1
|
Hernaez-Estrada B, Steele LA, Spiller KL. Effects of a bioengineered allogeneic cellular construct on burn-related macrophage phenotype. Wound Repair Regen 2024. [PMID: 39359182 DOI: 10.1111/wrr.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Bioengineered allogeneic cellularised constructs (BACC) exert pro-healing effects in burn wounds and skew macrophage phenotype towards a predominately reparative phenotype. However, whether BACC can modulate the phenotype of dysregulated macrophages, like those present in burn wounds, is not known. To better understand the macrophage modulatory characteristics of the BACC, primary human macrophages were polarised to the M2b phenotype, an immunosuppressive phenotype relevant to burn wounds, by simultaneously exposing macrophages to polystyrene plate-coated immunoglobulin G and the endotoxin lipopolysaccharide (LPS). The resulting macrophage phenotype upregulated both inflammatory and reparative genes, and increased secretion of the M2b marker CCL1 compared to five different in vitro macrophage phenotypes. M2b macrophages were cultured with the BACC in the presence or absence of LPS to mimic infection, which is a common occurrence in burn wounds. The BACC caused up-regulation of reparative gene sets and down-regulation of pro-inflammatory gene sets, even when LPS was present in the cell culture media. Co-cultures were maintained for 1, 3, or 5 days in the presence of LPS, and by day 1 both non-activated macrophages and M2b macrophages exhibited signs of endotoxin tolerance, as demonstrated by a reduced secretion of tumour necrosis factor α (TNFα) in response to fresh LPS stimulus. The BACC was not able to prevent endotoxin tolerance, but reparative genes were upregulated in macrophages chronically exposed to LPS. These results suggest that the BACC can promote a reparative phenotype in dysregulated macrophages relevant to the pathophysiology of burns.
Collapse
Affiliation(s)
- Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Catarino JDS, de Oliveira RF, Silva MV, Sales-Campos H, de Vito FB, da Silva DAA, Naves LL, Oliveira CJF, Rodrigues DBR, Rodrigues V. Genetic variation of FcγRIIa induces higher uptake of Leishmania infantum and modulates cytokine production by adherent mononuclear cells in vitro. Front Immunol 2024; 15:1343602. [PMID: 38455048 PMCID: PMC10917923 DOI: 10.3389/fimmu.2024.1343602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Single nucleotide variations (SNVs) are specific genetic variations that commonly occur in a population and often do not manifest phenotypically. However, depending on their location and the type of nucleotide exchanged, an SNV can alter or inhibit the function of the gene in which it occurs. Immunoglobulin G (IgG) receptor genes have exhibited several polymorphisms, including rs1801274, which is found in the FcgRIIa gene. The replacement of A with T results in a Histidine (H) to Arginine (R) substitution, altering the affinity of the IgG receptor for IgG subtypes and C-reactive protein (CRP). In this study, we analyzed rs1801274 and its functional implications concerning L. Infantum uptake and cytokine production. Methods We genotyped 201 individuals from an endemic area for visceral leishmaniasis to assess the presence of rs1801274 using Taqman probes for a candidate gene study. Additionally, we included seventy individuals from a non-endemic area for a functional study. Subsequently, we isolated and cultivated one-week adherent mononuclear cells (AMCs) derived from the peripheral blood of participants residing in the non-endemic region in the presence of L. infantum promastigotes, with and without antigen-specific IgG and/or CRP. We analyzed the rate of phagocytosis and the production of nitric oxide (NO), tumor necrosis factor (TNF)-a, interleukin (IL)-10, IL-12 p70, IL-1b, IL- 6, and IL-8 in the culture supernatants. Results and discussion In participants from the endemic region, the A/G (H/R isoform) heterozygous genotype was significantly associated with susceptibility to the disease. Furthermore, SNVs induced a change in the phagocytosis rate in an opsonin-dependent manner. Opsonization with IgG increased the production of IL-10, TNF-a, and IL-6 in AMCs with the H/R isoform, followed by a decrease in NO production. The results presented here suggest that the rs1801274 polymorphism is linked to a higher susceptibility to visceral leishmaniasis.
Collapse
Affiliation(s)
- Jonatas da Silva Catarino
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Rafael Faria de Oliveira
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius Silva
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helioswilton Sales-Campos
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Bernadelli de Vito
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Djalma Alexandre Alves da Silva
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Lucila Langoni Naves
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Denise Bertulucci Rocha Rodrigues
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- National Institute of Neuroimmuno Modulation, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Lin L, Bai K, Li J, Chiu PCN, Lee CL. Regulatory role of human endometrial gland secretome on macrophage differentiation. J Reprod Immunol 2023; 160:104158. [PMID: 37801890 DOI: 10.1016/j.jri.2023.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
The human endometrial gland plays a vital role in maternal immune tolerance and placental development. Decidual macrophages are the major phagocytic cells that regulate tissue remodeling during pregnancy. This study examines the regulatory effect of endometrial gland secretome on macrophage polarization and functions using endometrial organoid. We demonstrated that endometrial organoids treated with hormones mimicking the environment of the secretory phase/early pregnancy polarize macrophages to acquire a decidua-like macrophage phenotype, including higher expressions of decidual macrophage markers, reduced phagocytic capacity and altered cytokine secretion. The results indicated that endometrial gland secretomes are critical for maintaining macrophage homeostasis at the maternal-fetal interface.
Collapse
Affiliation(s)
- Leqian Lin
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kunfeng Bai
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guandong Provincial Clinical Research Center for Child Health, 9 Jinsui Rd, Guangzhou 510623, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
4
|
Zaidi Y, Corker A, Vasileva VY, Oviedo K, Graham C, Wilson K, Martino J, Troncoso M, Broughton P, Ilatovskaya DV, Lindsey ML, DeLeon-Pennell KY. Chronic Porphyromonas gingivalis lipopolysaccharide induces adverse myocardial infarction wound healing through activation of CD8 + T cells. Am J Physiol Heart Circ Physiol 2021; 321:H948-H962. [PMID: 34597184 PMCID: PMC8616607 DOI: 10.1152/ajpheart.00082.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Oral and gum health have long been associated with incidence and outcomes of cardiovascular disease. Periodontal disease increases myocardial infarction (MI) mortality by sevenfold through mechanisms that are not fully understood. The goal of this study was to evaluate whether lipopolysaccharide (LPS) from a periodontal pathogen accelerates inflammation after MI through memory T-cell activation. We compared four groups [no MI, chronic LPS, day 1 after MI, and day 1 after MI with chronic LPS (LPS + MI); n = 68 mice] using the mouse heart attack research tool 1.0 database and tissue bank coupled with new analyses and experiments. LPS + MI increased total CD8+ T cells in the left ventricle versus the other groups (P < 0.05 vs. all). Memory CD8+ T cells (CD44 + CD27+) were 10-fold greater in LPS + MI than in MI alone (P = 0.02). Interleukin (IL)-4 stimulated splenic CD8+ T cells away from an effector phenotype and toward a memory phenotype, inducing secretion of factors associated with the Wnt/β-catenin signaling that promoted monocyte migration and decreased viability. To dissect the effect of CD8+ T cells after MI, we administered a major histocompatibility complex-I-blocking antibody starting 7 days before MI, which prevented effector CD8+ T-cell activation without affecting the memory response. The reduction in effector cells diminished infarct wall thinning but had no effect on macrophage numbers or MertK expression. LPS + MI + IgG attenuated macrophages within the infarct without effecting CD8+ T cells, suggesting these two processes were independent. Overall, our data indicate that effector and memory CD8+ T cells at post-MI day 1 are amplified by chronic LPS to potentially promote infarct wall thinning.NEW & NOTEWORTHY Although there is a well-documented link between periodontal disease and heart health, the mechanisms are unclear. Our study indicates that in response to circulating periodontal endotoxins, memory CD8+ T cells are activated, resulting in an acceleration of macrophage-mediated inflammation after MI. Blocking activation of effector CD8+ T cells had no effect on the macrophage numbers or wall thinning at post-MI day 1, indicating that this response was likely due in part to memory CD8+ T cells.
Collapse
Affiliation(s)
- Yusra Zaidi
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alexa Corker
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Valeriia Y Vasileva
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kimberly Oviedo
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Connor Graham
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Kyrie Wilson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina
| | - John Martino
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Miguel Troncoso
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Philip Broughton
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
5
|
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms 2021; 9:microorganisms9112253. [PMID: 34835379 PMCID: PMC8618729 DOI: 10.3390/microorganisms9112253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.
Collapse
|
6
|
Lopes TCM, Almeida GG, Souza IA, Borges DC, de Lima WG, Prazeres PHDM, Birbrair A, Arantes RME, Mosser DM, Goncalves R. High-Density-Immune-Complex Regulatory Macrophages Promote Recovery of Experimental Colitis in Mice. Inflammation 2021; 44:1069-1082. [PMID: 33394188 DOI: 10.1007/s10753-020-01403-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
Macrophages not only play a fundamental role in the pathogenesis of inflammatory bowel disease (IBD), but they also play a major role in preserving intestinal homeostasis. In this work, we evaluated the role of macrophages in IBD and investigated whether the functional reprogramming of macrophages to a very specific phenotype could decrease disease pathogenesis. Thus, macrophages were stimulated in the presence of high-density immune complexes which strongly upregulate their production of IL-10 and downregulate pro-inflammatory cytokines. The transfer of these high-density-immune-complex regulatory macrophages into mice with colitis was examined as a potential therapy proposal to control the disease. Animals subjected to colitis induction received these high-density-immune-complex regulatory macrophages, and then the Disease Activity Index (DAI), and macroscopic and microscopic lesions were measured. The treated group showed a dramatic improvement in all parameters analyzed, with no difference with the control group. The colon was macroscopically normal in appearance and size, and microscopically colon architecture was preserved. The immunofluorescence migration assay showed that these cells migrated to the inflamed intestine, being able to locally produce the cytokine IL-10, which could explain the dramatic improvement in the clinical and pathological condition of the animals. Thus, our results demonstrate that the polarization of macrophages to a high IL-10 producer profile after stimulation with high-density immune complexes was decisive in controlling experimental colitis, and that macrophages are a potential therapeutic target to be explored in the control of colitis.
