1
|
Xu W, Anwaier A, Ma C, Liu W, Tian X, Palihati M, Hu X, Qu Y, Zhang H, Ye D. Multi-omics reveals novel prognostic implication of SRC protein expression in bladder cancer and its correlation with immunotherapy response. Ann Med 2021; 53:596-610. [PMID: 33830879 PMCID: PMC8043611 DOI: 10.1080/07853890.2021.1908588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aims to identify potential prognostic biomarkers of bladder cancer (BCa) based on large-scale multi-omics data and investigate the role of SRC in improving predictive outcomes for BCa patients and those receiving immune checkpoint therapies (ICTs). METHODS Large-scale multi-comic data were enrolled from the Cancer Proteome Atlas, the Cancer Genome Atlas and gene expression omnibus based on machining-learning methods. Immune infiltration, survival and other statistical analyses were implemented using R software in cancers (n = 12,452). The predictive value of SRC was performed in 81 BCa patients receiving ICT from aa validation cohort (n = 81). RESULTS Landscape of novel candidate prognostic protein signatures of BCa patients was identified. Differential BECLIN, EGFR, PKCALPHA, ANNEXIN1, AXL and SRC expression significantly correlated with the outcomes for BCa patients from multiply cohorts (n = 906). Notably, risk score of the integrated prognosis-related proteins (IPRPs) model exhibited high diagnostic accuracy and consistent predictive ability (AUC = 0.714). Besides, we tested the clinical relevance of baseline SRC protein and mRNA expression in two independent confirmatory cohorts (n = 566) and the prognostic value in pan-cancers. Then, we found that elevated SRC expression contributed to immunosuppressive microenvironment mediated by immune checkpoint molecules of BCa and other cancers. Next, we validated SRC expression as a potential biomarker in predicting response to ICT in 81 BCa patient from FUSCC cohort, and found that expression of SRC in the baseline tumour tissues correlated with improved survival benefits, but predicts worse ICT response. CONCLUSION This study first performed the large-scale multi-omics analysis, distinguished the IPRPs (BECLIN, EGFR, PKCALPHA, SRC, ANNEXIN1 and AXL) and revealed novel prediction model, outperforming the currently traditional prognostic indicators for anticipating BCa progression and better clinical strategies. Additionally, this study provided insight into the importance of biomarker SRC for better prognosis, which may inversely improve predictive outcomes for patients receiving ICT and enable patient selection for future clinical treatment.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Chunguang Ma
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Wangrui Liu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Maierdan Palihati
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xiaoxin Hu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| |
Collapse
|
2
|
Zhang X, Zhang J, Zhang H, Liu Y, Yin L, Liu X, Li X, Yu X, Yao J, Zhang Z, Kong C. Exploring the five different genes associated with PKCα in bladder cancer based on gene expression microarray. J Cell Mol Med 2021; 25:1759-1770. [PMID: 33452764 PMCID: PMC7875937 DOI: 10.1111/jcmm.16284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Much progress has been made in understanding the mechanism of bladder cancer (BC) progression. Protein kinase C‐α (PKCα) is overexpressed in many kinds of cancers. Additionally, PKCα is considered an oncogene that regulates proliferation, invasion, migration, apoptosis and cell cycle in multiple cancers. However, the mechanism underlying how these cellular processes are regulated by PKCα remains unknown. In the present study, we used PKCα siRNA to knock down PKCα gene expression and found that down‐regulation of PKCα could significantly inhibit cell proliferation, migration and invasion and induce apoptosis and G1/S cell cycle arrest in vitro. Overexpression of PKCα promotes tumour growth in vivo. We applied cDNA microarray technology to detect the differential gene expression in J82 cells with PKCα knockdown and found that five key genes (BIRC2, BIRC3, CDK4, TRAF1 and BMP4) were involved in proliferation and apoptosis according to GO analysis and pathway analyses. Correlation analysis revealed a moderate positive correlation between PKCα expression and the expression of five downstream genes. BIRC2 and BIRC3 inhibit apoptosis, whereas CDK4, TRAF1 and BMP4 promote proliferation. Essentially, all five of these target genes participated in proliferation, and apoptosis was regulated by PKCα via the NF‐kB signalling pathway.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Jiarun Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xi Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xuejie Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Xiuyue Yu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Jinlong Yao
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Singhal SS, Horne D, Singhal J, Awasthi S, Salgia R. Activating p53 function by targeting RLIP. Biochim Biophys Acta Rev Cancer 2021; 1875:188512. [PMID: 33460725 DOI: 10.1016/j.bbcan.2021.188512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
Aberrations in RLIP, p53, and PKCα represent essentially the entire spectrum of all human neoplasms. Elevated PKCα expression, failure of the cell cycle checkpoint (p53 dysfunction), and abnormal glutathione (GSH) metabolism are fundamental hallmarks of carcinogenesis and drug/radiation resistance. However, a lack of investigations into the interactions between these important regulatory nodes has fundamentally limited our understanding of carcinogenesis and the development of effective interventions for cancer prevention and therapy. Loss of p53, perhaps the most powerful tumor suppressor gene, predisposes rodents to spontaneous cancer and humans to familial, as well as acquired, cancers. Until recently, no genetic manipulation of any oncogene had been reported to abrogate spontaneous carcinogenesis in p53-/- rodent models. However, the overexpression of RLIP, a GSH-electrophile conjugate (GS-E) transporter, has been found to enhance cancer cell proliferation and confer drug/radiation resistance, whereas its depletion causes tumor regression, suggesting its importance in cancer and drug/radiation resistance. Indeed, RLIP is an essential effector of p53 that is necessary for broad cancer-promoting epigenetic remodeling. Interestingly, through a haploinsufficiency mechanism, the partial depletion of RLIP in p53-/- mice provides complete protection from neoplasia. Furthermore, RLIP-/- mice exhibit altered p53 and PKCα function, marked deficiency in clathrin-dependent endocytosis (CDE), and almost total resistance to chemical carcinogenesis. Based on these findings, in this review, we present a novel and radical hypothesis that expands our understanding of the highly significant cross-talk between p53, PKCα, and GSH signaling by RLIP in multiple tumor models.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology & Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Pucciarelli D, Angus SP, Huang B, Zhang C, Nakaoka HJ, Krishnamurthi G, Bandyopadhyay S, Clapp DW, Shannon K, Johnson GL, Nakamura JL. Nf1-Mutant Tumors Undergo Transcriptome and Kinome Remodeling after Inhibition of either mTOR or MEK. Mol Cancer Ther 2020; 19:2382-2395. [PMID: 32847978 DOI: 10.1158/1535-7163.mct-19-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/18/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Loss of the tumor suppressor NF1 leads to activation of RAS effector pathways, which are therapeutically targeted by inhibition of mTOR (mTORi) or MEK (MEKi). However, therapeutic inhibition of RAS effectors leads to the development of drug resistance and ultimately disease progression. To investigate molecular signatures in the context of NF1 loss and subsequent acquired drug resistance, we analyzed the exomes, transcriptomes, and kinomes of Nf1-mutant mouse tumor cell lines and derivatives of these lines that acquired resistance to either MEKi or mTORi. Biochemical comparisons of this unique panel of tumor cells, all of which arose in Nf1+/- mice, indicate that loss of heterozygosity of Nf1 as an initial genetic event does not confer a common biochemical signature or response to kinase inhibition. Although acquired drug resistance by Nf1-mutant tumor cells was accompanied by altered kinomes and irreversibly altered transcriptomes, functionally in multiple Nf1-mutant tumor cell lines, MEKi resistance was a stable phenotype, in contrast to mTORi resistance, which was reversible. Collectively, these findings demonstrate that Nf1-mutant tumors represent a heterogeneous group biochemically and undergo broader remodeling of kinome activity and gene expression in response to targeted kinase inhibition.
Collapse
Affiliation(s)
- Daniela Pucciarelli
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Steven P Angus
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Benjamin Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Chi Zhang
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Ganesh Krishnamurthi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - D Wade Clapp
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
5
|
Wang JB, Zhang Z, Li JN, Yang T, Du S, Cao RJ, Cui SS. SPP1 promotes Schwann cell proliferation and survival through PKCα by binding with CD44 and αvβ3 after peripheral nerve injury. Cell Biosci 2020; 10:98. [PMID: 32843960 PMCID: PMC7439540 DOI: 10.1186/s13578-020-00458-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Schwann cells (SCs) play a crucial role in Wallerian degeneration after peripheral nerve injury. The expression of genes in SCs undergo a series of changes, which greatly affect the proliferation and apoptosis of SCs as well as the fate of peripheral nerve regeneration. However, how do these genes regulate the proliferation and apoptosis of SCs remains unclear. RESULTS SPP1 and PKCα were found upregulated after human median peripheral nerve injury, which promoted SCs proliferation and survival. The promoted proliferation and inhibited apoptosis by SPP1 were blocked after the treatment of PKCα antagonist Gö6976. Whereas, the inhibited proliferation and enhanced apoptosis induced by silence of SPP1 could be rescued by the activation of PKCα, which suggested that SPP1 functioned through PKCα. Moreover, both CD44 and αvβ3 were found expressed in SCs and increased after peripheral nerve injury. Silence of CD44 or β3 alleviated the increased proliferation and inhibited apoptosis induced by recombinant osteopontin, suggesting the function of SPP1 on SCs were dependent on CD44 and β3. CONCLUSION These results suggested that SPP1 promoted proliferation and inhibited apoptosis of SCs through PKCα signaling pathway by binding with CD44 and αvβ3. This study provides a potential therapeutic target for improving peripheral nerve recovery.
