1
|
Lin L, Fu J, Yao H, Li Y, Wang Y, Shen H, Guan Y. Caffeic acid derivatives as elastase inhibitors: Mechanistic insights and therapeutic potentials. Int J Biol Macromol 2025; 309:143059. [PMID: 40222505 DOI: 10.1016/j.ijbiomac.2025.143059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/22/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Inflammation, a physiological defense mechanism, often involves the overproduction of elastase, a serine protease that degrades structural proteins, and contributes to inflammatory diseases such as chronic obstructive pulmonary disease and rheumatoid arthritis. This study explored the inhibitory effects of caffeic acid and its derivatives, chlorogenic acid and forsythiaside A, on elastase activity. Using enzyme kinetics, multi-spectroscopy, and molecular docking, we demonstrated that all three compounds competitively inhibited elastase, with forsythiaside A exhibiting the highest efficacy among them. Fluorescence and UV-vis spectra demonstrated that elastase interacted with these compounds, causing secondary structural changes. Thermodynamic analyses revealed that electrostatic forces dominated caffeic acid and chlorogenic acid interactions, whereas hydrogen bonding was key for forsythiaside A. Molecular docking also highlighted the role of ortho-phenolic hydroxyl and polyhydroxy groups in enhancing this inhibition. These findings provide molecular insights into the structure-activity relationships of these compounds, emphasizing their potential as scaffolds for developing safer and more effective elastase inhibitors.
Collapse
Affiliation(s)
- Lihao Lin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Jinfeng Fu
- Department of Natural Organic Chemistry, College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hongliu Yao
- Department of Natural Organic Chemistry, College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongxue Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Haoyu Shen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yi Guan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Yu KH, Tien KW, Wang WC, Chi CH, Tsai KC, Chou CH, Hwang TL, Hung HY. Design and synthesis of pyrazole derivatives against neutrophilic inflammation. Eur J Med Chem 2023; 262:115874. [PMID: 37918036 DOI: 10.1016/j.ejmech.2023.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils are the most abundant immune cells. However, neutrophil dysregulation leads to acute and chronic inflammation and is involved in various diseases. The aim of this study was to develop anti-inflammatory agents in human neutrophils. A drug screening was conducted on in-house compounds with the potential to inhibit the respiratory burst, which involves the generation of superoxide anions in human neutrophils. Bioisosteric replacement was then applied to design more active derivatives. The most potent inhibitors of superoxide anion generation activity were compounds 58 and 59, which had IC50 values of 13.30 and 9.06 nM, respectively. The inhibitory effects of 58 and 59 were reversed by H89, a PKA inhibitor. PDE selective screening indicated that the best inhibitory effects were PDE4B1 and PDE4D2, and the inhibitory activities were 83% and 85%, respectively, at a 10 μM concentration of 59. The final molecular simulation experiment highlighted the slightly different binding poses of 58 and 59 in the PDE4 active site. An in vivo pharmacokinetic study revealed that the half-life of 59 was approximately 79 min when using intravenous bolus administration. This work introduced a new class structure of PDE4 inhibitors resulting in potent neutrophil inactivation activity, with the aim of contributing to new anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Wen Tien
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Chun Wang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Keng-Chang Tsai
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, 112, Taiwan
| | - Chen-Hsi Chou
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
