hile
- Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Li Q, Yang M, Chen K, Zhou S, Zhou S, Wu H. Tight correlation of 5-hydroxymethylcytosine expression with the scarring damage of discoid lupus erythematosus. Lupus 2022; 31:1306-1316. [PMID: 35817588 DOI: 10.1177/09612033221114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Cutaneous lupus erythematosus (CLE) is a heterogenous skin disease. The two most common subtypes are discoid LE (DLE) characterized by scarring skin damage and acute CLE (ACLE) presenting with transiently reversible skin lesions. It remains unknown what causes the difference of skin lesions. Studies have shown the existence of tissue-specific 5-Hydroxymethylcytosine (5 hmC)-modified regions in human tissues, which may affect the tissue-related diseases. Here, we aim to assess the expression of 5 hmc in DLE and ACLE lesions and explore the relationship of 5 hmc with scarring damage in DLE. METHODS 84 CLE samples were included in the study. We evaluated the skin damage score and reviewed the histopathologic sections. Immunohistochemical staining was performed to detect the expression of 5 hmc in the appendage and periappendageal inflammatory cells. The 5 hmc expression in periappendageal lymphocytic cells was investigated by multi-spectrum immunohistochemistry staining. RESULTS Scarring/atrophy was the most significant damage in differentiating the DLE from ACLE. Perifollicular inflammatory infiltration was present in all patients with DLE scarring alopecia (DLESA). The 5 hmc expression in the appendage and periappendageal inflammatory cells was significantxly increased in DLESA than ACLE. Similar expression pattern was seen in the staining of IFN-alpha/beta Receptor (IFNAR). The expression of 5 hmc in the appendage was positively correlated with that in the periappendageal inflammatory cells. There was an increased 5 hmc expression in lymphocytes cluster around hair follicle consisting of CD4+ cells, CD8+ cells, and CD19+ cells in DLESA lesions. CONCLUSION These data demonstrate a close association of the expression pattern of 5 hmc with the histopathological characteristic distribution, and with the type I interferons (IFNs) signals in DLESA, supporting the importance of 5 hmc in the amplification of appendage damage and periappendageal inflammation, thereby offering a novel insight into the scarring damage of DLE and the heterogeneity of CLE skin lesions.
Collapse
Affiliation(s)
- Qianwen Li
- Department of Dermatology, 70566The Second Xiangya Hospital of Central South University, Changsha, China.,12570The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Ming Yang
- Department of Dermatology, 70566The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kaili Chen
- Department of Dermatology, 70566The Second Xiangya Hospital of Central South University, Changsha, China.,12570The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Suqing Zhou
- Department of Dermatology, 70566The Second Xiangya Hospital of Central South University, Changsha, China.,12570The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Shengnan Zhou
- Department of Dermatology, 70566The Second Xiangya Hospital of Central South University, Changsha, China.,12570The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Haijing Wu
- Department of Dermatology, 70566The Second Xiangya Hospital of Central South University, Changsha, China.,12570The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| |
Collapse
|
12
|
Fetter T, Braegelmann C, de Vos L, Wenzel J. Current Concepts on Pathogenic Mechanisms and Histopathology in Cutaneous Lupus Erythematosus. Front Med (Lausanne) 2022; 9:915828. [PMID: 35712102 PMCID: PMC9196867 DOI: 10.3389/fmed.2022.915828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous lupus erythematosus (CLE) is an interferon (IFN)-driven autoimmune disease that may be limited to the skin or can be associated with systemic lupus erythematosus (SLE). CLE occurs in several morphologic subtypes ranging from isolated, disc-shaped plaques to disseminated skin lesions. The typical histopathologic pattern of skin lesions is named interface dermatitis and characterized by a lymphocytic infiltrate and necroptotic keratinocytes at the dermo-epidermal junction. Other histopathologic patterns primarily involve the dermis or subcutis, depending on the subtype. One critical mechanism in CLE is the chronic reactivation of innate and adaptive immune pathways. An important step in this process is the recognition of endogenous nucleic acids released from dying cells by various pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and other cytosolic receptors. Crucial cells in CLE pathogenesis comprise plasmacytoid dendritic cells (pDCs) as major producers of type I IFN, T cells exerting cytotoxic effects, and B cells, previously believed to contribute via secretion of autoantibodies. However, B cells are increasingly considered to have additional functions, supported by studies finding them to occur in highest numbers in chronic discoid lupus erythematosus (CDLE), a subtype in which autoantibodies are often absent. More precise knowledge of how CLE subtypes differ pathophysiologically may allow a tailored pharmacotherapy in the future, taking into account the specific molecular signature in relation to the morphologic subtype.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Luka de Vos
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Rosa TLSA, Mendes MA, Linhares NRC, Rodrigues TF, Dias AA, Leal-Calvo T, Gandini M, Ferreira H, Costa FDMR, Sales AM, Amadeu TP, Schmitz V, Pinheiro RO, Rodrigues LS, Moraes MO, Pessolani MCV. The Type I Interferon Pathway Is Upregulated in the Cutaneous Lesions and Blood of Multibacillary Leprosy Patients With Erythema Nodosum Leprosum. Front Med (Lausanne) 2022; 9:899998. [PMID: 35733868 PMCID: PMC9208291 DOI: 10.3389/fmed.2022.899998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natasha Ribeiro Cardoso Linhares
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thais Fernanda Rodrigues
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Anna Maria Sales
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thaís Porto Amadeu
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Cristina Vidal Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Cristina Vidal Pessolani,
| |
Collapse
|
14
|
Discovery and mechanistic study of thiazole-4-acylsulfonamide derivatives as potent and orally active ChemR23 inhibitors with a long-acting effect in cynomolgus monkeys. Bioorg Med Chem 2022; 56:116587. [DOI: 10.1016/j.bmc.2021.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
|
15
|
Lonardi S, Bugatti M, Valzelli A, Facchetti F. Immunohistochemical Detection of SARS-CoV-2 Antigens by Single and Multiple Immunohistochemistry. Methods Mol Biol 2022; 2452:291-303. [PMID: 35554913 DOI: 10.1007/978-1-0716-2111-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can be demonstrated in tissue sections by immunohistochemistry (IHC), which has the power to localize in bright field specific antigens in cells and tissues. The use of double or triple immunostains is capable of highlighting which cells are infected and/or the relationship of infected cell with other cells and tissue structures. In addition, immunoenzymatic multi-staining permits the simultaneous identification, localization, and enumeration of different cellular epitopes. Moreover, this method improves analytical precision, decreasing the time required for morphometric quantification, maximizing the information obtained from a single slide of paraffin-embedded tissue.