Collapse
Affiliation(s)
- Jiang-Bo Wang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Jian-Nan Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Rang-Juan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| | - Shu-Sen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033 China
| |
Collapse
|
6
|
Dolcino M, Pelosi A, Fiore PF, Patuzzo G, Tinazzi E, Lunardi C, Puccetti A. Gene Profiling in Patients with Systemic Sclerosis Reveals the Presence of Oncogenic Gene Signatures. Front Immunol 2018; 9:449. [PMID: 29559981 PMCID: PMC5845728 DOI: 10.3389/fimmu.2018.00449] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by three pathogenetic hallmarks: vasculopathy, dysregulation of the immune system, and fibrosis. A particular feature of SSc is the increased frequency of some types of malignancies, namely breast, lung, and hematological malignancies. Moreover, SSc may also be a paraneoplastic disease, again indicating a strong link between cancer and scleroderma. The reason of this association is still unknown; therefore, we aimed at investigating whether particular genetic or epigenetic factors may play a role in promoting cancer development in patients with SSc and whether some features are shared by the two conditions. We therefore performed a gene expression profiling of peripheral blood mononuclear cells (PBMCs) derived from patients with limited and diffuse SSc, showing that the various classes of genes potentially linked to the pathogenesis of SSc (such as apoptosis, endothelial cell activation, extracellular matrix remodeling, immune response, and inflammation) include genes that directly participate in the development of malignancies or that are involved in pathways known to be associated with carcinogenesis. The transcriptional analysis was then complemented by a complex network analysis of modulated genes which further confirmed the presence of signaling pathways associated with carcinogenesis. Since epigenetic mechanisms, such as microRNAs (miRNAs), are believed to play a central role in the pathogenesis of SSc, we also evaluated whether specific cancer-related miRNAs could be deregulated in the serum of SSc patients. We focused our attention on miRNAs already found upregulated in SSc such as miR-21-5p, miR-92a-3p, and on miR-155-5p, miR 126-3p and miR-16-5p known to be deregulated in malignancies associated to SSc, i.e., breast, lung, and hematological malignancies. miR-21-5p, miR-92a-3p, miR-155-5p, and miR-16-5p expression was significantly higher in SSc sera compared to healthy controls. Our findings indicate the presence of modulated genes and miRNAs that can play a predisposing role in the development of malignancies in SSc and are important for a better risk stratification of patients and for the identification of a better individualized precision medicine strategy.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Pelosi
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Antonio Puccetti
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy.,Department of Experimental Medicine - Section of Histology, University of Genova, Genova, Italy
| |
Collapse
|
7
|
Singh RK, Kumar S, Gautam PK, Tomar MS, Verma PK, Singh SP, Kumar S, Acharya A. Protein kinase C-α and the regulation of diverse cell responses. Biomol Concepts 2018; 8:143-153. [PMID: 28841566 DOI: 10.1515/bmc-2017-0005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.
Collapse
|
8
|
Chiang AWT, Wu WYL, Wang T, Hwang MJ. Identification of Entry Factors Involved in Hepatitis C Virus Infection Based on Host-Mimicking Short Linear Motifs. PLoS Comput Biol 2017; 13:e1005368. [PMID: 28129350 PMCID: PMC5302801 DOI: 10.1371/journal.pcbi.1005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/10/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Host factors that facilitate viral entry into cells can, in principle, be identified from a virus-host protein interaction network, but for most viruses information for such a network is limited. To help fill this void, we developed a bioinformatics approach and applied it to hepatitis C virus (HCV) infection, which is a current concern for global health. Using this approach, we identified short linear sequence motifs, conserved in the envelope proteins of HCV (E1/E2), that potentially can bind human proteins present on the surface of hepatocytes so as to construct an HCV (envelope)-host protein interaction network. Gene Ontology functional and KEGG pathway analyses showed that the identified host proteins are enriched in cell entry and carcinogenesis functionalities. The validity of our results is supported by much published experimental data. Our general approach should be useful when developing antiviral agents, particularly those that target virus-host interactions. Viruses recruit host proteins, called entry factors, to help gain entry to host cells. Identification of entry factors can provide targets for developing antiviral drugs. By exploring the concept that short linear peptide motifs involved in human protein-protein interactions may be mimicked by viruses to hijack certain host cellular processes and thereby assist viral infection/survival, we developed a bioinformatics strategy to computationally identify entry factors of hepatitis C virus (HCV) infection, which is a worldwide health problem. Analysis of cellular functions and biochemical pathways indicated that the human proteins we identified usually play a role in cell entry and/or carcinogenesis, and results of the analysis are generally supported by experimental studies on HCV infection, including the ~80% (15 of 19) prediction rate of known HCV hepatocyte entry factors. Because molecular mimicry is a general concept, our bioinformatics strategy is a timely approach to identify new targets for antiviral research, not only for HCV but also for other viruses.
Collapse
Affiliation(s)
| | - Walt Y. L. Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
SLC44A1 – PRKCA fusion in papillary and rosette-forming glioneuronal tumors. J Clin Neurosci 2016; 23:73-75. [DOI: 10.1016/j.jocn.2015.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/20/2015] [Accepted: 04/11/2015] [Indexed: 12/21/2022]
|
10
|
Lai W, Huang L, Zhu L, Ferrari G, Chan C, Li W, Lee KH, Chen CH. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β. J Med Chem 2015; 58:8638-46. [PMID: 26509731 DOI: 10.1021/acs.jmedchem.5b01233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HIV-1-latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells. GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , Taichung, Taiwan
| | | |
Collapse
|
11
|
Abstract
The protein kinase C (PKC) family of serine/threonine protein kinases share structural homology, while exhibiting substantial functional diversity. PKC isoforms are ubiquitously expressed in tissues which makes it difficult to define roles for individual isoforms, with complexity compounded by the finding that PKC isoforms can co-operate with or antagonize other PKC family members. A number of studies suggest the involvement of PKC family members in regulating leukaemic cell survival and proliferation. Chronic lymphocytic leukaemia (CLL), the most common leukaemia in the Western world, exhibits dysregulated expression of PKC isoforms, with recent reports indicating that PKCβ and δ play a critical role in B-cell development, due to their ability to link the B-cell receptor (BCR) with downstream signalling pathways. Given the prognostic significance of the BCR in CLL, inhibition of these BCR/PKC-mediated signalling pathways is of therapeutic relevance. The present review discusses the emerging role of PKC isoforms in the pathophysiology of CLL and assesses approaches that have been undertaken to modulate PKC activity.
Collapse
|
12
|
Indira Chandran V, Eppenberger-Castori S, Venkatesh T, Vine KL, Ranson M. HER2 and uPAR cooperativity contribute to metastatic phenotype of HER2-positive breast cancer. Oncoscience 2015; 2:207-24. [PMID: 25897424 PMCID: PMC4394126 DOI: 10.18632/oncoscience.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Human epidermal growth factor receptor type 2 (HER2)-positive breast carcinoma is highly aggressive and mostly metastatic in nature though curable/manageable in part by molecular targeted therapy. Recent evidence suggests a subtype of cells within HER2-positive breast tumors that concomitantly expresses the urokinase plasminogen activator receptor (uPAR) with inherent stem cell/mesenchymal-like properties promoting tumor cell motility and a metastatic phenotype. This HER-positive/uPAR-positive subtype may be partially responsible for the failure of HER2-targeted treatment strategies. Herein we discuss and substantiate the cumulative preclinical and clinical evidence on HER2-uPAR cooperativity in terms of gene co-amplification and/or mRNA/protein co-overexpression. We then propose a regulatory signaling model that we hypothesize to maintain upregulation and cooperativity between HER2 and uPAR in aggressive breast cancer. An improved understanding of the HER2/uPAR interaction in breast cancer will provide critical biomolecular information that may help better predict disease course and response to therapy.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Thejaswini Venkatesh
- Nitte University Centre for Science Education and Research (NUCSER), K. S. Hegde Medical Academy, Nitte University, Deralakatte, Mangalore, Karnataka, India
| | - Kara Lea Vine
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia ; Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia ; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Marie Ranson
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia ; Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia ; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
Nakagawa R, Vukovic M, Tarafdar A, Cosimo E, Dunn K, McCaig AM, Holroyd A, McClanahan F, Ramsay AG, Gribben JG, Michie AM. Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKCα subversion induces up-regulation of PKCβII expression in B lymphocytes. Haematologica 2015; 100:499-510. [PMID: 25616575 DOI: 10.3324/haematol.2014.112276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow The Babraham Institute, Cambridge
| | - Milica Vukovic
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow MRC Centre for Regenerative Medicine, University of Edinburgh
| | - Anuradha Tarafdar
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Emilio Cosimo
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Karen Dunn
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Alison M McCaig
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Ailsa Holroyd
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| | - Fabienne McClanahan
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London
| | - Alan G Ramsay
- Department of Haemato-Oncology, King's College London, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow
| |
Collapse
|
14
|
Abstract
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumour promoter phorbol ester in 1982. Although initial therapeutic efforts focused on cancer, additional indications--including diabetic complications, heart failure, myocardial infarction, pain and bipolar disorder--were targeted as researchers developed a better understanding of the roles of eight conventional and novel PKC isozymes in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This Review provides a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs.
