1
|
Pusch L, Brox R, Scheuer K, Yokosawa T, Wu M, Zubiri BA, Spiecker E, Jandt KD, Fischer D, Hackstein H. Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acid nanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine (Lond) 2021; 16:2075-2094. [PMID: 34523349 DOI: 10.2217/nnm-2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles can be prepared by emulsion-solvent-evaporation from o/w and w1/o/w2 emulsions. Aims: To elaborate similarities and differences regarding mechanical, morphological and physicochemical properties, as well as endocytosis and dose-dependent immune responses by primary human leukocytes between nanoparticles prepared by these two methods. Methods: Fluorescently labeled as well as TLR agonist (R848)-loaded PLGA nanoparticles were prepared via both single- and double-emulsion solvent evaporation. Results: Particles prepared by both methods were similar in chemical composition and surface charge but exhibited slight differences in size and morphology. Pronounced differences were found for loading, dissolution and mechanical properties. The particles were differently endocytosed by monocytes and induced qualitatively and quantitatively different immune responses. Conclusions: Variations in nanoparticle preparation can affect particle-derived immunological characteristics.
Collapse
Affiliation(s)
- Lennart Pusch
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Regine Brox
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Karl Scheuer
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Mingjian Wu
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Erdmann Spiecker
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Klaus D Jandt
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Dagmar Fischer
- Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4 (Haus 6), Erlangen, 91058, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| |
Collapse
|
2
|
Patra P, Banerjee R, Chakrabarti J. Control of solvent exposure of cationic polypeptides in anionic environment. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Non-human papillomaviruses for gene delivery in vitro and in vivo. PLoS One 2018; 13:e0198996. [PMID: 29912929 PMCID: PMC6005490 DOI: 10.1371/journal.pone.0198996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Papillomavirus capsids are known to have the ability to package DNA plasmids and deliver them both in vitro and in vivo. Of all known papillomavirus types, human papillomaviruses (HPVs) are by far the most intensely studied. Although HPVs work well as gene transfer vectors, their use is limited as most individuals are exposed to this virus either through a HPV vaccination or natural infection. To circumvent these constraints, we produced pseudovirions (PsVs) of ten non-human papillomavirus types and tested their transduction efficiencies in vitro. PsVs based on Macaca fascicularis papillomavirus-11 and Puma concolor papillomavirus-1 were further tested in vivo. Intramuscular transduction by PsVs led to months-long expression of a reporter plasmid, indicating that PsVs have potential as gene delivery vectors.
Collapse
|
4
|
|
5
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Byrne M, Murphy R, Kapetanakis A, Ramsey J, Cryan SA, Heise A. Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics. Macromol Rapid Commun 2015; 36:1862-1876. [DOI: 10.1002/marc.201500300] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/17/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mark Byrne
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
| | - Robert Murphy
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
| | - Antonios Kapetanakis
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
| | - Joanne Ramsey
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
| | - Sally-Ann Cryan
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Tissue Engineering Research Group; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
| | - Andreas Heise
- School of Chemical Sciences; Dublin City University; Glasnevin, Dublin 9 Ireland
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
| |
Collapse
|
7
|
Climent N, Munier S, Piqué N, García F, Pavot V, Primard C, Casanova V, Gatell JM, Verrier B, Gallart T. Loading dendritic cells with PLA-p24 nanoparticles or MVA expressing HIV genes induces HIV-1-specific T cell responses. Vaccine 2014; 32:6266-76. [PMID: 25240755 DOI: 10.1016/j.vaccine.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 02/05/2023]
Abstract
Since recent data suggest that nanoparticles and modified vaccinia ankara (MVA) vectors could play a pivotal role in HIV-1 therapeutics and vaccine design, in an ex vivo model of human monocyte-derived dendritic cells (MDDCs), we compared two different loading strategies with HIV-1 vaccine vehicles, either viral or synthetic derived. We used polylactic acid (PLA) colloidal biodegradable particles, coated with HIV Gag antigens (p24), and MVA expressing Gag (rMVA-gag and rMVA-gag/trans membrane) or Tat, Nef and Rev genes (rMVA tat+rev and rMVA nef). PLA-p24 captured by MDDCs from HIV-1 individuals induced a slight degree of MDDC maturation, cytokine and chemokine secretion and migration towards a gradient of CCL19 chemokine and highly increased HIV-specific CD8(+) T-cell proliferation compared with p24 alone. After complete maturation induction of PLA-p24-pulsed MDDCs, maximal migration towards a gradient of CCL19 chemokine and induction of HIV-specific T-cell proliferation (two-fold higher for CD4(+) than CD8(+)) and cytokine secretion (IFN-γ and IL-2) in the co-culture were observed. Upon exposure to MVA-gag, MDDCs produced cytokines and chemokines and maintained their capacity to migrate to a gradient of CCL19. MDDCs infected with MVA-gag and MVA-gag trans-membrane were able to induce HIV-specific CD8(+) proliferation and secretion of IFN-γ, IL-2, IL-6 and TNF-α. We conclude that both HIV antigens loading strategies (PLA-p24 nanoparticles or MVA expressing HIV genes) induce HIV-1-specific T-cell responses, which are able to kill autologous gag-expressing cells. Thus, they are plausible candidates for the development of anti-HIV vaccines.