Collapse
Affiliation(s)
- Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy.
| | - Arianna Valzelli
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
16
|
Ghanem MH, Shih AJ, Vashistha H, Coke LN, Li W, Kim SJ, Simpfendorfer KR, Gregersen PK. Investigations into SCAMP5, a candidate lupus risk gene expressed in plasmacytoid dendritic cells. Lupus Sci Med 2021; 8:8/1/e000567. [PMID: 34728555 PMCID: PMC8565557 DOI: 10.1136/lupus-2021-000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Objective We have investigated the molecular function of SCAMP5, a candidate risk gene for SLE exclusively expressed in plasmacytoid dendritic cells (pDCs) among peripheral leucocytes. Methods We tested the independence of the association in SCAMP5 with SLE by performing conditional analyses. We profiled the expression pattern of SCAMP5 among circulating leucocytes at the transcript and protein levels. Using lentiviral vectors, we localised the subcellular distribution of SCAMP5 alongside the interferon secretory pathway. We analysed pDCs for the expression of SCAMP5 and interferon production capacity by SCAMP5 genotype. Finally, we examined pDC-specific SCAMP5 isoforms by total RNAseq analysis and examined for genotype-associated quantitative differences therein. Results A conditional analysis revealed evidence of an independent genetic association of SCAMP5 with SLE. Among circulating leucocytes, SCAMP5 is uniquely expressed in pDCs at the transcript and protein levels, with main presence in the Golgi apparatus and minor presence at the cell periphery. In live cells, SCAMP5 displayed dynamic Golgi-cell surface trafficking and localised with the interferon secretory pathway. SCAMP5 did not differ in expression levels in pDCs between genotyped donors; however, a transient interferon secretory defect was noted in pDCs from donors carrying the risk genotype. Conclusions SCAMP5 constitutes a novel SLE risk gene on the basis of genomic data and expression in a cell type widely implicated in SLE pathogenesis. While we could not find evidence of quantitative expression differences in SCAMP5 between genotyped donors, SCAMP5 remains an attractive gene to explore given its highly restricted expression pattern and colocalisation with interferon secretion.
Collapse
Affiliation(s)
- Mustafa H Ghanem
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Andrew J Shih
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Himanshu Vashistha
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Latanya N Coke
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Wentian Li
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sun Jung Kim
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Kim R Simpfendorfer
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Peter K Gregersen
- The Institute of Molecular Medicine, Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
17
|
Lorenzi L, Lonardi S, Vairo D, Bernardelli A, Tomaselli M, Bugatti M, Licini S, Arisi M, Cerroni L, Tucci A, Vermi W, Giliani SC, Facchetti F. E-Cadherin Expression and Blunted Interferon Response in Blastic Plasmacytoid Dendritic Cell Neoplasm. Am J Surg Pathol 2021; 45:1428-1438. [PMID: 34081040 PMCID: PMC8428867 DOI: 10.1097/pas.0000000000001747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive neoplasm derived from plasmacytoid dendritic cells (pDCs). In this study, we investigated by immunohistochemical analysis the expression of E-cadherin (EC) on pDCs in reactive lymph nodes and tonsils, bone marrow, and in BPDCN. We compared the expression of EC in BPDCN to that in leukemia cutis (LC) and cutaneous lupus erythematosus (CLE), the latter typically featuring pDC activation. In BPDCN, we also assessed the immunomodulatory activity of malignant pDCs through the expression of several type I interferon (IFN-I) signaling effectors and downstream targets, PD-L1/CD274, and determined the extent of tumor infiltration by CD8-expressing T cells. In reactive lymph nodes and tonsils, pDCs expressed EC, whereas no reactivity was observed in bone marrow pDCs. BPDCN showed EC expression in the malignant pDCs in the vast majority of cutaneous (31/33 cases, 94%), nodal, and spleen localizations (3/3 cases, 100%), whereas it was more variable in the bone marrow (5/13, 38,5%), where tumor cells expressed EC similarly to the skin counterpart in 4 cases and differently in other 4. Notably, EC was undetectable in LC (n=30) and in juxta-epidermal pDCs in CLE (n=31). Contrary to CLE showing robust expression of IFN-I-induced proteins MX1 and ISG5 in 20/23 cases (87%), and STAT1 phosphorylation, BPDCN biopsies showed inconsistent levels of these proteins in most cases (85%). Expression of IFN-I-induced genes, IFI27, IFIT1, ISG15, RSAD2, and SIGLEC1, was also significantly (P<0.05) lower in BPDCN as compared with CLE. In BPDCN, a significantly blunted IFN-I response correlated with a poor CD8+T-cell infiltration and the lack of PD-L1/CD274 expression by the tumor cells. This study identifies EC as a novel pDC marker of diagnostic relevance in BPDCN. The results propose a scenario whereby malignant pDCs through EC-driven signaling promote the blunting of IFN-I signaling and, thereby, the establishment of a poorly immunogenic tumor microenvironment.
Collapse
Affiliation(s)
- Luisa Lorenzi
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, A. Nocivelli Institute of Molecular Medicine, University of Brescia and Section of Medical Genetics, Spedali Civili
| | - Andrea Bernardelli
- Department of Molecular and Translational Medicine, Section of Pathology
| | | | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Sara Licini
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Mariachiara Arisi
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Alessandra Tucci
- Haematology Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute of Molecular Medicine, University of Brescia and Section of Medical Genetics, Spedali Civili
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| |
Collapse
|
18
|
Diagnostic Value of Plasmacytoid Dendritic Cells in Differentiating Pityriasis Lichenoides et Varioliformis Acuta From Lymphomatoid Papulosis. Am J Dermatopathol 2021; 44:174-178. [DOI: 10.1097/dad.0000000000002063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Shi G, Li D, Zhang D, Xu Y, Pan Y, Lu L, Li J, Xia X, Dou H, Hou Y. IRF-8/miR-451a regulates M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. Cell Death Discov 2021; 7:179. [PMID: 34282122 PMCID: PMC8289825 DOI: 10.1038/s41420-021-00568-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease. Myeloid-derived suppressor cells (MDSCs) have been found to be involved in the regulation of SLE development. However, little is known about the association between MDSC subsets and the factors that draw MDSCs into abnormal expansion. This study found that the percentage of M-MDSCs increased in mice with pristane-induced lupus. Toll-like receptor (TLR)7 signal activation and high interferon-α (IFN-α) level promoted M-MDSC differentiation in vitro. Moreover, both AMP-activated protein kinase (AMPK) agonist metformin and two mammalian targets of rapamycin (mTOR) inhibitors (INK128 and rapamycin) inhibited the percentage of M-MDSCs in lupus mice as well as in the TLR7- and IFN-α-induced bone marrow (BM) differentiation into MDSCs in vitro. In terms of mechanism, whole-genome transcriptome profiling was performed by RNA sequencing, revealing that the expression of the transcription factor IRF-8 was higher in M-MDSCs isolated from pristane-induced lupus mice, compared with control mice. IRF-8 was identified to be crucial for TLR7- and IFN-α-induced BM differentiation into MDSCs in vitro. Furthermore, interferon (IFN) regulatory factor8 (IRF-8) was targeted by miR-451a in M-MDSC differentiation. Of note, metformin-modified M-MDSCs could relieve lupus symptoms in pristane-induced lupus mice. The findings revealed a novel mechanism linking IRF-8/miR-451a to M-MDSC differentiation via the AMPK/mTOR signal pathway during lupus development. This study might provide an important reference for SLE therapy by targeting M-MDSCs.