Collapse
Affiliation(s)
- Tamara Cristina Moreira Lopes
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Izabela Aparecida Souza
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diego Costa Borges
- Departamento de Bioquímica e Imunologia-Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| | - Wanderson Geraldo de Lima
- Departamento de Ciências Biológicas-Instituto de Ciências Biológicas e Exatas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Pedro Henrique Dias Moura Prazeres
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - David M Mosser
- Laboratory of Macrophage and Host Defense - Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ricardo Goncalves
- Departamento de Patologia Geral-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
8
|
Abstract
Immunotherapy has changed the landscape of cancer treatment and has significantly improved the outcome of several cancer types including breast, lung, colorectal and prostate. Neoantigen recognition and immune checkpoint inhibitors are nowadays the milestones of different immunotherapeutic regimes; however, high cost, primary and acquired resistance and the high variability of responses make their extensive use difficult. The development of better predictive biomarkers that represent tumour diversity shows promise because there is a significant body of clinical data showing a spectrum of immunotherapeutic responses that might be related back to their specific characteristics. This article makes a conceptual and historical review to summarise the main advances in our understanding of the role of the immune system in cancer, while describing the methodological details that have been successfully implemented on cancer treatments and that may hold the key to improved therapeutic approaches.
Collapse
|
9
|
Meng F, Chen P, Guo X, Li X, Wu Y, Liu W, Jiang F, Liu H, Wang L. Correlations between Serum P2X7, Vitamin A, 25-hydroxy Vitamin D, and Mycoplasma Pneumoniae Pneumonia. J Clin Lab Anal 2021; 35:e23760. [PMID: 33724522 PMCID: PMC8128307 DOI: 10.1002/jcla.23760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Identifying new molecular diagnostic markers for Mycoplasma Pneumoniae Pneumonia (MPP) has always been an essential topic since MPP cases have increased every year, especially among children. Here, we examined the correlation between serum level of Purinergic receptor P2X7, vitamin A, and 25‐hydroxy vitamin D (25(OH)D) and the severity of MPP, aiming to identify molecules that have the potential to become diagnostic markers. Methods This study was conducted on 186 cases aged 1–14 (136 MPP and 50 non‐MPP patients). Serum levels of Purinergic receptor P2X7, vitamin A, 25(OH)D, and multiple inflammatory and immune factors were measured, compared, and tested for statistical significance. Results Serum P2X7, tumor necrosis factor‐α (TNF‐α), and interleukin‐1β (IL‐1β) levels were significantly increased in severe MPP patients, while serum vitamin A, 25(OH)D, IgA, and IgG levels were significantly decreased. Conclusion Our results demonstrated a positive correlation between serum P2X7 level and the severity of MPP, and negative correlations between serum levels of vitamin A and 25(OH)D and the severity of MPP, suggesting that high serum levels of P2X7 and low serum levels of vitamin A and 25(OH)D may indicate relatively severer MPP.
Collapse
Affiliation(s)
- Fanjun Meng
- Medical Laboratory, Hospital of Cardiovascular and Cerebrovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolong Guo
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoru Li
- Department of Laboratory Medicine, Shizuishan Second People's Hospital, Shizuishan, China
| | - Yuexuan Wu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenen Liu
- Xiangya Hospital of Central South University, Hunan, China
| | - Feng Jiang
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Huan Liu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lixin Wang
- Medical Experiment Center, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Zhang L, Wang L, Cao S, Lv H, Huang J, Zhang G, Tabynov K, Zhao Q, Zhou EM. Nanobody Nb6 fused with porcine IgG Fc as the delivering tag to inhibit porcine reproductive and respiratory syndrome virus replication in porcine alveolar macrophages. Vet Res 2021; 52:25. [PMID: 33596995 PMCID: PMC7887809 DOI: 10.1186/s13567-020-00868-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus that has led to enormous economic loss worldwide because of ineffective prevention and treatment. In view of their minimized size, high target specificity and affinity, nanobodies have been extensively investigated as diagnostic tools and treatments of many diseases. Previously, a PRRSV Nsp9-specific nanobody (Nb6) was identified as a PRRSV replication inhibitor. When it was fused with cell-penetrating peptide (CPP) TAT, Nb6-TAT could enter the cells for PRRSV suppression. However, delivery of molecules by CPP lack cell specificity and have a short duration of action. PRRSV has a tropism for monocyte/macrophage lineage, which expresses high levels of Fcγ receptors. Herein, we designed a nanobody containing porcine IgG Fc (Fcγ) to inhibit PRRSV replication in PRRSV permissive cells. Fcγ fused Nb6 chimeric antibody (Nb6-pFc) was assembled into a dimer with interchain disulfide bonds and expressed in a Pichia pastoris system. The results show that Nb6-pFc exhibits a well-binding ability to recombinant Nsp9 or PRRSV-encoded Nsp9 and that FcγR-mediated endocytosis of Nb6-pFc into porcine alveolar macrophages (PAM) was in a dose-dependent manner. Nb6-pFc can inhibit PRRSV infection efficiently not only by binding with Nsp9 but also by upregulating proinflammatory cytokine production in PAM. Together, this study proposes the design of a porcine IgG Fc-fused nanobody that can enter PRRSV susceptible PAM via FcγR-mediated endocytosis and inhibit PRRSV replication. This research reveals that nanobody-Fcγ chimeric antibodies might be effective for the control and prevention of monocyte/macrophage lineage susceptible pathogeneses.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Lizhen Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Shuaishuai Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Huanhuan Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingjing Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Guixi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kaissar Tabynov
- Kazakh National Agrarian University, 050010, Almaty, Kazakhstan
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Willmann EA, Pandurovic V, Jokinen A, Beckley D, Bohlson SS. Extracellular signal-regulated kinase 1/2 is required for complement component C1q and fibronectin dependent enhancement of Fcγ- receptor mediated phagocytosis in mouse and human cells. BMC Immunol 2020; 21:61. [PMID: 33317446 PMCID: PMC7734837 DOI: 10.1186/s12865-020-00393-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/02/2020] [Indexed: 11/25/2022] Open
Abstract
Background C1q is a soluble pattern recognition protein that regulates multiple leukocyte functions, and deficiency in C1q results in autoimmunity. C1q stimulates enhanced phagocytic function through multiple mechanisms including the rapid enhancement of Fcγ receptor (FcγR) -mediated phagocytosis. The molecular mechanism responsible for this rapid enhancement of phagocytic function is unknown. The purpose of this study was to investigate the molecular pathway required for C1q-dependent enhanced phagocytosis. Results Leukocyte associated immunoglobulin like receptor-1 (LAIR-1) is a receptor that mediates C1q-dependent activation of leukocytes; however, using LAIR-1 deficient mouse bone marrow derived macrophages (BMDM), we demonstrated that LAIR-1 was not required for C1q-dependent enhanced FcγR-mediated phagocytosis. A phospho-kinase array identified extracellular signal-regulated kinase (ERK) 1/2 as dysregulated following activation with C1q. Validation of the array in BMDM and the human monocyte cell line THP-1 demonstrated a decrease in basal ERK1/2 phosphorylation in C1q-stimulated cells compared to control cells. However, subsequent stimulation with immune complexes stimulated rapid upregulation of phosphorylation. The extracellular matrix protein fibronectin regulates enhanced phagocytic activity in macrophages similar to C1q, and both C1q and fibronectin-dependent enhanced phagocytosis required ERK1/2 since both were blocked by pharmacologic inhibition of ERK1/2. Furthermore, diminished C1q-dependent ERK1/2 phosphorylation was sustained after four-hour treatment with lipopolysaccharide and correlated with a significant reduction in TNFα production. Conclusions These data demonstrate that C1q and fibronectin utilize a similar ERK1/2-dependent mechanism for enhanced phagocytosis, which should lead to development of novel approaches to modulate C1q-dependent regulation of macrophage activation, inflammation and autoimmunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-020-00393-6.
Collapse
Affiliation(s)
- Emily A Willmann
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Vesna Pandurovic
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Anna Jokinen
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Danielle Beckley
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, USA
| | - Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
de Neergaard T, Sundwall M, Wrighton S, Nordenfelt P. High-Sensitivity Assessment of Phagocytosis by Persistent Association-Based Normalization. THE JOURNAL OF IMMUNOLOGY 2020; 206:214-224. [PMID: 33268484 DOI: 10.4049/jimmunol.2000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Phagocytosis is measured as a functional outcome in many research fields, but accurate quantification can be challenging, with no robust method available for cross-laboratory reproducibility. In this study, we identified a simple, measurable parameter, persistent prey-phagocyte association, to use for normalization and dose-response analysis. We apply this in a straightforward analytical method, persistent association-based normalization, in which the multiplicity of prey (MOP) ratio needed to elicit half of the phagocytes to associate persistently (MOP50) is determined first. MOP50 is then applied to normalize for experimental factors, separately analyzing association and internalization. We use reference human phagocyte THP-1 cells with different prey and opsonization conditions to compare the persistent association-based normalization method to standard ways of assessing phagocytosis and find it to perform better, exhibiting increased robustness, sensitivity, and reproducibility. The approach is easily incorporated into most existing phagocytosis assays and allows for reproducible results with high sensitivity.