Collapse
Affiliation(s)
- Núria Climent
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain; AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain.
| | - Séverine Munier
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Núria Piqué
- Department of Microbiology and Parasitology, Pharmacy Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain; Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Vincent Pavot
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Charlotte Primard
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Victor Casanova
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain; Infectious Diseases and AIDS Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Bernard Verrier
- Institut de Biology et Chimie des Protéines, UMR5305, UCBL, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Teresa Gallart
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain; AIDS Research Group, and Catalonian Center for HIV Vaccines (HIVACAT), Barcelona, Spain
| |
Collapse
|
8
|
Polyplex-releasing microneedles for enhanced cutaneous delivery of DNA vaccine. J Control Release 2014; 179:11-7. [PMID: 24462900 DOI: 10.1016/j.jconrel.2014.01.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/23/2022]
Abstract
Microneedle (MN)-based DNA vaccines have many advantages over conventional vaccines administered by hypodermic needles. However, an efficient strategy for delivering DNA vaccines to intradermal cells has not yet been established. Here, we report a new approach for delivering polyplex-based DNA vaccines using MN arrays coated with a pH-responsive polyelectrolyte multilayer assembly (PMA). This approach enabled rapid release of polyplex upon application to the skin. In addition to the polyplex-releasing MNs, we attempted to further maximize the vaccination by developing a polymeric carrier that targeted resident antigen presenting cells (APCs) rich in the intradermal area, as well as a DNA vaccine encoding a secretable fusion protein containing amyloid beta monomer (Aβ1-42), an antigenic determinant. The resulting vaccination system was able to successfully induce a robust humoral immune response compared to conventional subcutaneous injection with hypodermal needles. In addition, antigen challenge after immunization elicited an immediate and strong recall immune response due to immunogenic memory. These results suggest the potential utility of MN-based polyplex delivery systems for enhanced DNA vaccination.
Collapse
|
9
|
Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 2014; 6:797-808. [DOI: 10.1586/14760584.6.5.797] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, Ma L, Shao Y, Zhao Y, Chen C. Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5928-36. [PMID: 23963730 DOI: 10.1002/adma.201300583] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Fullerenol, which self-assembles into virus-sized nanoparticles, is designed as a dual-functional nanoadjuvant to generate comparable immune responses to the HIV DNA vaccine. It shows promising adjuvant activity via various immunization routes, decreasing the antigen dosage and immunization frequency while maintaining immunity levels and inducing TEM -biased immunity to combat the infection at early stage. The underlying mechanisms by which fullerenol-based formulation induces above-mentioned polyvalent immune responses are involved in activating multiple TLRs signaling pathways.
