1
|
Thoraval L, Tang-Fichaux M, Guillaume C, Varin-Simon J, Dumortier C, Sergheraert J, Lamret F, Bonhomme M, Laurent F, Josse J, Gangloff SC, Mongaret C, Reffuveille F, Velard F. Cutibacterium acnes strains associated with bone prosthesis infections cannot evade the host immune system. Front Immunol 2024; 15:1468709. [PMID: 39664373 PMCID: PMC11632127 DOI: 10.3389/fimmu.2024.1468709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Cutibacterium acnes is a commensal skin bacterium that is involved in bone prosthesis infections (BPIs) and presents low-grade clinical symptoms. C. acnes has been thought to escape the immune system at bone sites. Material and methods Our study was carried out on a laboratory strain and two BPI-related clinical strains, one of which surprisingly induced clinical symptoms of inflammation in the patient. We investigated the ability of these C. acnes strains to trigger in vitro human primary neutrophils (PMN) response through inflammatory mediators measurements (antibody arrays, ELISA, RT-qPCR, zymography) and activation status assessment (flow cytometry), and to induce in vivo PMN recruitment from the bloodstream in mice air-pouch model. PMN-mediated inflammation was also studied in an original in vitro model mimetic of an infected bone site that combine titanium alloy, human primary osteoblasts, human primary neutrophils and C. acnes strains. Results We demonstrated for the first time that both C. acnes planktonic and biofilm cultures, triggered an effective immune response by neutrophils in vitro and their recruitment in vivo. This host response was enhanced when using a strain from a patient with inflammatory signs. In an original infected prosthesis mimetic model, osteoblasts and neutrophils were able to detect C. acnes, but their response to the clinical C. acnes inflammatory strain decreased. Conclusion This work provides the first evidence showing that the immune cell response to pathogenic C. acnes may be tuned by nonimmune cells at the infected site, such as osteoblasts, which may promote bacterial persistence.
Collapse
Affiliation(s)
- Léa Thoraval
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | | | | | | | | | - Johan Sergheraert
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Pôle de Médecine Bucco-Dentaire, UFR Odontologie, Reims, France
| | - Fabien Lamret
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | - Mélanie Bonhomme
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Jérôme Josse
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Sophie C. Gangloff
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France
| | - Céline Mongaret
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Service Pharmacie, Reims, France
| | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France
| | | |
Collapse
|
2
|
Yao Y, Cai X, Chen Y, Zhang M, Zheng C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med Res Rev 2024. [PMID: 39234932 DOI: 10.1002/med.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/03/2023] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Postmenopausal osteoporosis (PMO) is a common disease associated with aging, and estrogen deficiency is considered to be the main cause of PMO. Recently, however, osteoimmunology has been revealed to be closely related to PMO. On the one hand, estrogen deficiency directly affects the activity of bone cells (osteoblasts, osteoclasts, osteocytes). On the other hand, estrogen deficiency-mediated osteoimmunity also plays a crucial role in bone loss in PMO. In this review, we systematically describe the progress of the mechanisms of bone loss in PMO, estrogen deficiency-mediated osteoimmunity, the differences between PMO patients and postmenopausal populations without osteoporosis, and estrogen deficiency-mediated immune cells (T cells, B cells, macrophages, neutrophils, dendritic cells, and mast cells) activity. The comprehensive summary of this paper provides a clear knowledge context for future research on the mechanism of PMO bone loss.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Salimi M, Khanzadeh M, Nabipoorashrafi SA, Seyedi SA, Yaghoobpoor S, Brismée JM, Lucke-Wold B, Ebadi M, Ghaedi A, Kumar VS, Mirghaderi P, Rabie H, Khanzadeh S. Association of neutrophil to lymphocyte ratio with bone mineral density in post-menopausal women: a systematic review and meta-analysis. BMC Womens Health 2024; 24:169. [PMID: 38461235 PMCID: PMC10924380 DOI: 10.1186/s12905-024-03006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to compare the neutrophil lymphocyte ratio (NLR) levels between women with post-menopausal osteopenia or osteoporosis to those with normal bone mineral density (BMD). METHODS We used Web of Science, PubMed, and Scopus to conduct a systematic search for relevant publications published before June 19, 2022, only in English language. We reported standardized mean difference (SMD) with a 95% confidence interval (CI). Because a significant level of heterogeneity was found, we used the random-effects model to calculate pooled effects. We used the Newcastle-Ottawa scale for quality assessment. RESULTS Overall, eight articles were included in the analysis. Post-menopausal women with osteoporosis had elevated levels of NLR compared to those without osteoporosis (SMD = 1.03, 95% CI = 0.18 to 1.88, p = 0.017, I2 = 98%). In addition, there was no difference between post-menopausal women with osteopenia and those without osteopenia in neutrophil lymphocyte ratio (NLR) levels (SMD = 0.58, 95% CI=-0.08 to 1.25, p = 0.085, I2 = 96.8%). However, there was no difference between post-menopausal women with osteoporosis and those with osteopenia in NLR levels (SMD = 0.75, 95% CI=-0.01 to 1.51, p = 0.05, I2 = 97.5%, random-effect model). CONCLUSION The results of this study point to NLR as a potential biomarker that may be easily introduced into clinical settings to help predict and prevent post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Maryam Salimi
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Michel Brismée
- Center for Rehabilitation Research, Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Mehrnoosh Ebadi
- Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varun Singh Kumar
- Department of Orthopaedic Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyman Mirghaderi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rabie
- Department of Orthopedic Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Rapčan B, Fančović M, Pribić T, Kirac I, Gaće M, Vučković F, Lauc G. Anastrozole and Tamoxifen Impact on IgG Glycome Composition Dynamics in Luminal A and Luminal B Breast Cancers. Antibodies (Basel) 2024; 13:9. [PMID: 38390870 PMCID: PMC10885039 DOI: 10.3390/antib13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
This study examines the intricate relationship between protein glycosylation dynamics and therapeutic responses in Luminal A and Luminal B breast cancer subtypes, focusing on anastrozole and tamoxifen impacts. The present methods inadequately monitor and forecast patient reactions to these treatments, leaving individuals vulnerable to the potential adverse effects of these medications. This research investigated glycan structural changes by following patients for up to 9 months. The protocol involved a series of automated steps including IgG isolation, protein denaturation, glycan labelling, purification, and final analysis using capillary gel electrophoresis with laser-induced fluorescence. The results suggested the significant role of glycan modifications in breast cancer progression, revealing distinctive trends in how anastrozole and tamoxifen elicit varied responses. The findings indicate anastrozole's association with reduced sialylation and increased core fucosylation, while tamoxifen correlated with increased sialylation and decreased core fucosylation. These observations suggest potential immunomodulatory effects: anastrozole possibly reducing inflammation and tamoxifen impacting immune-mediated cytotoxicity. This study strongly emphasizes the importance of considering specific glycan traits to comprehend the dynamic mechanisms driving breast cancer progression and the effects of targeted therapies. The nuanced differences observed in glycan modifications between these two treatments underscore the necessity for further comprehensive research aimed at thoroughly evaluating the long-term implications and therapeutic efficacy for breast cancer patients.