Collapse
Affiliation(s)
- Therese de Neergaard
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Martin Sundwall
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Sebastian Wrighton
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
13
|
Wang H, Yan S, Liu H, Li L, Song J, Wang G, Wang H, Wu Y, Shao Z, Fu R. Infection risk in autoimmune hematological disorders with low-dose rituximab treatment. J Clin Lab Anal 2020; 34:e23455. [PMID: 32794271 PMCID: PMC7595891 DOI: 10.1002/jcla.23455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rituximab has been widely used in many autoimmune diseases. Aim To evaluate the infection risk of rituximab in autoimmune hematological disorders. Methods Retrospectively studied and compared the clinical data of 89 patients in our hospital who used low‐dose rituximab (group R) or pulse cyclophosphamide (group C) for their refractory/relapsed autoimmune hematological diseases from January 2011 to January 2017. The kinds of their diseases included autoimmune hemolytic disease (AIHA), Evans syndrome, and idiopathic thrombocytopenic purpura (ITP). All patients chose either rituximab treatment or cyclophosphamide treatment on their own considerations. Findings The median follow‐up time was six months in group R and four months in group C. After treatments, the patients in group R showed higher white blood cell (WBC) count and neutrophil count than group C (P = .020, P = .037). CD20‐positive B cells in group R remained at a very low level after rituximab treatment and need about 15 months to return to normal level, which was longer than group C (six months). The incidence of infection in these two groups has no significant difference, which was 34.7% (17/30) in group R and 32.5% (13/28) in group C (P = .976). Tuberculosis infections after rituximab treatment were found in three patients for the first time. Conclusion The G‐CSF, nadir WBC count, and IgA level were protective factors of infection during rituximab treatment. Low‐dose rituximab therapy in autoimmune hematological diseases does not increase infection risk compared with cyclophosphamide.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Siyang Yan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojin Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuhong Wu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Koelink PJ, Bloemendaal FM, Li B, Westera L, Vogels EWM, van Roest M, Gloudemans AK, van 't Wout AB, Korf H, Vermeire S, te Velde AA, Ponsioen CY, D'Haens GRAM, Verbeek JS, Geiger TL, Wildenberg ME, van den Brink GR. Anti-TNF therapy in IBD exerts its therapeutic effect through macrophage IL-10 signalling. Gut 2020; 69:1053-1063. [PMID: 31506328 PMCID: PMC7282553 DOI: 10.1136/gutjnl-2019-318264] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Macrophage interleukin (IL)-10 signalling plays a critical role in the maintenance of a regulatory phenotype that prevents the development of IBD. We have previously found that anti-tumour necrosis factor (TNF) monoclonal antibodies act through Fcγ-receptor (FcγR) signalling to promote repolarisation of proinflammatory intestinal macrophages to a CD206+ regulatory phenotype. The role of IL-10 in anti-TNF-induced macrophage repolarisation has not been examined. DESIGN We used human peripheral blood monocytes and mouse bone marrow-derived macrophages to study IL-10 production and CD206+ regulatory macrophage differentiation. To determine whether the efficacy of anti-TNF was dependent on IL-10 signalling in vivo and in which cell type, we used the CD4+CD45Rbhigh T-cell transfer model in combination with several genetic mouse models. RESULTS Anti-TNF therapy increased macrophage IL-10 production in an FcγR-dependent manner, which caused differentiation of macrophages to a more regulatory CD206+ phenotype in vitro. Pharmacological blockade of IL-10 signalling prevented the induction of these CD206+ regulatory macrophages and diminished the therapeutic efficacy of anti-TNF therapy in the CD4+CD45Rbhigh T-cell transfer model of IBD. Using cell type-specific IL-10 receptor mutant mice, we found that IL-10 signalling in macrophages but not T cells was critical for the induction of CD206+ regulatory macrophages and therapeutic response to anti-TNF. CONCLUSION The therapeutic efficacy of anti-TNF in resolving intestinal inflammation is critically dependent on IL-10 signalling in macrophages.
Collapse
Affiliation(s)
- Pim J Koelink
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Felicia M Bloemendaal
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands,Department of Gastroenterology and hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bofeng Li
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Liset Westera
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther W M Vogels
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Manon van Roest
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anouk K Gloudemans
- Janssen Prevention Center of Janssen Vaccines & Prevention BV, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, The Netherlands
| | - Angelique B van 't Wout
- Janssen Prevention Center of Janssen Vaccines & Prevention BV, Janssen Pharmaceutical Companies of Johnson & Johnson, Leiden, The Netherlands
| | - Hannelie Korf
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Anje A te Velde
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cyriel Y Ponsioen
- Gastroenterology & Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Geert RAM D'Haens
- Gastroenterology & Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - J Sjef Verbeek
- Human Genetics, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Terrence L Geiger
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Manon E Wildenberg
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands,Gastroenterology & Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Tytgat Insitute for Liver & Intestinal Research, Amsterdam UMC, Amsterdam, The Netherlands,Gastroenterology & Hepatology, Amsterdam UMC, Amsterdam, The Netherlands,Roche Innovation Center Basel, F Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
15
|
Leitner WW, Haraway M, Pierson T, Bergmann-Leitner ES. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines (Basel) 2020; 8:E264. [PMID: 32486320 PMCID: PMC7350021 DOI: 10.3390/vaccines8020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for immune correlates of protection continues to slow vaccine development. To date, only vaccine-induced antibodies have been confirmed as direct immune correlates of protection against a plethora of pathogens. Vaccine immunologists, however, have learned through extensive characterizations of humoral responses that the quantitative assessment of antibody responses alone often fails to correlate with protective immunity or vaccine efficacy. Despite these limitations, the simple measurement of post-vaccination antibody titers remains the most widely used approaches for vaccine evaluation. Developing and performing functional assays to assess the biological activity of pathogen-specific responses continues to gain momentum; integrating serological assessments with functional data will ultimately result in the identification of mechanisms that contribute to protective immunity and will guide vaccine development. One of these functional readouts is phagocytosis of antigenic material tagged by immune molecules such as antibodies and/or complement components. This review summarizes our current understanding of how phagocytosis contributes to immune defense against pathogens, the pathways involved, and defense mechanisms that pathogens have evolved to deal with the threat of phagocytic removal and destruction of pathogens.
Collapse
Affiliation(s)
- Wolfgang W. Leitner
- Basic Immunology Branch, Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Megan Haraway
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Tony Pierson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Elke S. Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| |
Collapse
|
16
|
Xu H, Feldman GM, Max EE. High-Dose IV Administration of Rasburicase Suppresses Anti-rasburicase Antibodies, Depletes Rasburicase-Specific Lymphocytes, and Upregulates Treg Cells. AAPS JOURNAL 2020; 22:80. [PMID: 32462555 DOI: 10.1208/s12248-020-00461-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Therapeutic proteins can be potent agents for treating serious diseases, but in many patients these proteins provoke antibody responses that blunt therapeutic efficacy. Intravenous administration of high doses of some proteins induces immune tolerance, but the mechanisms underlying this effect are poorly understood. As a model to study tolerance induction in mice, we used rasburicase, a commercial recombinant uricase used for the treatment of hyperuricemia. Intraperitoneal (i.p.) injection of rasburicase without or with alum adjuvants induced a clear anti-rasburicase antibody response, but intravenous (i.v.) injection did not. The lack of response to i.v. rasburicase was apparently due to active immune suppression since i.v.-treated mice showed blunted antibody and reduced T cell responses to subsequent i.p. injections of rasburicase. This blunted response was associated with a decrease in rasburicase-specific B cell and T cell responses and an increase in proportion of CD4+ FoxP3+ regulatory T cells (Treg) in the spleen. We examined the number of lymphocytes in peripheral blood after rasburicase i.v. injection. Rasburicase caused a transient reduction in B and T cells, but a robust and sustained depletion of rasburicase-specific B cells. Further experiments showed that rasburicase i.v. injection decreased the number of lymphocytes and was associated with apoptosis of both B cells and activated T cells and that the enhanced percentage of Treg cells was likely mediated by a macrophage-dependent pathway. Thus, our data suggest that apoptosis and depletion of antigen-specific B lymphocytes and upregulation of Treg cells may play important roles in the immune suppression induced by intravenous administration of a therapeutic protein.
Collapse
Affiliation(s)
- Hui Xu
- Laboratory of Immunobiology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Building 72, Room 2324, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Gerald M Feldman
- Laboratory of Immunobiology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Building 72, Room 2324, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Edward E Max
- Laboratory of Immunobiology, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Building 72, Room 2324, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
17
|
Zhang Y, Wu JLY, Lazarovits J, Chan WCW. An Analysis of the Binding Function and Structural Organization of the Protein Corona. J Am Chem Soc 2020; 142:8827-8836. [DOI: 10.1021/jacs.0c01853] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuwei Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Jamie L. Y. Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - James Lazarovits
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Warren C. W. Chan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
18
|
Zajd CM, Ziemba AM, Miralles GM, Nguyen T, Feustel PJ, Dunn SM, Gilbert RJ, Lennartz MR. Bone Marrow-Derived and Elicited Peritoneal Macrophages Are Not Created Equal: The Questions Asked Dictate the Cell Type Used. Front Immunol 2020; 11:269. [PMID: 32153579 PMCID: PMC7047825 DOI: 10.3389/fimmu.2020.00269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophages are a heterogeneous and plastic population of cells whose phenotype changes in response to their environment. Macrophage biologists utilize peritoneal (pMAC) and bone marrow-derived macrophages (BMDM) for in vitro studies. Given that pMACs mature in vivo while BMDM are ex vivo differentiated from stem cells, it is likely that their responses differ under experimental conditions. Surprisingly little is known about how BMDM and pMACs responses compare under the same experimental conditionals. While morphologically similar with respect to forward and side scatter by flow cytometry, reports in the literature suggest that pMACs are more mature than their BMDM counterparts. Given the dearth of information comparing BMDM and pMACs, this work was undertaken to test the hypothesis that elicited pMACs are more responsive to defined conditions, including phagocytosis, respiratory burst, polarization, and cytokine and chemokine release. In all cases, our hypothesis was disproved. At steady state, BMDM are more phagocytic (both rate and extent) than elicited pMACs. In response to polarization, they upregulate chemokine and cytokine gene expression and release more cytokines. The results demonstrate that BMDM are generally more responsive and poised to respond to their environment, while pMAC responses are, in comparison, less pronounced. BMDM responses are a function of intrinsic differences, while pMAC responses reflect their differentiation in the context of the whole animal. This distinction may be important in knockout animals, where the pMAC phenotype may be influenced by the absence of the gene of interest.