Collapse
Affiliation(s)
- Ligeng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kichaev G, Mendoza JM, Amante D, Smith TRF, McCoy JR, Sardesai NY, Broderick KE. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses. Hum Vaccin Immunother 2013; 9:2041-8. [PMID: 23954979 DOI: 10.4161/hv.25272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In vivo electroporation (EP) has been shown to be a highly efficient non-viral method for enhancing DNA vaccine delivery and immunogenicity, when the site of immunization is the skin or muscle of animals and humans. However, the route of entry for many microbial pathogens is via the mucosal surfaces of the human body. We have previously reported on minimally invasive, surface and contactless EP devices for enhanced DNA delivery to dermal tissue. Robust antibody responses were induced following vaccine delivery in several tested animal models using these devices. Here, we investigated extending the modality of the surface device to efficiently deliver DNA vaccines to mucosal tissue. Initially, we demonstrated reporter gene expression in the epithelial layer of buccal mucosa in a guinea pig model. There was minimal tissue damage in guinea pig mucosal tissue resulting from EP. Delivery of a DNA vaccine encoding influenza virus nucleoprotein (NP) of influenza H1N1 elicited robust and sustained systemic IgG antibody responses following EP-enhanced delivery in the mucosa. Upon further analysis, IgA antibody responses were detected in vaginal washes and sustained cellular immune responses were detected in animals immunized at the oral mucosa with the surface EP device. This data confirms that DNA delivery and EP targeting mucosal tissue directly results in both robust and sustainable humoral as well as cellular immune responses without tissue damage. These responses are seen both in the mucosa and systemically in the blood. Direct DNA vaccine delivery enhanced by EP in mucosa may have important clinical applications for delivery of prophylactic and therapeutic DNA vaccines against diseases such as HIV, HPV and pneumonia that enter at mucosal sites and require both cellular and humoral immune responses for protection.
Collapse
Affiliation(s)
| | | | | | | | - Jay R McCoy
- Inovio Pharmaceuticals Inc.;Blue Bell, PA USA
| | | | | |
Collapse
|
12
|
|
13
|
Shukla SC, Singh A, Pandey AK, Mishra A. Review on production and medical applications of ɛ-polylysine. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
|
15
|
Abstract
Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.
Collapse
Affiliation(s)
- Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico.
| | | | | |
Collapse
|
16
|
Ji W, Panus D, Palumbo RN, Tang R, Wang C. Poly(2-aminoethyl methacrylate) with well-defined chain length for DNA vaccine delivery to dendritic cells. Biomacromolecules 2011; 12:4373-85. [PMID: 22082257 DOI: 10.1021/bm201360v] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain length and narrow molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP), and a comprehensive study was conducted to evaluate the colloidal properties of PAEM/plasmid DNA polyplexes, the uptake and subcellular trafficking of polyplexes in antigen-presenting dendritic cells (DCs), and the biological performance of PAEM as a potential DNA vaccine carrier. PAEM of different chain length (45, 75, and 150 repeating units) showed varying strength in condensing plasmid DNA into narrowly dispersed nanoparticles with very low cytotoxicity. Longer polymer chain length resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter polymer chains favored intracellular and intranuclear release of free plasmid from the polyplexes. Despite its simple chemical structure, PAEM transfected DCs very efficiently in vitro in media with or without serum and led to phenotypic maturation of DCs. When a model antigen-encoding ovalbumin plasmid was used, transfected DCs stimulated the activation of naïve CD8(+) T cells to produce high levels of interferon-γ. The efficiency of transfection, DC maturation, and CD8(+) T cell activation showed varying degrees of polymer chain-length dependence. These structurally defined cationic polymers may have much potential as efficient DNA vaccine carriers and immunostimulatory adjuvants. They may also serve as a model material system for elucidating structural and intracellular mechanisms of polymer-mediated DNA vaccine delivery.