Collapse
|
15
|
Lin SC, Chen WY, Lin KY, Chen SH, Chang CC, Lin SE, Fang CL. Clinicopathological correlation and prognostic significance of protein kinase cα overexpression in human gastric carcinoma. PLoS One 2013; 8:e56675. [PMID: 23468872 PMCID: PMC3582558 DOI: 10.1371/journal.pone.0056675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES This study investigated the PKCα protein expression in gastric carcinoma, and correlated it with clinicopathological parameters. The prognostic significance of PKCα protein expression in gastric carcinoma was analyzed. METHODS Quantitative real-time PCR test was applied to compare the PKCα mRNA expression in tumorous and nontumorous tissues of gastric carcinoma in ten randomly selected cases. Then PKCα protein expression was evaluated in 215 cases of gastric carcinoma using immunohistochemical method. The immunoreactivity was scored semiquantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely PKCα overexpression group with score 2 or 3, and non-overexpression group with score 0 or 1. The PKCα protein expression was correlated with clinicopathological parameters. Survival analysis was performed to determine the prognostic significance of PKCα protein expression in patients with gastric carcinoma. RESULTS PKCα mRNA expression was upregulated in all ten cases of gastric carcinoma via quantitative real-time PCR test. In immunohistochemical study, eighty-eight out of 215 cases (41%) of gastric carcinoma revealed PKCα protein overexpression, which was statistically correlated with age (P = 0.0073), histologic type (P<0.0001), tumor differentiation (P = 0.0110), depth of invasion (P = 0.0003), angiolymphatic invasion (P = 0.0373), pathologic stage (P = 0.0047), and distant metastasis (P = 0.0048). We found no significant difference in overall and disease free survival rates between PKCα overexpression and non-overexpression groups (P = 0.0680 and 0.0587). However, PKCα protein overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 0.632, P = 0.0415). CONCLUSIONS PKCα protein is upregulated in gastric carcinoma. PKCα protein expression is statistically correlated with age, histologic type, tumor differentiation, depth of invasion, angiolymphatic invasion, pathologic stage, and distant metastasis. The PKCα protein overexpression in patients with gastric carcinoma is a significant independent prognostic factor in multivariate Cox regression analysis.
Collapse
Affiliation(s)
- Shee-Chan Lin
- Division of Gastroenterology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Sheng-Hsuan Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Chao Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sey-En Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Zhang HM, Lin N, Dong Y, Su Q, Luo M. Protein kinase Cα is involved in impaired perinatal hypothyroid rat brain development. J Neurosci Res 2012; 91:211-9. [PMID: 23152155 DOI: 10.1002/jnr.23125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/28/2012] [Accepted: 07/13/2012] [Indexed: 11/07/2022]
Abstract
Protein kinase Cα (PKCα) has been implicated in the regulation of a variety of cellular functions, such as proliferation, differentiation, and apoptosis, in response to a diverse range of stimuli. Activated PKCα mediates oxidative stress, apoptosis, and inflammatory reaction. Thyroid hormone (TH) is essential for the proper development of the mammalian central nervous system. TH deficiency during critical periods of brain development results in permanent cognitive and neurological impairments. In the present study, we attempted to explore whether PKCα is involved in impaired brain function in developing hypothyroid rat brain. Severe perinatal hypothyroidism was obtained by administration of 30 mg/day propylthiouracil to dams. Brain PKC activity in hypothyroid pups was increased significantly in cytosol and membrane fractions. The change of membrane PKC activity was more marked than that of cytosol, and hypothyroidism led to a higher ratio of membrane PKC activity to that in cytosol, which means abnormal activation of PKC in developing hypothyroid rat brain. Thyroxine replacement partially corrected these changes. After being treated with bisindolmaleimide XI, a mainly selective inhibitor for PKCα, the hypothyroid pups showed improved place navigation test results, and further Western blot analysis showed that PKCα expression in cytosol fractions was increased in hypothyroid rat brain with or without bisindolmaleimide XI treatment, but, after treatment with bisindolmaleimide XI, PKCα content in membrane fractions decreased almost to normal. Therefore, we conclude that PKCα appears to be involved in the impaired brain development observed in perinatal hypothyroid rat brain.
Collapse
Affiliation(s)
- Hong-Mei Zhang
- Department of Endocrinology, Xin Hua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Mul D, Wu S, de Paus RA, Oostdijk W, Lankester AC, Duyvenvoorde HAV, Ruivenkamp CAL, Losekoot M, Tol MJDV, De Luca F, van de Vosse E, Wit JM. A mosaic de novo duplication of 17q21-25 is associated with GH insensitivity, disturbed in vitro CD28-mediated signaling, and decreased STAT5B, PI3K, and NF-κB activation. Eur J Endocrinol 2012; 166:743-52. [PMID: 22214923 DOI: 10.1530/eje-11-0774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The established causes of GH insensitivity include defects of the GH receptor and STAT5B. The latter condition is also characterized by severe immunodeficiency. A recent case with short stature, GH resistance, and immunodeficiency due to an IκB mutation suggests that the NF-κB pathway may interact with STAT5B signaling. DESIGN Here, we present a case of a short child with several congenital anomalies as well as GH insensitivity and mild immunodeficiency associated with a mosaic de novo duplication of chromosome 17q21-25, suggesting that overexpression of one of the duplicated genes may be implicated in GH resistance. METHODS AND RESULTS In vitro studies on blood lymphocytes showed disturbed signaling of the CD28 pathway, involving NF-κB and related proteins. Functional studies on cultured skin fibroblasts revealed that NF-κB activation, PI3K activity, and STAT5 phosphorylation in response to GH were suppressed, while the sensitivity to GH in terms of MAPK phosphorylation was increased. An in silico analysis of the duplicated genes showed that MAP3K3 and PRKCA are associated with the NF-κB pathway. Baseline MAP3K3 expression in T-cell blasts (TCBs) was normal, but PRKCA expression in TCBs and fibroblasts was significantly higher than that in control cells. CONCLUSIONS We conclude that the 17q21-25 duplication is associated with GH insensitivity and disturbed STAT5B, PI3K, and NF-κB signaling, possibly due to PRKCA mRNA overexpression.
Collapse
Affiliation(s)
- D Mul
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs. Adv Virol 2012; 2012:805347. [PMID: 22500169 PMCID: PMC3303757 DOI: 10.1155/2012/805347] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/23/2011] [Indexed: 01/15/2023] Open
Abstract
An effective means to eradicate latent reservoirs in HIV-1-infected individuals remains elusive. Attempts to purge these reservoirs were undertaken over a decade ago without success. The subsequent lapse in further clinical attempts since may have been justified as our knowledge of the mechanisms which underpin the latent state still evolves. Although additional novel molecular antagonists of HIV-1 latency have subsequently been reported, these candidate agents have not been tested in human trials for reservoir ablation. This review provides an overview of the protein kinase C (PKC) pathway which can be modulated by small molecular agents to induce the expression of latent HIV-1 from within infected reservoir cells. Some of these agents have been tested against select cancers with seemingly tolerable side effects. As such, modulation of the PKC pathway may yet be a viable mechanism toward HIV-1 reservoir eradication.
Collapse
|
19
|
Nakura A, Higuchi C, Yoshida K, Yoshikawa H. PKCα suppresses osteoblastic differentiation. Bone 2011; 48:476-84. [PMID: 20951242 DOI: 10.1016/j.bone.2010.09.238] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/08/2010] [Accepted: 09/29/2010] [Indexed: 11/30/2022]
Abstract
Protein kinase C (PKC) plays an essential role in cellular signal transduction for mediating a variety of biological functions. There are 11 PKC isoforms and these isoforms are believed to play distinct roles in cells. Although the role of individual isoforms of PKC has been investigated in many fields, little is known about the role of PKC in osteoblastic differentiation. Here, we investigated which isoforms of PKC are involved in osteoblastic differentiation of the mouse preosteoblastic cell line MC3T3-E1. Treatment with Gö6976, an inhibitor of PKCα and PKCβI, increased alkaline phosphatase (ALP) activity as well as gene expression of ALP and Osteocalcin (OCN), and enhanced calcification of the extracellular matrix. Concurrently, osteoblastic cell proliferation decreased at a concentration of 1.0 μM. In contrast, a PKCβ inhibitor, which inhibits PKCβI and PKCβII, did not significantly affect osteoblastic differentiation or cell proliferation. Knockdown of PKCα using MC3T3-E1 cells transfected with siRNA also induced an increase in ALP activity and in gene expression of ALP and OCN. In contrast, overexpression of wild-type PKCα decreased ALP activity and attenuated osteoblastic differentiation markers including ALP and OCN, but promoted cell proliferation. Taken together, our results indicate that PKCα suppresses osteoblastic differentiation, but promotes osteoblastic cell proliferation. These results imply that PKCα may have a pivotal role in cell signaling that modulates the differentiation and proliferation of osteoblasts.