Collapse
Affiliation(s)
- Cheryl M Zajd
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Alexis M Ziemba
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Grace M Miralles
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Terry Nguyen
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Stanley M Dunn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Michelle R Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
19
|
Veras PST, de Menezes JPB, Dias BRS. Deciphering the Role Played by Autophagy in Leishmania Infection. Front Immunol 2019; 10:2523. [PMID: 31736955 PMCID: PMC6838865 DOI: 10.3389/fimmu.2019.02523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 01/11/2023] Open
Abstract
In recent decades, studies have shown that, depending on parasite species and host background, autophagy can either favor infection or promote parasite clearance. To date, relatively few studies have attempted to assess the role played by autophagy in Leishmania infection. While it has been consistently shown that Leishmania spp. induce autophagy in a variety of cell types, published results regarding the effects of autophagic modulation on Leishmania survival are contradictory. The present review, after a short overview of the general aspects of autophagy, aims to summarize the current body of knowledge surrounding how Leishmania spp. adaptively interact with macrophages, the host cells mainly involved in controlling leishmaniasis. We then explore the scarce studies that have investigated interactions between these parasite species and the autophagic pathway, and finally present a critical perspective on how autophagy influences infection outcome.
Collapse
Affiliation(s)
- Patricia Sampaio Tavares Veras
- Laboratory of Host - Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil.,National Institute of Science and Technology of Tropical Diseases - CNPq, Salvador, Brazil
| | | | - Beatriz Rocha Simões Dias
- Laboratory of Host - Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| |
Collapse
|
20
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Lee MH, Gallo PM, Hooper KM, Corradetti C, Ganea D, Caricchio R, Gallucci S. The cytokine network type I IFN-IL-27-IL-10 is augmented in murine and human lupus. J Leukoc Biol 2019; 106:967-975. [PMID: 31216373 DOI: 10.1002/jlb.3ab0518-180rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
IL-10 is elevated in the autoimmune disease systemic lupus erythematosus (SLE). Here, we show that conventional dendritic cells (cDCs) from predisease lupus-prone B6.NZM Sle1/Sle2/Sle3 triple congenic (TCSle) mice produce more IL-10 than wild-type congenic cDCs upon TLR stimulation, and this overproduction is prevented by blocking the type I IFN receptor (IFNAR) with specific Abs. Priming wild-type cDCs with type I IFN mimics the IL-10 overproduction of TCSle cDCs. The MAPK ERK is more phosphorylated in lupus cDCs, partially contributing to IL-10 overproduction. Moreover, we found that TCSle cDCs express higher levels of IL-27 upon TLR7/TLR9 stimulation, and IFNAR blockade reduced IL-27 levels in TCSle cDCs. These results suggest that dysregulated type I IFNs in cDCs contribute to the increased IL-10 and IL-27 in SLE. Since IL-27 neutralization did not inhibit TLR-induced IL-10 production, we propose that type I IFNs enhanced IL-10 in TCSle cDCs independently from IL-27. Moreover, RNA sequencing analysis of a cohort of SLE patients reveals higher gene expression of these cytokines in SLE patients expressing a high IFN signature. Since IL-27 and IL-10 have both pro- and anti-inflammatory effects, our results also suggest that these cytokines can be modulated by the therapeutic IFN blockade in trials in SLE patients and have complex effects on the autoimmune response.
Collapse
Affiliation(s)
- Michael H Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Paul M Gallo
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Kirsten M Hooper
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Chelsea Corradetti
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Doina Ganea
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy 2019; 11:241-254. [DOI: 10.2217/imt-2018-0081] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The aim of this review is to report the current evidence on immunogenicity of monoclonal antibodies (moAbs) used in cancer compared with autoimmune diseases, focusing on local microenvironment. English abstracts were identified in Medline and www.clinicaltrials.gov . A total of 82 papers were selected. The percentage of immunogenicity of moAbs used for cancer therapy, evaluated as the serum concentration of antidrug antibodies, is significantly lower than that of moAbs used for the treatment of autoimmune diseases. This condition may rely on a different immunologic background characterized by a hyperactivation of immune cells in autoimmune diseases. The formation of complexes between antidrug antibodies and non-neutralizing moAbs bound to neoplastic antigens may allow more efficient elimination of cancer cells, but additional studies are needed.
Collapse
Affiliation(s)
- Rossella Talotta
- Postgraduate School of Clinical Pharmacology & Toxicology, University of Milan, 20162, Milan, Italy
- Laboratory of Genetics, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| | - Francesco Rucci
- Postgraduate School of Clinical Pharmacology & Toxicology, University of Milan, 20162, Milan, Italy
- Laboratory of Genetics, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| | - Gianfranco Canti
- Department of Medical Biotechnology & Traslational Medicine, University of Milan, 20129, Milan, Italy
| | - Francesco Scaglione
- Department of Oncology & Onco-Hematology, University of Milan, 20162, Milan, Italy
- Clinical Pharmacology Unit, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| |
Collapse
|
24
|
Wang J, Li Y, Shen Y, Liang J, Li Y, Huang Y, Liu X, Jiang D, Yang S, Zhao Y, Yang K. PDL1 Fusion Protein Protects Against Experimental Cerebral Malaria via Repressing Over-Reactive CD8 + T Cell Responses. Front Immunol 2019; 9:3157. [PMID: 30693001 PMCID: PMC6339951 DOI: 10.3389/fimmu.2018.03157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/21/2018] [Indexed: 01/22/2023] Open
Abstract
Cerebral malaria (CM), mainly caused by Plasmodium falciparum (P. f.), is one of the most lethal complications of severe malaria. As immunopathology mediated by brain-infiltrating CD8+ T cells is the major pathogenesis of CM, there is no safe and efficient treatment clinically focused on CD8+ T cells. New methods are needed to protect the host from injury. As evidence has shown that programmed death-1 (PD-1) is one of the most efficient immunomodulatory molecules, we constructed two soluble fusion proteins, PDL1-IgG1Fc and PDL2-IgG1Fc, to enhance PD-1/PDL signaling pathways in innate and adaptive immune cells, including macrophages and CD8+ T cells. Firstly, we confirmed that PD-1 signal pathway deficiency led to higher levels of CD8+ T cell proliferation and shorter survival time in PD-1-deficient (Pdcd1−/−) mice than WT mice. Secondly, PDL1-IgG1Fc-treated mice exhibited a more prolonged survival time than control groups. Moreover, PDL1-IgG1Fc was observed to ameliorate blood-brain barrier (BBB) disruption by limiting the over-reactive CD8+ T cell cytotoxicity during experimental cerebral malaria (ECM). Further studies found thatPDL1-IgG1Fc-treated macrophages showed significant suppression in macrophage M1 polarization and their antigen presentation capability to CD8+ T cells. In conclusion, our results demonstrated that the administration of PDL1-IgG1Fc in the early stage before ECM onset has an obvious effect on the maintenance of immune microenvironment homeostasis in the brain and is deemed a promising candidate for protection against CM in the future.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China.,Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yue Li
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Yan Shen
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Jiao Liang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Xuewu Liu
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Kozicky LK, Menzies SC, Zhao ZY, Vira T, Harnden K, Safari K, Del Bel KL, Turvey SE, Sly LM. IVIg and LPS Co-stimulation Induces IL-10 Production by Human Monocytes, Which Is Compromised by an FcγRIIA Disease-Associated Gene Variant. Front Immunol 2018; 9:2676. [PMID: 30515163 PMCID: PMC6255983 DOI: 10.3389/fimmu.2018.02676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Intravenous Immunoglobulin (IVIg) is used to treat autoimmune or inflammatory diseases, but its mechanism of action is not completely understood. We asked whether IVIg can induce interleukin-10 (IL-10) and reduce pro-inflammatory cytokine production in human monocytes, and whether this response is reduced in monocytes from people with an Fcγ receptor IIA (FcγRIIA) gene variant, which is associated with increased risk of inflammatory diseases and poor response to antibody-based biological therapy. IVIg increased IL-10 production and reduced pro-inflammatory cytokine production in response to bacterial lipopolysaccharide (LPS), which required FcγRI and FcγRIIB and activation of MAPKs, extracellular signal-regulated kinase 1/2 (ERK1/2), and p38. IL-10 production was lower and pro-inflammatory cytokine production was higher in monocytes from people with the FcγRIIA risk variant and the risk variant prevented IL-10 production in response to (IVIg+LPS). Finally, we show that IVIg did not induce MAPK activation in monocytes from people with the risk variant. Our results demonstrate that IVIg can skew human monocytes to an anti-inflammatory, IL-10-producing activation state, which is compromised in monocytes from people with the FcγRIIA risk variant. This research has profound implications for the use of IVIg because 25% of the population is homozygous for the FcγRIIA risk variant and its efficacy may be reduced in those individuals. In addition, this research may be useful to develop new therapeutic strategies to replace IVIg by cross-linking FcγRIs and FcγRIIBs to promote anti-inflammatory macrophage activation, independent of the FcγRIIA genotype.
