1
|
Mehling K, Becker J, Chen J, Scriba S, Kindl G, Jakubietz R, Sommer C, Hartmannsberger B, Rittner HL. Bilateral deficiency of Meissner corpuscles and papillary microvessels in patients with acute complex regional pain syndrome. Pain 2024; 165:1613-1624. [PMID: 38335004 PMCID: PMC11190899 DOI: 10.1097/j.pain.0000000000003168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) presents postinjury with disproportionate pain and neuropathic, autonomic, motor symptoms, and skin texture affection. However, the origin of these multiplex changes is unclear. Skin biopsies offer a window to analyze the somatosensory and vascular system as well as skin trophicity with their protecting barriers. In previous studies, barrier-protective exosomal microRNAs were altered in CRPS. We here postulated that tissue architecture and barrier proteins are already altered at the beginning of CRPS. We analyzed ipsilateral and contralateral skin biopsies of 20 fully phenotyped early CRPS patients compared with 20 age- and sex-matched healthy controls. We established several automated unbiased methods to comprehensively analyze microvessels and somatosensory receptors as well as barrier proteins, including claudin-1, claudin-5, and claudin-19. Meissner corpuscles in the skin were bilaterally reduced in acute CRPS patients with some of them lacking these completely. The number of Merkel cells and the intraepidermal nerve fiber density were not different between the groups. Dermal papillary microvessels were bilaterally less abundant in CRPS, especially in patients with allodynia. Barrier proteins in keratinocytes, perineurium of dermal nerves, Schwann cells, and papillary microvessels were not affected in early CRPS. Bilateral changes in the tissue architecture in early CRPS might indicate a predisposition for CRPS that manifests after injury. Further studies should evaluate whether these changes might be used to identify risk patients for CRPS after trauma and as biomarkers for outcome.
Collapse
Affiliation(s)
- Katharina Mehling
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Jeremy Chen
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Scriba
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Gudrun Kindl
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rafael Jakubietz
- Department Surgery II, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Beate Hartmannsberger
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
O'Brien JA, Karrasch JF, Huang Y, Vine EE, Cunningham AL, Harman AN, Austin PJ. Nerve-myeloid cell interactions in persistent human pain: a reappraisal using updated cell subset classifications. Pain 2024; 165:753-771. [PMID: 37975868 DOI: 10.1097/j.pain.0000000000003106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023]
Abstract
ABSTRACT The past 20 years have seen a dramatic shift in our understanding of the role of the immune system in initiating and maintaining pain. Myeloid cells, including macrophages, dendritic cells, Langerhans cells, and mast cells, are increasingly implicated in bidirectional interactions with nerve fibres in rodent pain models. However, our understanding of the human setting is still poor. High-dimensional functional analyses have substantially changed myeloid cell classifications, with recently described subsets such as epidermal dendritic cells and DC3s unveiling new insight into how myeloid cells interact with nerve fibres. However, it is unclear whether this new understanding has informed the study of human chronic pain. In this article, we perform a scoping review investigating neuroimmune interactions between myeloid cells and peripheral nerve fibres in human chronic pain conditions. We found 37 papers from multiple pain states addressing this aim in skin, cornea, peripheral nerve, endometrium, and tumour, with macrophages, Langerhans cells, and mast cells the most investigated. The directionality of results between studies was inconsistent, although the clearest pattern was an increase in macrophage frequency across conditions, phases, and tissues. Myeloid cell definitions were often outdated and lacked correspondence with the stated cell types of interest; overreliance on morphology and traditional structural markers gave limited insight into the functional characteristics of investigated cells. We therefore critically reappraise the existing literature considering contemporary myeloid cell biology and advocate for the application of established and emerging high-dimensional proteomic and transcriptomic single-cell technologies to clarify the role of specific neuroimmune interactions in chronic pain.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jackson F Karrasch
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Yun Huang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erica E Vine
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Anthony L Cunningham
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Andrew N Harman
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Paul J Austin
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| |
Collapse
|
3
|
Hartmannsberger B, Scriba S, Guidolin C, Becker J, Mehling K, Doppler K, Sommer C, Rittner HL. Transient immune activation without loss of intraepidermal innervation and associated Schwann cells in patients with complex regional pain syndrome. J Neuroinflammation 2024; 21:23. [PMID: 38233858 PMCID: PMC10792943 DOI: 10.1186/s12974-023-02969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) develops after injury and is characterized by disproportionate pain, oedema, and functional loss. CRPS has clinical signs of neuropathy as well as neurogenic inflammation. Here, we asked whether skin biopsies could be used to differentiate the contribution of these two systems to ultimately guide therapy. To this end, the cutaneous sensory system including nerve fibres and the recently described nociceptive Schwann cells as well as the cutaneous immune system were analysed. METHODS We systematically deep-phenotyped CRPS patients and immunolabelled glabrous skin biopsies from the affected ipsilateral and non-affected contralateral finger of 19 acute (< 12 months) and 6 chronic (> 12 months after trauma) CRPS patients as well as 25 sex- and age-matched healthy controls (HC). Murine foot pads harvested one week after sham or chronic constriction injury were immunolabelled to assess intraepidermal Schwann cells. RESULTS Intraepidermal Schwann cells were detected in human skin of the finger-but their density was much lower compared to mice. Acute and chronic CRPS patients suffered from moderate to severe CRPS symptoms and corresponding pain. Most patients had CRPS type I in the warm category. Their cutaneous neuroglial complex was completely unaffected despite sensory plus signs, e.g. allodynia and hyperalgesia. Cutaneous innate sentinel immune cells, e.g. mast cells and Langerhans cells, infiltrated or proliferated ipsilaterally independently of each other-but only in acute CRPS. No additional adaptive immune cells, e.g. T cells and plasma cells, infiltrated the skin. CONCLUSIONS Diagnostic skin punch biopsies could be used to diagnose individual pathophysiology in a very heterogenous disease like acute CRPS to guide tailored treatment in the future. Since numbers of inflammatory cells and pain did not necessarily correlate, more in-depth analysis of individual patients is necessary.
Collapse
Affiliation(s)
- Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Sabrina Scriba
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Carolina Guidolin
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Juliane Becker
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katharina Mehling
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University of Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
4
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
5
|
Ditzen B, Aguilar-Raab C, Winter F, Hernández C, Schneider E, Bodenmann G, Heinrichs M, Ehlert U, Läuchli S. Effects of intranasal oxytocin and positive couple interaction on immune factors in skin wounds. Brain Behav Immun 2023; 107:90-97. [PMID: 36058418 DOI: 10.1016/j.bbi.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Intimate social relationships improve individual health and longevity, an effect which is supposed to be mediated through stress-sensitive endocrine and immune mechanisms in response to positive interaction behavior. On a neuroendocrine level, oxytocin (OT) buffers stress responses, modulates social attachment behavior and has been associated with cytokine expression. Consequently, the aim of the present study was to investigate instructed positive couple interaction, observed behavior, and OT in their effect on immune function. METHODS In a 4-group design, 80 healthy couples (N = 160 individuals) received four standard dermal suction blister wounds and were randomized to instructed positive interaction/control and intranasal OT/placebo. Unstimulated cytokines (IL-1β, IL-6, TNF-α) were assessed from wound liquid at 40 min, 105 min and 24 hrs after wounding. RESULTS Overall, group assignment did not affect friendly or dominant behavior during the interaction sequence. IL-1β and IL-6 levels, however, were moderated by group assignment with lowest levels in women in the positive interaction and OT condition in IL-1 and highest levels in IL-6. TNF-α responses to wounding were not affected from group assignment, however observed friendliness in women was associated with lower TNF-α levels. DISCUSSION These findings support the immune-regulating role of friendly behavior in romantic couples. Above this, the data provide the first empirical evidence that an intervention that simultaneously targets neuroendocrine mediators and behavior could affect immune function in a sex specific manner and with potential long-term health relevance.
Collapse
Affiliation(s)
- Beate Ditzen
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | - Corina Aguilar-Raab
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | - Friederike Winter
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | - Cristóbal Hernández
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany; Escuela de Psicología, Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Ekaterina Schneider
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
6
|
Xu X, Yu C, Xu L, Xu J. Emerging roles of keratinocytes in nociceptive transduction and regulation. Front Mol Neurosci 2022; 15:982202. [PMID: 36157074 PMCID: PMC9500148 DOI: 10.3389/fnmol.2022.982202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023] Open
Abstract
Keratinocytes are the predominant block-building cells in the epidermis. Emerging evidence has elucidated the roles of keratinocytes in a wide range of pathophysiological processes including cutaneous nociception, pruritus, and inflammation. Intraepidermal free nerve endings are entirely enwrapped within the gutters of keratinocyte cytoplasm and form en passant synaptic-like contacts with keratinocytes. Keratinocytes can detect thermal, mechanical, and chemical stimuli through transient receptor potential ion channels and other sensory receptors. The activated keratinocytes elicit calcium influx and release ATP, which binds to P2 receptors on free nerve endings and excites sensory neurons. This process is modulated by the endogenous opioid system and endothelin. Keratinocytes also express neurotransmitter receptors of adrenaline, acetylcholine, glutamate, and γ-aminobutyric acid, which are involved in regulating the activation and migration, of keratinocytes. Furthermore, keratinocytes serve as both sources and targets of neurotrophic factors, pro-inflammatory cytokines, and neuropeptides. The autocrine and/or paracrine mechanisms of these mediators create a bidirectional feedback loop that amplifies neuroinflammation and contributes to peripheral sensitization.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China
| | - Catherine Yu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing, China,*Correspondence: Li Xu,
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland, OH, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH, United States,Cleveland Clinic, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Li Xu,
| |
Collapse
|
7
|
Autoantibodies from patients with complex regional pain syndrome (CRPS) induce pro-inflammatory effects and functional disturbances on endothelial cells in vitro. Pain 2022; 163:2446-2456. [PMID: 35384930 DOI: 10.1097/j.pain.0000000000002646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Complex regional pain syndrome (CRPS) is an inadequate local response after a limb trauma, which leads to severe pain and autonomic and trophic changes of the affected limb. Autoantibodies directed against human β2 adrenergic and muscarinic M2-receptors (hβ2AR and hM2R) have been described in CRPS-patients previously.We analyzed sera from CRPS-patients for autoantibodies against hß2AR, hM2R and endothelial cells, and investigated the functional effects of purified IgG, derived from 13 CRPS patients, on endothelial cells. Eleven healthy controls, seven radial fracture patients without CRPS, and 10 patients with peripheral arterial vascular disease served as controls.CRPS-IgG, but not control IgG, bound to the surface of endothelial cells (P < 0.001) and to hβ2AR and hM2R (P < 0.05), the latter being reversed by adding β2AR and M2R antagonists. CRPS-IgG led to an increased cytotoxicity and a reduced proliferation rate of endothelial cells, and by adding specific antagonists, the effect was neutralized. Regarding second messenger pathways, CRPS-IgG induced ERK-1/2-, P38-, and STAT1-phosphorylation, while AKT-phosphorylation was decreased at the protein level. In addition, increased expression of adhesion molecules (ICAM-1, VCAM-1) on the mRNA-level was induced by CRPS-IgG, thus inducing a pro-inflammatory condition of the endothelial cells.Our results show that patients with CRPS not only develop autoantibodies against hβ2AR and hM2R, but these antibodies interfere with endothelial cells, inducing functional effects on these in vitro, and thus might contribute to the pathophysiology of CRPS.