Collapse
Affiliation(s)
- Borna Rapčan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Matko Fančović
- Genos Ltd., Borongajska Cesta 83H, 10000 Zagreb, Croatia
| | - Tea Pribić
- Genos Ltd., Borongajska Cesta 83H, 10000 Zagreb, Croatia
| | - Iva Kirac
- Genetic Counselling Unit, University Hospital for Tumours, Sestre Milosrdnice University Hospital Center, Ilica 197, 10000 Zagreb, Croatia
| | - Mihaela Gaće
- Genetic Counselling Unit, University Hospital for Tumours, Sestre Milosrdnice University Hospital Center, Ilica 197, 10000 Zagreb, Croatia
| | - Frano Vučković
- Genos Ltd., Borongajska Cesta 83H, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
- Genos Ltd., Borongajska Cesta 83H, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Spaziani M, Carlomagno F, Tenuta M, Sesti F, Angelini F, Bonaventura I, Ferrari D, Tarantino C, Fiore M, Petrella C, Tarani L, Gianfrilli D, Pozza C. Extra-Gonadal and Non-Canonical Effects of FSH in Males. Pharmaceuticals (Basel) 2023; 16:813. [PMID: 37375761 PMCID: PMC10300833 DOI: 10.3390/ph16060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Recombinant follicle-stimulating hormone (FSH) is commonly used for the treatment of female infertility and is increasingly being used in males as well, as recommended by notable guidelines. FSH is composed of an α subunit, shared with other hormones, and a β subunit, which confers specificity of biological action by interacting with its surface receptor (FSHR), predominantly located in granulosa and Sertoli cells. However, FSHRs also exist in extra-gonadal tissues, indicating potential effects beyond male fertility. Emerging evidence suggests that FSH may have extra-gonadal effects, including on bone metabolism, where it appears to stimulate bone resorption by binding to specific receptors on osteoclasts. Additionally, higher FSH levels have been associated with worse metabolic and cardiovascular outcomes, suggesting a possible impact on the cardiovascular system. FSH has also been implicated in immune response modulation, as FSHRs are expressed on immune cells and may influence inflammatory response. Furthermore, there is growing interest in the role of FSH in prostate cancer progression. This paper aims to provide a comprehensive analysis of the literature on the extra-gonadal effects of FSH in men, with a focus on the often-conflicting results reported in this field. Despite the contradictory findings, the potential for future development in this area is substantial, and further research is needed to elucidate the mechanisms underlying these effects and their clinical implications.
Collapse
Affiliation(s)
- Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Carlomagno
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Francesco Angelini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Ilaria Bonaventura
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Davide Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Chiara Tarantino
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
6
|
Fischer V, Bülow JM, Krüger BT, Ragipoglu D, Vikman A, Haffner-Luntzer M, Katsoulis-Dimitriou K, Dudeck A, Ignatius A. Role of Mast-Cell-Derived RANKL in Ovariectomy-Induced Bone Loss in Mice. Int J Mol Sci 2023; 24:ijms24119135. [PMID: 37298085 DOI: 10.3390/ijms24119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Jasmin Maria Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Deniz Ragipoglu
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Konstantinos Katsoulis-Dimitriou
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, 89081 Ulm, Germany
| |
Collapse
|
7
|
Tang Y, Peng B, Liu J, Liu Z, Xia Y, Geng B. Systemic immune-inflammation index and bone mineral density in postmenopausal women: A cross-sectional study of the national health and nutrition examination survey (NHANES) 2007-2018. Front Immunol 2022; 13:975400. [PMID: 36159805 PMCID: PMC9493473 DOI: 10.3389/fimmu.2022.975400] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to investigate the association between the systemic immune-inflammation index (SII) and bone mineral density (BMD) and to determine the association between the SII and the risk of osteopenia/osteoporosis among postmenopausal women aged ≥50 years. Methods Postmenopausal women aged ≥50 years from the National Health and Nutrition Examination Survey were included. BMD testing was performed using dual-energy X-ray absorptiometry. The SII was calculated based on lymphocyte (LC), neutrophil (NC), and platelet (PC) counts. Moreover, the associations of BMD with SII and other inflammatory markers, including platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), the product of platelet count and neutrophil count (PPN), PC, NC, and LC, were assessed using a multivariable weighted linear regression model. Additionally, the associations of low BMD/osteoporosis with SII and other inflammatory markers were assessed using multivariable weighted logistic regression. Results Finally, a total of 893 postmenopausal women with a weighted mean age of 60.90 ± 0.26 years were included finally. This study found that SII was negatively associated with total femur BMD and femoral neck BMD, and postmenopausal women in a higher SII quarter group showed low lumbar spine BMD than the lowest SII quarter group when SII was converted from a continuous variable to a categorical variable. Moreover, increased SII was associated with an increased risk of low BMD and osteoporosis. In addition, this study observed that other inflammatory markers, especially NLR and PPN, were negatively associated with BMD and positively associated with the risk of osteoporosis. Finally, the subgroup analysis showed that the associations between BMD and inflammatory markers were pronounced in postmenopausal women aged ≥65 years or those with normal BMI (<25 kg/m2). Conclusion SII may be a valuable and convenient inflammatory marker that could be applied to predict the risk of low BMD or osteoporosis among postmenopausal women aged ≥50. Moreover, postmenopausal women with a high level of SII or other inflammatory markers, such as NLR and PPN, should be aware of the potential risk of osteoporosis. However, given the inherent limitations of the present study, additional large-scale studies are required to investigate the role of SII in osteoporosis further.