Collapse
Affiliation(s)
- Weihang Ji
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
17
|
Salah N, Habib SS, Khan ZH, Djouider F. Thermoluminescence and photoluminescence of ZrO2 nanoparticles. Radiat Phys Chem Oxf Engl 1993 2011. [DOI: 10.1016/j.radphyschem.2011.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
19
|
|
20
|
Khalil NM, Carraro E, Cótica LF, Mainardes RM. Potential of polymeric nanoparticles in AIDS treatment and prevention. Expert Opin Drug Deliv 2010; 8:95-112. [PMID: 21143001 DOI: 10.1517/17425247.2011.543673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Acquired immunodeficiency syndrome (AIDS) remains one of the greatest challenges in public health. The AIDS virus is now responsible for > 2.5 million new infections worldwide each year. Despite significant advances in understanding the mechanism of viral infection and identifying effective treatment approaches, the search for optimum treatment strategies for AIDS remains a major challenge. Recent advances in the field of drug delivery have provided evidence that engineered nanosystems may contribute to the enhancement of current antiretroviral therapy. AREAS COVERED IN THIS REVIEW This review describes the potential of polymeric nanoparticle-based drug delivery systems in the future treatment of AIDS. Polymeric nanoparticles have been developed to improve physicochemical drug characteristics (by increasing drug solubility and stability), to achieve sustained drug release profile, to provide targeting to the cellular and anatomic human immunodeficiency virus (HIV) latent reservoirs and to be applied as an adjuvant in anti-HIV vaccine formulations. WHAT THE READER WILL GAIN The insight that will be gained is knowledge about the progress in the development of polymeric nanoparticle-based drug delivery systems for antiretroviral drugs as alternative for AIDS treatment and prevention. TAKE HOME MESSAGE The advances in the field of targeted drug delivery can result in more efficient strategies for AIDS treatment and prevention.
Collapse
Affiliation(s)
- Najeh Maissar Khalil
- Universidade Estadual do Centro-Oeste/UNICENTRO - Departamento de Farmácia, Rua Simeão Camargo Varela de Sá 03, 85040-080 Guarapuava-PR, Brasil
| | | | | | | |
Collapse
|
21
|
Salah N, Habib SS, Khan ZH. Quantum Effect on the Energy Levels of Eu2+ Doped K2Ca2(SO4)3 Nanoparticles. J Fluoresc 2010; 20:1009-15. [DOI: 10.1007/s10895-010-0648-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 03/23/2010] [Indexed: 11/29/2022]
|
22
|
das Neves J, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 2010; 62:458-77. [PMID: 19914314 DOI: 10.1016/j.addr.2009.11.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 09/14/2009] [Indexed: 11/27/2022]
Abstract
The HIV/AIDS pandemic is an increasing global burden with devastating health-related and socioeconomic effects. The widespread use of antiretroviral therapy has dramatically improved life quality and expectancy of infected individuals, but limitations of currently available drug regimens and dosage forms, alongside with the extraordinary adapting capacity of the virus, have impaired further success. Alongside, circumventing the escalating number of new infections can only be attained with effective and practical preventative strategies. Recent advances in the field of drug delivery are providing evidence that engineered nanosystems may contribute importantly for the enhancement of current antiretroviral therapy. Additionally, groundwork is also being carried out in the field nanotechnology-based systems for developing preventative solutions for HIV transmission. This manuscript reviews recent advances in the field of nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Particular attention is given to antiretroviral drug targeting to HIV reservoirs and the usefulness of nanosystems for developing topical microbicides and vaccines.
Collapse
|
23
|
Tang R, Palumbo RN, Nagarajan L, Krogstad E, Wang C. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length. J Control Release 2010; 142:229-37. [PMID: 19874858 PMCID: PMC2823989 DOI: 10.1016/j.jconrel.2009.10.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 09/30/2009] [Accepted: 10/19/2009] [Indexed: 12/23/2022]
Abstract
The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems.
Collapse
Affiliation(s)
- Rupei Tang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - R. Noelle Palumbo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lakshmi Nagarajan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily Krogstad
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
McCullough KC, Summerfield A. Targeting the porcine immune system--particulate vaccines in the 21st century. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:394-409. [PMID: 18771683 PMCID: PMC7103233 DOI: 10.1016/j.dci.2008.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/11/2008] [Accepted: 07/11/2008] [Indexed: 05/15/2023]
Abstract
During the last decade, the propagation of immunological knowledge describing the critical role of dendritic cells (DC) in the induction of efficacious immune responses has promoted research and development of vaccines systematically targeting DC. Based on the promise for the rational design of vaccine platforms, the current review will provide an update on particle-based vaccines of both viral and synthetic origin, giving examples of recombinant virus carriers such as adenoviruses and biodegradable particulate carriers. The viral carriers carry pathogen-associated molecular patterns (PAMP), used by the original virus for targeting DC, and are particularly efficient and versatile gene delivery vectors. Efforts in the field of synthetic vaccine carriers are focussing on decorating the particle surface with ligands for DC receptors such as heparan sulphate glycosaminoglycan structures, integrins, Siglecs, galectins, C-type lectins and toll-like receptors. The emphasis of this review will be placed on targeting the porcine immune system, but reference will be made to advances with murine and human vaccine delivery systems where information on DC targeting is available.