Collapse
|
8
|
Skin biomarkers associated with complex regional pain syndrome (CRPS) Type I: a systematic review. Rheumatol Int 2022; 42:937-947. [PMID: 34997300 DOI: 10.1007/s00296-021-05061-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Despite increasing research, the pathophysiology of Complex Regional Pain Syndrome (CRPS) remains poorly understood. Due to its easy accessibility, the skin represents an ideal approach to gain a better understanding of the underlying processes. We conducted a systematic review of original studies investigating potential biomarkers cutaneous biomarkers in CRPS. Original articles with a minimum level IV of evidence were screened using the following databases: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and Web of Science Core Collection. Quality assessment was performed using the Methodological Index for Non-Randomized Studies criteria. A total of 11 studies exploring cutaneous biomarkers in 299 CRPS Type I patients were included. The biomarkers identified revealed implications of the following pathophysiological processes: inflammation via interleukins and TNF-a, vascular dysregulation (ET-1/NOx disturbances and hypoxia-high lactate), small fiber neuropathy and hypersensitivity. In terms of skin morphology, evidence suggests: neurite loss, increased expression and disturbed migration of mast cells, as well as an increased expression of α1-adrenoceptors on keratinocytes. The data supporting hypersensitivity had a high risk of bias on quality assessment. The current review has emphasized the current state of knowledge regarding the cutaneous biomarkers in patients suffering from CRPS Type I. Our results serve as a basis for future developments of techniques that would either facilitate diagnosis or may represent therapeutic targets. Trial registration PROSPERO: CRD42020203405. Level of evidence: IV (Systematic Review).
Collapse
|
9
|
Gong H, Zhao G, Liu Y, Lu Z. Determinants of complex regional pain syndrome type I in patients with scaphoid waist fracture- a multicenter prospective observational study. BMC Musculoskelet Disord 2022; 23:34. [PMID: 34986822 PMCID: PMC8734294 DOI: 10.1186/s12891-021-04977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this prospective study was to assess the incidence of complex regional pain syndrome type I (CRPS I) in patients with scaphoid waist fracture and to explore associated factors. Methods This was a multicenter, prospective observational study. Demographic, imaging indicators and clinical data were collected before the conservative treatment of scaphoid waist fracture patients. The occurrence of CRPS I and pain condition were the main outcomes. To explore the factors associated with CRPS I, multivariate logistic regression model was used. Results A total of 493 scaphoid waist fracture participants undergoing conservative treatment were recruited for this study. The incidence of CRPS I was 20% (n = 87). The average time between injury and the onset of CRPS I was 6.7 ± 2.1 weeks. Multivariable logistic regression analysis revealed that female sex (odds ratio (OR): 1.669; 95% confidence interval (CI): 1.189–2.338), diabetes mellitus (OR: 3.206; 95% CI: 2.284–4.492), and severe pain condition before treatment (visual analog scale (VAS) score more than 4 cm) (OR: 27.966; 95% CI: 19.924–39.187) were independently associated with CRPS I. Conclusions Patients suffering from scaphoid waist fracture may be at a higher risk of CRPS I, especially in women with diabetes mellitus who report severe pain before treatment. Early screening and regular follow up evaluation are recommended in these patients.
Collapse
Affiliation(s)
- Hao Gong
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China.,Department of Medicine, Soochow University, Suzhou, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China
| | - Yuzhou Liu
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China
| | - Zhengfeng Lu
- Department of Hand Surgery, Wuxi Ninth People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Sagoo NS, Sharma R, Alaraj S, Sharma IK, Bruntz AJ, Bajaj GS. Metal Hypersensitivity and Complex Regional Pain Syndrome After Bilateral Total Knee Arthroplasty: A Case Report. JBJS Case Connect 2021; 11:01709767-202109000-00059. [PMID: 34854434 DOI: 10.2106/jbjs.cc.21.00099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CASE A 38-year-old man underwent bilateral total knee arthroplasty (TKA) and subsequently developed diffuse pain, swelling, and an eczematous rash that spread throughout his body. Despite various pharmacological regimens, sympathetic blocks, aggressive physical therapy, and further knee revisions, the patient's symptoms progressed over a period of 2 years. An in vitro memory lymphocyte immuno-stimulation assay test demonstrated reactivity to nickel after which bilateral revision TKAs with oxidized zirconium alloys resulted in symptomatic improvement. CONCLUSION Metal hypersensitivity should be considered after the exclusion of infection; however, the concurrent development of complex regional pain syndrome may mask the clinical presentation.
Collapse
Affiliation(s)
- Navraj S Sagoo
- The University of Texas Medical Branch, Galveston, Texas
| | - Ruhi Sharma
- Ross University School of Medicine, Miramar, Florida
| | - Sami Alaraj
- The University of Texas Medical Branch, Galveston, Texas
| | | | - Adam J Bruntz
- Lone Star Orthopaedic and Spine Specialists, Fort Worth, Texas
| | | |
Collapse
|
11
|
Mai L, Liu Q, Huang F, He H, Fan W. Involvement of Mast Cells in the Pathophysiology of Pain. Front Cell Neurosci 2021; 15:665066. [PMID: 34177465 PMCID: PMC8222580 DOI: 10.3389/fncel.2021.665066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells (MCs) are immune cells and are widely distributed throughout the body. MCs are not only classically viewed as effector cells of some allergic diseases but also participate in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. Mounting evidence indicates that activation of MCs releasing numerous vasoactive and inflammatory mediators has effects on the nervous system and has been involved in different pain conditions. Here, we review the latest advances made about the implication of MCs in pain. Possible cellular and molecular mechanisms regarding the crosstalk between MC and the nervous system in the initiation and maintenance of pain are also discussed.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Lowy DB, Makker PGS, Moalem-Taylor G. Cutaneous Neuroimmune Interactions in Peripheral Neuropathic Pain States. Front Immunol 2021; 12:660203. [PMID: 33912189 PMCID: PMC8071857 DOI: 10.3389/fimmu.2021.660203] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.
Collapse
Affiliation(s)
- Daniel B Lowy
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Bharwani KD, Dik WA, Dirckx M, Huygen FJPM. Highlighting the Role of Biomarkers of Inflammation in the Diagnosis and Management of Complex Regional Pain Syndrome. Mol Diagn Ther 2020; 23:615-626. [PMID: 31363934 PMCID: PMC6775035 DOI: 10.1007/s40291-019-00417-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Complex regional pain syndrome (CRPS) is characterized by continuous pain that is often accompanied by sensory, motor, vasomotor, sudomotor, and trophic disturbances. If left untreated, it can have a significant impact on the quality of life of patients. The diagnosis of CRPS is currently based on a set of relatively subjective clinical criteria: the New International Association for the Study of Pain clinical diagnostic criteria for CRPS. There are still no objective laboratory tests to diagnose CRPS and there is a great need for simple, objective, and easily measurable biomarkers in the diagnosis and management of this disease. In this review, we discuss the role of inflammation in the multi-mechanism pathophysiology of CRPS and highlight the application of potential biomarkers of inflammation in the diagnosis and management of this disease.
Collapse
Affiliation(s)
- Krishna D Bharwani
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maaike Dirckx
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank J P M Huygen
- Center for Pain Medicine, Department of Anesthesiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Dermal nerve fibre and mast cell density, and proximity of mast cells to nerve fibres in the skin of patients with complex regional pain syndrome. Pain 2019; 159:2021-2029. [PMID: 29905655 DOI: 10.1097/j.pain.0000000000001304] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An interaction between cutaneous nerves and mast cells may contribute to pain in complex regional pain syndrome (CRPS). To explore this, we investigated the density of dermal nerve fibres, and the density and proximity of mast cells to nerve fibres, in skin biopsies obtained from the affected and unaffected limbs of 57 patients with CRPS and 28 site-matched healthy controls. The percentage of the dermis stained by the pan-neuronal marker protein gene-product 9.5 was lower in the affected limb of patients than in controls (0.12 ± 0.01% vs 0.22 ± 0.04%, P < 0.05), indicating a reduction in dermal nerve fibre density. This parameter did not correlate with CRPS duration. However, it was lower in the affected than unaffected limb of patients with warm CRPS. Dermal mast cell numbers were similar in patients and controls, but the percentage of mast cells less than 5 µm from nerve fibres was significantly lower in the affected and unaffected limbs of patients than in controls (16.8 ± 1.7%, 16.5 ± 1.7%, and 31.4 ± 2.3% respectively, P < 0.05). We confirm previous findings of a mild neuropathy in CRPS. Our findings suggest that this either develops very early after injury or precedes CRPS onset. Loss of dermal nerve fibres in CRPS might result in loss of chemotactic signals, thus halting mast cell migration toward surviving nerve fibres. Failure of normal nerve fibre-mast cell interactions could contribute to the pathophysiology of CRPS.