Collapse
Affiliation(s)
- Yuchen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Bo Peng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Jinmin Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Zhongcheng Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
- Orthopaedic Clinical Research Center of Gansu Province, Lanzhou, Gansu, China
- *Correspondence: Bin Geng,
| |
Collapse
|
8
|
Mansanguan C, Maneerat Y. PPBP gene as a biomarker for coronary heart disease risk in postmenopausal Thai women. PeerJ 2022; 10:e13615. [PMID: 35734636 PMCID: PMC9208370 DOI: 10.7717/peerj.13615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 01/17/2023] Open
Abstract
Background Estrogen is an important ovarian hormone with anti-atherogenic and cardioprotective effects. Postmenopausal women have lower estrogen levels, associated with significantly higher risks of coronary heart disease (CHD) and CHD-related death. Effective biomarkers for the diagnosis, prediction, and treatment of CHD are needed to address this problem and thus reduce the mortality due to CHD in postmenopausal women. We recently reported that the PPBP and DEFA1/DEFA3 genes may be feasible synergistic biomarkers for CHD risk in Thai men with hyperlipidemia. The PPBP gene encodes pro-platelet basic protein (PPBP) from activated platelets, and DEFA1/DEFA3 encodes human neutrophil peptides (HNP) 1-3, mainly produced by activated neutrophils. Both platelets and neutrophils are involved in chronic inflammation during the development of atherogenesis and CHD. This study investigated the potential roles of PPBP and DEFA1/DEFA3 and their proteins as biomarkers for CHD risk in postmenopausal Thai women. Methods This cross-sectional study enrolled 90 postmenopausal Thai women, including 12 healthy controls (N), 18 patients with hyperlipidemia (H), and 21 patients diagnosed with CHD. The remaining 39 women were receiving cholesterol-lowering drugs for hyperlipidemia (HD) were excluded from the study. All CHD patients underwent coronary bypass grafting or coronary angioplasty. PPBP and DEFA1/DEFA3 mRNA expression levels in peripheral blood mononuclear cells isolated from heparinized blood were determined by quantitative reverse-transcription polymerase chain reaction. Levels of PPBP and HNP-1-3 proteins in corresponding plasma samples were assessed by enzyme-linked immunosorbent assay. Differences in parameters were compared among groups and correlations between parameters and clinical manifestations were analyzed. Results PPBP mRNA and protein levels were significantly increased in the CHD group compared with the N and H groups. In contrast, DEFA1/DEFA3 mRNA and HNP-1-3 protein levels did not differ significantly among the groups. None of the levels were associated with any of the clinical parameters analyzed in this study. Conclusion The results indicate that gene and protein expression levels of PPBP, but not DEFA1/DEFA3, and HNP-1-3, may be feasible biomarkers for assessing CHD risk in postmenopausal Thai women with hyperlipidemia.
Collapse
Affiliation(s)
- Chayasin Mansanguan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Togo S, Imanishi H, Hayashi M, Koyama M, Kira Y, Sugawara K, Tsuruta D. Exploring the impact of ovariectomy on hair growth: can ovariectomized mouse serve as a model for investigating female pattern hair loss in humans? Med Mol Morphol 2022; 55:210-226. [PMID: 35486188 DOI: 10.1007/s00795-022-00320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Female pattern hair loss (FPHL), a type of hair disease common in pre- and postmenopausal women, is characterized by thinning of hair to O-type, mainly at the crown. Although a mouse model of this disease has recently been established, its details are still unknown, and thus, warrants further analysis. In this study, 3 week-old and 7- to 8 week-old C57BL/6 female mice were divided into two groups: one group underwent ovariectomy (OVX), while the other underwent sham surgery. In the 3 week-old mice, the dorsal skin was collected at seven weeks of age, while in the 7- to 8 week-old mice, it was collected at 12 and 24 weeks of age. In the former group, both the pore size of the hair follicles (HFs) and diameter of the hair shaft of telogen HFs decreased upon OVX; while in the latter group, these factors increased significantly. Notably, the thickness of the dermis and subcutis increased significantly in the OVX group. It needs to be further elucidated whether OVX mouse could serve as an ideal mouse model for FPHL, but our results upon evaluation of skin thickness indicate that it could be used to establish a novel treatment for non-hair-related diseases, such as post-menopause-related skin condition.
Collapse
Affiliation(s)
- Sayaka Togo
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hisayoshi Imanishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukimi Kira
- Department of Research Support Platform, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
10
|
Del Rio L, Murcia-Belmonte A, Buendía AJ, Navarro JA, Ortega N, Alvarez D, Salinas J, Caro MR. Effect of Female Sex Hormones on the Immune Response against Chlamydia abortus and on Protection Conferred by an Inactivated Experimental Vaccine in a Mouse Model. Pathogens 2022; 11:pathogens11010093. [PMID: 35056041 PMCID: PMC8781621 DOI: 10.3390/pathogens11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Mice are valuable models extensively used to test vaccine candidates against Chlamydia abortus and to clarify immunopathological mechanisms of the bacteria. As this pathogen has the ability to reactivate during pregnancy, it is important to deepen the knowledge and understanding of some of the effects of female hormones on immunity and vaccination. This study is aimed at describing the role of sex hormones in the pathology of OEA during chlamydial clearance using ovariectomised mice and also gaining an understanding of how 17β-oestradiol or progesterone may impact the effectiveness of vaccination. Animals were treated with sex hormones and infected with C. abortus, and the kinetics of infection and immune response were analysed by means of bacterial isolation, histopathology, and immunohistochemistry. In a second phase of the study, protection conferred by an experimental vaccine after hormone treatment was assessed. Oestradiol showed a stimulatory effect on the immune response during infection, with a more efficient recruitment of macrophages and T-cells at the infection site. Furthermore, after vaccination, oestradiol-treated animals showed a stronger protection against infection, indicating that this hormone has a positive effect, stimulating a specific memory response to the pathogen.
Collapse
Affiliation(s)
- Laura Del Rio
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
- Correspondence:
| | - Antonio Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Antonio Julián Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Jose Antonio Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Nieves Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Daniel Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Jesús Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - María Rosa Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| |
Collapse
|
11
|
Abstract
The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this article has been extensively used to identify potential anti-inflammatory drugs. © 2021 Wiley Periodicals LLC. Basic Protocol: Air pouch model in the rat Alternate Protocol: Air pouch model in the mouse.
Collapse
Affiliation(s)
- Jill C Fehrenbacher
- Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center (KIDDRC), Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
12
|
de Souza Maciel I, Azevedo VM, Oliboni P, Campos MM. Blockade of the kinin B 1 receptor counteracts the depressive-like behaviour and mechanical allodynia in ovariectomised mice. Behav Brain Res 2021; 412:113439. [PMID: 34197868 DOI: 10.1016/j.bbr.2021.113439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022]
Abstract
Menopause is related to a decline in ovarian oestrogen production, affecting the perception of the somatosensory stimuli, changing the immune-inflammatory systems, and triggering depressive symptoms. It has been demonstrated that the inhibition of the kinin B1 and B2 receptors (B1R and B2R) prevented the depressive-like behaviour and the mechanical allodynia that was induced by immune-inflammatory mediators in mice. However, there is no evidence regarding the role of the kinin receptors in the depressive-like and nociceptive behaviour in female mice that were subjected to bilateral ovariectomy (OVX). This study has shown that the OVX mice developed time-related mechanical allodynia, together with an increased immobility time as indicative of depression. Both of these changes were reduced by the genetic deletion of B1R, or by the pharmacological blockade of the selective kinin B1R antagonist R-715 (acute, i.p.). The genetic deletion or the pharmacological inhibition of B2R (HOE 140, i.p.) did not prevent the OVX-elicited behavioural changes. The data has suggested a particular modulation of kinin B1R in the nociceptive and depressive-like behaviour in the OVX mice. The selective inhibition of the B1R receptor may be a new pharmacological target for treating pain and depression symptoms in women during the perimenopause/menopause period.