Collapse
Affiliation(s)
- Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
20
|
Karnell JL, Wu Y, Mittereder N, Smith MA, Gunsior M, Yan L, Casey KA, Henault J, Riggs JM, Nicholson SM, Sanjuan MA, Vousden KA, Werth VP, Drappa J, Illei GG, Rees WA, Ratchford JN. Depleting plasmacytoid dendritic cells reduces local type I interferon responses and disease activity in patients with cutaneous lupus. Sci Transl Med 2021; 13:13/595/eabf8442. [PMID: 34039741 DOI: 10.1126/scitranslmed.abf8442] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) not only are specialized in their capacity to secrete large amounts of type I interferon (IFN) but also serve to enable both innate and adaptive immune responses through expression of additional proinflammatory cytokines, chemokines, and costimulatory molecules. Persistent activation of pDCs has been demonstrated in a number of autoimmune diseases. To evaluate the potential benefit of depleting pDCs in autoimmunity, a monoclonal antibody targeting the pDC-specific marker immunoglobulin-like transcript 7 was generated. This antibody, known as VIB7734, which was engineered for enhanced effector function, mediated rapid and potent depletion of pDCs through antibody-dependent cellular cytotoxicity. In cynomolgus monkeys, treatment with VIB7734 reduced pDCs in blood below the lower limit of normal by day 1 after the first dose. In two phase 1 studies in patients with autoimmune diseases, VIB7734 demonstrated an acceptable safety profile, comparable to that of placebo. In individuals with cutaneous lupus, VIB7734 profoundly reduced both circulating and tissue-resident pDCs, with a 97.6% median reduction in skin pDCs at study day 85 in VIB7734-treated participants. Reductions in pDCs in the skin correlated with a decrease in local type I IFN activity as well as improvements in clinical disease activity. Biomarker analysis suggests that responsiveness to pDC depletion therapy may be greater among individuals with high baseline type I IFN activity, supporting a central role for pDCs in type I IFN production in autoimmunity and further development of VIB7734 in IFN-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Yan
- Viela Bio, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cheng W, Yu TT, Tang AP, He Young K, Yu L. Blastic Plasmacytoid Dendritic Cell Neoplasm: Progress in Cell Origin, Molecular Biology, Diagnostic Criteria and Therapeutic Approaches. Curr Med Sci 2021; 41:405-419. [PMID: 34218354 DOI: 10.1007/s11596-021-2393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy characterized by recurrent skin nodules, an aggressive clinical course with rapid involvement of hematological organs, and a poor prognosis with poor overall survival. BPDCN is derived from plasmacytoid dendritic cells (pDCs) and its pathogenesis is unclear. The tumor cells show aberrant expression of CD4, CD56, interleukin-3 receptor alpha chain (CD123), blood dendritic cell antigen 2 (BDCA 2/CD303), blood dendritic cell antigen 4 (BDCA4) and transcription factor (E protein) E2-2 (TCF4). The best treatment drugs are based on experience by adopting those used for either leukemia or lymphoma. Relapse with drug resistance generally occurs quickly. Stem cell transplantation after the first complete remission is recommended and tagraxofusp is the first targeted therapy. In this review, we summarize the differentiation of BPDCN from its cell origin, its connection with normal pDCs, clinical characteristics, genetic mutations and advances in treatment of BPDCN. This review provides insights into the mechanisms of and new therapeutic approaches for BPDCN.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian-Tian Yu
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Ai-Ping Tang
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China
| | - Ken He Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, 27710, USA
| | - Li Yu
- Department of Hematology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
22
|
Schnappauf O, Heale L, Dissanayake D, Tsai WL, Gadina M, Leto TL, Kastner DL, Malech HL, Kuhns DB, Aksentijevich I, Laxer RM. Homozygous variant p. Arg90His in NCF1 is associated with early-onset Interferonopathy: a case report. Pediatr Rheumatol Online J 2021; 19:54. [PMID: 33892719 PMCID: PMC8063424 DOI: 10.1186/s12969-021-00536-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Biallelic loss-of-function variants in NCF1 lead to reactive oxygen species deficiency and chronic granulomatous disease (CGD). Heterozygosity for the p.Arg90His variant in NCF1 has been associated with susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome in adult patients. This study demonstrates the association of the homozygous p.Arg90His variant with interferonopathy with features of autoinflammation and autoimmunity in a pediatric patient. CASE PRESENTATION A 5-year old female of Indian ancestry with early-onset recurrent fever and headache, and persistently elevated antinuclear, anti-Ro, and anti-La antibodies was found to carry the homozygous p.Arg90His variant in NCF1 through exome sequencing. Her unaffected parents and three other siblings were carriers for the mutant allele. Because the presence of two NCF1 pseudogenes, this variant was confirmed by independent genotyping methods. Her intracellular neutrophil oxidative burst and NCF1 expression levels were normal, and no clinical features of CGD were apparent. Gene expression analysis in peripheral blood detected an interferon gene expression signature, which was further supported by cytokine analyses of supernatants of cultured patient's cells. These findings suggested that her inflammatory disease is at least in part mediated by type I interferons. While her fever episodes responded well to systemic steroids, treatment with the JAK inhibitor tofacitinib resulted in decreased serum ferritin levels and reduced frequency of fevers. CONCLUSION Homozygosity for p.Arg90His in NCF1 should be considered contributory in young patients with an atypical systemic inflammatory antecedent phenotype that may evolve into autoimmunity later in life. The complex genomic organization of NCF1 poses a difficulty for high-throughput genotyping techniques and variants in this gene should be carefully evaluated when using the next generation and Sanger sequencing technologies. The p.Arg90His variant is found at a variable allele frequency in different populations, and is higher in people of South East Asian ancestry. In complex genetic diseases such as SLE, other rare and common susceptibility alleles might be necessary for the full disease expressivity.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, USA.
| | - Liane Heale
- grid.17063.330000 0001 2157 2938The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Dilan Dissanayake
- grid.17063.330000 0001 2157 2938The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Wanxia L. Tsai
- grid.94365.3d0000 0001 2297 5165National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Massimo Gadina
- grid.94365.3d0000 0001 2297 5165National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas L. Leto
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Daniel L. Kastner
- grid.94365.3d0000 0001 2297 5165National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Harry L. Malech
- grid.94365.3d0000 0001 2297 5165National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Douglas B. Kuhns
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, USA
| | - Ivona Aksentijevich
- grid.94365.3d0000 0001 2297 5165National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Ronald M. Laxer
- grid.17063.330000 0001 2157 2938The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Bardawil T, Khalil S, Kurban M, Abbas O. Diagnostic utility of plasmacytoid dendritic cells in dermatopathology. Indian J Dermatol Venereol Leprol 2021; 87:3-13. [PMID: 33580939 DOI: 10.25259/ijdvl_638_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/01/2020] [Indexed: 12/11/2022]
Abstract
Differentiating cutaneous diseases that mimic each other clinically and histopathologically can at times be a challenging task for the dermatopathologist. At the same time, differentiation of entities with overlapping features may be crucial for patient management. Although not seen in normal skin, plasmacytoid dendritic cells usually infiltrate the skin in several infectious, inflammatory/autoimmune and neoplastic entities. Plasmacytoid dendritic cells can be identified in tissue using specific markers such as CD123 and/or blood-derived dendritic cell antigen-2. Plasmacytoid dendritic cells are the most potent producers of type I interferons and their activity may therefore be assessed indirectly in tissue using human myxovirus resistance protein A, a surrogate marker for type I interferon production. In recent years, accumulating evidence has established the utility of evaluating for specific plasmacytoid dendritic cell-related parameters (plasmacytoid dendritic cell content, distribution and clustering and/ or human myxovirus resistance protein A expression) as a diagnostic tool in differentiating cutaneous diseases with overlapping features such as the alopecias, lupus and its mimics, and neoplastic entities. In this review, we provide an update on the current evidence on this topic and on the contexts where this can be a useful adjunct to reach the histopathological diagnosis.