Collapse
|
15
|
Garrido-Suárez BB, Garrido G, Castro-Labrada M, Pardo-Ruíz Z, Bellma Menéndez A, Spencer E, Godoy-Figueiredo J, Ferreira SH, Delgado-Hernández R. Anti-allodynic Effect of Mangiferin in Rats With Chronic Post-ischemia Pain: A Model of Complex Regional Pain Syndrome Type I. Front Pharmacol 2018; 9:1119. [PMID: 30333751 PMCID: PMC6176059 DOI: 10.3389/fphar.2018.01119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
The present study reproduces chronic post-ischemia pain (CPIP), a model of complex regional pain syndrome type I (CRPS-I), in rats to examine the possible transient and long-term anti-allodynic effect of mangiferin (MG); as well as its potential beneficial interactions with some standard analgesic drugs and sympathetic-mediated vasoconstriction and vasodilator agents during the earlier stage of the pathology. A single dose of MG (50 and 100 mg/kg, p.o.) decreased mechanical allodynia 72 h post-ischemia-reperfusion (I/R). MG 100 mg/kg, i.p. (pre- vs. post-drug) increased von Frey thresholds in a yohimbine and naloxone-sensitive manner. Sub-effective doses of morphine, amitriptyline, prazosin, clonidine and a NO donor, SIN-1, in the presence of MG were found to be significantly anti-allodynic. A long-term anti-allodynic effect at 7 and 13 days post-I/R after repeated oral doses of MG (50 and 100 mg/kg) was also observed. Further, MG decreased spinal and muscle interleukin-1β concentration and restored muscle redox status. These results indicate that MG has a transient and long-term anti-allodynic effect in CPIP rats that appears to be at least partially attributable to the opioid and α2 adrenergic receptors. Additionally, its anti-inflammatory and antioxidant mechanisms could also be implicated in this effect. The association of MG with sub-effective doses of these drugs enhances the anti-allodynic effect; however, an isobolographic analysis should be performed to define a functional interaction between them. These findings suggest the possible clinical use of MG in the treatment of CRPS-I in both early sympathetically maintained pain and long-term sympathetically independent pain.
Collapse
Affiliation(s)
- Bárbara B. Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Marian Castro-Labrada
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Zenia Pardo-Ruíz
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Addis Bellma Menéndez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Evelyn Spencer
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Jozi Godoy-Figueiredo
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sergio H. Ferreira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
16
|
Birklein F, Ibrahim A, Schlereth T, Kingery WS. The Rodent Tibia Fracture Model: A Critical Review and Comparison With the Complex Regional Pain Syndrome Literature. THE JOURNAL OF PAIN 2018; 19:1102.e1-1102.e19. [PMID: 29684510 PMCID: PMC6163066 DOI: 10.1016/j.jpain.2018.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 12/23/2022]
Abstract
Distal limb fracture is the most common cause of complex regional pain syndrome (CRPS), thus the rodent tibia fracture model (TFM) was developed to study CRPS pathogenesis. This comprehensive review summarizes the published TFM research and compares these experimental results with the CRPS literature. The TFM generated spontaneous and evoked pain behaviors, inflammatory symptoms (edema, warmth), and trophic changes (skin thickening, osteoporosis) resembling symptoms in early CRPS. Neuropeptides, inflammatory cytokines, and nerve growth factor (NGF) have been linked to pain behaviors, inflammation, and trophic changes in the TFM model and proliferating keratinocytes were identified as the primary source of cutaneous cytokines and NGF. Tibia fracture also activated spinal glia and upregulated spinal neuropeptide, cytokine, and NGF expression, and in the brain it changed dendritic architecture. B cell-expressed immunoglobulin M antibodies also contributed to pain behavior, indicating a role for adaptive immunity. These results modeled many findings in early CRPS, but significant differences were also noted. PERSPECTIVE Multiple neuroimmune signaling mechanisms contribute to the pain, inflammation, and trophic changes observed in the injured limb of the rodent TFM. This model replicates many of the symptoms, signs, and pathophysiology of early CRPS, but most post-fracture changes resolve within 5 months and may not contribute to perpetuating chronic CRPS.
Collapse
Affiliation(s)
- Frank Birklein
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Alaa Ibrahim
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Tanja Schlereth
- University Medical Center of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Wade S Kingery
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
17
|
Altered regulation of the T-cell system in patients with CRPS. Inflamm Res 2018; 68:1-6. [PMID: 30155690 DOI: 10.1007/s00011-018-1182-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate T-cell subsets and immunomodulatory factors in patients with complex regional pain syndrome (CRPS). We found decreased numbers of pro-inflammatory Th17 cells in patients with CRPS as compared to healthy volunteers. The expression of Th17 related RORγT mRNA was also significantly decreased. Patients with CRPS showed an increased proportion of CD39+ Tregs. CD39 is a known inhibitor of Th17 cell differentiation. Systemic cytokine levels were almost unchanged in patients with CRPS. These findings suggest that the decrease in Th17 cells in CRPS is regulated by an increase in CD39+ Tregs and that this anti-inflammatory T-cell shift may be a mechanism to control inflammation in CRPS. GERMAN CLINICAL TRIAL REGISTER: Registration Trial DRKS00005954.
Collapse
|
18
|
David Clark J, Tawfik VL, Tajerian M, Kingery WS. Autoinflammatory and autoimmune contributions to complex regional pain syndrome. Mol Pain 2018; 14:1744806918799127. [PMID: 30124090 PMCID: PMC6125849 DOI: 10.1177/1744806918799127] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complex regional pain syndrome (CRPS) is a highly enigmatic syndrome typically developing after injury or surgery to a limb. Severe pain and disability are common among those with chronic forms of this condition. Accumulating evidence suggests that CRPS may involve both autoinflammatory and autoimmune components. In this review article, evidence for dysfunction of both the innate and adaptive immune systems in CRPS is presented. Findings from human studies in which cytokines and other inflammatory mediators were measured in the skin of affected limbs are discussed. Additional results from studies of mediator levels in animal models are evaluated in this context. Similarly, the evidence from human, animal, and translational studies of the production of autoantibodies and the potential targets of those antibodies is reviewed. Compelling evidence of autoinflammation in skin and muscle of the affected limb has been collected from CRPS patients and laboratory animals. Cytokines including IL-1β, IL-6, TNFα, and others are reliably identified during the acute phases of the syndrome. More recently, autoimmune contributions have been suggested by the discovery of self-directed pain-promoting IgG and IgM antibodies in CRPS patients and model animals. Both the autoimmune and the autoinflammatory components of CRPS appear to be regulated by neuropeptide-containing peripheral nerve fibers and the sympathetic nervous system. While CRPS displays a complex neuroimmunological pathogenesis, therapeutic interventions could be designed targeting autoinflammation, autoimmunity, or the neural support for these phenomena.
Collapse
Affiliation(s)
- J David Clark
- 1 Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivianne L Tawfik
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maral Tajerian
- 2 Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wade S Kingery
- 3 Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
19
|
Abstract
It has been proposed that complex regional pain syndrome (CRPS) is a posttraumatic autoimmune disease, and we previously observed that B cells are required for the full expression of CRPS-like changes in a mouse tibia fracture CRPS model. The current study used the mouse model to evaluate the progression of postfracture CRPS-like changes in wild-type (WT) and muMT fracture mice lacking B cells and antibodies. The pronociceptive effects of injecting WT fracture mouse serum antibodies into muMT fracture mice were also evaluated. Postfracture pain behaviors transitioned from being initially dependent on both innate and autoimmune inflammatory mechanisms at 3 weeks after fracture to being entirely mediated by antibody responses at 12 weeks after fracture and spontaneously resolving by 21 weeks after fracture. Furthermore, serum IgM antibodies from WT fracture mice had pronociceptive effects in the fracture limb when injected into muMT fracture mice. IgM antibody levels gradually increased in the fracture limb hind paw skin, sciatic nerve, and corresponding lumbar cord, peaking at 12 to 18 weeks after fracture and then declining. Immunohistochemistry localized postfracture IgM antibody binding to antigens in the fracture limb hind paw dermal cell nuclei. We postulate that fracture induces expression of neoantigens in the fracture limb skin, sciatic nerve, and cord, which trigger B cells to secret IgM antibodies that bind those antigens and initiate a pronociceptive antibody response. Autoimmunity plays a key role in the progression of nociceptive and vascular changes in the mouse fracture model and potentially contributes to the CRPS disease process.