Collapse
Affiliation(s)
- Lisa K Kozicky
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Susan C Menzies
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Zheng Yu Zhao
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Tariq Vira
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Kiera Harnden
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Kwestan Safari
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Kate L Del Bel
- Division of Allergy and Immunology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Division of Allergy and Immunology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Bloemendaal FM, Koelink PJ, van Schie KA, Rispens T, Peters CP, Buskens CJ, van der Bilt JD, Bemelman WA, Korf H, Sabino JG, Ponsioen CY, Te Velde AA, D'Haens GRAM, Vermeire S, van den Brink GR, Wildenberg ME. TNF-anti-TNF Immune Complexes Inhibit IL-12/IL-23 Secretion by Inflammatory Macrophages via an Fc-dependent Mechanism. J Crohns Colitis 2018; 12:1122-1130. [PMID: 29860435 DOI: 10.1093/ecco-jcc/jjy075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS We have recently shown that the mode of action of IgG1 anti-tumour necrosis factor [TNF] antibodies in inflammatory bowel disease [IBD] requires Fcγ-receptor [FcγR] engagement on macrophages. Here we examine the effect of Fcγ-receptor signalling by anti-TNF on macrophage IL-12/IL-23 secretion. METHODS Cytokine production by human inflammatory macrophages was assessed at the level of RNA and protein. TNF-anti-TNF immune complex formation was determined by size-exclusion chromatography and signalling visualized by immunofluorescence. IL-12/IL-23p40 was measured in CD14+ lamina propria cells from IBD patients. RESULTS Infliximab and adalimumab potently suppressed IL-12/IL-23 production by inflammatory macrophages, but Fab' fragment certolizumab did not. IL-12/IL-23 suppression depended on Syk activity and was mediated at the level of IL-12/IL-23p40 mRNA. Etanercept, a soluble TNF receptor fused to an Fc-region, did not inhibit IL-12/L-23 secretion, suggesting that the presence of an Fc-region was not sufficient. Infliximab and adalimumab formed immune complexes with soluble TNF whereas etanercept did not, suggesting that FcγR-mediated suppression of IL-12/IL-23 required the formation of immune complexes. Indeed, non-specific IgG1 immune complexes, but not uncomplexed IgG1, similarly suppressed IL-12/IL-23 secretion. Finally, infliximab significantly decreased IL-12/IL-23p40 production in myeloid cells isolated from the lamina propria of IBD patients. CONCLUSIONS TNF-anti-TNF antibody immune complexes potently inhibit IL-12/IL-23 expression by inflammatory macrophages. Our data suggest that anti-TNFs and antibodies against IL-12/IL-23 may therefore have partially overlapping modes of action in patients with IBD.
Collapse
Affiliation(s)
- Felicia M Bloemendaal
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pim J Koelink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin A van Schie
- Department of Immunopathology, Sanquin Research Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte P Peters
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christianne J Buskens
- Department of Surgery, Academic Medical Center, University of Amsterdam. The Netherlands
| | - Jarmila D van der Bilt
- Department of Surgery, Academic Medical Center, University of Amsterdam. The Netherlands.,Department of Surgery, Flevoziekenhuis, Almere, The Netherlands
| | - Willem A Bemelman
- Department of Surgery, Academic Medical Center, University of Amsterdam. The Netherlands
| | - Hannelie Korf
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - João G Sabino
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert R A M D'Haens
- Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Severine Vermeire
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Campos MP, Figueiredo FB, Morgado FN, Renzetti ARDS, de Souza SMM, Pereira SA, Rodrigues-Da-Silva RN, Lima-Junior JDC, De Luca PM. Leishmania infantum Virulence Factor A2 Protein: Linear B-Cell Epitope Mapping and Identification of Three Main Linear B-Cell Epitopes in Vaccinated and Naturally Infected Dogs. Front Immunol 2018; 9:1690. [PMID: 30090101 PMCID: PMC6068230 DOI: 10.3389/fimmu.2018.01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
In Brazil, canine visceral leishmaniasis (CVL) is caused by Leishmania infantum, presenting a broad spectrum of clinical manifestations. Dogs are the main parasite reservoir in urban areas and canine cases precede human infection. Currently, A2 protein based Leish-Tec® vaccine is the only vaccine commercially available against CVL in Brazil. Considering that the main screening and confirmatory tests of canine infection are serological, it is possible that the antibody response elicited after vaccination interfere with diagnosis, leading to the inability to distinguish between vaccinated and infected animals. In order to identify the specific B-cell response induced after vaccination, A2 protein sequence was screened for main linear B-cell epitopes using in silico prediction (Bepipred) and immunological confirmation by ELISA. Three amino acid sequences were described as potential B-cell epitopes (SV11-SAEPHKAAVDV, PP16-PQSVGPLSVGPQSVGP, and VQ34-VGPLSVGPQSVGPLSVGPLSVGPQAVGPLSVGPQ). Specific IgG ELISAs were performed in sera of 12 immunized dogs living in non-endemic areas, followed for up to 1 year after immunization. The results were compared with those obtained in a group of 10 symptomatic and 10 asymptomatic CVL dogs. All predicted epitopes were confirmed as linear B-cell epitopes broadly recognized by sera from studied dogs. Total IgG ELISAs demonstrated distinct patterns of response between peptides in the immunized and CVL groups. VQ34 peptide was recognized by the majority of sera from vaccinated and symptomatic dogs, and increases after vaccination. PP16 induced low levels of specific IgG that increased 1 year after immunization. Interestingly, a low frequency of reactivity was found against SV11 in naturally infected dogs (symptomatic and asymptomatic), while 83.3% of vaccinated dogs presented positive responses 1 year after immunization. The two animals in the vaccinated group that did not respond to SV11 1 year after immunization presented positive serology both 30 days and 6 months after immunization. In summary, we identified three main linear B-cell epitopes in A2 based vaccine. Moreover, the humoral response against SV11 presented marked differences between infected and Leish-Tec vaccinated dogs, and should be further investigated, in large trials, to confirm its potential as a serological marker able to distinguish between infected and vaccinated dogs.
Collapse
Affiliation(s)
- Monique Paiva Campos
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
| | | | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alinne Rangel Dos Santos Renzetti
- National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sara Maria Marques de Souza
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
| | - Sandro Antônio Pereira
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil.,National Institute of Infectology Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
| | | | - Josué Da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paula Mello De Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Garde E, Ramírez L, Corvo L, Solana JC, Martín ME, González VM, Gómez-Nieto C, Barral A, Barral-Netto M, Requena JM, Iborra S, Soto M. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors eIF2 and eIF2B in Natural and Experimental Leishmaniasis. Front Cell Infect Microbiol 2018; 8:112. [PMID: 29675401 PMCID: PMC5895769 DOI: 10.3389/fcimb.2018.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023] Open
Abstract
Different members of intracellular protein families are recognized by the immune system of the vertebrate host infected by parasites of the genus Leishmania. Here, we have analyzed the antigenic and immunogenic properties of the Leishmania eIF2 and eIF2B translation initiation factors. An in silico search in Leishmania infantum sequence databases allowed the identification of the genes encoding the α, β, and γ subunits and the α, β, and δ subunits of the putative Leishmania orthologs of the eukaryotic initiation factors F2 (LieIF2) or F2B (LieIF2B), respectively. The antigenicity of these factors was analyzed by ELISA using recombinant versions of the different subunits. Antibodies against the different LieIF2 and LieIF2B subunits were found in the sera from human and canine visceral leishmaniasis patients, and also in the sera from hamsters experimentally infected with L. infantum. In L. infantum (BALB/c) and Leishmania major (BALB/c or C57BL/6) challenged mice, a moderate humoral response against these protein factors was detected. Remarkably, these proteins elicited an IL-10 production by splenocytes derived from infected mice independently of the Leishmania species employed for experimental challenge. When DNA vaccines based on the expression of the LieIF2 or LieIF2B subunit encoding genes were administered in mice, an antigen-specific secretion of IFN-γ and IL-10 cytokines was observed. Furthermore, a partial protection against murine CL development due to L. major infection was generated in the vaccinated mice. Also, in this work we show that the LieIF2α subunit and the LieIF2Bβ and δ subunits have the capacity to stimulate IL-10 secretion by spleen cells from naïve mice. B-lymphocytes were identified as the major producers of this anti-inflammatory cytokine. Taking into account the data found in this study, it may be hypothesized that these proteins act as virulence factors implicated in the induction of humoral responses as well as in the production of the down-regulatory IL-10 cytokine, favoring a pathological outcome. Therefore, these proteins might be considered markers of disease.
Collapse
Affiliation(s)
- Esther Garde
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Ramírez
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Corvo
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José C. Solana
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - M. Elena Martín
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Víctor M. González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carlos Gómez-Nieto
- Parasitology Unit, LeishmanCeres Laboratory, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz-FIOCRUZ, Salvador, Brazil
| | - José M. Requena
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Salvador Iborra
- Immunobiology of Inflammation Laboratory, Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Health Research Institute (imas12), Ciudad Universitaria, Madrid, Spain
- *Correspondence: Salvador Iborra
| | - Manuel Soto
- Departamento de Biología Molecular, Facultad de Ciencias, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Manuel Soto
| |
Collapse
|
29
|
Kozicky L, Sly LM. Assessment of Antibody-based Drugs Effects on Murine Bone Marrow and Peritoneal Macrophage Activation. J Vis Exp 2017. [PMID: 29364214 DOI: 10.3791/56689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Macrophages are phagocytic innate immune cells, which initiate immune responses to pathogens and contribute to healing and tissue restitution. Macrophages are equally important in turning off inflammatory responses. We have shown that macrophages stimulated with intravenous immunoglobulin (IVIg) can produce high amounts of the anti-inflammatory cytokine, interleukin 10 (IL-10), and low levels of pro-inflammatory cytokines in response to bacterial lipopolysaccharides (LPS). IVIg is a polyvalent antibody, primarily immunoglobulin Gs (IgGs), pooled from the plasma of more than 1,000 blood donors. It is used to supplement antibodies in patients with immune deficiencies or to suppress immune responses in patients with autoimmune or inflammatory conditions. Infliximab, a therapeutic anti-tumor necrosis factor alpha (TNFα) antibody, has also been shown to activate macrophages to produce IL-10 in response to inflammatory stimuli. IVIg and other antibody-based biologics can be tested to determine their effects on macrophage activation. This paper describes methods for derivation, stimulation, and assessment of murine bone marrow macrophages activated by antibodies in vitro and murine peritoneal macrophages activated with antibodies in vivo. Finally, we demonstrate the use of western blotting to determine the contribution of specific cell signaling pathways to anti-inflammatory macrophage activity. These protocols can be used with genetically modified mice, to determine the effect of a specific protein(s) on anti-inflammatory macrophage activation. These techniques can also be used to assess whether specific biologics may act by changing macrophages to an IL-10-producing anti-inflammatory activation state that reduces inflammatory responses in vivo. This can provide information on the role of macrophage activation in the efficacy of biologics during disease models in mice, and provide insight into a potential new mechanism of action in people. Conversely, this may caution against the use of specific antibody-based biologics to treat infectious disease, particularly if macrophages play an important role in host defense against that infection.