Collapse
Affiliation(s)
- Tara Bardawil
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samar Khalil
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
24
|
Sohier P, Matar S, Meritet JF, Laurent-Roussel S, Dupin N, Aractingi S. Histopathologic Features of Chilblainlike Lesions Developing in the Setting of the Coronavirus Disease 2019 (COVID-19) Pandemic. Arch Pathol Lab Med 2021; 145:137-144. [PMID: 33501498 DOI: 10.5858/arpa.2020-0613-sa] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
CONTEXT.— During the coronavirus disease 2019 pandemic, several studies have described a distinctive cutaneous manifestation with a clinical picture resembling chilblains or chilblain lupus in young patients. OBJECTIVE.— To report the histopathologic description of a series of chilblainlike lesions appearing in the context of the severe acute respiratory syndrome coronavirus 2 epidemic. DESIGN.— The study included 13 patients with cutaneous acral lesions resembling chilblains occurring in the setting of suspected severe acute respiratory syndrome coronavirus 2 infection with available skin biopsy. RESULTS.— Two main histopathologic patterns were observed: a chilblainlike histopathologic pattern (10 of 13 cases; 77%) and a thrombotic vasculopathy pattern (3 of 13 cases; 23%). The chilblainlike histopathologic pattern featured a superficial and deep perivascular infiltrate of lymphocytes of varying intensity. This infiltrate was sometimes peri-eccrine and alterations of eccrine glands were present in most cases. Vacuolar alteration of the basal layer of the epidermis was found in a majority of patients. Lichenoid interface dermatitis was rarely present. The thrombotic vasculopathy pattern featured an absent or mild inflammatory infiltrate, multiple intraluminal fibrin thrombi, and ischemic epidermal necrosis. In both patterns, no true vasculitis was observed. No patient tested positive for severe acute respiratory syndrome coronavirus 2 by polymerase chain reaction, possibly because these lesions may represent late cutaneous manifestations of the disease or are associated with an early effective immune response. CONCLUSIONS.— The relationship of chilblainlike lesions to severe acute respiratory syndrome coronavirus 2 requires further investigations. Histopathologic features mimic chilblains, chilblain lupus, and, less frequently, a thrombotic vasculopathy. Response to viral infection might trigger diverse mechanisms leading to the 2 histopathologic patterns described.
Collapse
Affiliation(s)
- Pierre Sohier
- The Department of Pathology (Sohier, Laurent-Roussel), Assistance Publique-Hôpitaux de Paris, AP-HP Centre-Université de Paris, Paris, France.,Université de Paris, Paris, France (Sohier, Dupin, Aractingi)
| | - Stéphanie Matar
- Department of Dermatology and Venereology (Matar, Dupin, Aractingi), Assistance Publique-Hôpitaux de Paris, AP-HP Centre-Université de Paris, Paris, France
| | - Jean-François Meritet
- Department of the Laboratory of Virology (Meritet), Assistance Publique-Hôpitaux de Paris, AP-HP Centre-Université de Paris, Paris, France
| | - Sara Laurent-Roussel
- The Department of Pathology (Sohier, Laurent-Roussel), Assistance Publique-Hôpitaux de Paris, AP-HP Centre-Université de Paris, Paris, France.,Université de Paris, Paris, France (Sohier, Dupin, Aractingi)
| | - Nicolas Dupin
- Department of Dermatology and Venereology (Matar, Dupin, Aractingi), Assistance Publique-Hôpitaux de Paris, AP-HP Centre-Université de Paris, Paris, France.,Université de Paris, Paris, France (Sohier, Dupin, Aractingi).,Cutaneous Biology Lab, Institut Cochin, INSERM U1016, UMR8104, Paris, France (Dupin, Aractingi)
| | - Selim Aractingi
- Department of Dermatology and Venereology (Matar, Dupin, Aractingi), Assistance Publique-Hôpitaux de Paris, AP-HP Centre-Université de Paris, Paris, France.,Université de Paris, Paris, France (Sohier, Dupin, Aractingi).,Cutaneous Biology Lab, Institut Cochin, INSERM U1016, UMR8104, Paris, France (Dupin, Aractingi)
| |
Collapse
|
25
|
Psarras A, Alase A, Antanaviciute A, Carr IM, Md Yusof MY, Wittmann M, Emery P, Tsokos GC, Vital EM. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat Commun 2020; 11:6149. [PMID: 33262343 PMCID: PMC7708979 DOI: 10.1038/s41467-020-19918-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Ian M Carr
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Md Yuzaiful Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
26
|
Allen ME, Rus V, Szeto GL. Leveraging Heterogeneity in Systemic Lupus Erythematosus for New Therapies. Trends Mol Med 2020; 27:152-171. [PMID: 33046407 DOI: 10.1016/j.molmed.2020.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem, chronic autoimmune disease where treatment varies by patient and disease activity. Strong preclinical results and clinical correlates have motivated development of many drugs, but many of these have failed to achieve efficacy in clinical trials. FDA approval of belimumab in 2011 was the first successful SLE drug in nearly six decades. In this article, we review insights into the molecular and clinical heterogeneity of SLE from transcriptomics studies and detail their potential impact on drug development and clinical practices. We critically examine the pipeline of SLE drugs, including past failures and their associated lessons and current promising approaches. Finally, we identify opportunities for integrating these findings and drug development with new multidisciplinary advances to enhance future SLE treatment.
Collapse
Affiliation(s)
- Marilyn E Allen
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory L Szeto
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Experimental Immunology, Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
27
|
Patel J, Borucki R, Werth VP. An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical Practice. Curr Rheumatol Rep 2020; 22:69. [PMID: 32845411 DOI: 10.1007/s11926-020-00946-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Understanding the pathogenesis of cutaneous lupus erythematosus (CLE) is an important step in developing new medications and providing effective treatment to patients. This review focuses on novel research within CLE pathogenesis, as well as some of the medications being developed based on this knowledge. RECENT FINDINGS The subtle differences between systemic lupus erythematosus (SLE) and CLE pathogenesis are highlighted by differences in the circulating immune cells found in each disease, as well as the specific pathways activated by ultraviolet light. Plasmacytoid dendritic cells and the related type I interferon pathway are major components of CLE pathogenesis, and as such, therapies targeting components of this pathway have been successful in recent clinical trials. B cell-depleting therapies have shown success in SLE; however, their role in CLE is less clear. Understanding the differences between these manifestations of lupus allows for the development of therapies that are more effective in skin-specific disease. Discovering key pathways in CLE pathogenesis is critical for understanding the clinical features of the disease and ultimately developing new and effective therapies.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Borucki
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, Suite 1-330A, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Uno K, Muso E, Ito-Ihara T, Endo T, Yasuda Y, Yagi K, Suzuki K. Impaired HVJ-stimulated Interferon producing capacity in MPO-ANCA-associated vasculitis with rapidly progressive glomerulonephritis lead to susceptibility to infection. Cytokine 2020; 136:155221. [PMID: 32828064 DOI: 10.1016/j.cyto.2020.155221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
ANCA-associated RPGN leads to renal failure through systemic vasculitis and diffuse crescentic glomerulonephritis. MPO-ANCA-RPGN patients are highly susceptible to infections. Our aim in this study was to uncover reasons why these patients were susceptible to infections. We analyzed various aspects of type I interferon system including HVJ-stimulated IFN-α producing capacity and plasmacytoid dendritic cell (pDC) number in whole blood in MPO-ANCA-RPGN patients. Compared with healthy subjects, MPO-ANCA-RPGN patients showed impaired HVJ-stimulated IFN-α producing capacity and lower pDC number with or without glucocorticoid treatment. Immuno-histological staining of MPO-ANCA-RPGN kidney samples revealed a few but apparent pDC in T cell infiltrating regions even in patients with low pDC number in their peripheral blood. Patients' low HVJ-stimulated IFN-α producing capacity and pDC numbers persisted even after patients underwent several years of treatment. Former infection was determined using patients' serum BPI, Lamp-2 and Calprotectin, since they are reflective of a history of infection. These markers were higher in MPO-ANCA-RPGN patients than in healthy subjects. These results indicate that impaired HVJ-stimulated IFN-α production as well as dysfunction of the IFN system might have resulted from a previous bout of infection and can be partially implicated in patients' long-term susceptibility and vulnerability to infection.