Collapse
Affiliation(s)
- Kenneth C McCullough
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | |
Collapse
|
25
|
Nguyen DN, Green JJ, Chan JM, Longer R, Anderson DG. Polymeric Materials for Gene Delivery and DNA Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:847-867. [PMID: 28413262 PMCID: PMC5391878 DOI: 10.1002/adma.200801478] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gene delivery holds great potential for the treatment of many different diseases. Vaccination with DNA holds particular promise, and may provide a solution to many technical challenges that hinder traditional vaccine systems including rapid development and production and induction of robust cell-mediated immune responses. However, few candidate DNA vaccines have progressed past preclinical development and none have been approved for human use. This Review focuses on the recent progress and challenges facing materials design for nonviral DNA vaccine drug delivery systems. In particular, we highlight work on new polymeric materials and their effects on protective immune activation, gene delivery, and current efforts to optimize polymeric delivery systems for DNA vaccination.
Collapse
Affiliation(s)
- David N Nguyen
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Jordan J Green
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Juliana M Chan
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Robert Longer
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| |
Collapse
|
26
|
|
27
|
Abstract
The therapeutic efficacy of anti-HIV agents is often hampered by poor bioavailability and lack of drug penetration in infected target tissues and cells. Using different types of nanotechnology-based delivery systems, it is possible to engineer strategies that can improve the therapeutic efficacy in HIV/AIDS by delivering drugs to cellular and anatomical viral reservoirs. The rationale for the use of nanocarrier systems relies on the fact that different types of therapeutic payloads can be encapsulated and the systemic pharmacokinetics and distribution are dictated by the properties of the nanocarriers rather than the drugs. The versatility of nanoplatforms can be further exploited in a formulation that has enhanced oral bioavailability, protects against degradation upon oral or systemic administration and prolongs the residence time at the target site. Nanocarriers can facilitate lymphatic transport, delivery across the blood–brain barrier, and efficient internalization in cells by nonspecific or receptor-mediated endocytosis. In this review, we will address the role of nanotechnology-based delivery systems in improving the delivery efficiency of anti-HIV drugs to cellular and anatomical sites of interest. Specific published examples will be highlighted with emphasis on the role of polymeric nanoparticle micelles, liposomes and nanoemulsions in improving delivery efficiency.
Collapse
Affiliation(s)
- Aliasgar Shahiwala
- Northeastern University, Department of Pharmaceutical Sciences, School of Pharmacy, 110 Mugar Life Sciences Building, Boston, MA 02115, USA
| | - Mansoor M Amiji
- Northeastern University, Department of Pharmaceutical Sciences, School of Pharmacy, 110 Mugar Life Sciences Building, Boston, MA 02115, USA
| |
Collapse
|
28
|
Asasutjarit R, Lorenzen SI, Sirivichayakul S, Ruxrungtham K, Ruktanonchai U, Ritthidej GC. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm Res 2007; 24:1098-107. [PMID: 17385021 DOI: 10.1007/s11095-007-9234-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE This work was conducted to determine model equations describing the effect of solid lipid nanoparticles (SLN) formulation compositions on their size and zeta potential using the face-centered central composite design and to determine the effect of SLN formulation compositions on the potential for in vitro pHIS-HIV-hugag transfection. MATERIALS AND METHODS SLN were prepared by the hot high pressure homogenization technique using cetylpalmitate as lipid matrix at varying concentrations of Tween 80 and Span 85 mixture, dimethyldioctadecyl ammonium bromide (DDAB) and cholesterol. Size and zeta potential used as responses of the design were measured at pH 7.0. The model equations were accepted as statistical significance at p value of less than 0.05. Ability of SLN to form complex with pHIS-HIV-hugag was evaluated by electrophoretic mobility shift assay. In vitro cytotoxicity of SLN was studied in HeLa cells using alamar blue bioassay. The potential of SLN for in vitro pHIS-HIV-hugag transfection was also determined in HeLa cells by western blot technique. RESULTS SLN possessed diameter in a range of 136-191 nm and zeta potential 11-61 mV depending on the concentrations of surfactant mixture, DDAB and cholesterol. The regression analysis showed that the model equations of responses fitted well with quadratic equations. The ability of SLN to form complex with pHIS-HIV-hugag was also affected by formulation compositions. In vitro cytotoxicity results demonstrated that HeLa cells were not well tolerant of high concentrations of SLN but still survived in a range of 100-200 microg/ml of SLN in culture medium. The results of transfection study showed ability of SLN to use as a vector for in vitro pHIS-HIV-hugag transfection. However, their potential for in vitro transfection was lower than the established transfection reagent. CONCLUSIONS Size and zeta potential of SLN could be predicted from their quadratic model equations achieved by combination of three variables surfactant, DDAB and cholesterol concentrations. In addition, these variables also affected the potential of SLN as a vector for in vitro pHIS-HIV-hugag transfection. The results here provide the framework for further study involving the SLN formulation design for DNA delivery.