Collapse
|
20
|
Yvon A, Faroni A, Reid AJ, Lees VC. Selective Fiber Degeneration in the Peripheral Nerve of a Patient With Severe Complex Regional Pain Syndrome. Front Neurosci 2018; 12:207. [PMID: 29670505 PMCID: PMC5893835 DOI: 10.3389/fnins.2018.00207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/15/2018] [Indexed: 02/04/2023] Open
Abstract
Aims: Complex regional pain syndrome (CRPS) is characterized by chronic debilitating pain disproportional to the inciting event and accompanied by motor, sensory, and autonomic disturbances. The pathophysiology of CRPS remains elusive. An exceptional case of severe CRPS leading to forearm amputation provided the opportunity to examine nerve histopathological features of the peripheral nerves. Methods: A 35-year-old female developed CRPS secondary to low voltage electrical injury. The CRPS was refractory to medical therapy and led to functional loss of the forelimb, repeated cutaneous wound infections leading to hospitalization. Specifically, the patient had exhausted a targeted conservative pain management programme prior to forearm amputation. Radial, median, and ulnar nerve specimens were obtained from the amputated limb and analyzed by light and transmission electron microscopy (TEM). Results: All samples showed features of selective myelinated nerve fiber degeneration (47–58% of fibers) on electron microscopy. Degenerating myelinated fibers were significantly larger than healthy fibers (p < 0.05), and corresponded to the larger Aα fibers (motor/proprioception) whilst smaller Aδ (pain/temperature) fibers were spared. Groups of small unmyelinated C fibers (Remak bundles) also showed evidence of degeneration in all samples. Conclusions: We are the first to show large fiber degeneration in CRPS using TEM. Degeneration of Aα fibers may lead to an imbalance in nerve signaling, inappropriately triggering the smaller healthy Aδ fibers, which transmit pain and temperature. These findings suggest peripheral nerve degeneration may play a key role in CRPS. Improved knowledge of pathogenesis will help develop more targeted treatments.
Collapse
Affiliation(s)
- Adrien Yvon
- Nottingham University Hospitals, Nottingham, United Kingdom.,Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Department of Plastic Surgery & Burns, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Vivien C Lees
- Department of Plastic Surgery & Burns, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
21
|
Kriek N, Schreurs MW, Groeneweg JG, Dik WA, Tjiang GC, Gültuna I, Stronks DL, Huygen FJ. Spinal Cord Stimulation in Patients With Complex Regional Pain Syndrome: A Possible Target for Immunomodulation? Neuromodulation 2017; 21:77-86. [DOI: 10.1111/ner.12704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Nadia Kriek
- Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Marco W.J. Schreurs
- Department of Immunology; Erasmus University Medical Center; Rotterdam The Netherlands
| | - J. George Groeneweg
- Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Wim A. Dik
- Department of Immunology; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Gilbert C.H. Tjiang
- Department of Anaesthesiology, Pain Management and Intensive Care; Amphia Hospital; Oosterhout The Netherlands
| | - Ismail Gültuna
- Pain Treatment Center; Albert Schweitzer Hospital; Sliedrecht The Netherlands
| | - Dirk L. Stronks
- Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Frank J.P.M. Huygen
- Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| |
Collapse
|
22
|
König S, Schlereth T, Birklein F. Molecular signature of complex regional pain syndrome (CRPS) and its analysis. Expert Rev Proteomics 2017; 14:857-867. [DOI: 10.1080/14789450.2017.1366859] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | | | | |
Collapse
|
23
|
Effect of a new formulation of micronized and ultramicronized N-palmitoylethanolamine in a tibia fracture mouse model of complex regional pain syndrome. PLoS One 2017; 12:e0178553. [PMID: 28594885 PMCID: PMC5464592 DOI: 10.1371/journal.pone.0178553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Complex regional pain syndrome type 1 (CRPS-I) is a disabling and frequently chronic condition. It involves the extremities and is a frequent consequence of distal tibia and radius fractures. The inflamed appearance of the affected CRPS-I limb suggests that local production of inflammatory mediators may be implicated in the ensuing etiology. A rodent tibia fracture model, characterized by inflammation, chronic unilateral hindlimb warmth, edema, protein extravasation, allodynia and hyperalgesia resembles the clinical features of patients with acute CRPS-I. N-palmitoylethanolamine (PEA), a member of the family of naturally-occurring N-acylethanolamines, is well-known for its ability to modulate inflammatory processes and regulate pain sensitivity. However, the large particle size and lipidic nature of PEA may limit its bioavailability and solubility when given orally. Micronized formulations are frequently used to enhance the dissolution rate of drug and reduce its variability of absorption when orally administered. The aim of this study was to assess the effects of a formulation of micronized and ultramicronized PEA (PEA-MPS), given orally in a mouse model of CRPS-I. CD-1 male mice were subjected to distal tibia fracture and divided into two groups: control and treated with PEA-MPS (PEA micronized 300 mg/kg and ultramicronized 600 mg/kg). Sensibility to pain was monitored in all mice throughout the course of the experiment. Twenty-eight days after tibia fracture induction animals were sacrificed and biochemical parameters evaluated. The PEA-MPS-treated group showed an improved healing process, fracture recovery and fibrosis score. PEA-MPS administration decreased mast cell density, nerve growth factor, matrix metalloproteinase 9 and cytokine expression. This treatment also reduced (poly-ADP)ribose polymerase activation, peroxynitrite formation and apoptosis. Our results suggest that PEA-MPS may be a new therapeutic strategy in the treatment of CRPS-I.
Collapse
|
24
|
Piovezan AP, Batisti AP, Benevides MLACS, Turnes BL, Martins DF, Kanis L, Duarte ECW, Cavalheiro AJ, Bueno PCP, Seed MP, Norling LV, Cooper D, Headland S, Souza PRPS, Perretti M. Hydroalcoholic crude extract of Casearia sylvestris Sw. reduces chronic post-ischemic pain by activation of pro-resolving pathways. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:179-188. [PMID: 28412216 DOI: 10.1016/j.jep.2017.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Casearia sylvestris Sw. is widely used in popular medicine to treat conditions associated with pain. AIM OF THE STUDY The present study investigated the influence of hydroalcoholic crude extract of Casearia sylvestris (HCE-CS) and contribution of pro-resolving mediators on mechanical hyperalgesia in a mouse model of chronic post-ischemia pain (CPIP). METHODS AND RESULTS Male Swiss mice were subjected to ischemia of the right hind paw (3h), then reperfusion was allowed. At 10min, 24h or 48h post-ischemia/reperfusion (I/R), different groups of animals were treated with HCE-CS (30mg/Kg, orally [p.o]), selected agonists at the pro-resolving receptor ALX/FPR2 (natural molecules like resolvin D1 and lipoxin A4 or the synthetic compound BML-111; 0.1-1µg/animal) or vehicle (saline, 10mL/Kg, s.c.), in the absence or presence of the antagonist WRW4 (10µg, s.c.). Mechanical hyperalgesia (paw withdrawal to von Frey filament) was asseseed together with histological and immunostainning analyses. In these settings, pro-resolving mediators reduced mechanical hyperalgesia and HCE-CS or BML-111 displayed anti-hyperalgesic effects which was markedly attenuated in animals treated with WRW4. ALX/FPR2 expression was raised in skeletal muscle or neutrophils after treatment with HCE-CS or BML-111. CONCLUSION These results reveal significant antihyperalgesic effect of HCE-CS on CPIP, mediated at least in part, by the pathway of resolution of inflammation centred on the axis modulated by ALX/FPR2.
Collapse
Affiliation(s)
- Anna P Piovezan
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil; Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil; William Harvey Research Institute - Queen Mary University of London/London, UK.
| | - Ana P Batisti
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil; Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil.
| | - Maria L A C S Benevides
- Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil; Undergraduation in Medicine - UNISUL, Brazil.
| | - Bruna L Turnes
- Laboratory of Neurobiology of Pain and Inflammation - UFSC, Brazil.
| | - Daniel F Martins
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil; Laboratory of Experimental Neuroscience (LANEX)- UNISUL, Brazil.
| | - Luiz Kanis
- Post-Graduate Programm in Health Science - Southern Univeristy of Santa Catarina (UNISUL), Brazil.
| | | | | | - Paula C P Bueno
- Department of Organic Chemistry/Institute of Chemistry - UNESP, Brazil.
| | - Michael P Seed
- Clinical Research Group, School of Health Sport & Bioscience, University of East London, UK.
| | - Lucy V Norling
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| | - Dianne Cooper
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| | - Sarah Headland
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| | | | - Mauro Perretti
- William Harvey Research Institute - Queen Mary University of London/London, UK.
| |
Collapse
|
25
|
Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample. Pain 2017; 157:1674-81. [PMID: 27023422 DOI: 10.1097/j.pain.0000000000000569] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Limited research suggests that there may be Warm complex regional pain syndrome (CRPS) and Cold CRPS subtypes, with inflammatory mechanisms contributing most strongly to the former. This study for the first time used an unbiased statistical pattern recognition technique to evaluate whether distinct Warm vs Cold CRPS subtypes can be discerned in the clinical population. An international, multisite study was conducted using standardized procedures to evaluate signs and symptoms in 152 patients with clinical CRPS at baseline, with 3-month follow-up evaluations in 112 of these patients. Two-step cluster analysis using automated cluster selection identified a 2-cluster solution as optimal. Results revealed a Warm CRPS patient cluster characterized by a warm, red, edematous, and sweaty extremity and a Cold CRPS patient cluster characterized by a cold, blue, and less edematous extremity. Median pain duration was significantly (P < 0.001) shorter in the Warm CRPS (4.7 months) than in the Cold CRPS subtype (20 months), with pain intensity comparable. A derived total inflammatory score was significantly (P < 0.001) elevated in the Warm CRPS group (compared with Cold CRPS) at baseline but diminished significantly (P < 0.001) over the follow-up period, whereas this score did not diminish in the Cold CRPS group (time × subtype interaction: P < 0.001). Results support the existence of a Warm CRPS subtype common in patients with acute (<6 months) CRPS and a relatively distinct Cold CRPS subtype most common in chronic CRPS. The pattern of clinical features suggests that inflammatory mechanisms contribute most prominently to the Warm CRPS subtype but that these mechanisms diminish substantially during the first year postinjury.