Collapse
Affiliation(s)
- Kazuko Uno
- Louis Pasteur Center for Medical Research, Division of Basic Research, 103-5, Tanaka-Monzen cho, Sakyoku, Kyoto 606-8225, Japan.
| | - Eri Muso
- Division of Nephrology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20, Ogimachi, Kitaku, Osaka 530-8480, Japan; Department of Food and Nutrition Faculty of Contemporary Home Economics, Kyoto Kacho University, 3-456 Rinkacho, Higashiyama-ku, Kyoto 605-0062, Japan.
| | - Toshiko Ito-Ihara
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, 456 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Tomomi Endo
- Division of Nephrology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20, Ogimachi, Kitaku, Osaka 530-8480, Japan.
| | - Yuko Yasuda
- Louis Pasteur Center for Medical Research, Division of Basic Research, 103-5, Tanaka-Monzen cho, Sakyoku, Kyoto 606-8225, Japan.
| | - Katusmi Yagi
- Louis Pasteur Center for Medical Research, Division of Basic Research, 103-5, Tanaka-Monzen cho, Sakyoku, Kyoto 606-8225, Japan.
| | - Kazuo Suzuki
- Department of Immunobiology, Inflammation Program, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba-city, Chiba 260-8670, Japan; Asia International Institute of Infectious Disease Control, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
29
|
The design, synthesis and evaluation of 2-aminobenzoxazole analogues as potent and orally efficacious ChemR23 inhibitors. Bioorg Med Chem 2020; 28:115622. [PMID: 32773087 DOI: 10.1016/j.bmc.2020.115622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
We previously reported 2-aminobenzoxazole analogue 1 as a potent ChemR23 inhibitor. The compound showed inhibitory activity against chemerin-induced calcium signaling through ChemR23 internalization in CAL-1 cells, which are cell lines of plasmacytoid dendric cells (pDCs). Furthermore, compound 2 inhibited chemotaxis of CAL-1 triggered by chemerin in vitro. However, we noted a difference in the ChemR23 response to our inhibitor between rodents and non-rodents in a previous study. To address this issue, we performed optimization of ChemR23 inhibitors using CAL-1 cells endogenously expressing human ChemR23 and conducted a pharmacokinetics study in cynomolgus monkeys. Various substituents at the 4-position of the benzoxazole ring exhibited potent in vitro bioactivity, while those at the 6-position were not tolerated. Among substituents, a carboxyl group was identified as key for improving the oral bioavailability in cynomolgus monkeys. Compound 38a with the acidic part changed from a tetrazole group to a 1,2,4-oxadiazol-5-one group to improve bioactivity and pharmacokinetic parameters exhibited inhibitory activity against chemerin-induced chemotaxis in vitro. In addition, we confirmed the ChemR23 internalization of pDCs by compound 38a orally administered to cynomolgus monkeys. These 2-aminobenzoxazole-based ChemR23 inhibitors may be useful as novel immunotherapeutic agents capable of suppressing the migration of pDCs, which are known to be major producers of type I interferons in the lesion area of certain autoimmune diseases, such as systemic lupus erythematosus and psoriasis.
Collapse
|
30
|
Blastic plasmacytoid dendritic cell neoplasm: diagnosis, manifestations, and treatment. Curr Opin Hematol 2020; 27:103-107. [PMID: 31972688 DOI: 10.1097/moh.0000000000000569] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with historically poor outcomes. It typically manifests as asymptomatic skin lesions and cytopenias, which result from bone marrow involvement. Less commonly, it will present in lymph nodes or visceral organs as well. Although rare, BPDCN has been discussed more frequently in recent years as new drugs have been developed that could be effective at treating this disease. RECENT FINDINGS Until recently, treatment for BPDCN commonly included intensive chemotherapy regimens, which are generally reserved for management of acute myeloid leukemia or acute lymphoblastic leukemia. However, in 2018 tagraxofusp (SL-401) was approved as the only treatment specifically indicated for BPDCN. Additional clinical trials are ongoing evaluating the efficacy of newer agents, which could potentially further improve the long-term outcomes for patients with BPDCN. SUMMARY This manuscript reviews the diagnosis, manifestations and treatment of BPDCN.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Lupus erythematosus (LE) is characterized by broad and varied clinical forms ranging from a localized skin lesion to a life-threatening form with severe systemic manifestations. The overlapping between cutaneous LE (CLE) and systemic LE (SLE) brings difficulties to physicians for early accurate diagnosis and sometimes may lead to delayed treatment for patients. We comprehensively review recent progress about the similarities and differences of the main three subsets of LE in pathogenesis and immunological mechanisms, with a particular focus on the skin damage. RECENT FINDINGS Recent studies on the mechanisms contributing to the skin damage in lupus have shown a close association of abnormal circulating inflammatory cells and abundant production of IgG autoantibodies with the skin damage of SLE, whereas few evidences if serum autoantibodies and circulating inflammatory cells are involved in the pathogenesis of CLE, especially for the discoid LE (DLE). Till now, the pathogenesis and molecular/cellular mechanism for the progress from CLE to SLE are far from clear. But more and more factors correlated with the differences among the subsets of LE and progression from CLE to SLE have been found, such as the mutation of IRF5, IFN regulatory factors and abnormalities of plasmacytoid dendritic cells (PDCs), Th1 cells, and B cells, which could be the potential biomarkers for the interventions in the development of LE. A further understanding in pathogenesis and immunological mechanisms for skin damage in different subsets of LE makes us think more about the differences and cross-links in the pathogenic mechanism of CLE and SLE, which will shed a light in predictive biomarkers and therapies in LE.
Collapse
|
32
|
Rakhshan A, Toossi P, Amani M, Dadkhahfar S, Hamidi AB. Different distribution patterns of plasmacytoid dendritic cells in discoid lupus erythematosus and lichen planopilaris demonstrated by CD123 immunostaining. An Bras Dermatol 2020; 95:307-313. [PMID: 32299739 PMCID: PMC7253924 DOI: 10.1016/j.abd.2019.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Clinical and histological features may overlap between lichen planopilaris-associated and discoid lupus erythematosus-associated scarring alopecia. Objectives The aim of this study was to demonstrate the cutaneous infiltration of plasmacytoid dendritic cells and to compare their distribution pattern in discoid lupus erythematosus and lichen planopilaris. Methods Twenty-four cases of discoid lupus erythematosus and 30 cases of lichen planopilaris were examined for immunostaining of the CD123 marker. The percentage and distribution pattern of plasmacytoid dendritic cells and the presence of the plasmacytoid dendritic cells clusters were evaluted in the samples. Results The number of plasmacytoid dendritic cells was higher in the discoid lupus erythematosus specimens. Aggregations of 10 cells or more (large cluster) were observed in half of the discoid lupus erythematosus specimens and only 2 lichen planopilaris, with 50% sensitivity and 93% specificity for differentiating discoid lupus erythematosus from lichen planopilaris. Study limitations Incidence and prevalence of discoid lupus erythematosus-associated scarring alopecia in the scalp are low, so the samples size of our study was small. Conclusions We suggest that a plasmacytoid dendritic cells cluster of 10 cells or more is highly specific for distinguishing discoid lupus erythematosus from lichen planopilaris. It also appears that CD123 immunolabeling is valuable in both active and late stages of the disease.