Collapse
Affiliation(s)
- Lisa Kozicky
- British Columbia Children's Hospital Research Institute, University of British Columbia;
| | - Laura M Sly
- British Columbia Children's Hospital Research Institute, University of British Columbia
| |
Collapse
|
30
|
Aguilar-Pimentel A, Graessel A, Alessandrini F, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Russkamp D, Chaker A, Ollert M, Blank S, Gutermuth J, Schmidt-Weber CB. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma. PLoS One 2017; 12:e0178563. [PMID: 28570653 PMCID: PMC5453633 DOI: 10.1371/journal.pone.0178563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
Background Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Objective Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. Methods In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. Results AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. Conclusions This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis.
Collapse
Affiliation(s)
- Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anke Graessel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany.,Department of Otolaryngology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Jan Gutermuth
- Department of Dermatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| |
Collapse
|
31
|
RBC Adherence of Immune Complexes Containing Botulinum Toxin Improves Neutralization and Macrophage Uptake. Toxins (Basel) 2017; 9:toxins9050173. [PMID: 28534855 PMCID: PMC5450721 DOI: 10.3390/toxins9050173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
In the paralytic disease botulism, the botulinum neurotoxin (BoNT) passes through the bloodstream to reach and inactivate neuromuscular junctions. Monoclonal antibodies (mAbs) may be useful BoNT countermeasures, as mAb combinations can rapidly clear BoNT from the blood circulation. We have previously shown that the BoNT-neutralizing potency of mAbs can be improved through red blood cell (RBC) immunoadherence. For example, a fusion protein (FP) that adheres biotinylated mAbs to the RBC surface enabled a pair of mAbs to neutralize 5000 LD50 BoNT/A in the mouse protection assay. Here, we added two mAbs to that combination, creating a 4-mAb:FP complex that neutralized 40,000 LD50 BoNT/A in vivo, and analyzed functional correlates of neutralization. The FP enhanced potency of BoNT/A immune complexes, providing the greatest magnitude of benefit to the 4-mAb combination. RBC binding of a BoNT/A complexed with 4-mAb:FP exhibited a bi-phasic clearance process in vivo. Most of the complexes were cleared within five minutes; the rest were cleared gradually over many hours. Peritoneal macrophages showed better uptake of the 4-mAb complex than the 3-mAb complex, and this was not affected by the presence of the FP. However, the addition of RBCs to the 4-mAb:FP BoNT/A doubled macrophage uptake of the complexes. Lastly, the 4-mAb:FP BoNT/A complex synergistically induced M2 macrophage polarization, as indicated by IL-10 expression, whether or not RBCs were present. RBC-targeted immunoadherence through the FP is a potent enhancer of mAb-mediated BoNT/A neutralization in vivo, and can have positive effects on BoNT/A sequestration, immune complex uptake, and macrophage activation.
Collapse
|
32
|
Holt BA, Bellavia MC, Potter D, White D, Stowell SR, Sulchek T. Fc microparticles can modulate the physical extent and magnitude of complement activity. Biomater Sci 2017; 5:463-474. [PMID: 28067347 PMCID: PMC5330945 DOI: 10.1039/c6bm00608f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is an integral component of the humoral immune system, and describes a cascade of interacting proteins responsible for the opsonization and lysis of foreign pathogens, in addition to the recruitment of immune cells. However, complement activation is also implicated in the progression and complication of immune dysfunctions such as sepsis. Microparticle (MP) biomaterials capable of tuning the local magnitude of serum complement activation could improve complement-mediated cytotoxicity to serum-resistant bacteria or calm an overactive immune response during sepsis. We demonstrate that model Fc-functionalized microparticles can be designed to either enhance or diminish the local cytotoxic effect of complement activation in human serum. The particles were formed with either the antibody Fc domains oriented outward from the particle surface or randomly adsorbed in a non-oriented fashion. In the oriented Fc form, complement products were directly sequestered to the particle surface, including C5a, a potent anaphylatoxin that, when elevated, is associated with poor sepsis prognosis. The oriented particle also lowered the cytotoxicity of serum and thus decreased the antibiotic effect when compared to serum alone. Conversely, the non-oriented microparticles were found to sequester similar levels of C5a, but much lower levels of iC3b and TCC on the microparticle surface, thereby increasing the amount of the soluble terminal complement complex. In addition, the non-oriented microparticles extend the distance over which TCC forms and enhance serum cytotoxicity to bacteria. Together, these two types of complement-modulating particles provide the first biomaterial that can functionally modify the range of complement activation at sites distant from the particle surface. Thus, biomaterials that exploit Fc presentation provide new possibilities to functionally modulate complement activation to achieve a desired clinical result.
Collapse
Affiliation(s)
- Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, GA, USA. and The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael C Bellavia
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, GA, USA. and The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daniel Potter
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA and The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David White
- United States Department of Agriculture, National Centers for Animal Health, Ames, Iowa, USA
| | - Sean R Stowell
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, GA, USA. and The G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
33
|
Ho VW, Hofs E, Elisia I, Lam V, Hsu BE, Lai J, Luk B, Samudio I, Krystal G. All Trans Retinoic Acid, Transforming Growth Factor β and Prostaglandin E2 in Mouse Plasma Synergize with Basophil-Secreted Interleukin-4 to M2 Polarize Murine Macrophages. PLoS One 2016; 11:e0168072. [PMID: 27977740 PMCID: PMC5158015 DOI: 10.1371/journal.pone.0168072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023] Open
Abstract
In previous studies we found that macrophages (MФs) from SH2-containing inositol-5'-phosphatase (SHIP) deficient mice are M2 polarized while their wild type (WT) counterparts are M1 polarized and that this difference in MФ phenotype can be recapitulated during in vitro derivation from bone marrow if mouse plasma (MP), but not fetal calf serum, is added to standard M-CSF-containing cultures. In the current study we investigated the mechanism by which MP skews SHIP-/- but not +/+ MФs to an M2 phenotype. Our results suggest that SHIP-/- basophils constitutively secrete higher levels of IL-4 than SHIP+/+ basophils and this higher level of IL-4 is sufficient to skew both SHIP+/+ and SHIP-/- MФs to an M2 phenotype, but only when MP is present to increase the sensitivity of the MФs to this level of IL-4. MP increases the IL-4 sensitivity of both SHIP+/+ and -/- MФs not by increasing cell surface IL-4 or CD36 receptor levels, but by triggering the activation of Erk and Akt and the production of ROS, all of which play a critical role in sensitizing MФs to IL-4-induced M2 skewing. Studies to identify the factor(s) in MP responsible for promoting IL-4-induced M2 skewing suggests that all-trans retinoic acid (ATRA), TGFβ and prostaglandin E2 (PGE2) all play a role. Taken together, these results indicate that basophil-secreted IL-4 plays an essential role in M2 skewing and that ATRA, TGFβ and PGE2 within MP collaborate to dramatically promote M2 skewing by acting directly on MФs to increase their sensitivity to IL-4.
Collapse
Affiliation(s)
- Victor W. Ho
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Elyse Hofs
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ingrid Elisia
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Vivian Lam
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Brian E. Hsu
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - June Lai
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Beryl Luk
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ismael Samudio
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
34
|
Swisher JFA, Feldman GM. The many faces of FcγRI: implications for therapeutic antibody function. Immunol Rev 2016; 268:160-74. [PMID: 26497519 DOI: 10.1111/imr.12334] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fcγ receptor I (FcγRI or CD64) is the sole human Fc receptor with high affinity for monovalent IgG. While it contains an immunoreceptor tyrosine-based activation motif in its cytoplasmic domain, binding of FcγRI can result in a complex array of activating and inhibitory outcomes. For instance, binding of monomeric IgG provides a low-intensity tonic signal through FcγRI that is necessary for full interferon γ receptor signaling in the same cell. Interaction of FcγRI with larger high-avidity complexes can result in phagocytosis, the generation of reactive oxygen species, as well as the synthesis and release of inflammatory cytokines. However, numerous reports also document potent anti-inflammatory effects brought about by FcγRI engagement with immune complexes such as the inhibition of IFNγ and TLR4 signaling, and secretion of interleukin-10. This has led to conflicting hypotheses regarding the function of FcγRI, especially with regard to its role in the efficacy of several therapeutic monoclonal antibodies. While many of these issues are still unclear, continued characterization of the regulation and context dependence of FcγRI function, as well as the molecular mechanisms responsible for these various outcomes, will improve our understanding of FcγRI biology as well as the therapeutic strategies designed to harness or constrain its actions.