van der Linden M, Kumari S, Montizaan D, van Dalen S, Kip A, Foster M, Reinieren-Beeren I, Neubert E, Erpenbeck L, Waaijenberg K, Bruurmijn T, Te Poele R, van Zandvoort P, Vink P, Meldrum E, van Es H, Chirivi RGS. Anti-citrullinated histone monoclonal antibody CIT-013, a dual action therapeutic for neutrophil extracellular trap-associated autoimmune diseases. MAbs 2023; 15:2281763. [PMID: 38031350 DOI: 10.1080/19420862.2023.2281763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) contribute to the pathophysiology of multiple inflammatory and autoimmune diseases. Targeting the NETosis pathway has demonstrated significant therapeutic potency in various disease models. Here, we describe a first-in-class monoclonal antibody (CIT-013) with high affinity for citrullinated histones H2A and H4, which inhibits NETosis and reduces tissue NET burden in vivo with significant anti-inflammatory consequences. We provide a detailed understanding of the epitope selectivity of CIT-013. Detection of CIT-013 epitopes in rheumatoid arthritis (RA) synovium provides evidence that RA is an autoimmune disease with excessive citrullinated NETs that can be targeted by CIT-013. We show that CIT-013 acts upon the final stage of NETosis, binding to its chromatin epitopes when plasma membrane integrity is compromised to prevent NET release. Bivalency of CIT-013 is necessary for NETosis inhibition. In addition, we show that CIT-013 binding to NETs and netting neutrophils enhance their phagocytosis by macrophages in an Fc-dependent manner. This is confirmed using a murine neutrophilic airway inflammation model where a mouse variant of CIT-013 reduced tissue NET burden with significant anti-inflammatory consequences. CIT-013's therapeutic activity provides new insights for the development of NET antagonists and indicates the importance of a new emerging therapy for NET-driven diseases with unmet therapeutic needs.
Collapse
Affiliation(s)
| | | | | | | | - Annemarie Kip
- Research and Development, Citryll B.V, Oss, The Netherlands
| | - Martyn Foster
- Pathology, Experimental Pathology Consultancy, Benfleet, Essex, UK
| | | | - Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Department of General Dermatology and Venereology, Clinic of Skin Diseases, University Medical Center Münster, Münster, Germany
| | | | | | - Rezie Te Poele
- Research and Development, Citryll B.V, Oss, The Netherlands
| | | | - Paul Vink
- Research and Development, Citryll B.V, Oss, The Netherlands
| | - Eric Meldrum
- Research and Development, Citryll B.V, Oss, The Netherlands
| | - Helmuth van Es
- Research and Development, Citryll B.V, Oss, The Netherlands
| | | |
Collapse
|
4
|
Geerdink RJ, Pascoal Ramos MI, van den Hoogen LL, Radstake TRDJ, Shibayama S, Shibuya A, Bont L, Meyaard L. Differential isoform expression of Allergin-1 during acute and chronic inflammation. Immun Inflamm Dis 2022; 10:e739. [PMID: 36444625 PMCID: PMC9695092 DOI: 10.1002/iid3.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/08/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation elicits immune pathology. Currently, no effective treatment exists to curb neutrophil activation. However, neutrophils express a variety of inhibitory receptors which may represent potential therapeutic targets to limit neutrophilic inflammation. Indeed, we previously showed that the inhibitory collagen receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) regulates neutrophilic airway inflammation and inhibits neutrophil extracellular trap formation. The inhibitory receptor Allergin-1 is expressed by myeloid cells and B cells. Allergin-1 suppresses mast cell and basophil activation, but a potential regulatory role on neutrophils remains unexplored. We aimed to demonstrate the regulation of neutrophils by Allergin-1. METHODS We examine Allergin-1 isoform expression on human neutrophils during homeostatic (healthy donors) and chronic inflammatory (systemic lupus erythematosus patients) conditions in comparison to other circulating leukocytes by flow cytometry. To reveal a potential role for Allergin-1 in regulating neutrophilic inflammation, we experimentally infect wild-type (WT) and Allergin-1-deficient mice with a respiratory syncytial virus (RSV) and monitor disease severity and examine cellular airway infiltrate. Flow cytometry was used to confirm Allergin-1 expression by airway-infiltrated neutrophils in RSV infection-induced bronchiolitis patients. RESULTS Only the short 1 (S1) isoform, but not the long (L) or S2 isoform could be detected on blood leukocytes, with the exception of nonclassical monocytes, which exclusively express the S2 isoform. Allergin-1 expression levels did not vary significantly between healthy individuals and patients with the systemic inflammatory disease on any interrogated cell type. Airway-infiltrated neutrophils of pediatric RSV bronchiolitis patients were found to express Allergin-1S1. However, Allergin-1-deficient mice experimentally infected with RSV did not show exacerbated disease or increased neutrophil airway infiltration compared to WT littermates. CONCLUSION Allergin-1 isoform expression is unaffected by chronic inflammatory conditions. In stark contrast to fellow inhibitory receptor LAIR-1, Allergin-1 does not regulate neutrophilic inflammation in a mouse model of RSV bronchiolitis.