Collapse
Affiliation(s)
- Rathapon Asasutjarit
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
29
|
Listner K, Bentley L, Okonkowski J, Kistler C, Wnek R, Caparoni A, Junker B, Robinson D, Salmon P, Chartrain M. Development of a highly productive and scalable plasmid DNA production platform. Biotechnol Prog 2007; 22:1335-45. [PMID: 17022672 DOI: 10.1021/bp060046h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the applications of DNA vaccines extending from infectious diseases to cancer, achieving the most efficient, reproducible, robust, scalable, and economical production of clinical grade plasmid DNA is paramount to the medical and commercial success of this novel vaccination paradigm. A first generation production process based on the cultivation of Escherichia coli in a chemically defined medium, employing a fed-batch strategy, delivered reasonable volumetric productivities (500-750 mg/L) and proved to perform very well across a wide range of E. coli constructs upon scale-up at industrial scale. However, the presence of monosodium glutamate (MSG) in the formulation of the cultivation and feed solution was found to be a potential cause of process variability. The development of a second generation process, based on a defined cultivation medium and feed solution excluding MSG, was undertaken. Optimization studies, employing a plasmid coding for the HIV gag protein, resulted in cultivation conditions that supported volumetric plasmid titers in excess of 1.2 g/L, while achieving specific yields ranging from 25 to 32 microg plasmid DNA/mg of dry cell weight. When used for the production of clinical supplies, this novel process demonstrated applicability to two other constructs upon scale-up in 2,000-L bioreactors. This second generation process proved to be scalable, robust, and highly productive.
Collapse
Affiliation(s)
- K Listner
- Bioprocess R&D, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yoshikawa T, Okada N, Nakagawa S. Fusogenic liposomes and their suitability for gene delivery. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.6.735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
|
32
|
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23:1417-50. [PMID: 16779701 DOI: 10.1007/s11095-006-0284-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The purpose of this expert review is to discuss the impact of nanotechnology in the treatment of the major health threats including cancer, infections, metabolic diseases, autoimmune diseases, and inflammations. Indeed, during the past 30 years, the explosive growth of nanotechnology has burst into challenging innovations in pharmacology, the main input being the ability to perform temporal and spatial site-specific delivery. This has led to some marketed compounds through the last decade. Although the introduction of nanotechnology obviously permitted to step over numerous milestones toward the development of the "magic bullet" proposed a century ago by the immunologist Paul Ehrlich, there are, however, unresolved delivery problems to be still addressed. These scientific and technological locks are discussed along this review together with an analysis of the current situation concerning the industrial development.
Collapse
Affiliation(s)
- Patrick Couvreur
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612, Université de Paris Sud, 5 Rue J.B. Clément, 92 296, Chatenay-Malabry Cedex, France
| | | |
Collapse
|
33
|
Yoshikawa T, Imazu S, Gao JQ, Hayashi K, Tsuda Y, Shimokawa M, Sugita T, Niwa T, Oda A, Akashi M, Tsutsumi Y, Mayumi T, Nakagawa S. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine. Biochem Biophys Res Commun 2004; 325:500-5. [PMID: 15530420 DOI: 10.1016/j.bbrc.2004.10.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Indexed: 10/26/2022]
Abstract
In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen.
Collapse
Affiliation(s)
- Tomoaki Yoshikawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|