Collapse
Affiliation(s)
- Azadeh Rakhshan
- Department of Pathology, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Toossi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Shohada-e Tajrish Hospital, Tehran, Iran
| | - Maliheh Amani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Shohada-e Tajrish Hospital, Tehran, Iran.
| | - Sahar Dadkhahfar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Shohada-e Tajrish Hospital, Tehran, Iran
| | - Arash Bagheri Hamidi
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Shohada-e Tajrish Hospital, Tehran, Iran
| |
Collapse
|
33
|
Visfatin and chemerin levels correspond with inflammation and might reflect the bridge between metabolism, inflammation and fibrosis in patients with systemic sclerosis. Postepy Dermatol Alergol 2019; 36:551-565. [PMID: 31839772 PMCID: PMC6906965 DOI: 10.5114/ada.2018.79104] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Adipokines are regulatory molecules which act as mediators of the inflammatory, fibrotic and metabolic processes by interacting with the immune system. Aim We hypothesized that chemerin and visfatin by pro-inflammatory properties play a significant role in inflammation in systemic sclerosis. To address this hypothesis, we determined serum chemerin and visfatin levels in SSc patients, compared with the control group and defined the correlations with clinical and laboratory parameters in SSc patients. Material and methods The study included 48 Caucasian female patients with SSc and 38 healthy subjects of the control group. Serum concentrations of selected adipokines were measured using commercially available ELISA Kits. Results Patients with SSc had higher chemerin levels (209.38 ±55.35 ng/ml) than the control group (182.71 ±33.94 ng/ml) and the difference was statistically significant (Z = 2.14, p = 0.032). The highest chemerin levels were found in dcSSc patients (242.46 ±95.82 ng/ml). We indicated a positive correlation of chemerin and visfatin with levels of inflammatory markers: CRP (r = 0.35, p = 0.013 for chemerin; r = 0.41, p = 0.003 for visfatin) and ESR (r = 0.31, p = 0.03 for chemerin; r = 0.30, p = 0.03 for visfatin). What is more, chemerin manifested a statistically significant positive correlation with the concentration of complement component C3 (r = 0.47, p = 0.001) and C4 (r = 0.29, p = 0.049), whereas visfatin correlated with C4 levels (r = 0.32, p = 0.029). Conclusions The results of our study indicate that chemerin and visfatin as pro-inflammatory cytokines might represent new markers corresponding with inflammation in systemic sclerosis and might reflect the bridge between metabolism, inflammation and potentially, chemerin may also link inflammation with skin and lung fibrosis.
Collapse
|
34
|
Li D, Qi J, Wang J, Pan Y, Li J, Xia X, Dou H, Hou Y. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med 2019; 143:260-274. [PMID: 31419476 DOI: 10.1016/j.freeradbiomed.2019.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by multi-organ injury. However, whether myeloid-derived suppressor cells (MDSCs) senescence exists and participates in SLE pathogenesis remains unclear. And whether dihydroartemisinin (DHA) attenuates the symptoms of SLE via relieving MDSCs senescence remains elusive. In the present study, we measured the senescence of MDSCs in SLE using SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. We identified that the MDSCs senescence promoted the SLE progress by adaptive transfer MDSCs assays. Meanwhile, we further showed DHA ameliorated the symptoms of pristane-induced lupus by histopathological detection, Western blot analysis, immunofluorescence, QPCR and flow cytometry analysis. DHA reversed MDSCs senescence by detecting SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. Furthermore, mechanistic analysis indicated that the inhibitory effect of DHA on MDSCs senescence was blocked by ML385, the specific antagonist of Nrf2, which revealed that the effect of DHA on MDSCs senescence was dependent on the induction of Nrf2/HO-1 pathway. Of note, we revealed that DHA inhibited MDSCs senescence to ameliorate the SLE development by adaptive transfer DHA-treated MDSCs assays. In conclusion, MDSCs senescence played a vital role in the pathogenesis of SLE, and DHA attenuated the symptoms of SLE via relieving MDSCs aging involved in the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
35
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Imaizumi T, Kobayashi A, Otsubo S, Komai M, Magara M, Otsubo N. The discovery and optimization of a series of 2-aminobenzoxazole derivatives as ChemR23 inhibitors. Bioorg Med Chem 2019; 27:115091. [DOI: 10.1016/j.bmc.2019.115091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
37
|
Heightened TLR7/9-Induced IL-10 and CXCL13 Production with Dysregulated NF-ҝB Activation in CD11c hiCD11b + Dendritic Cells in NZB/W F1 Mice. Int J Mol Sci 2019; 20:ijms20184639. [PMID: 31546763 PMCID: PMC6770860 DOI: 10.3390/ijms20184639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multifactorial autoimmune disease that predominantly affects young females. Dysregulation of different immune cell populations leads to self-tolerance breakdown and subsequent multiple organ damage as the disease develops. Plasmacytoid dendritic cells (pDCs) are potent producers of type I interferon (IFN), while myeloid dendritic cells (mDCs) are more specialized in antigen presentations. We have previously reported that bone-marrow (BM)-derived pDCs from the murine lupus model New Zealand black/white F1 (BWF1) possess abnormalities. Therefore, this study continues to investigate what aberrant properties peripheral pDCs and mDCs possess in BWF1 and how they mediate SLE progression, by comparing their properties in pre-symptomatic and symptomatic mice. Results showed that CD11chiCD11b+ myeloid DCs expanded during the disease state with down-regulation of co-stimulatory molecules and major histocompatibility complex class II molecules (MHC II), but their capacity to stimulate T cells was not hampered. During the disease state, this subset of mDCs displayed heightened toll-like receptors 7 and 9 (TLR 7/9) responses with increased interleukin 10 (IL-10) and C-X-C motif chemokine ligand 13 (CXCL13) expressions. Moreover, the expressions of myeloid differentiation primary response 88 (Myd88) and nuclear factor kappa B subunit 1 (Nfkb1) were higher in CD11chiCD11b+ DCs at the disease stage, leading to higher nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation activity. In summary, we reported aberrant phenotypic properties with enhanced TLR7/9 responses of CD11chiCD11b+ DCs in SLE mediated by aberrant NF-κB signaling pathway. Our findings add additional and novel information to our current understanding of the role of DCs in lupus immunopathogenesis. Lastly, molecular candidates in the NF-κB pathway should be exploited for developing therapeutic targets for SLE.