Collapse
Affiliation(s)
- Akio Nakura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
20
|
da Silva Cunha KC, Fuly AL, de Araujo EG. A phospholipase A₂ isolated from Lachesis muta snake venom increases the survival of retinal ganglion cells in vitro. Toxicon 2011; 57:580-5. [PMID: 21223976 DOI: 10.1016/j.toxicon.2010.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/08/2010] [Accepted: 12/30/2010] [Indexed: 12/31/2022]
Abstract
We have previously showed that a phospholipase A₂ isolated from Lachesis muta snake venom and named LM-PLA₂-I displayed particular biological activities, as hemolysis, inhibition on platelet aggregation, edema induction and myotoxicity. In the present work, we evaluated the effect of LM-PLA₂-I on the survival of axotomized rat retinal ganglion cells kept in vitro, as well as its mechanism of action. Our results clearly showed that treatment with LM-PLA₂-I increased the survival of ganglion cells (100% when compared to control cultures) and the treatment of LM-PLA₂-I with p-bromophenacyl bromide abolished this effect. This result indicates that the effect of LM-PLA₂-I on ganglion cell survival is entirely dependent on its enzymatic activity and the generation of lysophosphatidylcholine (LPC) may be a prerequisite to the observed survival. In fact, commercial LPC mimicked the effect of LM-PLA₂-I upon ganglion cell survival. To investigate the mechanism of action of LM-PLA₂-I, cultures were treated with chelerythrine chloride, BAPTA-AM, rottlerin and also with an inhibitor of c-junc kinase (JNKi). Our results showed that rottlerin and JNK inhibitor abolished the LM-PLA₂-I on ganglion cell survival. Taken together, our results showed that LM-PLA₂-I and its enzymatic product, LPC promoted survival of retinal ganglion cells through the protein kinase C pathway and strongly suggest a possible role of the PLA₂ enzyme and LPC in controlling the survival of axotomized neuronal cells.
Collapse
Affiliation(s)
- Karinne Cristinne da Silva Cunha
- Programa de Pós-Graduação em Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | |
Collapse
|
21
|
Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, Chaudhary P, Lelsani P, Suzuki S, Yang S, Awasthi YC, Awasthi S. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Ther 2011; 10:16-28. [PMID: 21220488 PMCID: PMC3065778 DOI: 10.1158/1535-7163.mct-10-0699] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Targeted depletion of the RALBP1-encoded 76-kDa splice variant, RLIP76, causes marked and sustained regression of human xenografts of lung, colon, prostate, and kidney cancers without toxicity in nude mouse models. We proposed that the remarkable efficacy and broad spectrum of RLIP76-targeted therapy is because its glutathione-conjugate (GS-E) transport activity is required for clathrin-dependent endocytosis (CDE), which regulates all ligand-receptor signaling, and that RLIP76 is required not only for survival of cancer cells but also for their very existence. We studied RLIP76 mutant proteins and the functional consequences of their expression into RLIP76(-/-) MEFs, identified key residues for GS-E binding in RLIP76, established the requirement of RLIP76-mediated GS-E transport for CDE, and showed a direct correlation between GS-E transport activities with CDE. Depletion of RLIP76 nearly completely blocked signaling downstream of EGF in a CDE-dependent manner and Wnt5a signaling in a CDE-independent manner. The seminal prediction of this hypothesis-RLIP76(-/-) mice will be deficient in chemical neoplasia-was confirmed. Benzo[a]pyrene, dimethylbenzanthracene, and phorbol esters are ineffective in causing neoplasia in RLIP76(-/-). PMA-induced skin carcinogenesis in RLIP76(+/+) mouse was suppressed completely by depletion of either PKCα or RLIP76 by siRNA or antisense and could be restored by topical application of RLIP76 protein in RLIP76(-/-) mouse skin. Likewise, chemical pulmonary carcinogenesis was absent in female and nearly absent in male RLIP76(-/-) mice. In RLIP76(-/-) mice, p53, p38, and JNK activation did not occur in response to either carcinogen. Our findings show a fundamental role of RLIP76 in chemical carcinogenesis.
Collapse
Affiliation(s)
- Sharad S Singhal
- Corresponding Authors: Sanjay Awasthi or Sharad S. Singhal, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiatry 2010; 15:1101-11. [PMID: 19786960 DOI: 10.1038/mp.2009.96] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We earlier reported a genome-wide significant linkage to schizophrenia at chromosome 17 that was identified in a single pedigree (C702) consisting of six affected, male siblings with DSM-IV schizophrenia and prominent mood symptoms. In this study, we adopted several approaches in an attempt to map the putative disease locus. First, mapping the source of linkage to chromosome 17 in pedigree C702. We refined the linkage region in family C702 to a 21-marker segment spanning 11.7 Mb at 17q23-q24 by genotyping a total of 50 microsatellites across chromosome 17 in the pedigree. Analysis of data from 1028 single nucleotide polymorphisms (SNPs) across the refined linkage region identified a single region of homozygosity present in pedigree C702 but not in 2938 UK controls. This spanned ~432 kb of the gene encoding protein kinase C, alpha (PRKCA), the encoded protein of which has been implicated in the pathogenesis of psychiatric disorders. Analysis of pedigree C702 by oligonucleotide-array comparative genome hybridization excluded the possibility that this region of homozygosity was because of a deletion. Mutation screening of PRKCA identified a rare, four-marker haplotype (C-HAP) in the 3' untranslated region of the gene, which was present in the homozygous state in all six affected members of pedigree C702. No other homozygotes were observed in genotype data for a total of 6597 unrelated Europeans (case N=1755, control N=3580 and parents of probands N=1262). Second, association analysis of C702 alleles at PRKCA. The low-frequency haplotype (C-HAP) showed a trend for association in a study of unrelated schizophrenia cases and controls from the UK (661 cases, 2824 controls, P=0.078 and odd ratio (OR)=1.9) and significant evidence for association when the sample was expanded to include cases with bipolar (N=710) and schizoaffective disorder (N=50) (psychosis sample: 1421 cases, 2824 controls, P=0.037 and OR=1.9). Given that all the affected members of C702 are male, we also undertook sex-specific analyses. This revealed that the association was strongest in males for both schizophrenia (446 male cases, 1421 male controls, P=0.008 and OR=3.9) and in the broader psychosis group (730 male cases, 1421 male controls, P=0.008 and OR=3.6). Analysis of C-HAP in follow-up samples from Ireland and Bulgaria revealed no evidence for association in either the whole sample or in males alone, and meta-analysis of all male psychosis samples yielded no significant evidence of association (969 male cases, 1939 male controls, 311 male probands P=0.304 and OR=1.4). Third, association mapping of the pedigree C702 linkage region. Independent of pedigree C702, genotype data from the Affymetrix 500k GeneChip set were available for 476 patients with schizophrenia and 2938 controls from the United Kingdom. SNPs in PRKCA showed evidence for association with schizophrenia that achieved gene-wide significance (P=0.027). Moreover, the same SNP was the most significantly associated marker out of the 1028 SNPs genotyped across the linkage region (rs873417, allelic P=0.0004). Follow-up genotyping in samples from Ireland, Bulgaria and Germany did not show consistent replication, but meta-analysis of all samples (4116 cases and 6491 controls) remained nominally significant (meta-analysis P=0.026, OR=1.1). We conclude that, although we have obtained convergent lines of evidence implicating both rare and common schizophrenia risk variants at PRKCA, none of these is individually compelling. However, the evidence across all approaches suggests that further study of this locus is warranted.
Collapse
|
23
|
Du CL, Xu YJ, Liu XS, Xie JG, Xie M, Zhang ZX, Zhang J, Qiao LF. Up-regulation of cyclin D1 expression in asthma serum-sensitized human airway smooth muscle promotes proliferation via protein kinase C alpha. Exp Lung Res 2010; 36:201-10. [PMID: 20426528 DOI: 10.3109/01902140903290022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abnormal hypertrophy and hyperplasia of airway smooth muscle cells play an important role in airway remodeling in chronic asthma. The authors' previous studies have indicated that protein kinase C alpha (PKC alpha) is involved in the proliferation of passively sensitized human airway smooth muscle cells (HASMCs). However, the underlying mechanisms remain unknown. Here, the authors examined the possible role of the alpha isoform of PKC in the control of cyclin D1 expression, using HASMCs passively sensitized on human atopic asthmatic serum as a model system. Cultured HASMCs were passively sensitized with serum from atopic asthmatic patients. Cell proliferation was measured by [(3)H]thymidine incorporation and an MTT assay. Cell cycle status was analyzed by flow cytometry. The mRNA and protein expression profiles of cyclin D1 were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Furthermore, the authors assessed the role of cyclin D1 in PKC alpha-induced HASMC proliferation by transfection with a recombinant cyclin D1 antisense construct. The activation of PKC alpha with phorbol myristate acetate (PMA), a PKC activator, up-regulated cyclin D1 expression and increased the proliferation of passively sensitized HASMCs. This effect was significantly decreased by specific inhibition of PKC alpha with Go6976. In addition, the authors showed that transfection with antisense cyclin D1 abolished PMA-induced G1/S progression and HASMC proliferation. These results demonstrate that PKC alpha promotes the proliferation of HASMCs sensitized with atopic asthmatic serum via up-regulation of cyclin D1 expression.