Collapse
|
26
|
Barbalinardo S, Loer SA, Goebel A, Perez RSGM. The Treatment of Longstanding Complex Regional Pain Syndrome with Oral Steroids. PAIN MEDICINE 2017; 17:337-43. [PMID: 26814238 DOI: 10.1093/pm/pnv002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Evaluate the effectiveness of oral steroids in relieving pain in patients with Complex Regional Pain Syndrome (CRPS) of more than 3 months duration. DESIGN Service evaluation/Open label uncontrolled trial. SETTING Two pain outpatient clinics specialized in CRPS diagnosis and treatment in the period 2009-2012. SUBJECTS Thirty-one patients diagnosed with CRPS with the Budapest criteria in two specialized centers, with a disease duration of more than 3 months and not responsive to standard treatment were included. METHODS Patients were treated with oral prednisolone in both centers [100 mg daily tapered by 25 mg every 4 days to zero (Σ1g) at center 1 (C1) and 60 mg daily for 2 weeks lowered 20 mg every 4 days to zero (Σ1.06g) at center 2 (C2)]. The average pain intensity was recorded by patients using a numeric rating scale before the treatment start, and 6 weeks after treatment onset (treatment duration was respectively 16 days and 22 days at the two centers). RESULTS Overall the authors observed no significant reduction in the average pain intensity (P = 0.059), but 2 patients had a consistent reduction in pain intensity with return to baseline pain levels 9 weeks after treatment onset, and 1 patient had ongoing stable pain relief of >50%. CONCLUSIONS This study provides indications that the efficacy of oral corticosteroids is limited in treating CRPS of more than 3 months duration who did not respond to previous treatment. Randomized controlled studies (with enriched designs), or single subject designs would be required to identify the possible existence of a patient subgroup with a specific disease profile that may benefit from a steroid treatment.
Collapse
|
27
|
Adult Complex Regional Pain Syndrome Type I: A Narrative Review. PM R 2016; 9:707-719. [PMID: 27890578 DOI: 10.1016/j.pmrj.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 11/06/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022]
Abstract
Complex regional pain syndrome type I (CRPS I) is a multifactorial painful disorder with a complex pathogenesis. Both peripheral and central mechanisms are involved. Acute CRPS I is considered to be an exaggerated inflammatory disorder; however, over time, because of altered function of the sympathetic nervous system and maladaptive neuroplasticity, CRPS I evolves into a neurological disorder. This review thoroughly describes the pathophysiological aspects of CRPS I and summarizes the potential therapeutic options. The mechanisms and targets of the treatment are different in the early and late stages of the disease. This current review builds on a previous review by this author group by deepening the role of the peripheral classic and neuronal inflammatory component in the acute stage of this painful disorder. LEVEL OF EVIDENCE Not applicable.
Collapse
|
28
|
Choi JH, Yu KP, Yoon YS, Kim ES, Jeon JH. Relationship Between HbA1c and Complex Regional Pain Syndrome in Stroke Patients With Type 2 Diabetes Mellitus. Ann Rehabil Med 2016; 40:779-785. [PMID: 27847707 PMCID: PMC5108704 DOI: 10.5535/arm.2016.40.5.779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/01/2016] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the relationship between glycosylated hemoglobin A (HbA1c) and complex regional pain syndrome (CRPS) in stroke patients with type 2 diabetes mellitus (T2DM). Methods A retrospective chart review was performed of stroke patients from January 2012 to December 2013. We reviewed 331 patients and included 200 in the analysis. We divided them into CRPS and non-CRPS groups and compared them by age, gender, stroke lesion, cause of stroke, duration of T2DM, HbA1c (%), National Institutes of Health Stroke Scale score, affected shoulder flexor muscle strength, Fugl-Meyer Assessment score, motricity index, Functional Independence Measure, Korean version of Modified Barthel Index, blood glucose level on admission day, duration from stroke onset to HbA1c check, and duration from stroke onset to three-phase bone scan for CRPS diagnosis. Thereafter, we classified the patients into five groups by HbA1c level (group 1, 5.0%–5.9%; group 2, 6.0%–6.9%; group 3, 7.0%–7.9%; group 4, 8.0%–8.9%; and group 5, 9.0%–9.9%) and we investigated the difference in CRPS prevalence between the two groups. Results Of the 200 patients, 108 were in the CRPS group and 92 were in the non-CRPS group. There were significant differences in HbA1c (p<0.05) between the two groups but no significant differences in any other factors. Across the five HbA1c groups, there were significant differences in CRPS prevalence (p<0.01); specifically, it increased as HbA1c increased. Conclusion This study suggests that higher HbA1c relates to higher CRPS prevalence and thus that uncontrolled blood glucose can affect CRPS occurrence in stroke patients with diabetes.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Seonam University College of Medicine, Jeonju, Korea
| | - Ki Pi Yu
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Seonam University College of Medicine, Jeonju, Korea
| | - Yong-Soon Yoon
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Seonam University College of Medicine, Jeonju, Korea
| | - Eun Sil Kim
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Seonam University College of Medicine, Jeonju, Korea
| | - Ji Hyun Jeon
- Department of Rehabilitation Medicine, Presbyterian Medical Center, Seonam University College of Medicine, Jeonju, Korea
| |
Collapse
|
29
|
Facilitated spinal neuropeptide signaling and upregulated inflammatory mediator expression contribute to postfracture nociceptive sensitization. Pain 2016; 156:1852-1863. [PMID: 25932690 PMCID: PMC4578973 DOI: 10.1097/j.pain.0000000000000204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal neuropeptide signaling and inflammatory mediator expression supports nociceptive sensitization in a fracture model of complex regional pain syndrome. Tibia fracture induces exaggerated substance P (SP) and calcitonin gene–related peptide (CGRP) signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome. Inflammatory changes in the spinal cord contribute to nociceptive sensitization in a variety of animal pain models. This study tested the hypothesis that fracture-induced exaggerated neuropeptide signaling upregulates spinal inflammatory mediator expression, leading to postfracture hind limb nociceptive sensitization. At 4 weeks after performing tibia fracture and casting in rats, we measured hind limb allodynia, unweighting, warmth, edema, and spinal cord neuropeptide and inflammatory mediator content. The antinociceptive effects of intrathecally injected neuropeptide and inflammatory mediator receptor antagonists were evaluated in fracture rats. Transgenic fracture mice lacking SP or the CGRP RAMP1 receptor were used to determine the effects of neuropeptide signaling on postfracture pain behavior and spinal inflammatory mediator expression. Hind limb allodynia, unweighting, warmth, edema, increased spinal SP and CGRP, and increased spinal inflammatory mediator expression (TNF, IL-1, IL-6, CCL2, and nerve growth factor) were observed at 4 weeks after fracture in rats. Fracture-induced increases in spinal inflammatory mediators were not observed in fracture mice lacking SP or the CGRP receptor, and these mice had attenuated postfracture nociceptive sensitization. Intrathecal injection of selective receptor antagonists for SP, CGRP, TNF, IL-1, IL-6, CCL2, or nerve growth factor each reduced pain behaviors in the fracture rats. Collectively, these data support the hypothesis that facilitated spinal neuropeptide signaling upregulates the expression of spinal inflammatory mediators contributing to nociceptive sensitization in a rodent fracture model of complex regional pain syndrome.
Collapse
|
30
|
Abstract
Despite the severe pain and disability associated with complex regional pain syndrome (CRPS), the lack of understanding of the pathophysiological mechanisms supporting this enigmatic condition prevents the rational design of new therapies, a situation that is frustrating to both the physician and the patient. The review highlights some of the mechanisms thought to be involved in the pathophysiology of CRPS in preclinical models and CRPS patients, with the ultimate goal that understanding these mechanisms will lead to the design of efficacious, mechanism-based treatments available to the clinic.
Collapse
Affiliation(s)
- Maral Tajerian
- Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA,Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA
| | - J David Clark
- Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA,Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA,Corresponding author: J David Clark, MD, PhD., Anesthesia Service, Veterans Affairs Palo Alto Health Care, System, 3801 Miranda Ave., Palo Alto, CA 94304, USA, Tel: 650-493-5000 ext. 60479, Fax: 650-852-3423,
| |
Collapse
|
31
|
Aich A, Afrin LB, Gupta K. Mast Cell-Mediated Mechanisms of Nociception. Int J Mol Sci 2015; 16:29069-92. [PMID: 26690128 PMCID: PMC4691098 DOI: 10.3390/ijms161226151] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Mast cells are tissue-resident immune cells that release immuno-modulators, chemo-attractants, vasoactive compounds, neuropeptides and growth factors in response to allergens and pathogens constituting a first line of host defense. The neuroimmune interface of immune cells modulating synaptic responses has been of increasing interest, and mast cells have been proposed as key players in orchestrating inflammation-associated pain pathobiology due to their proximity to both vasculature and nerve fibers. Molecular underpinnings of mast cell-mediated pain can be disease-specific. Understanding such mechanisms is critical for developing disease-specific targeted therapeutics to improve analgesic outcomes. We review molecular mechanisms that may contribute to nociception in a disease-specific manner.