Collapse
|
38
|
Blastic Plasmacytoid Dendritic Cell Neoplasm–Current Insights. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:545-554. [DOI: 10.1016/j.clml.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
|
39
|
Herold M, Nielson CB, Braswell D, Merkel K, Walker A, Auerbach J, Kapil J, Motaparthi K. Clinicopathologic comparison of Rowell syndrome, erythema multiforme, and subacute cutaneous lupus erythematosus. J Am Acad Dermatol 2019; 81:1435-1438. [PMID: 31629618 DOI: 10.1016/j.jaad.2019.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/17/2019] [Accepted: 06/07/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Mitch Herold
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida
| | - Colton B Nielson
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida
| | - Diana Braswell
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida
| | - Kimberly Merkel
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida
| | - Addie Walker
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida
| | - Jena Auerbach
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida
| | - Jyoti Kapil
- Inform Diagnostics Research Institute, Irving, Texas
| | - Kiran Motaparthi
- Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
40
|
Jarrett P, Werth VP. A review of cutaneous lupus erythematosus: improving outcomes with a multidisciplinary approach. J Multidiscip Healthc 2019; 12:419-428. [PMID: 31213824 PMCID: PMC6549666 DOI: 10.2147/jmdh.s179623] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Cutaneous lupus erythematosus encompasses a spectrum of cutaneous disease with different phenotypes, and it potentially intersects with many disciplines in medicine. This review examines the epidemiology, clinical subtypes, pathology, psychology and intervention options for this disorder. It is important to understand the psychological distress that cutaneous lupus can cause and if needed actively investigate this possibility with the patient. Careful liaison between disciplines will achieve the optimum outcome.
Collapse
Affiliation(s)
- Paul Jarrett
- Department of Dermatology, Middlemore Hospital, Auckland, New Zealand.,Department of Medicine, The University of Auckland, Auckland, New Zealand
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veteran Affairs Medical Center, Philadelphia, PA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Front Immunol 2019; 10:1014. [PMID: 31143179 PMCID: PMC6521804 DOI: 10.3389/fimmu.2019.01014] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/23/2019] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DCs) efficiently process and present antigens to T cells, and by integrating environmental signals, link innate and adaptive immunity. DCs also control the balance between tolerance and immunity, and are required for T-cell mediated anti-tumor immunity. One subset of classical DCs, cDC1, are particularly important for eliciting CD8 T cells that can kill tumor cells. cDC1s are superior in antigen cross-presentation, a process of presenting exogenous antigens on MHC class I to activate CD8+ T cells. Tumor-associated cDC1s can transport tumor antigen to the draining lymph node and cross-present tumor antigens, resulting in priming and activation of cytotoxic T cells. Although cross-presenting cDC1s are critical for eliciting anti-tumor T cell responses, the role and importance of other DC subsets in anti-tumor immunity is not as well-characterized. Recent literature in other contexts suggests that critical crosstalk between DC subsets can significantly alter biological outcomes, and these DC interactions likely also contribute significantly to tumor-specific immune responses. Therefore, antigen presentation by cDC1s may be necessary but not sufficient for maximal immune responses against cancer. Here, we discuss recent advances in the understanding of DC subset interactions to maximize anti-tumor immunity, and propose that such interactions should be considered for the development of better DC-targeted immunotherapies.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sonia Majri-Morrison
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Kristin V Tarbell
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
42
|
Cioplea M, Caruntu C, Zurac S, Bastian A, Sticlaru L, Cioroianu A, Boda D, Jugulete G, Nichita L, Popp C. Dendritic cell distribution in mycosis fungoides vs. inflammatory dermatosis and other T-cell skin lymphoma. Oncol Lett 2019; 17:4055-4059. [PMID: 30944598 PMCID: PMC6444333 DOI: 10.3892/ol.2019.10097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells with an important role in the innate and adaptive immune system. In skin lesions, cutaneous DCs (Langerhans cells, dermal DCs and plasmacytoid DCs) are involved in immune activation in inflammatory benign lesions, as well as in malignant lymphoid proliferations. Density and distribution of DCs in the dermal infiltrate can be helpful to differentiate benign, reactive infiltrate from malignant nature of the lymphoid population. We performed a retrospective study including 149 patients: 35 with mycosis fungoides, 35 with spongiotic dermatitis, 35 with psoriasis, 35 with lupus and 9 with cutaneous T-cell lymphomas (other than mycosis fungoides), diagnosed using histopathological and immunohistochemical stains. Density and distribution of DCs were evaluated using specific markers (CD1a, CD11c and langerin). In all cases, numerous DCs were identified in the dermal infiltrate. Their number was significantly increased in mycosis fungoides and T-cell lymphomas and moderately increased in inflammatory lesions. Variable patterns of distribution were identified such as clusters of DCs with arachnoid extension in mycosis fungoides, nodular pattern in inflammatory lesions and dispersed distribution with peripheric accumulation in T-skin lymphomas. Therefore, immunohistochemical characterization of DC distribution can be an adjuvant tool in differential diagnosis in inflammatory dermatosis and skin lymphomas.
Collapse
Affiliation(s)
- Mirela Cioplea
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Costin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Bastian
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Liana Sticlaru
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Alexandra Cioroianu
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Daniel Boda
- Excellence Center in Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute of Diabetes, Nutrition and Metabolic Diseases ‘Prof. Dr. Nicolae Paulescu’, 020475 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute of Infectious Diseases ‘Prof. Dr. Matei Bals’, 021105 Bucharest, Romania
| | - Luciana Nichita
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristiana Popp
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| |
Collapse
|
43
|
Chen SJT, Tse JY, Harms PW, Hristov AC, Chan MP. Utility of
CD
123 immunohistochemistry in differentiating lupus erythematosus from cutaneous T cell lymphoma. Histopathology 2019; 74:908-916. [DOI: 10.1111/his.13817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Stephanie J T Chen
- Department of Pathology University of Michigan Ann Arbor MI USA
- Department of Pathology University of Iowa Iowa City IA USA
| | - Julie Y Tse
- Department of Pathology Tufts Medical Center Boston MA USA
| | - Paul W Harms
- Department of Pathology University of Michigan Ann Arbor MI USA
- Department of Dermatology University of Michigan Ann Arbor MI USA
| | - Alexandra C Hristov
- Department of Pathology University of Michigan Ann Arbor MI USA
- Department of Dermatology University of Michigan Ann Arbor MI USA
| | - May P Chan
- Department of Pathology University of Michigan Ann Arbor MI USA
- Department of Dermatology University of Michigan Ann Arbor MI USA
| |
Collapse
|
44
|