Collapse
Affiliation(s)
- Izaque de Souza Maciel
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Escola de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Vanessa Machado Azevedo
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Oliboni
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol 2021; 123:14-21. [PMID: 34024716 DOI: 10.1016/j.semcdb.2021.05.014] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany.
| |
Collapse
|
14
|
Allart-Simon I, Moniot A, Bisi N, Ponce-Vargas M, Audonnet S, Laronze-Cochard M, Sapi J, Hénon E, Velard F, Gérard S. Pyridazinone derivatives as potential anti-inflammatory agents: synthesis and biological evaluation as PDE4 inhibitors. RSC Med Chem 2021; 12:584-592. [PMID: 34046629 PMCID: PMC8127987 DOI: 10.1039/d0md00423e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), which controls the intracellular level of cyclic adenosine monophosphate (cAMP), has aroused scientific attention as a suitable target for anti-inflammatory therapy of respiratory diseases. This work describes the development and characterization of pyridazinone derivatives bearing an indole moiety as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4-(5-methoxy-1H-indol-3-yl)-6-methylpyridazin-3(2H)-one possesses promising activity, and selectivity towards PDE4B isoenzymes and is able to regulate potent pro-inflammatory cytokine and chemokine production by human primary macrophages.
Collapse
Affiliation(s)
- Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Nicolo Bisi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Miguel Ponce-Vargas
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Sandra Audonnet
- Université de Reims-Champagne-Ardenne, URCACyt, UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| |
Collapse
|
15
|
Acheampong DO, Barffour IK, Boye A, Aninagyei E, Ocansey S, Morna MT. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed Pharmacother 2020; 131:110748. [PMID: 33152916 PMCID: PMC7480230 DOI: 10.1016/j.biopha.2020.110748] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The severe form of COVID-19 has significant sex disparities, with high fatalities commonly reported among males than females. The incidence of COVID-19 has also been higher in males compared with their female counterparts. This trend could be attributed to a better responsive and robust immune system in females. Cytokine storm is one of the pathophysiological features of severe COVID-19, and it occurs as a result of over-activation of immune cells leading to severe inflammation and tissue damage. Nevertheless, it is well modulated in females compared to their male counterparts. Severe inflammation in males is reported to facilitate progression of mild to severe COVID-19. The sex hormones, estrogens and androgens which exist in varying functional levels respectively in females and males are cited as the underlying cause for the differential immune response to COVID-19. Evidence abounds that estrogen modulate the immune system to protect females from severe inflammation and for that matter severe COVID-19. On the contrary, androgen has been implicated in over-activation of immune cells, cytokine storm and the attendant severe inflammation, which perhaps predispose males to severe COVID-19. In this review efforts are made to expand understanding and explain the possible roles of the immune system, the sex hormones and the angiotensin-converting enzyme (ACE) systems in male bias to severe COVID-19. Also, this review explores possible therapeutic avenues including androgen deprivation therapy (ADT), estrogen-based therapy, and ACE inhibitors for consideration in the fight against COVID-19.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Animals
- Betacoronavirus/physiology
- COVID-19
- Child
- Child, Preschool
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/therapy
- Disease Susceptibility
- Female
- Gonadal Steroid Hormones/physiology
- Humans
- Immunity, Innate
- Infant
- Infant, Newborn
- Inflammation
- Male
- Mice
- Middle Aged
- Pandemics
- Peptidyl-Dipeptidase A/physiology
- Pneumonia, Viral/complications
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/therapy
- Prostatic Neoplasms/complications
- Prostatic Neoplasms/drug therapy
- Protein Disulfide-Isomerases/physiology
- Receptors, Cell Surface/physiology
- Receptors, Virus/physiology
- SARS-CoV-2
- Sex Distribution
- Smoking/adverse effects
- Young Adult
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana.
| | - Isaac Kyei Barffour
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Allied Health Sciences, Ho, Ghana
| | - Stephen Ocansey
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Martin Tangnaa Morna
- Department of Surgery, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
16
|
Ovarian hormones influence immune response to Staphylococcus aureus infection. Braz J Infect Dis 2020; 24:534-544. [PMID: 33186580 PMCID: PMC9392132 DOI: 10.1016/j.bjid.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Staphylococcus aureus infections remain associated with considerable morbidity and mortality in both hospitals and the community. There is little information regarding the role of ovarian hormones in infections caused by S. aureus. The aim of this study was to evaluate the effects of ovariectomy in the immune response induced by S. aureus. Methods Female mice BALB/c were ovariectomized (OVX) to significantly reduce the level of ovarian hormones. We also used sham-operated animals. The mice were inoculated intraperitoneally with S. aureus. Blood samples were collected for leukocyte count and bacterial quantification. The uterus and spleen were removed and weighed to calculate the uterine and splenic indexes. Lungs were removed and fractionated for immunohistochemical analysis for macrophage detection (anti-CD68) and relative gene expression of IL-6, IL-1β and TNF-α by RT-PCR. Results Ovariectomy enlarged spleen size and generally increased circulating lymphocytes. OVX females experienced a continuation of the initial reduction of lymphocytes and a monocyte and neutrophil late response compared to shams (p ≥ 0.05). Moreover, OVX females showed neutropenia after 168 h of infection (p ≥ 0.05). Macrophage response in the lungs were less pronounced in OVX females in the initial hours of infection (p ≥ 0.01). OVX females showed a higher relative gene expression of IL-1β, IL-6 and TNF-α in the lung at the beginning of the infection compared to sham females (p ≥ 0.01). Among the uninfected females, the OVX control females showed a higher expression of IL-6 in the lung compared to the sham control females (p ≥ 0.05). In this model, the lack of ovarian hormones caused a minor increase in circulating leukocytes during the initial stage of infection by S. aureus and increased pulmonary gene expression of IL-1β, IL-6, and TNF-α. Ovariectomy alone enlarged the spleen and increased circulating lymphocytes. Ovarian hormones acted as immunoprotectors against S. aureus infection.