Collapse
Affiliation(s)
- Anupam Aich
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lawrence B Afrin
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Kortekaas MC, Niehof SP, Stolker RJ, Huygen FJ. Pathophysiological Mechanisms Involved in Vasomotor Disturbances in Complex Regional Pain Syndrome and Implications for Therapy: A Review. Pain Pract 2015; 16:905-14. [DOI: 10.1111/papr.12403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/05/2015] [Accepted: 08/10/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Minke C. Kortekaas
- Department of Anesthesiology; Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Sjoerd P. Niehof
- Department of Anesthesiology; Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Robert J. Stolker
- Department of Anesthesiology; Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Frank J.P.M. Huygen
- Department of Anesthesiology; Center for Pain Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| |
Collapse
|
33
|
Kriek N, Groeneweg JG, Stronks DL, Huygen FJPM. Comparison of tonic spinal cord stimulation, high-frequency and burst stimulation in patients with complex regional pain syndrome: a double-blind, randomised placebo controlled trial. BMC Musculoskelet Disord 2015; 16:222. [PMID: 26303326 PMCID: PMC4547415 DOI: 10.1186/s12891-015-0650-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
Background Complex Regional Pain Syndrome (CRPS) is a disabling disease that is sometimes difficult to treat. Although spinal cord stimulation (SCS) can reduce pain in most patients with CRPS, some do not achieve the desired reduction in pain. Moreover, the pain reduction can diminish over time even after an initially successful period of SCS. Pain reduction can be regained by increasing the SCS frequency, but this has not been investigated in a prospective trial. This study compares pain reduction using five SCS frequencies (standard 40 Hz, 500 Hz, 1200 Hz, burst and placebo stimulation) in patients with CRPS to determine which of the modalities is most effective. Design All patients with a confirmed CRPS diagnosis that have unsuccessfully tried all other therapies and are eligible for SCS, can enroll in this trial (primary implantation group). CRPS patients that already receive SCS therapy, or those previously treated with SCS but with loss of therapeutic effect over time, can also participate (re-implantation group). Once all inclusion criteria are met and written informed consent obtained, patients will undergo a baseline assessment (T0). A 2-week trial with SCS is performed and, if successful, a rechargeable internal pulse generator (IPG) is implanted. For the following 3 months the patient will have standard 40 Hz stimulation therapy before a follow-up assessment (T1) is performed. Those who have completed the T1 assessment will enroll in a 10-week crossover period in which the five SCS frequencies are tested in five periods, each frequency lasting for 2 weeks. At the end of the crossover period, the patient will choose which frequency is to be used for stimulation for an additional 3 months, until the T2 assessment. Discussion Currently no trials are available that systematically investigate the importance of variation in frequency during SCS in patients with CRPS. Data from this trial will provide better insight as to whether SCS with a higher frequency, or with burst stimulation, results in more effective pain relief. Trial registration Current Controlled Trials ISRCTN36655259
Collapse
Affiliation(s)
- N Kriek
- Center for Pain Medicine, Erasmus University Medical Center, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| | - J G Groeneweg
- Center for Pain Medicine, Erasmus University Medical Center, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| | - D L Stronks
- Center for Pain Medicine, Erasmus University Medical Center, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| | - F J P M Huygen
- Center for Pain Medicine, Erasmus University Medical Center, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Osborne S, Farrell J, Dearman RJ, MacIver K, Naisbitt DJ, Moots RJ, Edwards SW, Goebel A. Cutaneous immunopathology of long-standing complex regional pain syndrome. Eur J Pain 2015; 19:1516-26. [PMID: 25728589 DOI: 10.1002/ejp.685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Both increased mast cells numbers and raised immune mediator concentrations indicate immune activation in the affected skin of patients with early complex regional pain syndrome (CRPS), but little is known about regional immune cell involvement in late-stage CRPS. The aim of the current study was to determine skin immune cell populations in long-standing CRPS. METHODS Using 6-mm skin punch biopsies from CRPS-affected and non-affected tissues, and a combination of chemical and immunofluorescence staining, we examined the density and function of key cell populations including mast cells, epidermal Langerhans cells (LCs) and tissue resident T-cells. RESULTS We found no significant differences in either overall immune cell infiltrates, or mast cell density between CRPS-affected and non-affected sub-epidermal tissue sections, contrasting recent findings in early CRPS by other groups. However, CD1a(+) LC densities in the epidermal layer were significantly decreased in affected compared to non-affected CRPS limbs (p < 0.01). T-cell clones isolated from CRPS-affected sub-epidermal tissues displayed a trend towards increased IL-13 production in ELISPOT assays when compared to T-cells isolated from non-affected areas, suggesting a Th2 bias. CONCLUSIONS Immune cell abnormalities are maintained in late-stage CRPS disease as manifest by changes in epidermal LC density and tissue resident T-cell phenotype.
Collapse
Affiliation(s)
- S Osborne
- Institute of Integrative Biology, University of Liverpool, UK
| | - J Farrell
- MRC Centre for Drug Safety Science and Institute of Translational Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| | - R J Dearman
- Faculty of Life Sciences, University of Manchester, UK
| | - K MacIver
- Pain Research Institute, Department of Translational Medicine, Liverpool University, UK
| | - D J Naisbitt
- MRC Centre for Drug Safety Science and Institute of Translational Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| | - R J Moots
- Rheumatology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - S W Edwards
- Institute of Integrative Biology, University of Liverpool, UK
| | - A Goebel
- Pain Research Institute, Department of Translational Medicine, Liverpool University, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
35
|
Popiolek-Barczyk K, Rojewska E, Jurga AM, Makuch W, Zador F, Borsodi A, Piotrowska A, Przewlocka B, Mika J. Minocycline enhances the effectiveness of nociceptin/orphanin FQ during neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:762930. [PMID: 25276817 PMCID: PMC4168034 DOI: 10.1155/2014/762930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/01/2014] [Indexed: 12/27/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) antinociception, which is mediated selectively by the N/OFQ peptide receptor (NOP), was demonstrated in pain models. In this study, we determine the role of activated microglia on the analgesic effects of N/OFQ in a rat model of neuropathic pain induced by chronic constriction injury (CCI) to the sciatic nerve. Repeated 7-day administration of minocycline (30 mg/kg i.p.), a drug that affects microglial activation, significantly reduced pain in CCI-exposed rats and it potentiates the analgesic effects of administered N/OFQ (2.5-5 μg i.t.). Minocycline also downregulates the nerve injury-induced upregulation of NOP protein in the dorsal lumbar spinal cord. Our in vitro study showed that minocycline reduced NOP mRNA, but not protein, level in rat primary microglial cell cultures. In [(35)S]GTPγS binding assays we have shown that minocycline increases the spinal N/OFQ-stimulated NOP signaling. We suggest that the modulation of the N/OFQ system by minocycline is due to the potentiation of its neuronal antinociceptive activity and weakening of the microglial cell activation. This effect is beneficial for pain relief, and these results suggest new targets for the development of drugs that are effective against neuropathic pain.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Ferenz Zador
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62 Street, Szeged 6726, Hungary
| | - Anna Borsodi
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt 62 Street, Szeged 6726, Hungary
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Cracow, Poland
| |
Collapse
|
36
|
Guo TZ, Wei T, Li WW, Li XQ, Clark JD, Kingery WS. Immobilization contributes to exaggerated neuropeptide signaling, inflammatory changes, and nociceptive sensitization after fracture in rats. THE JOURNAL OF PAIN 2014; 15:1033-45. [PMID: 25063543 DOI: 10.1016/j.jpain.2014.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/20/2014] [Accepted: 07/06/2014] [Indexed: 01/16/2023]
Abstract
UNLABELLED A tibia fracture cast immobilized for 4 weeks can induce exaggerated substance P and calcitonin gene-related peptide signaling and neuropeptide-dependent nociceptive and inflammatory changes in the hind limbs of rats similar to those seen in complex regional pain syndrome (CRPS). Four weeks of hind limb cast immobilization can also induce nociceptive and vascular changes resembling CRPS. To test our hypothesis that immobilization alone could cause exaggerated neuropeptide signaling and inflammatory changes, we tested 5 cohorts of rats: 1) controls; 2) tibia fracture and hind limb casted; 3) hind limb casted, no fracture; 4) tibia fracture with intramedullary pinning, no cast; and 5) tibia fracture with intramedullary pinning and hind limb casting. After 4 weeks, the casts were removed and hind limb allodynia, unweighting, warmth, edema, sciatic nerve neuropeptide content, cutaneous and spinal cord inflammatory mediator levels, and spinal c-Fos activation were measured. After fracture with casting, there was allodynia, unweighting, warmth, edema, increased sciatic nerve substance P and calcitonin gene-related peptide, increased skin neurokinin 1 receptors and keratinocyte proliferation, increased inflammatory mediator expression in the hind paw skin (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, nerve growth factor) and cord (IL-1β, nerve growth factor), and increased spinal c-Fos activation. These same changes were observed after cast immobilization alone, except that spinal IL-1β levels were not increased. Treating cast-only rats with a neurokinin 1 receptor antagonist inhibited development of nociceptive and inflammatory changes. Four weeks after fracture with pinning, all nociceptive and vascular changes had resolved and there were no increases in neuropeptide signaling or inflammatory mediator expression. PERSPECTIVE Collectively, these data indicate that immobilization alone increased neuropeptide signaling and caused nociceptive and inflammatory changes similar to those observed after tibia fracture and casting, and that early mobilization after fracture with pinning inhibited these changes. Early limb mobilization after fracture may prevent the development of CRPS.