Collapse
Affiliation(s)
- Chun-Ling Du
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
de Rezende Corrêa G, da Silva Cunha KC, dos Santos AA, de Araujo EG. The Trophic Effect of Ouabain on Retinal Ganglion Cell is Mediated by EGF Receptor and PKC δ Activation. Neurochem Res 2010; 35:1343-52. [DOI: 10.1007/s11064-010-0190-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2010] [Indexed: 01/11/2023]
|
25
|
Li S, Zhang D, Yang L, Burnier JV, Wang N, Lin R, Lee ER, Glazer RI, Brodt P. The IGF-I receptor can alter the matrix metalloproteinase repertoire of tumor cells through transcriptional regulation of PKC-{alpha}. Mol Endocrinol 2009; 23:2013-25. [PMID: 19855090 DOI: 10.1210/me.2009-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The IGF-I receptor (IGF-IR) was identified as a tumor progression factor, but its role in invasion and metastasis has been the subject of some controversy. Previously we reported that in murine lung carcinoma M-27 cells, overexpression of IGF-IR increased the synthesis and activation of matrix metalloproteinase (MMP)-2 via Akt/phosphatidylinositol 3-kinase signaling. In contrast, we show here that in these and other cells, IGF-IR overexpression reduced the constitutive and phorbol 12-myristate 13-acetate (PMA)-inducible expression of three protein kinase C (PKC)-regulated metalloproteinases, MMP-3, MMP-9, and MMP-13, in cultured cells as well as in vivo in sc tumors. To elucidate the underlying mechanism, we analyzed the effect of IGF-IR on PKC expression and activity using wild-type and IGF-IR-overexpressing (M-27(IGFIR)) tumor cells. Our results show that overexpression and activation of IGF-IR reduced PKC-alpha expression, PKC activity, and downstream ERK1/2 signaling, and these effects were reversed in cells expressing kinase (Y(1131,1135,1136)F) or C-terminal (Y(1250/51)F) domain mutants of IGF-IR. This reduction was due to transcriptional down-regulation of PKC-alpha as evidenced by reduced PKC-alpha mRNA expression in a phosphatidylinositol 3-kinase-dependent manner and a blockade of PKC-alpha promoter activation as revealed by a reporter gene assay. Finally, reconstitution of PKC-alpha levels could restore MMP-9 expression levels in these cells. Collectively, these results show that IGF-IR can inhibit PKC-alpha gene transcription and thereby block the synthesis of PMA-regulated MMPs, suggesting that within the same cells, IGF-IR can act as both a positive and negative regulator of MMP expression and function.
Collapse
Affiliation(s)
- Shun Li
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Murphy A, Tantisira KG, Soto-Quirós ME, Avila L, Klanderman BJ, Lake S, Weiss ST, Celedón JC. PRKCA: a positional candidate gene for body mass index and asthma. Am J Hum Genet 2009; 85:87-96. [PMID: 19576566 DOI: 10.1016/j.ajhg.2009.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 06/16/2009] [Indexed: 12/13/2022] Open
Abstract
Asthma incidence and prevalence are higher in obese individuals. A potential mechanistic basis for this relationship is pleiotropy. We hypothesized that significant linkage and candidate-gene association would be found for body mass index (BMI) in a population ascertained on asthma affection status. Linkage analysis for BMI was performed on 657 subjects in eight Costa Rican families enrolled in a study of asthma. Family-based association studies were conducted for BMI with SNPs within a positional candidate gene, PRKCA. SNPs within PRKCA were also tested for association with asthma. Association studies were conducted in 415 Costa Rican parent-child trios and 493 trios participating in the Childhood Asthma Management Program (CAMP). Although only modest evidence of linkage for BMI was obtained for the whole cohort, significant linkage was noted for BMI in females on chromosome 17q (peak LOD = 3.39). Four SNPs in a candidate gene in this region (PRKCA) had unadjusted association p values < 0.05 for BMI in both cohorts, with the joint p value for two SNPs remaining significant after adjustment for multiple comparisons (rs228883 and rs1005651, joint p values = 9.5 x 10(-)(5) and 5.6 x 10(-)(5)). Similarly, eight SNPs had unadjusted association p values < 0.05 for asthma in both populations, with one SNP remaining significant after adjustment for multiple comparisons (rs11079657, joint p value = 2.6 x 10(-)(5)). PRKCA is a pleiotropic locus that is associated with both BMI and asthma and that has been identified via linkage analysis of BMI in a population ascertained on asthma.
Collapse
Affiliation(s)
- Amy Murphy
- Channing Laboratory, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Haughian JM, Bradford AP. Protein kinase C alpha (PKCα) regulates growth and invasion of endometrial cancer cells. J Cell Physiol 2009; 220:112-8. [DOI: 10.1002/jcp.21741] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JMEM, Karim ZA, Whiteheart SW, Molkentin JD, Verkade P, Watson SP, Heemskerk JWM, Poole AW. PKCalpha regulates platelet granule secretion and thrombus formation in mice. J Clin Invest 2009; 119:399-407. [PMID: 19147982 DOI: 10.1172/jci34665] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/03/2008] [Indexed: 12/21/2022] Open
Abstract
Platelets are central players in atherothrombosis development in coronary artery disease. The PKC family provides important intracellular mechanisms for regulating platelet activity, and platelets express several members of this family, including the classical isoforms PKCalpha and PKCbeta and novel isoforms PKCdelta and PKCtheta. Here, we used a genetic approach to definitively demonstrate the role played by PKCalpha in regulating thrombus formation and platelet function. Thrombus formation in vivo was attenuated in Prkca-/- mice, and PKCalpha was required for thrombus formation in vitro, although this PKC isoform did not regulate platelet adhesion to collagen. The ablation of in vitro thrombus formation in Prkca-/- platelets was rescued by the addition of ADP, consistent with the key mechanistic finding that dense-granule biogenesis and secretion depend upon PKCalpha expression. Furthermore, defective platelet aggregation in response to either collagen-related peptide or thrombin could be overcome by an increase in agonist concentration. Evidence of overt bleeding, including gastrointestinal and tail bleeding, was not seen in Prkca-/- mice. In summary, the effects of PKCalpha ablation on thrombus formation and granule secretion may implicate PKCalpha as a drug target for antithrombotic therapy.
Collapse
Affiliation(s)
- Olga Konopatskaya
- Department of Physiology & Pharmacology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reyland ME. Protein kinase C isoforms: Multi-functional regulators of cell life and death. Front Biosci (Landmark Ed) 2009; 14:2386-99. [PMID: 19273207 DOI: 10.2741/3385] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family consists of 10 related serine/threonine protein kinases some of which are critical regulators of cell proliferation, survival and cell death. While early studies relied on broad spectrum chemical activators or inhibitors of this family, the generation of isoform specific tools has greatly facilitated our understanding of the contribution of specific PKC isoforms to cell proliferation and apoptosis. These studies suggest that PKC-alpha, PKC-epsilon, and the atypical PKC's, PKC-lambda/iota and PKC-zeta, preferentially function to promote cell proliferation and survival, while the novel isoform, PKC-delta is an important regulator of apoptosis. The essential role of this kinase family in both cell survival and apoptosis suggests that specific isoforms may function as molecular sensors, promoting cell survival or cell death depending on environmental cues. Given their central role in cell and tissue homeostasis, it is not surprising that the expression or activity of some of these kinases is altered in human diseases, particularly cancer.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| |
Collapse
|
30
|
Jackson TC, Rani A, Kumar A, Foster TC. Regional hippocampal differences in AKT survival signaling across the lifespan: implications for CA1 vulnerability with aging. Cell Death Differ 2008; 16:439-48. [PMID: 19039330 PMCID: PMC2680608 DOI: 10.1038/cdd.2008.171] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Distinct neuronal populations differ by the degree of damage caused from cellular stress. Hippocampal neurons of area CA1 are especially vulnerable to several stressors that increase as age advances. We show here that survival signaling, as measured by activated protein kinase B (AKT), was significantly reduced in the nuclear CA1 region across the lifespan compared with CA3. In agreement with these findings, the pro-apoptotic protein and AKT nuclear substrate, forkhead box O3a transcription factor (FOXO3a), were significantly higher in CA1. Further, regional differences in PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), a recently discovered inhibitor of AKT, inversely correlated with nuclear phosphorylated AKT at Ser473. Altogether, our data suggest that regional differences in nuclear levels of activated AKT may contribute to regional differences in hippocampal vulnerability and implicate PHLPP1 as a potential target for therapeutic intervention to improve hippocampal health.