Collapse
Affiliation(s)
- Jennifer F A Swisher
- Laboratory of Immunobiology, Division of Biotechnology Research and Review IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gerald M Feldman
- Laboratory of Immunobiology, Division of Biotechnology Research and Review IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
35
|
Yam-Puc JC, Cedillo-Barrón L, Aguilar-Medina EM, Ramos-Payán R, Escobar-Gutiérrez A, Flores-Romo L. The Cellular Bases of Antibody Responses during Dengue Virus Infection. Front Immunol 2016; 7:218. [PMID: 27375618 PMCID: PMC4893500 DOI: 10.3389/fimmu.2016.00218] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Elsa Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa (UAS) , Culiacan, Sinaloa , Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa (UAS) , Culiacan, Sinaloa , Mexico
| | - Alejandro Escobar-Gutiérrez
- Department for Immunological Investigations, Institute for Epidemiological Diagnosis and Reference, Health Secretariat , Mexico City , Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| |
Collapse
|
36
|
Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun 2016; 84:1301-1311. [PMID: 26883591 DOI: 10.1128/iai.00083-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022] Open
Abstract
Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses against Mycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model of M. tuberculosis infection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells in M. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response in M. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined.
Collapse
|
37
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016; 9:118. [PMID: 26932389 PMCID: PMC4774109 DOI: 10.1186/s13071-016-1412-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.
Collapse
Affiliation(s)
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | | | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Jérôme Estaquier
- CNRS FR3636, Université Paris-Descartes, Paris, France. .,Centre de Recherche en Infectiologie, Université Laval, Québec, Canada.
| |
Collapse
|
38
|
Affiliation(s)
- David M. Mosser
- Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute University of Maryland College Park Maryland
| | - Ricardo Gonçalves
- Department of General Pathology, Institute of Biological Sciences Federal University of Minas Gerais (UFMG) Belo Horizonte Brazil
| |
Collapse
|
39
|
Harmon EY, Fronhofer V, Keller RS, Feustel PJ, Zhu X, Xu H, Avram D, Jones DM, Nagarajan S, Lennartz MR. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc 2015; 3:e001232. [PMID: 25516435 PMCID: PMC4338708 DOI: 10.1161/jaha.114.001232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Stroke, caused by carotid plaque rupture, is a major cause of death in the United States. Whereas vulnerable human plaques have higher Fc receptor (FcγR) expression than their stable counterparts, how FcγR expression impacts plaque histology is unknown. We investigated the role of FcγRIIb in carotid plaque development and stability in apolipoprotein (Apo)e−/− and Apoe−/−FcγRIIb−/− double knockout (DKO) animals. Methods and Results Plaques were induced by implantation of a shear stress‐modifying cast around the carotid artery. Plaque length and stenosis were followed longitudinally using ultrasound biomicroscopy. Immune status was determined by flow cytometry, cytokine release, immunoglobulin G concentration and analysis of macrophage polarization both in plaques and in vitro. Surprisingly, DKO animals had lower plaque burden in both carotid artery and descending aorta. Plaques from Apoe−/− mice were foam‐cell rich and resembled vulnerable human specimens, whereas those from DKO mice were fibrous and histologically stable. Plaques from DKO animals expressed higher arginase 1 (Arg‐1) and lower inducible nitric oxide synthase (iNOS), indicating the presence of M2 macrophages. Analysis of blood and cervical lymph nodes revealed higher interleukin (IL)‐10, immune complexes, and regulatory T cells (Tregs) and lower IL‐12, IL‐1β, and tumor necrosis factor alpha (TNF‐α) in DKO mice. Similarly, in vitro stimulation produced higher IL‐10 and Arg‐1 and lower iNOS, IL‐1β, and TNF‐α in DKO versus Apoe−/− macrophages. These results define a systemic anti‐inflammatory phenotype. Conclusions We hypothesized that removal of FcγRIIb would exacerbate atherosclerosis and generate unstable plaques. However, we found that deletion of FcγRIIb on a congenic C57BL/6 background induces an anti‐inflammatory Treg/M2 polarization that is atheroprotective.
Collapse
Affiliation(s)
- Erin Y Harmon
- Centers for Cell Biology and Cancer Research, Albany Medical College, Albany, NY
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tegge AN, Sharp N, Murali TM. Xtalk: a path-based approach for identifying crosstalk between signaling pathways. Bioinformatics 2015; 32:242-51. [PMID: 26400040 DOI: 10.1093/bioinformatics/btv549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. RESULTS We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. AVAILABILITY AND IMPLEMENTATION The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. CONTACT ategge@vt.edu, murali@cs.vt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Department of Statistics and
| | | | - T M Murali
- Department of Computer Science, ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
41
|
Swisher JFA, Haddad DA, McGrath AG, Boekhoudt GH, Feldman GM. IgG4 can induce an M2-like phenotype in human monocyte-derived macrophages through FcγRI. MAbs 2015; 6:1377-84. [PMID: 25484046 DOI: 10.4161/19420862.2014.975657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered "activating." However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab')2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted.
Collapse
Affiliation(s)
- Jennifer F A Swisher
- a Laboratory of Molecular and Developmental Immunology; Division of Monoclonal Antibodies; Office of Biotechnology Products; Center for Drug Evaluation and Research; Food and Drug Administration ; Bethesda , MD USA
| | | | | | | | | |
Collapse
|
42
|
Fleming BD, Chandrasekaran P, Dillon LAL, Dalby E, Suresh R, Sarkar A, El-Sayed NM, Mosser DM. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling. J Leukoc Biol 2015; 98:395-407. [PMID: 26048978 PMCID: PMC4541501 DOI: 10.1189/jlb.2a1114-560r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/19/2022] Open
Abstract
Macrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and phenotypic alterations were correlated with changes in gene expression. We identified 3 transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands in the presence of 3 different "reprogramming" signals: high-density ICs, PGE2, or Ado. All 3 of these cell populations produced high levels of transcripts for IL-10 and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1β, IL-6, and IL-12. All 3 macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore, we consider each to have anti-inflammatory activity. This ability to regulate innate-immune responses occurred equally well in macrophages from STAT6-deficient mice. The lack of STAT6 did not affect the ability of macrophages to change cytokine production reciprocally or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These anti-inflammatory macrophages are transcriptionally and functionally related to each other and are quite distinct from macrophages treated with IL-4.
Collapse
Affiliation(s)
- Bryan D Fleming
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Prabha Chandrasekaran
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Laura A L Dillon
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth Dalby
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Rahul Suresh
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Arup Sarkar
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Najib M El-Sayed
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - David M Mosser
- *Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
43
|
Kozicky LK, Zhao ZY, Menzies SC, Fidanza M, Reid GSD, Wilhelmsen K, Hellman J, Hotte N, Madsen KL, Sly LM. Intravenous immunoglobulin skews macrophages to an anti-inflammatory, IL-10-producing activation state. J Leukoc Biol 2015. [PMID: 26216934 DOI: 10.1189/jlb.3vma0315-078r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intravenous Ig is used to treat autoimmune or autoinflammatory disorders, but the mechanism by which it exerts its immunosuppressive activity is not understood completely. To examine the impact of intravenous Ig on macrophages, we compared cytokine production by LPS-activated macrophages in the presence and absence of intravenous Ig. Intravenous Ig treatment induced robust production of IL-10 in response to LPS, relative to LPS stimulation alone, and reduced production of proinflammatory cytokines. This anti-inflammatory, intravenous Ig-induced activation was sustained for 24 h but could only be induced if intravenous Ig were provided within 1 h of LPS stimulation. Intravenous Ig activation led to enhanced and prolonged activation of MAPKs, Erk1/2, p38, and Erk5, and inhibition of each reduced intravenous Ig-induced IL-10 production and suppression of IL-12/23p40. IL-10 production occurred rapidly in response to intravenous Ig + LPS and was sufficient to reduce proinflammatory IL-12/23p40 production in response to LPS. IL-10 induction and reduced IL-12/23p40 production were transcriptionally regulated. IL-10 played a direct role in reducing proinflammatory cytokine production by macrophages treated with intravenous Ig + LPS, as macrophages from mice deficient in the IL-10R β chain or in IL-10 were compromised in their ability to reduce proinflammatory cytokine production. Finally, intraperitoneal injection of intravenous Ig or intravenous Ig + LPS into mice activated macrophages to produce high levels of IL-10 during subsequent or concurrent LPS challenge, respectively. These findings identify IL-10 as a key anti-inflammatory mediator produced by intravenous Ig-treated macrophages and provide insight into a novel mechanism by which intravenous Ig may dampen down inflammatory responses in patients with autoimmune or autoinflammatory diseases.