Collapse
Affiliation(s)
- Tian-Zhi Guo
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Tzuping Wei
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wen-Wu Li
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| | - Xiang-Qi Li
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Department of Anesthesiology, Stanford University School of Medicine, Stanford, California
| | - Wade S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
37
|
Li X, Kenter K, Newman A, O'Brien S. Allergy/hypersensitivity reactions as a predisposing factor to complex regional pain syndrome I in orthopedic patients. Orthopedics 2014; 37:e286-91. [PMID: 24762157 DOI: 10.3928/01477447-20140225-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/09/2013] [Indexed: 02/03/2023]
Abstract
Several predisposing conditions have been associated with complex regional pain syndrome I (CRPS I). The purpose of this study was to determine the relationship between a history of allergy/hypersensitivity reactions and CRPS I in orthopedic patients. Orthopedic patients with CRPS I (n=115) who experienced pain relief after a successful sympathetic nerve blockade were identified for study inclusion; a control group (n=115) matched to the CRPS I group by age, sex, and location of injury was also included. All patients in the study had an average age of 42 years. In the CRPS I group, all participants were Caucasian and the majority (80.8%) were women. The skin of patients with CRPS I was described as fair (57.7%), mottled (57.7%), or sensitive (80.8%). Of the patients with CRPS I, 78 (67.8%) reported a statistically significant history of allergies compared with the 39 (33.9%) patients in the control group (P<.0001). Patients with CRPS I who experienced complete pain relief for at least 1 month following a single sympathetic nerve block were asked to answer a questionnaire (n=35), and some then underwent immediate hypersensitivity testing using a skin puncture technique (n=26). Skin hypersensitivity testing yielded an 83.3% positive predictive value with an accuracy of 76.9%. Based on these results, a positive history for allergy/hypersensitivity reactions is a predisposing condition for CRPS I in this subset of orthopedic patients. These hypersensitivity reactions may prove important in gaining a better understanding in the pathophysiology of CRPS I as a regional pain syndrome.
Collapse
|
38
|
Borchers A, Gershwin M. Complex regional pain syndrome: A comprehensive and critical review. Autoimmun Rev 2014; 13:242-65. [DOI: 10.1016/j.autrev.2013.10.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2013] [Indexed: 12/19/2022]
|
39
|
Birklein F, Drummond PD, Li W, Schlereth T, Albrecht N, Finch PM, Dawson LF, Clark JD, Kingery WS. Activation of cutaneous immune responses in complex regional pain syndrome. THE JOURNAL OF PAIN 2014; 15:485-95. [PMID: 24462502 DOI: 10.1016/j.jpain.2014.01.490] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED The pathogenesis of complex regional pain syndrome (CRPS) is unresolved, but tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are elevated in experimental skin blister fluid from CRPS-affected limbs, as is tryptase, a marker for mast cells. In the rat fracture model of CRPS, exaggerated sensory and sympathetic neural signaling stimulate keratinocyte and mast cell proliferation, causing the local production of high levels of inflammatory cytokines leading to pain behavior. The current investigation used CRPS patient skin biopsies to determine whether keratinocyte and mast cell proliferation occur in CRPS skin and to identify the cellular source of the up-regulated TNF-α, IL-6, and tryptase observed in CRPS experimental skin blister fluid. Skin biopsies were collected from the affected skin and the contralateral mirror site in 55 CRPS patients and the biopsy sections were immunostained for keratinocyte, cell proliferation, mast cell markers, TNF-α, and IL-6. In early CRPS, keratinocytes were activated in the affected skin, resulting in proliferation, epidermal thickening, and up-regulated TNF-α and IL-6 expression. In chronic CRPS, there was reduced keratinocyte proliferation, leading to epidermal thinning in the affected skin. Acute CRPS patients also had increased mast cell accumulation in the affected skin, but there was no increase in mast cell numbers in chronic CRPS. PERSPECTIVE The results of this study support the hypotheses that CRPS involves activation of the innate immune system, with keratinocyte and mast cell activation and proliferation, inflammatory mediator release, and pain.
Collapse
Affiliation(s)
- Frank Birklein
- Department of Neurology, University Medical Center, Mainz, Germany
| | - Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Wenwu Li
- Stanford University Department of Anesthesia, Palo Alto, California; Anesthesiology Service, VA Palo Alto Health Care System, Palo Alto, California; Physical Medicine and Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California
| | - Tanja Schlereth
- Department of Neurology, University Medical Center, Mainz, Germany
| | - Nahid Albrecht
- Department of Neurology, University Medical Center, Mainz, Germany
| | - Philip M Finch
- School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Linda F Dawson
- School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - J David Clark
- Stanford University Department of Anesthesia, Palo Alto, California; Anesthesiology Service, VA Palo Alto Health Care System, Palo Alto, California
| | - Wade S Kingery
- Physical Medicine and Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California.
| |
Collapse
|
40
|
Schlereth T, Drummond PD, Birklein F. Inflammation in CRPS: role of the sympathetic supply. Auton Neurosci 2013; 182:102-7. [PMID: 24411269 DOI: 10.1016/j.autneu.2013.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
Abstract
Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Langenbeckstr, 1, D-55131 Mainz, Germany.
| | - Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, 6150 Western Australia, Australia
| | - Frank Birklein
- Department of Neurology, Langenbeckstr, 1, D-55131 Mainz, Germany
| |
Collapse
|
41
|
Zhang W, Xing J, Liu D, Gan X, Gao W, Hei Z. Dexamethasone pretreatment alleviates intestinal ischemia-reperfusion injury. J Surg Res 2013; 185:851-60. [PMID: 24054494 DOI: 10.1016/j.jss.2013.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Activated mast cells are involved in the pathogenesis of intestinal ischemia-reperfusion (I/R)-related injury. Dexamethasone has been widely used to protect organs from I/R injury. This study was conducted to investigate the impact of treatment with dexamethasone at different stages of the II/R process on mast cell infiltration and activity and intestinal injury. METHODS Kunming mice were randomized and subjected to a sham surgery or the II/R induction by clamping the superior mesenteric artery for 30 min and then reperfusion. During the II/R induction, the mice were treated intravenously with dexamethasone (10 mg/kg) for 30 min before ischemia (pretreatment group), at 5 min after clamping the superior mesenteric artery (isc-treatment group), or at the beginning of perfusion (rep-treatment group), respectively. The levels of intestinal injury, mast cell infiltration and activity, tumor necrosis factor α (TNFα) and myeloperoxidase (MPO) activity in the intestines, and mouse survival rates were measured. RESULTS The death rates, levels of intestinal injury, mast cell infiltration and activity, and tumor necrosis factor α and myeloperoxidase activity in the intestinal tissues from the II/R group were similar to those from the isc-treatment and rep-treatment groups of mice and were significantly higher than those from the sham group. In contrast, pretreatment with dexamethasone significantly mitigated the II/R-induced mast cell infiltration and activity, inflammation, and intestinal injury and reduced the death rates in mice. CONCLUSIONS Pretreatment with dexamethasone inhibits II/R injury by reducing mast cell-related inflammation in mice.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
42
|
Lenz M, Üçeyler N, Frettlöh J, Höffken O, Krumova EK, Lissek S, Reinersmann A, Sommer C, Stude P, Waaga-Gasser AM, Tegenthoff M, Maier C. Local cytokine changes in complex regional pain syndrome type I (CRPS I) resolve after 6 months. Pain 2013; 154:2142-2149. [DOI: 10.1016/j.pain.2013.06.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 06/02/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023]
|
43
|
Pepper A, Li W, Kingery WS, Angst MS, Curtin CM, Clark JD. Changes resembling complex regional pain syndrome following surgery and immobilization. THE JOURNAL OF PAIN 2013; 14:516-24. [PMID: 23453564 PMCID: PMC3644418 DOI: 10.1016/j.jpain.2013.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/03/2012] [Accepted: 01/03/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED The study of complex regional pain syndrome (CRPS) in humans is complicated by inhomogeneities in available study cohorts. We hoped to characterize early CRPS-like features in patients undergoing hand surgery. Forty-three patients were recruited from a hand surgery clinic that had elective surgeries followed by cast immobilization. On the day of cast removal, patients were assessed for vasomotor, sudomotor, and trophic changes, and edema and pain sensitization using quantitative sensory testing. Pain intensity was assessed at the time of cast removal and after 1 additional month, as was the nature of the pain using the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS). Skin biopsies were harvested for the analysis of expression of inflammatory mediators. We identified vascular and trophic changes in the surgical hands of most patients. Increased sensitivity to punctate, pressure, and cold stimuli were observed commonly as well. Moreover, levels of IL-6, TNF-alpha, and the mast cell marker tryptase were elevated in the skin of hands ipsilateral to surgery. Moderate-to-severe pain persisted in the surgical hands for up to 1 month after cast removal. Exploratory analyses suggested interrelationships between the physical, quantitative sensory testing, and gene expression changes and pain-related outcomes. PERSPECTIVE This study has identified CPRS-like features in the limbs of patients undergoing surgery followed by immobilization. Further studies using this population may be useful in refining our understanding of CRPS mechanisms and treatments for this condition.