Collapse
|
17
|
Oxygen saturation during sleep as a predictor of inflammation in anovulatory women. Sleep Breath 2020; 25:1247-1255. [PMID: 33083921 DOI: 10.1007/s11325-020-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the inflammatory profile of premenopausal women with anovulatory cycles, regular menstrual cycles, or using contraceptives, and the associations with sleep and health-related parameters. METHODS Subjects completed questionnaires including the Pittsburgh Sleep Quality Index and the Epworth sleepiness scale, underwent whole-night polysomnography, and had blood collected for analysis of inflammatory, cardiovascular, and hormonal parameters. Women of reproductive age were categorized into three groups for comparisons: anovulatory menstrual cycles, regular menstrual cycles, and hormonal contraceptive use. RESULTS Women with anovulatory menstrual cycles (n = 20) had higher circulating levels of the proinflammatory cytokine IL-6 compared with women who had regular menstrual cycles (n = 191) and those on hormonal contraception (n = 72). No other classical marker of low-grade inflammation was significantly different. Subjective and objective sleep data were similar among groups. However, the mean peripheral oxygen saturation (SpO2) during sleep was reduced in anovulatory women. The analysis of associated variables of the inflammatory profile demonstrated that mean SpO2 during sleep was a predictive factor of IL-6 levels. CONCLUSIONS Our data suggest that in premenopausal women with anovulation, a proinflammatory condition mediated by IL-6 is associated with lower oxygen levels during sleep. These findings reflect the balance between gynecological status, the immune system, and sleep, pointing to the need to control for these factors in clinical practice and research contexts.
Collapse
|
18
|
Wajima D, Hourani S, Dodd W, Patel D, Jones C, Motwani K, Fazal HZ, Hosaka K, Hoh BL. Interleukin-6 Promotes Murine Estrogen Deficiency-Associated Cerebral Aneurysm Rupture. Neurosurgery 2020; 86:583-592. [PMID: 31264696 PMCID: PMC7317988 DOI: 10.1093/neuros/nyz220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/08/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Estrogen deficiency is associated with cerebral aneurysm rupture, but the precise mechanism is unknown. OBJECTIVE To test the hypothesis that IL-6 is required for the increase in aneurysm rupture rate observed in estrogen-deficient mice. METHODS We analyzed IL-6 expression in human cerebral aneurysms. We induced cerebral aneurysms in estrogen-deficient female C57BL/6 mice that had undergone 4-vinylcyclohexene diepoxide (VCD) treatment or bilateral ovariectomy (OVE). Mice were blindly randomized to selective IL-6 inhibition (IL-6 receptor [IL-6R] neutralizing antibody, n = 25) or control (isotype-matched IgG, n = 28). Murine cerebral arteries at the circle of Willis were assessed for aneurysm rupture and macrophage infiltration. RESULTS IL-6 is expressed in human cerebral aneurysms, but not in control arteries. Serum IL-6 is elevated in ovariectomized female mice compared to sham control (14.3 ± 1.7 pg/mL vs 7.4 ± 1.5 pg/mL, P = .008). Selective IL-6R inhibition suppressed cerebral aneurysm rupture in estrogen-deficient mice compared with control (VCD: 31.6% vs 70.0%, P = .026; OVE: 28.6% vs 65.2%, P = .019). IL-6R inhibition had no effect on formation or rupture rate in wild-type mice. IL-6R neutralizing antibody significantly reduced macrophage infiltration at the circle of Willis (1.9 ± 0.2 vs 5.7 ± 0.6 cells/2500 μm2; n = 8 vs n = 15; P < .001). CONCLUSION IL-6 is increased in the serum of estrogen-deficient mice and appears to play a role in promoting murine estrogen deficiency-associated cerebral aneurysm rupture via enhanced macrophage infiltration at the circle of Willis. Inhibition of IL-6 signaling via IL-6 receptor neutralizing antibody inhibits aneurysm rupture in estrogen-deficient mice. IL-6 receptor inhibition had no effect on aneurysm formation or rupture in wild-type animals.
Collapse
Affiliation(s)
- Daisuke Wajima
- Department of Neurosurgery, University of Florida, Gainesville, Florida.,Department of Neurosurgery, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Siham Hourani
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - William Dodd
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Devan Patel
- College of Medicine, Florida State University, Tallahassee, Florida
| | - Chad Jones
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Kartik Motwani
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Hanain Z Fazal
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Koji Hosaka
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, Florida
| |
Collapse
|
19
|
Boldarine VT, Pedroso AP, Brandão-Teles C, LoTurco EG, Nascimento CMO, Oyama LM, Bueno AA, Martins-de-Souza D, Ribeiro EB. Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach. Am J Physiol Endocrinol Metab 2020; 319:E427-E437. [PMID: 32663100 DOI: 10.1152/ajpendo.00094.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Menopause is often accompanied by visceral obesity. With the aim of exploring the consequences of ovarian failure on visceral fat, we evaluated the effects of ovariectomy and estrogen replacement on the proteome/phosphoproteome and on the fatty acid profile of the retroperitoneal adipose depot (RAT) of rats. Eighteen 3-mo-old female Wistar rats were either ovariectomized or sham operated and fed with standard chow for 3 mo. A subgroup of ovariectomized rats received estradiol replacement. RAT samples were analyzed with data-independent acquisitions LC-MS/MS, and pathway analysis was performed with the differentially expressed/phosphorylated proteins. RAT lipid profile was analyzed by gas chromatography. Ovariectomy induced high adiposity and insulin resistance and promoted alterations in protein expression and phosphorylation. Pathway analysis showed that five pathways were significantly affected by ovariectomy, namely, metabolism of lipids (including fatty acid metabolism and mitochondrial fatty acid β-oxidation), fatty acyl-CoA biosynthesis, innate immune system (including neutrophil degranulation), metabolism of vitamins and cofactors, and integration of energy metabolism (including ChREBP activates metabolic gene expression). Lipid profile analysis showed increased palmitic and palmitoleic acid content. The analysis of the data indicated that ovariectomy favored lipogenesis whereas it impaired fatty acid oxidation and induced a proinflammatory state in the visceral adipose tissue. These effects are consistent with the findings of high adiposity, hyperleptinemia, and impaired insulin sensitivity. The observed alterations were partially attenuated by estradiol replacement. The data point to a role of disrupted lipid metabolism in adipose tissue in the genesis of obesity after menopause.