Gardet A, Pellerin A, McCarl CA, Diwanji R, Wang W, Donaldson D, Franchimont N, Werth VP, Rabah D. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb Treatment on pDC IFNα Production From Patients Affected With Cutaneous Lupus Erythematosus. Front Immunol 2019; 10:275. [PMID: 30846987 PMCID: PMC6394354 DOI: 10.3389/fimmu.2019.00275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Plasmacytoid dendritic cells (pDCs) are a major source of Type-I Interferon (IFN-I), a key driver in cutaneous lupus erythematosus (CLE). Currently evaluated in Phase II clinical trial, 24F4A (BIIB059) is an antibody targeting BDCA2, an inhibitory receptor expressed on pDCs. Given that Hydroxychloroquine (HCQ), a widely-used CLE therapy, and 24F4A are both able to inhibit pDC-derived IFN-I production; this study aimed to determine whether 24F4A would show an additional inhibitory effect on pDC response after ex vivo or in vivo treatment with HCQ. Methods: The effect of 24F4A on pDC-derived IFNα was measured from peripheral blood mononuclear cells (PBMC) either from healthy donors in presence or absence of HCQ or from CLE patients clinically exposed to various levels of HCQ. TLR7, TLR7/8, and TLR9 agonists (ssRNA, R848, and CpG-A) were used for pDC stimulation. Results: PDCs were the only producers of IFNα in response to CpG-A, R848, and ssRNA stimulation in PBMC cultures. CLE patients with higher levels of blood HCQ showed lower ex vivo pDC responses to CpG-A, but not R848 or ssRNA. In contrast, 24F4A reduced the amount of IFNα produced by pDCs from CLE patients in response to all TLR agonists, irrespective of the blood HCQ level. Conclusion: Our findings reveal that clinically-relevant HCQ concentrations partially inhibit the pDC response to TLR9 and weakly affect the response to TLR7/8 stimulation. 24F4A robustly inhibits pDC responses even in the presence of HCQ, highlighting its unique potential to disrupt pDC disease relevant biology, which could provide additional therapeutic benefit for CLE patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victoria P Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Corporal Michael J. Crescenz VAMC, Philadelphia, PA, United States
| | | |
Collapse
|
45
|
Furie R, Werth VP, Merola JF, Stevenson L, Reynolds TL, Naik H, Wang W, Christmann R, Gardet A, Pellerin A, Hamann S, Auluck P, Barbey C, Gulati P, Rabah D, Franchimont N. Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest 2019; 129:1359-1371. [PMID: 30645203 DOI: 10.1172/jci124466] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmacytoid DCs (pDC) produce large amounts of type I IFN (IFN-I), cytokines convincingly linked to systemic lupus erythematosus (SLE) pathogenesis. BIIB059 is a humanized mAb that binds blood DC antigen 2 (BDCA2), a pDC-specific receptor that inhibits the production of IFN-I and other inflammatory mediators when ligated. A first-in-human study was conducted to assess safety, tolerability, and pharmacokinetic (PK) and pharmacodynamic (PD) effects of single BIIB059 doses in healthy volunteers (HV) and patients with SLE with active cutaneous disease as well as proof of biological activity and preliminary clinical response in the SLE cohort. METHODS A randomized, double-blind, placebo-controlled clinical trial was conducted in HV (n = 54) and patients with SLE (n = 12). All subjects were monitored for adverse events. Serum BIIB059 concentrations, BDCA2 levels on pDCs, and IFN-responsive biomarkers in whole blood and skin biopsies were measured. Skin disease activity was determined using the Cutaneous Lupus Erythematosus Disease Area and Severity Index Activity (CLASI-A). RESULTS Single doses of BIIB059 were associated with favorable safety and PK profiles. BIIB059 administration led to BDCA2 internalization on pDCs, which correlated with circulating BIIB059 levels. BIIB059 administration in patients with SLE decreased expression of IFN response genes in blood, normalized MxA expression, reduced immune infiltrates in skin lesions, and decreased CLASI-A score. CONCLUSIONS Single doses of BIIB059 were associated with favorable safety and PK/PD profiles and robust target engagement and biological activity, supporting further development of BIIB059 in SLE. The data suggest that targeting pDCs may be beneficial for patients with SLE, especially those with cutaneous manifestations. TRIAL REGISTRATION ClinicalTrials.gov NCT02106897. FUNDING Biogen Inc.
Collapse
Affiliation(s)
- Richard Furie
- Division of Rheumatology, Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York, USA
| | - Victoria P Werth
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania and Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Joseph F Merola
- Department of Dermatology and Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fernandez-Flores A, Cassarino DS. Plasmacytoid dendritic cells in granulomatous variant of mycosis fungoides. J Cutan Pathol 2019; 46:335-342. [PMID: 30734340 DOI: 10.1111/cup.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Granulomatous mycosis fungoides (MF) is a rare variant in which granulomas are associated with other typical signs of MF. Its prognosis is worse than that of classical MF. Plasmacytoid dendritic cells (PDCs) are a subset of interferon-producing dendritic cells that link the innate and the adaptative immune responses. They have also been related to tolerance to certain tumors such as melanoma. MATERIALS AND METHODS In this article, we examined for the presence of CD123+ PDC in six cases of granulomatous MF from our archives. RESULTS We found clusters of 10 or more positive cells in three of six cases of granulomatous MF (two women and a man, in their sixth and seventh decade). Although in two of these three cases the granulomatous response was extensive, in the other, it only represented 10% of the infiltrate of the biopsy. In all three cases, the granulomas were epithelioid, sarcoidal type. CONCLUSIONS CD123+ PDC can be identified in granulomatous MF. The pathogenic and prognostic role of this finding requires further clarification.
Collapse
Affiliation(s)
- Angel Fernandez-Flores
- Department of Cellular Pathology, Hospital El Bierzo, Ponferrada, Spain.,Department of CellCOM-ST Group, Biomedical Investigation Institute of A Coruña, CellCOM-ST Group, A Coruña, Spain.,Department of Cellular Pathology, Hospital de la Reina, Ponferrada, Spain
| | - David S Cassarino
- Department of Dermatology, Los Angeles Medical Center (LAMC), Southern California Kaiser Permanente, Los Angeles, California
| |
Collapse
|
47
|
Tziotzios C, Lee JYW, Brier T, Saito R, Hsu CK, Bhargava K, Stefanato CM, Fenton DA, McGrath JA. Lichen planus and lichenoid dermatoses: Clinical overview and molecular basis. J Am Acad Dermatol 2019; 79:789-804. [PMID: 30318136 DOI: 10.1016/j.jaad.2018.02.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deriving from the Greek word λειχήν for "tree moss" and the Latin word planus for "planar," lichen planus is a relatively uncommon and heterogeneous cutaneous disorder that typically develops in middle-aged adults. Despite the significant clinical burden associated with the disorder, little well-conducted molecular research has been undertaken, possibly because of heterogeneity impeding consistent and confident phenotyping. The multiple variants of lichenoid disease bear overlapping clinical and pathologic features despite manifesting as distinct clinical disorders. The first article in this 2-part continuing medical education series provides a comprehensive overview of the clinical and pathologic characteristics of cutaneous lichenoid dermatoses and links these manifestations to recent advances in our understanding of the underlying pathobiology of such diseases.
Collapse
Affiliation(s)
- Christos Tziotzios
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom.
| | - John Y W Lee
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Timothy Brier
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Ryo Saito
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Chao-Kai Hsu
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Kapil Bhargava
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - Catherine M Stefanato
- Department of Dermatopathology, St. John's Institute of Dermatology, St. Thomas' Hospital, London, United Kingdom
| | - David A Fenton
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
48
|
Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs 2018; 28:85-92. [PMID: 30462559 DOI: 10.1080/13543784.2019.1551358] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, SAR China
| |
Collapse
|
49
|
|
50
|
Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:369-393. [PMID: 30332560 DOI: 10.1146/annurev-pathol-020117-043952] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I interferons, which make up the first cytokine family to be described and are the essential mediators of antivirus host defense, have emerged as central elements in the immunopathology of systemic autoimmune diseases, with systemic lupus erythematosus as the prototype. Lessons from investigation of interferon regulation following virus infection can be applied to lupus, with the conclusion that sustained production of type I interferon shifts nearly all components of the immune system toward pathologic functions that result in tissue damage and disease. We review recent data, mainly from studies of patients with systemic lupus erythematosus, that provide new insights into the mechanisms of induction and the immunologic consequences of chronic activation of the type I interferon pathway. Current concepts implicate endogenous nucleic acids, driving both cytosolic sensors and endosomal Toll-like receptors, in interferon pathway activation and suggest targets for development of novel therapeutics that may restore the immune system to health.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York 10021, USA;
| |
Collapse
|