Collapse
Affiliation(s)
- Alison Pepper
- Stanford University Department of Anesthesia, Palo Alto, CA
| | - Wenwu Li
- Stanford University Department of Anesthesia, Palo Alto, CA
| | - Wade S. Kingery
- Physical Medicine and Rehabilitations Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA
| | | | - Catherine M. Curtin
- Stanford University Plastic and Reconstructive Surgery, Palo Alto, CA
- Surgical Service, Division of Plastic and Reconstructive Surgery, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA
| | - J. David Clark
- Stanford University Department of Anesthesia, Palo Alto, CA
- Anesthesiology Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA
| |
Collapse
|
44
|
Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome. Pain 2013; 154:1224-36. [PMID: 23718987 DOI: 10.1016/j.pain.2013.03.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/07/2013] [Accepted: 03/26/2013] [Indexed: 02/08/2023]
Abstract
In many patients, the sympathetic nervous system supports pain and other features of complex regional pain syndrome (CRPS). Accumulating evidence suggests that interleukin (IL)-6 also plays a role in CRPS, and that catecholamines stimulate production of IL-6 in several tissues. We hypothesized that norepinephrine acting through specific adrenergic receptors expressed on keratinocytes stimulates the production of IL-6 and leads to nociceptive sensitization in a rat tibial fracture/cast model of CRPS. Our approach involved catecholamine depletion using 6-hydroxydopamine or, alternatively, guanethidine, to explore sympathetic contributions. Both agents substantially reduced nociceptive sensitization and selectively reduced the production of IL-6 in skin. Antagonism of IL-6 signaling using TB-2-081 also reduced sensitization in this model. Experiments using a rat keratinocyte cell line demonstrated relatively high levels of β2-adrenergic receptor (β2-AR) expression. Stimulation of this receptor greatly enhanced IL-6 expression when compared to the expression of IL-1β, tumor necrosis factor (TNF)-α, or nerve growth factor. Stimulation of the cells also promoted phosphorylation of the mitogen-activated protein kinases P38, extracellular signal-regulated kinase, and c-Jun amino-terminal kinase. Based on these in vitro results, we returned to animal testing and observed that the selective β2-AR antagonist butoxamine reduced nociceptive sensitization in the CRPS model, and that local injection of the selective β2-AR agonist terbutaline resulted in mechanical allodynia and the production of IL-6 in the cells of the skin. No increases in IL-1β, TNF-α, or nerve growth factor levels were seen, however. These data suggest that in CRPS, norepinephrine released from sympathetic nerve terminals stimulates β2-ARs expressed on epidermal keratinocytes, resulting in local IL-6 production, and ultimately, pain sensitization.
Collapse
|
45
|
Oxidative stress in Complex Regional Pain Syndrome (CRPS): no systemically elevated levels of malondialdehyde, F2-isoprostanes and 8OHdG in a selected sample of patients. Int J Mol Sci 2013; 14:7784-94. [PMID: 23574939 PMCID: PMC3645716 DOI: 10.3390/ijms14047784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 02/01/2023] Open
Abstract
Exaggerated inflammation and oxidative stress are involved in the pathogenesis of Complex Regional Pain Syndrome (CRPS). However, studies assessing markers for oxidative stress in CRPS patients are limited. In this study, markers for lipid peroxidation (malondialdehyde and F2-isoprostanes) and DNA damage (8-hydroxy-2-deoxyguanosine) were measured in nine patients (mean age 50.1 ± 17.1 years) with short term CRPS-1 (median 3 months) and nine age and sex matched healthy volunteers (mean age 49.3 ± 16.8 years) to assess and compare the level of oxidative stress. No differences were found in plasma between CRPS patients and healthy volunteers for malondialdehyde (5.2 ± 0.9 μmol/L vs. 5.4 ± 0.5 μmol/L) F2-isoprostanes (83.9 ± 18.7 pg/mL vs. 80.5 ± 12.3 pg/mL) and 8-hydroxy-2-deoxyguanosine (92.6 ± 25.5 pmol/L vs. 86.9 ± 19.0 pmol/L). Likewise, in urine, no differences were observed between CRPS patients and healthy volunteers for F2-isoprostanes (117 ng/mmol, IQR 54.5–124.3 vs. 85 ng/mmol, IQR 55.5–110) and 8-hydroxy-2-deoxyguanosine (1.4 ± 0.7 nmol/mmol vs. 1.4 ± 0.5 nmol/mmol). Our data show no elevation of systemic markers of oxidative stress in CRPS patients compared to matched healthy volunteers. Future research should focus on local sampling methods of oxidative stress with adequate patient selection based on CRPS phenotype and lifestyle.
Collapse
|
46
|
Keppel Hesselink JM, Kopsky DJ. Treatment of chronic regional pain syndrome type 1 with palmitoylethanolamide and topical ketamine cream: modulation of nonneuronal cells. J Pain Res 2013; 6:239-45. [PMID: 23658493 PMCID: PMC3643547 DOI: 10.2147/jpr.s42417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Indexed: 11/29/2022] Open
Abstract
Chronic regional pain syndrome (CRPS) can be intractable to treat and patients sometimes suffer
for many years. Therefore, new treatment strategies are needed to alleviate symptoms in CRPS
patients. This case report describes a patient suffering from intractable CRPS type 1 for 13 years.
Due to her swollen painful feet and left knee she is wheelchair-bound. The combination of
palmitoylethanolamide and ketamine 10% cream reduced her pain by more than 50% after
1 month of treatment, and a marked reduction in swelling and skin discoloration was noticed.
Furthermore, she could walk independently again and she experienced no side effects. Thus,
palmitoylethanolamide and topical ketamine could be a combination therapy option for treating CRPS
patients.
Collapse
|
47
|
Dirckx M, Groeneweg G, van Daele PLA, Stronks DL, Huygen FJPM. Mast cells: a new target in the treatment of complex regional pain syndrome? Pain Pract 2013; 13:599-603. [PMID: 23489748 DOI: 10.1111/papr.12049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/03/2013] [Indexed: 01/29/2023]
Abstract
There is convincing evidence that inflammation plays a pivotal role in the pathophysiology of complex regional pain syndrome (CRPS). Besides inflammation, central sensitization is also an important phenomenon. Mast cells are known to be involved in the inflammatory process of CRPS and also play a role (at least partially) in the process of central sensitization. In the development of a more mechanism-based treatment, influencing the activity of mast cells might be important in the treatment of CRPS. We describe the rationale for using medication that counteracts the effects of mast cells in the treatment of CRPS.
Collapse
Affiliation(s)
- Maaike Dirckx
- Center for Pain Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Goebel A. Management of adult patients with long-standing complex regional pain syndrome. Pain Manag 2013; 3:137-46. [DOI: 10.2217/pmt.13.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
SUMMARY Approximately 15% of patients with complex regional pain syndrome will experience no improvement in their condition within the first 12 months. This group should be considered as having a long-term condition. Recently published clinical studies and national guidelines can support clinicians to devise rational approaches to the management of this group; however, conclusive evidence is still lacking for almost all aspects of care. A multidisciplinary approach to managing long-standing complex regional pain syndrome appears best suited to ensure high-quality care. This should allow effective functional rehabilitation. Unfortunately, however, meaningful pain relief is often not achieved with currently available treatment methods. Recently published novel treatment approaches will probably provide more patients with long-term pain relief in the future, but confirmatory trials are required.
Collapse
Affiliation(s)
- Andreas Goebel
- Pain Research Institute & Centre for Immune Studies in Pain, Department of Translational Medicine, Liverpool University, Liverpool, UK and The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
49
|
Parkitny L, McAuley JH, Di Pietro F, Stanton TR, O'Connell NE, Marinus J, van Hilten JJ, Moseley GL. Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 2013; 80:106-17. [PMID: 23267031 DOI: 10.1212/wnl.0b013e31827b1aa1] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES We conducted a systematic review of the literature with meta-analysis to determine whether complex regional pain syndrome (CRPS) is associated with a specific inflammatory profile and whether this is dependent on the duration of the condition. METHODS Comprehensive searches of the literature using MEDLINE, Embase, Scopus, Web of Science, and reference lists from published reviews identified articles that measured inflammatory factors in CRPS. Two independent investigators screened titles and abstracts, and performed data extraction and risk of bias assessments. Studies were subgrouped by medium (blood, blister fluid, and CSF) and duration (acute and chronic CRPS). Where possible, meta-analyses of inflammatory factor concentrations were performed and pooled effect sizes were calculated using random-effects models. RESULTS Twenty-two studies were included in the systematic review and 15 in the meta-analysis. In acute CRPS, the concentrations of interleukin (IL)-8 and soluble tumor necrosis factor receptors I (sTNF-RI) and II (sTNF-RII) were significantly increased in blood. In chronic CRPS, significant increases were found in 1) TNFα, bradykinin, sIL-1RI, IL-1Ra, IL-2, sIL-2Ra, IL-4, IL-7, interferon-γ, monocyte chemoattractant protein-1 (MCP-1), and sRAGE (soluble receptor for advanced glycation end products) in blood; 2) IL-1Ra, MCP-1, MIP-1β, and IL-6 in blister fluid; and 3) IL-1β and IL-6 in CSF. Chronic CRPS was also associated with significantly decreased 1) substance P, sE-selectin, sL-selectin, sP-selectin, and sGP130 in blood; and 2) soluble intercellular adhesion molecule-1 (sICAM-1) in CSF. Most studies failed to meet 3 or more of our quality criteria. CONCLUSION CRPS is associated with the presence of a proinflammatory state in the blood, blister fluid, and CSF. Different inflammatory profiles were found for acute and chronic cases.
Collapse
Affiliation(s)
- Luke Parkitny
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a painful disorder without a known unifying mechanism. There are little data on which to base evaluation and treatment decisions, and what data are available come from studies involving adults; however, even that literature is relatively sparse. Developing robust research for CRPS in children is essential for the progress toward optimal treatment. OBJECTIVES To determine potential avenues of research in pediatric CRPS based on a review of the literature. Areas of concern include diagnostic criteria, peripheral mechanisms, central nervous system mechanisms, the role of the autonomic nervous system, possible risk factors, options for prevention and potential avenues of treatment. METHODS A literature review was performed and the results applied to form the hypotheses posited in the form of research questions. RESULTS AND CONCLUSIONS CRPS is a complicated entity that is more than a painful sensory condition. There is evidence for peripheral inflammatory and neurological changes, and reorganization in both sensory and motor cortexes. In addition, a significant motor component is frequently observed and there appear to be tangible risk factors. Many of these pieces of evidence suggest options for prevention, treatment and monitoring progress and outcome. Most of the data are derived from adult studies and need to be replicated in children. Furthermore, there may be factors unique to pediatrics due to developmental changes in neuroplasticity as well as somatic, endocrinological and emotional growth. Some of these developmental factors may shed light on the adult condition.
Collapse
|