Collapse
Affiliation(s)
- Valter T Boldarine
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda P Pedroso
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson G LoTurco
- Divisão de Urologia e Reprodução Humana, Departamento de Cirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cláudia M O Nascimento
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Allain A Bueno
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Eliane B Ribeiro
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Abildgaard J, Tingstedt J, Zhao Y, Hartling HJ, Pedersen AT, Lindegaard B, Dam Nielsen S. Increased systemic inflammation and altered distribution of T-cell subsets in postmenopausal women. PLoS One 2020; 15:e0235174. [PMID: 32574226 PMCID: PMC7310708 DOI: 10.1371/journal.pone.0235174] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 06/10/2020] [Indexed: 11/22/2022] Open
Abstract
Aim To investigate markers of systemic inflammation in pre- and postmenopausal women and identify possible predictors of systemic inflammation with menopause. Methods Cross-sectional study of 69 healthy women between 45- and 60 years. Blood samples were collected to assess leukocyte subsets and plasma cytokines. MRI and DXA scans were performed to assess body composition. Through uni- and multivariate analyses, follicle-stimulating hormone (FSH), visceral fat mass and age were evaluated as predictors of systemic inflammation in relation to menopause. Results Postmenopausal women tended to have higher leukocyte counts (5.4 x109 vs. 4.9 x109 cells/l, p = 0.05) reflected in increased total lymphocytes (1.8 x109 vs. 1.6 x109 cells/l, p = 0.01) and monocytes (0.5 x109 vs. 0.4 x109 cells/l, p = 0.02), compared to premenopausal women. Increased visceral fat mass was a strong predictor of high leukocyte subsets. Postmenopausal women had higher plasma TNF-α (2.24 vs. 1.91 pg/ml, p = 0.01) and IL-6 (0.45 vs. 0.33 pg/ml, p = 0.004) compared to premenopausal women and high FSH was a significant predictor of increased plasma TNF-α, IL-1β and IL-6. Menopause was further associated with increased T-cells (1,336 vs. 1,128 cells/μl, p = 0.04) reflected in significantly higher counts of exhausted-, senescent-, and memory CD4+ T-cell subsets. Conclusions Menopause is associated with increased systemic inflammation as well as exhausted- and senescent T-cells. We suggest, that both increased visceral fat mass and declining sex hormone levels might contribute to postmenopausal systemic inflammation and calls for further large-scale studies to confirm these findings.
Collapse
Affiliation(s)
- Julie Abildgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, København Ø, Denmark
- * E-mail:
| | - Jeanette Tingstedt
- Viro-immunology Research Unit, Department of infectious diseases, Rigshospitalet, University of Copenhagen, København Ø, Denmark
- Virus Research and Development, Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, København Ø, Denmark
| | - Yanan Zhao
- Viro-immunology Research Unit, Department of infectious diseases, Rigshospitalet, University of Copenhagen, København Ø, Denmark
| | - Hans Jakob Hartling
- Viro-immunology Research Unit, Department of infectious diseases, Rigshospitalet, University of Copenhagen, København Ø, Denmark
| | - Anette Tønnes Pedersen
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, København Ø, Denmark
| | - Birgitte Lindegaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, København Ø, Denmark
- Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of infectious diseases, Rigshospitalet, University of Copenhagen, København Ø, Denmark
| |
Collapse
|
21
|
Goulabchand R, Hafidi A, Van de Perre P, Millet I, Maria ATJ, Morel J, Le Quellec A, Perrochia H, Guilpain P. Mastitis in Autoimmune Diseases: Review of the Literature, Diagnostic Pathway, and Pathophysiological Key Players. J Clin Med 2020; 9:jcm9040958. [PMID: 32235676 PMCID: PMC7231219 DOI: 10.3390/jcm9040958] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Mastitis frequently affects women of childbearing age. Of all the pathological breast conditions requiring specific management, autoimmune mastitis is in the third position after infection and breast cancer. The aim of this literature review was to make a comprehensive description of autoimmune diseases targeting the mammary gland. Four main histological patterns of autoimmune mastitis are described: (i) lymphocytic infiltrates; (ii) ductal ectasia; (iii) granulomatous mastitis; and (iv) vasculitis. Our literature search found that all types of autoimmune disease may target the mammary gland: organ-specific diseases (diabetes, thyroiditis); connective tissue diseases (such as systemic erythematosus lupus or Sjögren’s syndrome); vasculitides (granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis, giant cell arteritis, polyarteritis nodosa, Behçet’s disease); granulomatous diseases (sarcoidosis, Crohn’s disease); and IgG4-related disease. Cases of breast-specific autoimmune diseases have also been reported, including idiopathic granulomatous mastitis. These breast-limited inflammatory diseases are sometimes the first symptom of a systemic autoimmune disease. Although autoimmune mastitis is rare, it is probably underdiagnosed or misdiagnosed. Early diagnosis may allow us to detect systemic diseases at an earlier stage, which could help to initiate a prompt, appropriate therapeutic strategy. In case of suspected autoimmune mastitis, we hereby propose a diagnostic pathway and discuss the potential pathophysiological pathways leading to autoimmune breast damage.
Collapse
Affiliation(s)
- Radjiv Goulabchand
- St Eloi Hospital, Department of Internal Medicine and Multi-Organic Diseases, Local Referral Center for Systemic and Autoimmune Diseases, 80 Avenue Augustin Fliche, F-34295 Montpellier, France; (R.G.); (A.T.J.M.); (A.L.Q.)
- Internal Medicine Department, Caremeau University Hospital, 30029 Nimes, France
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Inserm U1183, Institute for Regenerative Medicine and Biotherapy, St Eloi Hospital, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Assia Hafidi
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Gui de Chauliac Hospital, Pathology Department, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, Univ Montpellier, INSERM, EFS, Montpellier University Hospital, 34394 Montpellier, France;
| | - Ingrid Millet
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Lapeyronie Hospital, Montpellier University, Medical Imaging Department, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier, France
| | - Alexandre Thibault Jacques Maria
- St Eloi Hospital, Department of Internal Medicine and Multi-Organic Diseases, Local Referral Center for Systemic and Autoimmune Diseases, 80 Avenue Augustin Fliche, F-34295 Montpellier, France; (R.G.); (A.T.J.M.); (A.L.Q.)
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Inserm U1183, Institute for Regenerative Medicine and Biotherapy, St Eloi Hospital, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Jacques Morel
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Department of Rheumatology, CHU and University of Montpellier, 34295 Montpellier, France
| | - Alain Le Quellec
- St Eloi Hospital, Department of Internal Medicine and Multi-Organic Diseases, Local Referral Center for Systemic and Autoimmune Diseases, 80 Avenue Augustin Fliche, F-34295 Montpellier, France; (R.G.); (A.T.J.M.); (A.L.Q.)
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
| | - Hélène Perrochia
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Gui de Chauliac Hospital, Pathology Department, 80 Avenue Augustin Fliche, 34295 Montpellier, France
| | - Philippe Guilpain
- St Eloi Hospital, Department of Internal Medicine and Multi-Organic Diseases, Local Referral Center for Systemic and Autoimmune Diseases, 80 Avenue Augustin Fliche, F-34295 Montpellier, France; (R.G.); (A.T.J.M.); (A.L.Q.)
- Montpellier School of Medicine, University of Montpellier, 34967 Montpellier, France (I.M.); (J.M.); (H.P.)