Collapse
Affiliation(s)
- T C Jackson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | | | |
Collapse
|
31
|
Shatos MA, Hodges RR, Oshi Y, Bair JA, Zoukhri D, Kublin C, Lashkari K, Dartt DA. Role of cPKCalpha and nPKCepsilon in EGF-stimulated goblet cell proliferation. Invest Ophthalmol Vis Sci 2008; 50:614-20. [PMID: 18824739 DOI: 10.1167/iovs.08-2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors determined the role of the protein kinase C (PKC) isoforms cPKCalpha and nPKCepsilon in EGF-stimulated proliferation of cultured rat and human conjunctival goblet cells. METHODS Rat and human conjunctivas were minced, and goblet cells were allowed to grow. Passage 1 cells were serum starved for 24 to 48 hours and were incubated with the PKC inhibitors calphostin C and Gö 6983 (10(-10)-10(-7) M) for 20 minutes before stimulation with EGF (10(-7) M) for 24 hours. The presence and localization of PKC isoforms in cultured rat goblet cells were determined by Western blot analysis and immunofluorescence microscopy, respectively. Cultured rat goblet cells were serum starved and incubated with adenoviruses containing genes for dominant-negative cPKCalpha (Ad DNPKCalpha, 10(4) pfu), dominant-negative nPKCepsilon (Ad DNPKCepsilon, 10(4) pfu), and wild-type cPKCalpha (Ad WTPKCalpha, 10(7) pfu), and proliferation was measured. RESULTS In rat goblet cells, EGF-stimulated proliferation was completely inhibited by calphostin C, whereas Gö 6983 inhibited proliferation by 53%+/-15%. In human goblet cells, EGF-stimulated proliferation was completely inhibited by calphostin C. PKCalpha, -betaI, -betaII, -delta, -epsilon, -iota/lambda, -theta, -gamma, and -zeta were found in cultured rat goblet cells. Ad DNPKCalpha and Ad DNPKCepsilon inhibited EGF-stimulated proliferation in rat goblet cells by 78%+/-6% and 92%+/-8%, respectively. Incubation with Ad WTPKCalpha alone significantly increased proliferation. CONCLUSIONS cPKCalpha and nPKCepsilon play key roles in conjunctival goblet cell proliferation.
Collapse
Affiliation(s)
- Marie A Shatos
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lin KY, Fang CL, Uen YH, Chang CC, Lou HY, Hsieh CR, Tiong C, Pan S, Chen SH. Overexpression of protein kinase Calpha mRNA may be an independent prognostic marker for gastric carcinoma. J Surg Oncol 2008; 97:538-43. [PMID: 18314869 DOI: 10.1002/jso.20997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES The variability of the prognosis of gastric carcinoma drives extensive researches for novel prognostic markers. The aims of this study were to correlate the expression of protein kinase Calpha (PKCalpha) mRNA with clinicopathological parameters and to evaluate the significant value of PKCalpha in gastric carcinoma prognosis. METHODS PKCalpha mRNA levels were analyzed in tumor/non-tumor pairs of gastric tissues from surgical specimens of 41 patients with gastric carcinoma employing quantitative real-time polymerase chain reaction. Expression of PKCalpha in gastric carcinoma was also examined using immunohistochemistry. RESULTS PKCalpha mRNA expression was significantly upregulated in gastric carcinoma (P = 0.007). Overexpression of PKCalpha mRNA was correlated with distant metastasis (P = 0.040). Patients with high PKCalpha mRNA expression had a significantly poorer overall survival compared with patients with low PKCalpha mRNA expression (P = 0.0113). The uni-variate Cox regression analysis showed that high PKCalpha mRNA expression (P = 0.0363) and depth of invasion (P = 0.0443) were two significant prognostic markers for gastric carcinoma. In backward stepwise multi-variate analysis, PKCalpha mRNA overexpression was also proved to be an independent prognostic marker for gastric carcinoma (P = 0.0275). CONCLUSIONS Our results suggest that overexpression of PKCalpha mRNA has correlation with distant metastasis and may be an independent prognostic marker for gastric carcinoma.
Collapse
Affiliation(s)
- Kai-Yuan Lin
- Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Räägel H, Lust M, Uri A, Pooga M. Adenosine-oligoarginine conjugate, a novel bisubstrate inhibitor, effectively dissociates the actin cytoskeleton. FEBS J 2008; 275:3608-24. [DOI: 10.1111/j.1742-4658.2008.06506.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Teicher BA. Combination of Antiangiogenic Therapy with Other Anticancer Therapies. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
The cigarette smoke carcinogen benzo[a]pyrene enhances human papillomavirus synthesis. J Virol 2007; 82:1053-8. [PMID: 17989183 DOI: 10.1128/jvi.01813-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiological studies suggest that cigarette smoke carcinogens are cofactors which synergize with human papillomavirus (HPV) to increase the risk of cervical cancer progression. Benzo[a]pyrene (BaP), a major carcinogen in cigarette smoke, is detected in the cervical mucus and may interact with HPV. Exposure of cervical cells to high concentrations of BaP resulted in a 10-fold increase in HPV type 31 (HPV31) viral titers, whereas treatment with low concentrations of BaP resulted in an increased number of HPV genome copies but not an increase in virion morphogenesis. BaP exposure also increased HPV16 and HPV18 viral titers. Overall, BaP modulation of the HPV life cycle could potentially enhance viral persistence, host tissue carcinogenesis, and permissiveness for cancer progression.
Collapse
|
36
|
Mei N, Guo L, Liu R, Fuscoe JC, Chen T. Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats. BMC Bioinformatics 2007; 8 Suppl 7:S4. [PMID: 18047727 PMCID: PMC2099496 DOI: 10.1186/1471-2105-8-s7-s4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats. Results Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a P-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail. Conclusion The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks.
Collapse
Affiliation(s)
- Nan Mei
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | | | | | | | |
Collapse
|
37
|
Podar K, Raab MS, Chauhan D, Anderson KC. The therapeutic role of targeting protein kinase C in solid and hematologic malignancies. Expert Opin Investig Drugs 2007; 16:1693-707. [PMID: 17922632 DOI: 10.1517/13543784.16.10.1693] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The protein kinase C (PKC) family, the most prominent target of tumor-promoting phorbol esters, is functionally linked to cell differentiation, growth, survival, migration and tumorigenesis and so mediates tumor cell proliferation, survival, multidrug resistance, invasion, metastasis and tumor angiogenesis. Therefore, targeting PKC isozymes may represent an attractive target for novel anticancer therapies. Recent preclinical and clinical studies using the macrocyclic bisindolylmaleimide enzastaurin or the N-benzylstaurosporine midostaurin demonstrate promising activity of PKC inhibitors in a variety of tumors, including diffuse large B-cell lymphoma, multiple myeloma and Waldenstroem's macroglobulinemia. However, our knowledge of PKCs in tumorigenesis is still only partial and each PKC isoform may contribute to tumorigenesis in a distinct way. Specifically, PKC isoforms have vastly different roles, which vary depending on expression levels of organ and tissue distribution, cell type, intracellular localization, protein-protein and lipid-protein interactions and the biologic environment. Although PKC activation generally positively affects tumor cell growth, motility, invasion and metastasis, recent reports show that many PKCs can also have negative effects. Therefore, it is necessary to further dissect the relative contribution of PKC isozymes in the development and progression of specific tumors in order to identify therapeutic opportunities, using either PKC inhibitors or PKC activators.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
38
|
Bouwman RA, Musters RJP, van Beek-Harmsen BJ, de Lange JJ, Lamberts RR, Loer SA, Boer C. Sevoflurane-induced cardioprotection depends on PKC-alpha activation via production of reactive oxygen species. Br J Anaesth 2007; 99:639-45. [PMID: 17905752 DOI: 10.1093/bja/aem202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously demonstrated the involvement of the Ca2+-independent protein kinase C-delta (PKC-delta) isoform in sevoflurane-induced cardioprotection against ischaemia and reperfusion (I/R) injury. Since sevoflurane is known to modulate myocardial Ca2+-handling directly, in this study we investigated the role of the Ca2+-dependent PKC-alpha isoform in sevoflurane-induced cardioprotective signalling in relation to reactive oxygen species (ROS), adenosine triphosphate-sensitive mitochondrial K+ (mitoK+(ATP)) channels, and PKC-delta. METHODS Preconditioned (15 min 3.8 vol% sevoflurane) isolated rat right ventricular trabeculae were subjected to I/R, consisting of 40 min superfusion with hypoxic, glucose-free buffer, followed by normoxic glucose-containing buffer for 60 min. After reperfusion, contractile recovery was expressed as percentage of force development before I/R. The role of PKC-alpha, ROS, mitoK+(ATP) channels, and PKC-delta was established using the following pharmacological inhibitors: Go6976 (GO; 50 nM), n-(2-mercaptopropionyl)-glycine (MPG; 300 microM), 5-hydroxydecanoic acid sodium (5HD; 100 microM), and rottlerin (ROT; 1 microM). RESULTS Preconditioning of trabeculae with sevoflurane improved contractile recovery after I/R [65 (3)% (I/R + SEVO) vs 47 (3)% (I/R); n = 8; P < 0.05]. This cardioprotective effect was attenuated in trabeculae treated with GO [42 (4)% (I/R + SEVO + GO); P > 0.05 vs (I/R)]. In sevoflurane-treated trabeculae, PKC-alpha translocated towards mitochondria, as shown by immunofluorescent co-localization analysis. GO and MPG, but not 5HD or ROT, abolished this translocation. CONCLUSIONS Sevoflurane improves post-ischaemic contractile recovery via activation of PKC-alpha. ROS production, but not opening of mitoK+(ATP) channels, precedes PKC-alpha translocation towards mitochondria. This study shows the involvement of Ca2+-dependent PKC-alpha in addition to the well-established role of Ca2+-independent PKC isoforms in sevoflurane-induced cardioprotection.