Collapse
Affiliation(s)
- Lisa K Kozicky
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Zheng Yu Zhao
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susan C Menzies
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mario Fidanza
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gregor S D Reid
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Wilhelmsen
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Judith Hellman
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Naomi Hotte
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Laura M Sly
- *Division of Gastroenterology and Division of Oncology, Hematology, and Blood and Marrow Transplantation, Department of Pediatrics, Michael Cuccione Childhood Cancer Research Program, Child & Family Research Institute, British Columbia Children's Hospital, and the University of British Columbia, Vancouver, British Columbia, Canada; Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, California, USA; and Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Waje-Andreassen U, Naess H, Thomassen L, Maroy TH, Mazengia KY, Eide GE, Vedeler CA. Biomarkers Related to Carotid Intima-Media Thickness and Plaques in Long-Term Survivors of Ischemic Stroke. Transl Stroke Res 2015; 6:276-83. [PMID: 25948070 PMCID: PMC4485696 DOI: 10.1007/s12975-015-0403-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/28/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
Lifestyle risk factors, inflammation and genetics play a role in the development of atherosclerosis. We therefore studied Fc gamma receptor (FcγR) polymorphisms, interleukin (IL)-10 polymorphisms and other biomarkers related to carotid intima-media thickness (cIMT) in patients with ischemic stroke at a young age. Patients were evaluated 12 years after stroke occurrence. Patients (n = 232) 49 years of age or younger with an index stroke between 1988 and 1997 were retrospectively selected. Blood samples were taken at a first follow-up 6 years after the stroke. At a second follow-up, additional arterial events were registered for 140 patients, new blood samples were taken, and measurements of cIMT and blood pressure (BP) were performed. Unadjusted logistic regression analysis showed that cIMT ≥1 mm was associated with age, male gender, additional arterial events, BP, cholesterol, sedimentation rate, haemoglobin, triglycerides, creatinine, glycolysed haemoglobin (HbA1c) and FcγRIIIB-NaII/NaII. Adjusted backward stepwise logistic regression showed significance for age (odds ratio (OR) 1.13, 95 % confidence interval (CI) 1.04 to1.23, p = 0.003), male gender (OR 4.07, 95 % CI 1.15 to 14.5, p = 0.030), HbA1c (OR 6.65, 95 % CI 1.21 to 36.5, p = 0.029) and FcγRIIIB-NaII/NaII (OR 3.94, 95 % CI 1.08 to 14.3, p = 0.037). In this long-term follow-up study of patients with ischemic stroke at a young age, FcγRIIIB-NaII/NaII was identified as a possible contributing factor for cIMT ≥1 mm together with known risk factors, such as age, male gender, systolic BP, additional arterial events and HbA1c.
Collapse
Affiliation(s)
- Ulrike Waje-Andreassen
- Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, N-5021, Bergen, Norway,
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Leishmania amazonensis is an intracellular protozoan parasite responsible for chronic cutaneous leishmaniasis (CL). CL is a neglected tropical disease responsible for infecting millions of people worldwide. L. amazonensis promotes alteration of various signaling pathways that are essential for host cell survival. Specifically, through parasite-mediated phosphorylation of extracellular signal regulated kinase (ERK), L. amazonensis inhibits cell-mediated parasite killing and promotes its own survival by co-opting multiple host cell functions. In this review, we highlight Leishmania-host cell signaling alterations focusing on those specific to (1) motor proteins, (2) prevention of NADPH subunit phosphorylation impairing reactive oxygen species production, and (3) localized endosomal signaling to up-regulate ERK phosphorylation. This review will focus upon mechanisms and possible explanations as to how Leishmania spp. evades the various layers of defense employed by the host immune response.
Collapse
|
46
|
Okano M, Fujiwara T, Kariya S, Haruna T, Higaki T, Noyama Y, Makihara SI, Kanai K, Nishizaki K. Staphylococcal protein A-formulated immune complexes suppress enterotoxin-induced cellular responses in nasal polyps. J Allergy Clin Immunol 2015; 136:343-50.e8. [PMID: 25724120 DOI: 10.1016/j.jaci.2014.10.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/09/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recent studies have revealed that Staphylococcus aureus and its components participate in the pathogenesis of eosinophilic airway diseases, such as chronic rhinosinusitis with nasal polyps. OBJECTIVE We sought to determine whether staphylococcal protein A (SpA) from S aureus regulated cellular responses in nasal polyps, especially when coupled to immunoglobulins in immune complexes (ICs). METHODS Dispersed nasal polyp cells (DNPCs) or peripheral blood monocytes were cultured in vitro with SpA in the presence or absence of IgG, and IL-5, IL-13, IFN-γ, IL-17A, and IL-10 levels were measured in the supernatants. The effect of SpA exposure on staphylococcal enterotoxin B-induced cytokine production by DNPCs in the presence and absence of IgG, IgA, and autologous serum was also examined. RESULTS Exposure to SpA induced DNPCs to produce significantly higher IL-10, IL-13, and IL-17A levels than DNPCs without SpA, although the magnitude of the IL-17A increase was less than that of IL-10 and IL-13. SpA induced IL-10 production mainly from adherent DNPCs, and this was significantly enhanced in the presence of IgG; similar results were observed in peripheral blood monocytes. IC formation between SpA and IgG (SpA-IgG ICs) was confirmed by using native polyacrylamide gel electrophoresis. SpA-IgG ICs, but not SpA alone, almost completely suppressed staphylococcal enterotoxin B-induced IL-5, IL-13, IFN-γ, and IL-17A production by DNPCs; similar inhibition was observed in DNPCs treated with SpA in the presence of either IgA or autologous serum. CONCLUSIONS Our results suggest that SpA can regulate the pathogenesis of enterotoxin-induced inflammation in patients with chronic rhinosinusitis with nasal polyps through coupling to immunoglobulins.
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Tazuko Fujiwara
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takenori Haruna
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takaya Higaki
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Noyama
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Kengo Kanai
- Department of Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
47
|
Vogelpoel LTC, Baeten DLP, de Jong EC, den Dunnen J. Control of cytokine production by human fc gamma receptors: implications for pathogen defense and autoimmunity. Front Immunol 2015; 6:79. [PMID: 25759693 PMCID: PMC4338787 DOI: 10.3389/fimmu.2015.00079] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 01/21/2023] Open
Abstract
Control of cytokine production by immune cells is pivotal for counteracting infections via orchestration of local and systemic inflammation. Although their contribution has long been underexposed, it has recently become clear that human Fc gamma receptors (FcγRs), which are receptors for the Fc region of immunoglobulin G (IgG) antibodies, play a critical role in this process by controlling tissue- and pathogen-specific cytokine production. Whereas individual stimulation of FcγRs does not evoke cytokine production, FcγRs cell-type specifically interact with various other receptors for selective amplification or inhibition of particular cytokines, thereby tailoring cytokine responses to the immunological context. The physiological function of FcγR-mediated control of cytokine production is to counteract infections with various classes of pathogens. Upon IgG opsonization, pathogens are simultaneously recognized by FcγRs as well as by various pathogen-sensing receptors, leading to the induction of pathogen class-specific immune responses. However, when erroneously activated, the same mechanism also contributes to the development of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. In this review, we discuss control of cytokine production as a novel function of FcγRs in human innate immune cells in the context of homeostasis, infection, and autoimmunity and address the possibilities for future therapeutic exploitation.
Collapse
Affiliation(s)
- Lisa T C Vogelpoel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Dominique L P Baeten
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Esther C de Jong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Jeroen den Dunnen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
48
|
Ben M'Barek K, Molino D, Quignard S, Plamont MA, Chen Y, Chavrier P, Fattaccioli J. Phagocytosis of immunoglobulin-coated emulsion droplets. Biomaterials 2015; 51:270-277. [PMID: 25771017 DOI: 10.1016/j.biomaterials.2015.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/02/2015] [Indexed: 11/15/2022]
Abstract
Phagocytosis by macrophages represents a fundamental process essential for both immunity and tissue homeostasis. The size of targets to be eliminated ranges from small particles as bacteria to large objects as cancerous or senescent cells. Most of our current quantitative knowledge on phagocytosis is based on the use of solid polymer microparticles as model targets that are well adapted to the study of phagocytosis mechanisms that do not involve any lateral mobility of the ligands, despite the relevance of this parameter in the immunological context. Herein we designed monodisperse, IgG-coated emulsion droplets that are efficiently and specifically internalized by macrophages through in-vitro FcγR-mediated phagocytosis. We show that, contrary to solid polymeric beads, droplet uptake is efficient even for low IgG densities, and is accompagnied by the clustering of the opsonins in the zone of contact with the macrophage during the adhesion step. Beyond the sole interest in the design of the material, our results suggest that lateral mobility of proteins at the interface of a target greatly enhances the phagocytic uptake.
Collapse
Affiliation(s)
- Kalthoum Ben M'Barek
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Diana Molino
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Sandrine Quignard
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Marie-Aude Plamont
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Yong Chen
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France
| | - Philippe Chavrier
- Institut Curie, Research Center, Paris, France; Membrane and Cytoskeleton Dynamics, CNRS, UMR 144, Paris, France
| | - Jacques Fattaccioli
- Ecole Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005, Paris, France; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005, Paris, France; CNRS, UMR 8640 PASTEUR, F-75005, Paris, France.
| |
Collapse
|
49
|
van Kessel KPM, Bestebroer J, van Strijp JAG. Neutrophil-Mediated Phagocytosis of Staphylococcus aureus. Front Immunol 2014; 5:467. [PMID: 25309547 PMCID: PMC4176147 DOI: 10.3389/fimmu.2014.00467] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Initial elimination of invading Staphylococcus aureus from the body is mediated by professional phagocytes. The neutrophil is the major phagocyte of the innate immunity and plays a key role in the host defense against staphylococcal infections. Opsonization of the bacteria with immunoglobulins and complement factors enables efficient recognition by the neutrophil that subsequently leads to intracellular compartmentalization and killing. Here, we provide a review of the key processes evolved in neutrophil-mediated phagocytosis of S. aureus and briefly describe killing. As S. aureus is not helpless against the professional phagocytes, we will also highlight its immune evasion arsenal related to phagocytosis.
Collapse
Affiliation(s)
- Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jovanka Bestebroer
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
50
|
Gibson-Corley KN, Bockenstedt MM, Li H, Boggiatto PM, Phanse Y, Petersen CA, Bellaire BH, Jones DE. An in vitro model of antibody-enhanced killing of the intracellular parasite Leishmania amazonensis. PLoS One 2014; 9:e106426. [PMID: 25191842 PMCID: PMC4156363 DOI: 10.1371/journal.pone.0106426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022] Open
Abstract
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.
Collapse
Affiliation(s)
- Katherine N. Gibson-Corley
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Marie M. Bockenstedt
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Huijuan Li
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Paola M. Boggiatto
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Yashdeep Phanse
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Christine A. Petersen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Douglas E. Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|