- Inserm U1183, Institute for Regenerative Medicine and Biotherapy, St Eloi Hospital, 80 Avenue Augustin Fliche, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-467-337332
| |
Collapse
|
22
|
Comella Bolla A, Valente T, Miguez A, Brito V, Gines S, Solà C, Straccia M, Canals JM. CD200 is up-regulated in R6/1 transgenic mouse model of Huntington's disease. PLoS One 2019; 14:e0224901. [PMID: 31790427 PMCID: PMC6886799 DOI: 10.1371/journal.pone.0224901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023] Open
Abstract
In Huntington's disease (HD), striatal medium spiny neurons (MSNs) are particularly sensitive to the presence of a CAG repeat in the huntingtin (HTT) gene. However, there are many evidences that cells from the peripheral immune system and central nervous system (CNS) immune cells, namely microglia, play an important role in the etiology and the progression of HD. However, it remains unclear whether MSNs neurodegeneration is mediated by a non-cell autonomous mechanism. The homeostasis in the healthy CNS is maintained by several mechanisms of interaction between all brain cells. Neurons can control microglia activation through several inhibitory mechanisms, such as the CD200-CD200R1 interaction. Due to the complete lack of knowledge about the CD200-CD200R1 system in HD, we determined the temporal patterns of CD200 and CD200R1 expression in the neocortex, hippocampus and striatum in the HD mouse models R6/1 and HdhQ111/7 from pre-symptomatic to manifest stages. In order to explore any alteration in the peripheral immune system, we also studied the levels of expression of CD200 and CD200R1 in whole blood. Although CD200R1 expression was not altered, we observed and increase in CD200 gene expression and protein levels in the brain parenchyma of all the regions we examined, along with HD pathogenesis in R6/1 mice. Interestingly, the expression of CD200 mRNA was also up-regulated in blood following a similar temporal pattern. These results suggest that canonical neuronal-microglial communication through CD200-CD200R1 interaction is not compromised, and CD200 up-regulation in R6/1 brain parenchyma could represent a neurotrophic signal to sustain or extend neuronal function in the latest stages of HD as pro-survival mechanism.
Collapse
Affiliation(s)
- Andrea Comella Bolla
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Tony Valente
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona–Consejo Superior de Investigaciones Científicas (IIBB–CSIC), Barcelona, Spain
| | - Andres Miguez
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Veronica Brito
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Silvia Gines
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Carme Solà
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona–Consejo Superior de Investigaciones Científicas (IIBB–CSIC), Barcelona, Spain
| | - Marco Straccia
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Josep M. Canals
- Stem Cells and Regenerative Medicine Laboratory, Production and Validation Center of Advanced Therapies (Creatio), Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Neuroscience Institute, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
23
|
Henstridge DC, Abildgaard J, Lindegaard B, Febbraio MA. Metabolic control and sex: A focus on inflammatory-linked mediators. Br J Pharmacol 2019; 176:4193-4207. [PMID: 30820935 DOI: 10.1111/bph.14642] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Men and women have many differing biological and physiological characteristics. Thus, it is no surprise that the control of metabolic processes and the mechanisms underlying metabolic-related diseases have sex-specific components. There is a clear metabolic sexual dimorphism in that up until midlife, men have a far greater likelihood of acquiring cardio-metabolic disease than women. Following menopause, however, this difference is reduced, suggestive of a protective role of the female sex hormones. Inflammatory processes have been implicated in the pathogenesis of cardio-metabolic disease with human studies correlating metabolic disease acquisition or risk with levels of various inflammatory markers. Rodent studies employing genetic modifications or novel pharmacological approaches have provided mechanistic insight into the role of these inflammatory mediators. Sex differences impact inflammatory processes and the subsequent biological response. As a consequence, this may affect how inflammation alters metabolic processes between the sexes. Recently, some of our work in the field of inflammatory genes and metabolic control identified a sexual dimorphism in a preclinical model and caused us to question the frequency and scale of such findings in the literature. This review concentrates on inflammatory-related signalling in relation to obesity, insulin resistance, and type 2 diabetes and highlights the differences observed between males and females. Differences in the activation and signalling of various inflammatory genes and proteins present another reason why studying both male and female patients or animals is important in the context of understanding and finding therapeutics for metabolic-related disease. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Darren C Henstridge
- Molecular Metabolism & Aging Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Julie Abildgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mark A Febbraio
- Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Drug Discover Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Immunometabolic Links between Estrogen, Adipose Tissue and Female Reproductive Metabolism. BIOLOGY 2019; 8:biology8010008. [PMID: 30736459 PMCID: PMC6466614 DOI: 10.3390/biology8010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 12/25/2022]
Abstract
The current knowledge of sex-dependent differences in adipose tissue biology remains in its infancy and is motivated in part by the desire to understand why menopause is linked to an increased risk of metabolic disease. However, the development and characterization of targeted genetically-modified rodent models are shedding new light on the physiological actions of sex hormones in healthy reproductive metabolism. In this review we consider the need for differentially regulating metabolic flexibility, energy balance, and immunity in a sex-dependent manner. We discuss the recent advances in our understanding of physiological roles of systemic estrogen in regulating sex-dependent adipose tissue distribution, form and function; and in sex-dependent healthy immune function. We also review the decline in protective properties of estrogen signaling in pathophysiological settings such as obesity-related metaflammation and metabolic disease. It is clear that the many physiological actions of estrogen on energy balance, immunity, and immunometabolism together with its dynamic regulation in females make it an excellent candidate for regulating metabolic flexibility in the context of reproductive metabolism.
Collapse
|
25
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Neutrophils life under estrogenic and xenoestrogenic control. J Steroid Biochem Mol Biol 2019; 186:203-211. [PMID: 30381249 DOI: 10.1016/j.jsbmb.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
Over 100 years ago, scientists had identified cells that represent the most abundant population of peripheral blood leukocytes; they called this population neutrophils. Day by day, the knowledge specific to neutrophils is augmented with new and often surprising aspects and facts about neutrophils' life or death. Estrogens (estrone, estriol, and estradiol) are relevant for the regulation of immune responses that are related with neutrophils. An understanding of the molecular mechanism of the action of endogenous hormones allows us to predict the effects of the substances that commonly occur in an environment with estrogen-like properties (xenoestrogens (e.g., bisphenol A, DDT, tributyltin, polychlorinated biphenyls, nonylphenol and octylphenol)). Therefore, we summarize current literature on the impact of estrogens and xenoestrogens, on each aspect of neutrophil life, as well as describe its mechanism of actions in neutrophils.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
26
|
Wang S, Li S, Wang H, Li W, Gao Y, Wang X, Fang C, Zhang B, Sun X, Li R, Shi W, Chen M, Shi L. Knockdown of ARK5 expression suppresses invasion of ovarian cancer cells. Mol Med Rep 2019; 19:2927-2934. [PMID: 30720082 DOI: 10.3892/mmr.2019.9901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the current study was to investigate the effects and the molecular mechanisms of ARK5 in ovarian cancer cell invasion. The plasmid pGCsilencerU6/GFP/Neo‑RNAi‑ARK5 and the control vector with a scramble sequence were transfected into SKOV3 cells to establish ARK5‑deficient SKOV3 cells (siARK5/SKOV3) and a control cell line (Scr/SKOV3), respectively. Reverse transcription‑polymerase chain reaction (RT‑PCR) and Western blot analysis were used to determine the mRNA and protein expression levels of ARK5. Migration and invasion abilities of SKOV3 cells were determined in chemotaxis and invasion assays, respectively. The epidermal growth factor‑1 (EGF‑1)‑induced expression of matrix metallopeptidase (MMP)‑2 and MMP‑9, epithelial‑mesenchymal transition (EMT) and phosphorylation of mechanistic target of rapamycin kinase (mTOR) in siARK5/SKOV3 and Scr/SKOV3 cells were detected by western blot. RT‑PCR and western blot analyses demonstrated that the expression of ARK5 was significantly downregulated in siARK5/SKOV3 cells at the mRNA and protein levels (P<0.01). The migration and invasion abilities of siARK5/SKOV3 cells were markedly decreased compared with Scr/SKOV3 cells (P<0.01). In addition, the results demonstrated that EGF‑1‑induced expression of MMP‑2 and MMP‑9, EMT and phosphorylation of mTOR were suppressed in siARK5/SKOV3 cells as compared with Scr/SKOV3 cells (P<0.01). The current study demonstrated that ARK5 is a critical factor involved in SKOV3 cell invasion and ARK5 increases invasive potential by promoting EMT and activating the Akt‑mTOR‑MMPs pathway.