Collapse
Affiliation(s)
- R A Bouwman
- VU University Medical Center (VUMC), Department of Anaesthesiology, Institute for Cardiovascular Research Vrije Universiteit (ICaR-VU), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Magnifico A, Albano L, Campaner S, Campiglio M, Pilotti S, Ménard S, Tagliabue E. Protein kinase Calpha determines HER2 fate in breast carcinoma cells with HER2 protein overexpression without gene amplification. Cancer Res 2007; 67:5308-17. [PMID: 17545611 DOI: 10.1158/0008-5472.can-06-3936] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In some HER2-positive breast tumors, cell surface overexpression of HER2 is not associated with gene amplification but may instead rest in altered gene transcription, half-life, or recycling of the oncoprotein. Here, we show that HER2 overexpression in HER2 2+ carcinomas is associated with neither an increase in gene transcription nor a deregulation in the ubiquitin-dependent pathways, but instead seems to be regulated by protein kinase Calpha (PKCalpha) activity. The stimulation of PKCalpha up-regulated HER2 expression, whereas PKCalpha inhibition by pharmacologic treatments and PKCalpha-specific small interfering RNA led to a dramatic down-regulation of HER2 levels only in breast cancer cells HER2 2+. Consistent with the in vitro data, our biochemical analysis of HER2 2+ human primary breast specimens revealed significantly higher levels of phosphorylated PKCalpha compared with HER2-negative tumors. Inhibition of HER2 activation by the tyrosine kinase inhibitor lapatinib led to decreased levels of PKCalpha phosphorylation, clearly indicating a cross-talk between PKCalpha and HER2 molecules. These data suggest that HER2 overexpression in HER2 2+ carcinomas is due to an accumulation of the recycled oncoprotein to the cell surface induced by activated PKCalpha.
Collapse
Affiliation(s)
- Alessandra Magnifico
- Molecular Targeting Unit, Department of Experimental Oncology, National Cancer Institute, Foundation IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Vlcek S, Foisner R. A-type lamin networks in light of laminopathic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:661-74. [PMID: 16934891 DOI: 10.1016/j.bbamcr.2006.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/10/2006] [Accepted: 07/12/2006] [Indexed: 11/22/2022]
Abstract
Lamins are major structural components of the lamina providing mechanical support for the nuclear envelope in vertebrates. A subgroup of lamins, the A-type lamins, are only expressed in differentiated cells and serve important functions both at the nuclear envelope and in the nucleoplasm in higher order chromatin organization and gene regulation. Mutations in A-type lamins cause a variety of diseases from muscular dystrophy and lipodystrophy to systemic diseases such as premature ageing syndromes. The molecular basis of these diseases is still unknown. Here we summarize known interactions of A-type lamins with components of the nuclear envelope and the nucleoplasm and discuss their potential involvement in the etiology and molecular mechanisms of the diseases. Lamin binding partners involve chromatin proteins potentially involved in higher order chromatin organization, transcriptional regulators controlling gene expression during cell cycle progression, differentiation and senescence, and several enzymes involved in a multitude of functions.
Collapse
Affiliation(s)
- Sylvia Vlcek
- Max. F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
41
|
Prigozhina NL, Zhong L, Hunter EA, Mikić I, Callaway S, Roop DR, Mancini MA, Zacharias DA, Price JH, McDonough PM. Plasma membrane assays and three-compartment image cytometry for high content screening. Assay Drug Dev Technol 2007; 5:29-48. [PMID: 17355198 DOI: 10.1089/adt.2006.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High throughput image cytometers analyze individual cells in digital photomicrographs by first assigning pixels within each image to plasma membrane, cytoplasm, nucleus, or other regions. In this study, we report on a novel algorithm that: 1) identifies plasma membrane regions to measure changes in plasma membrane-associated proteins (protein kinase C [PKC] alpha, N-cadherin, E-cadherin, vascular endothelium [VE]-cadherin, and pan-cadherin) that regulate cell division, migration, and adhesion and 2) delineates the cell for generalized three-compartment image cytometry. Validation assays were performed for these proteins on cells cultured in 96-well plates and also for tissue sections obtained from transgenic and chemical carcinogenic models of skin cancer. The algorithm successfully quantified phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane localization of PKCalpha in HeLa cells (Z' of 0.88). Additionally, PMA activated translocation to the plasma membrane at P < .01 of N-cadherin (in HeLa cells), E-cadherin (in A431 cells), and VE-cadherin (in human dermal microvascular endothelial cells), suggesting a relationship between PKCalpha activity and cadherin localization. For VE-cadherin, a Z' of 0.52 was obtained between serum-free medium, which increased VE-cadherin, and EGTA, which diminished VE-cadherin at the plasma membrane. For sections obtained from the transgenic skin cancer model, analysis of images with the plasma membrane algorithm revealed that tumor cells exhibited cadherin expression that was just 34% of that expressed by surrounding normal tissue; furthermore, tumor cells expressed elevated DNA content, consistent with development of aneuploidy. In contrast, increased DNA content did not occur for tumor cells produced by chemical carcinogenesis. The results demonstrate that this new algorithm for plasma membrane image cytometry enables statistically significant analyses in a variety of applications in both cultured cells and tissue sections.
Collapse
|
42
|
Blasius R, Dicato M, Diederich M. Effect of Curcumin Treatment on Protein Phosphorylation in K562 Cells. Ann N Y Acad Sci 2007; 1095:377-87. [PMID: 17404050 DOI: 10.1196/annals.1397.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deregulation of signaling pathways is a common feature observed in human cancers and other diseases. Therefore, there is a strong need for compounds that are able to modulate or inactivate upregulated signaling events. Natural compounds extracted from plants have long been used and still present a dynamic domain in the research of new therapeutic tools. Among those molecules, curcumin was already described for its antioxidative, anti-inflammatory, and antiseptic properties. Many actions of curcumin target proteins and kinases implicated in the signaling pathways. However, the effects described depend on the treatment conditions used, as well as the cell line studied, and these features vary strongly from one study to the other. During this work, we evaluated the effect of one curcumin treatment (20 muM, 48 h) on the phosphorylation of a number of proteins and kinases in the human chronic myelogenous leukemia cell line K562. These results allow to compare the results obtained in one condition on various proteins.
Collapse
Affiliation(s)
- Romain Blasius
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | |
Collapse
|
43
|
|
44
|
Michie AM, Nakagawa R. Elucidating the role of protein kinase C in chronic lymphocytic leukaemia. Hematol Oncol 2006; 24:134-8. [PMID: 16841369 DOI: 10.1002/hon.789] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While advances have been made in the clinical treatment of chronic lymphocytic leukaemia (CLL) in recent years, it is still an incurable disease and therefore the identification of novel drug therapies is of paramount importance. Understanding the molecular mechanisms that govern the survival of CLL cells is fundamental in achieving this goal. A number of studies indicate that protein kinase C (PKC)- and phosphatidylinositol-3-kinase (PI3K)- mediated signalling pathways are central to CLL cell survival, and as such PKC has gained renewed interest as a potential drug target in CLL. This may be because it represents a closely-related family of ten protein kinases, which due to the redundancy that exists between isoforms offers an opportunity for the design of isoform specific inhibitors drugs that target leukaemic cells whilst showing reduced toxicity for normal cells. Indeed, PKC signalling pathways have already been considered as targets for specific anticancer drugs [1-3]. Therefore, this short review will focus on the effect of modulating PKC activity in CLL cells and explore whether targeting PKCs could represent a valid therapy for this leukaemia.
Collapse
MESH Headings
- Cell Survival/drug effects
- Cell Survival/genetics
- Enzyme Activation/drug effects
- Enzyme Activation/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Alison M Michie
- Division of Cancer Science and Molecular Pathology, Section of Experimental Haematology, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
45
|
Frankel LB, Lykkesfeldt AE, Hansen JB, Stenvang J. Protein Kinase C alpha is a marker for antiestrogen resistance and is involved in the growth of tamoxifen resistant human breast cancer cells. Breast Cancer Res Treat 2006; 104:165-79. [PMID: 17061041 DOI: 10.1007/s10549-006-9399-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 01/11/2023]
Abstract
Development of resistance to antiestrogen treatment in breast cancer patients is a serious therapeutic problem. The molecular mechanisms contributing to resistance are currently unclear; however it is known that increased activation of growth signaling pathways is involved. Protein Kinase C alpha (PKCalpha) is associated with a diverse range of cancers and is previously shown to be overexpressed in three out of four antiestrogen resistant breast cancer cell lines. In this study we investigated whether PKCalpha contributes to antiestrogen resistant growth. A panel of nine resistant cell lines was investigated, all of which displayed elevated levels of PKCalpha expression relative to parental MCF-7 cells. Stable PKCalpha overexpression in MCF-7 cells significantly reduced sensitivity to the antiestrogens, tamoxifen and ICI 182,780. Two resistant cell lines were chosen for further studies: tamoxifen resistant MCF-7/TAM(R)-1 (TAM(R)-1) and ICI 182,780 resistant MCF-7/182(R)-6 (182(R)-6). Treatment with the PKCalpha inhibitor Ro-32-0432 resulted in a preferential growth inhibition of these two cell lines relative to MCF-7 cells. Moreover, transient down-regulation of PKCalpha resulted in a 30-40% growth inhibition of TAM(R)-1 and 182(R)-6, while MCF-7 remained unaffected. Stable PKCalpha knock-down in TAM(R)-1 using small hairpin RNA, resulted in a tamoxifen sensitive "MCF-7-like" growth phenotype, while the same approach in 182(R)-6 cells did not alter their sensitivity to ICI 182,780. These results demonstrate a functional contribution of PKCalpha to tamoxifen resistant growth. Furthermore, our data suggest the potential for PKCalpha as a marker for antiestrogen resistance and as a promising therapeutic target in the treatment of tamoxifen resistant breast cancer.
Collapse
Affiliation(s)
- Lisa B Frankel
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
46
|
Synthetic nucleic acids as potential therapeutic tools for treatment of bladder carcinoma. Eur Urol 2006; 51:315-26; discussion 326-7. [PMID: 16935415 DOI: 10.1016/j.eururo.2006.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 07/25/2006] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Abnormal gene activation in human tumours including bladder cancers (bCAs) may cause altered proliferation, maturation, and apoptosis as well as development of resistance to therapeutic interventions. Therefore, silencing of abnormally activated genes appears to be a rational approach for specific target-directed and sensitising therapies. METHODS Of the available strategies for gene silencing, antisense-based techniques have attracted much attention and are the focus of this review. Putative target genes should be involved in essential tumour-promoting pathways, such as growth signalling, immortalisation, cell cycle regulation, apoptosis, angiogenesis, and development of therapy resistances. This review gives an overview of selected studies performed on bCA-derived cell lines and xenografts reporting down-regulation of potential target genes by antisense-based synthetic nucleic acids such as antisense oligodeoxynucleotides (AS-ODNs) and small interfering RNAs (siRNAs). Effects on proliferation of bCA cells and enhancement of the cytotoxic action of different chemotherapeutics were evaluated. RESULTS Knock-down of the selected target genes frequently caused an impairment of growth of different bCA cell lines originating from cell cycle arrest or increased apoptosis. In numerous studies, the pretreatment with AS-ODNs or siRNAs provoked strong enhancement of subsequent chemotherapies, emphasising the effectiveness of these inhibition approaches. CONCLUSIONS The application of antisense-based inhibitors in combination with chemotherapeutics might represent an alternative strategy for the adjuvant treatment of superficial bCA. Nevertheless, translation of this technology to the clinic might be hampered by inestimable off-target effects caused by AS-ODNs and their behaviour after intravesical instillation has to be evaluated in preclinical and clinical trials.
Collapse
|
47
|
Singhal SS, Yadav S, Singhal J, Awasthi YC, Awasthi S. Mitogenic and drug-resistance mediating effects of PKCalpha require RLIP76. Biochem Biophys Res Commun 2006; 348:722-7. [PMID: 16890208 PMCID: PMC2916682 DOI: 10.1016/j.bbrc.2006.07.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
PKCalpha-activation is a key signaling event governing cell growth, stress-resistance, and drug-resistance. Our recent studies demonstrated that DOX-resistance mediating effects of PKCalpha require the presence of RLIP76, and their concerted action is sufficient to explain intrinsic DOX-resistance of NSCLC [S.S. Singhal, D. Wickramarachchi, J. Singhal, S. Yadav, Y.C. Awasthi, et al., Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Lett. 580 (2006) 2258-2264]. Present studies were carried out to further explore the suggestion from the previous studies that the mitogenic effects of PKCalpha also require RLIP76. RLIP76-/- MEFs were resistant to PKCalpha-depletion mediated growth inhibition, as well as to the PKCalpha-dependent mitogen, phorbol 12-myristate 13-acetate (PMA). Augmenting cellular levels of RLIP76 using purified recombinant RLIP76 increased growth rate in all cells, and restored the sensitivity of RLIP76-/- MEFs to both inhibition through PKCalpha-depletion and stimulation through PMA. These results show that RLIP76 is a necessary down-stream effector for PKCalpha-mediated mitogenesis.
Collapse
Affiliation(s)
- Sharad S. Singhal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - Sushma Yadav
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - Jyotsana Singhal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - Yogesh C. Awasthi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0647, USA
| | - Sanjay Awasthi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
- Corresponding author. Fax: +1 817 272 3808. (S. Awasthi)
| |
Collapse
|
48
|
Bokhari SM, Zhou L, Karasek MA, Paturi SG, Chaudhuri V. Regulation of skin microvasculature angiogenesis, cell migration, and permeability by a specific inhibitor of PKCalpha. J Invest Dermatol 2006; 126:460-7. [PMID: 16374459 DOI: 10.1038/sj.jid.5700071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of protein kinase C (PKC) induces phenotypic changes in the morphology of microvascular endothelial cells that affect major functions of the microvasculature. These functions include the first stages of sprouting in angiogenesis, cell migration following wounding, and vascular permeability. The specific isoform(s) of PKC responsible for each of these changes has not been previously identified. In this study, we used two inflammatory agents, IL-1beta and phorbol myristic acetate, to activate PKC isozymes and specific inhibitors of PKCalpha (Gö6976) and PKCbeta (hispidin) to distinguish how each of these isoform(s) controls angiogenesis, wound healing, and permeability. In all cases, only inhibition of PKCalpha inhibited each of these functions when compared to the inhibition of PKCbeta. Additional analysis of the mechanism of action of Gö6976 (RT-PCR, Western blots, and immunohistochemistry) of the changes in the phosphorylated and nonphosphorylated forms of PKCalpha in the cell membrane and cytoplasm confirmed the specificity of PKCalpha inhibition by Gö6976. These studies therefore indicate a specific and a regulatory role of the PKCalpha isoform in three major endothelial cell functions that are important in the maintenance of microvascular homeostasis.
Collapse
Affiliation(s)
- Sirosh M Bokhari
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
49
|
Nakagawa R, Soh JW, Michie AM. Subversion of protein kinase C alpha signaling in hematopoietic progenitor cells results in the generation of a B-cell chronic lymphocytic leukemia-like population in vivo. Cancer Res 2006; 66:527-34. [PMID: 16397269 DOI: 10.1158/0008-5472.can-05-0841] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived mature B cells with the distinctive phenotype CD19(hi) CD5+ CD23+ IgM(lo), which are refractory to apoptosis. An increased level of apoptosis has been observed on treatment of human B-CLL cells with protein kinase C (PKC) inhibitors, suggesting that this family of protein kinases mediate survival signals within B-CLL cells. Therefore, to investigate the ability of individual PKC isoforms to transform developing B cells, we stably expressed plasmids encoding PKC mutants in fetal liver-derived hematopoietic progenitor cells (HPC) from wild-type mice and then cultured them in B-cell generation systems in vitro and in vivo. Surprisingly, we noted that expression of a plasmid-encoding dominant-negative PKC alpha (PKC alpha-KR) in HPCs and subsequent culture both in vitro and in vivo resulted in the generation of a population of cells that displayed an enhanced proliferative capacity over untransfected cells and phenotypically resemble human B-CLL cells. In the absence of growth factors and stroma, these B-CLL-like cells undergo cell cycle arrest and, consistent with their ability to escape growth factor withdrawal-induced apoptosis, exhibited elevated levels of Bcl-2 expression. These studies therefore identify a unique oncogenic trigger for the development of a B-CLL-like disease resulting from the subversion of PKC alpha signaling. Our findings uncover novel avenues not only for the study of the induction of leukemic B cells but also for the development of therapeutic drugs to combat PKC alpha-regulated transformation events.
Collapse
Affiliation(s)
- Rinako Nakagawa
- Division of Immunology, Infection and Inflammation, Western Infirmary, University of Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|
50
|
Tan M, Li P, Sun M, Yin G, Yu D. Upregulation and activation of PKC alpha by ErbB2 through Src promotes breast cancer cell invasion that can be blocked by combined treatment with PKC alpha and Src inhibitors. Oncogene 2006; 25:3286-95. [PMID: 16407820 DOI: 10.1038/sj.onc.1209361] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although ErbB2 is known to enhance breast cancer metastasis, the signaling events responsible for this remain elusive. Alpha-isozyme of protein kinase C (PKCalpha), which is involved in cancer development and progression, has been suggested to be activated by ErbB2 without direct evidence. In addition, the roles of PKCalpha in ErbB2-mediated cancer cell malignancy have not been clearly identified. In this study, we investigated whether ErbB2 can activate PKCalpha and determined what role PKCalpha plays in ErbB2-mediated breast cancer cell invasion. We expressed wild-type and mutant ErbB2 with altered signaling capacities in MDA-MB-435 breast cancer cells and revealed that overexpression or activation of ErbB2 in MDA-MB-435 cells upregulated and activated PKCalpha and that downregulation of ErbB2 by small-interfering RNA decreased the expression and activity of PKCalpha in BT474 breast cancer cells. These in vitro results were supported by data from breast cancer patient samples. In 150 breast cancer tumor samples, ErbB2-overexpressing tumors showed significantly higher positive rates of PKCalpha membrane immunohistochemistry staining than that of ErbB2-low-expressing tumors. Mechanistically, we found that PKCalpha is co-immunoprecipitated with Src and PKCalpha expression and activity can be decreased by Src inhibitor PP2 and by the expression of a dominant-negative mutant of Src. Moreover, ErbB2-mediated upregulation of urokinase-type plasminogen activator receptor (uPAR) is reduced by either the PKCalpha inhibitor Go6976 or the Src inhibitor PP2, and the combination of Go6976 with PP2 is superior to either agent alone in suppressing uPAR expression and cell invasion. These results demonstrate that PKCalpha is critical for ErbB2-mediated cancer cell invasion and provide valuable insights for current and future PKCalpha and Src inhibitor clinical trials.
Collapse
Affiliation(s)
- M Tan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | |
Collapse
|