Collapse
Affiliation(s)
- Shuxiao Wang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Shuwei Li
- Department of Physics, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hui Wang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Li
- Department of Gynecology, Zhenjiang Maternity and Child Health Hospital, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuxue Gao
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xuejian Wang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chunyan Fang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Baogang Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiuning Sun
- Department of Microbiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ruifang Li
- Department of Microbiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiwei Shi
- Department of Chemistry, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Meiling Chen
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Lihong Shi
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
27
|
Influence of Menopause on Inflammatory Cytokines during Murine and Human Bone Fracture Healing. Int J Mol Sci 2018; 19:ijms19072070. [PMID: 30013010 PMCID: PMC6073246 DOI: 10.3390/ijms19072070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Postmenopausal females display a chronic inflammatory phenotype with higher levels of circulating pro-inflammatory cytokines. Furthermore, the inflammatory response to injury may be altered under estrogen-deficiency, because it was shown previously that estrogen-deficient mice displayed increased levels of the inflammatory cytokines Midkine (Mdk) and Interleukin-6 (IL-6) in the early fracture hematoma. Because a balanced immune response to fracture is required for successful bone regeneration, this might contribute to the delayed fracture healing frequently observed in osteoporotic, postmenopausal fracture patients. In this study, we aimed to investigate whether further cytokines in addition to Mdk and IL-6 might be affected by estrogen-deficiency after fracture in mice and whether these cytokines are also relevant during human fracture healing. Additionally, we aimed to investigate whether serum from male vs. female fracture patients affects osteogenic differentiation of human mesenchymal stem cells (MSCs). To address these questions, female mice were either sham-operated or ovariectomized (OVX) and subjected to standardized femur osteotomy. A broad panel of pro- and anti-inflammatory cytokines was determined systemically and locally in the fracture hematoma. In a translational approach, serum was collected from healthy controls and patients with an isolated fracture. Mdk and IL-6 serum levels were determined at day 0, day 14 and day 42 after fracture. Subgroup analysis was performed to investigate differences between male and female fracture patients after menopause. In an in vitro approach, human MSCs were cultured with the collected patient serum and osteogenic differentiation was assessed by qPCR and alkaline-phosphatase staining. Our results suggest an important role for the pro-inflammatory cytokines Mdk and IL-6 in the response to fracture in estrogen-deficient mice among all of the measured inflammatory mediators. Notably, both cytokines were also significantly increased in the serum of patients after fracture. However, only Mdk serum levels differed significantly between male and female fracture patients after menopause. MSCs cultivated with serum from female fracture patients displayed significantly reduced osteogenic differentiation, which was attenuated by Mdk-antibody treatment. In conclusion, our study demonstrated increased Mdk levels after fracture in OVX mice and female fracture patients after menopause. Because Mdk is a negative regulator of bone formation, this might contribute to impaired osteoporotic fracture healing.
Collapse
|
28
|
Surcel M, Constantin C, Caruntu C, Zurac S, Neagu M. Inflammatory Cytokine Pattern Is Sex-Dependent in Mouse Cutaneous Melanoma Experimental Model. J Immunol Res 2017; 2017:9212134. [PMID: 29318162 PMCID: PMC5727748 DOI: 10.1155/2017/9212134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 10/22/2017] [Indexed: 12/16/2022] Open
Abstract
We present the evaluation of inflammatory cytokines in mouse cutaneous melanoma experimental model, as markers of disease evolution. Moreover, to test our experimental model, we have used low doses of dacarbazine (DTIC). C57 BL/6J mouse of both sexes were subjected to experimental cutaneous melanoma and treated with low doses of DTIC. Clinical parameters and serum cytokines were followed during tumor evolution and during DTIC therapy. Cytokine/chemokine pattern was assessed using xMAP technology and the following molecules were quantified: interleukins (IL)-1-beta, IL-6, IL-10, IL-12 (p70), interferon (IFN)-gamma, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein (MIP)-1alpha, monocyte chemoattractant protein (MCP-1), and keratinocyte-derived chemokine (KC). Significant differences were found between normal females and males mice, female mice having a statistically higher serum concentration of IL-1-beta compared to male mice, while males have a significantly higher concentration of MIP-1-alpha. During melanoma evolution in the female group, IL-1-beta, MIP-1-alpha, and KC circulatory levels were found 10-fold increased, while other cytokines doubled their values. In the male mice group, only circulatory KC increased 4 times, while IL-1-beta and TNF-alpha doubled their circulatory values. Various serum cytokines correlated with the disease evolution in cutaneous melanoma mouse model.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 76201 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania
- Colentina University Hospital, 19-21 Stefan cel Mare Blv., 020125 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Pharmacy and Medicine, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Sabina Zurac
- Colentina University Hospital, 19-21 Stefan cel Mare Blv., 020125 Bucharest, Romania
- “Carol Davila” University of Pharmacy and Medicine, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 76201 Bucharest, Romania
- Colentina University Hospital, 19-21 Stefan cel Mare Blv., 020125 Bucharest, Romania
| |
Collapse
|
29
|
Cui Y, Dai W, Li Y. Circulating levels of sgp130 and sex hormones in male patients with coronary atherosclerotic disease. Atherosclerosis 2017; 266:151-157. [DOI: 10.1016/j.atherosclerosis.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 11/24/2022]
|