Collapse
Affiliation(s)
- Ruben J. Geerdink
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Maria Inês Pascoal Ramos
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Luuk L. van den Hoogen
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Timothy R. D. J. Radstake
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Shiro Shibayama
- Research Centre of Immunology, Tsukuba InstituteONO Pharmaceutical Co., Ltd.TsukubaIbarakiJapan
| | - Akira Shibuya
- Department of Immunology, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Louis Bont
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatrics, Wilhelmina Children's HospitalUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
5
|
Lobato TB, Gennari-Felipe M, Pauferro JRB, Correa IS, Santos BF, Dias BB, de Oliveira Borges JC, dos Santos CS, de Sousa Santos ES, de Araújo MJL, Ferreira LA, Pereira SA, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges L, Cury-Boaventura MF, Vinolo MAR, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Leukocyte metabolism in obese type 2 diabetic individuals associated with COVID-19 severity. Front Microbiol 2022; 13:1037469. [PMID: 36406408 PMCID: PMC9670542 DOI: 10.3389/fmicb.2022.1037469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 03/27/2024] Open
Abstract
Recent studies show that the metabolic characteristics of different leukocytes, such as, lymphocytes, neutrophils, and macrophages, undergo changes both in the face of infection with SARS-CoV-2 and in obesity and type 2 diabetes mellitus (DM2) condition. Thus, the objective of this review is to establish a correlation between the metabolic changes caused in leukocytes in DM2 and obesity that may favor a worse prognosis during SARS-Cov-2 infection. Chronic inflammation and hyperglycemia, specific and usual characteristics of obesity and DM2, contributes for the SARS-CoV-2 replication and metabolic disturbances in different leukocytes, favoring the proinflammatory response of these cells. Thus, obesity and DM2 are important risk factors for pro-inflammatory response and metabolic dysregulation that can favor the occurrence of the cytokine storm, implicated in the severity and high mortality risk of the COVID-19 in these patients.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Matheus Gennari-Felipe
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Ilana Souza Correa
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Ferreira Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Beatriz Belmiro Dias
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - João Carlos de Oliveira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Camila Soares dos Santos
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Maria Janaína Leite de Araújo
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Liliane Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Sara Araujo Pereira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | | | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Leandro Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| | - Renata Gorjão
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brasil
| |
Collapse
|
6
|
Matta B, Battaglia J, Barnes BJ. Detection of neutrophil extracellular traps in patient plasma: method development and validation in systemic lupus erythematosus and healthy donors that carry IRF5 genetic risk. Front Immunol 2022; 13:951254. [PMID: 35958624 PMCID: PMC9360330 DOI: 10.3389/fimmu.2022.951254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures extruded by neutrophils after activation or in response to microorganisms. These extracellular structures are decondensed chromatin fibers loaded with antimicrobial granular proteins, peptides, and enzymes. NETs clear microorganisms, thus keeping a check on infections at an early stage, but if dysregulated, may be self-destructive to the body. Indeed, NETs have been associated with autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), antiphospholipid syndrome (APS), psoriasis, and gout. More recently, increased NETs associate with COVID-19 disease severity. While there are rigorous and reliable methods to quantify NETs from neutrophils via flow cytometry and immunofluorescence, the accurate quantification of NETs in patient plasma or serum remains a challenge. Here, we developed new methodologies for the quantification of NETs in patient plasma using multiplex ELISA and immunofluorescence methodology. Plasma from patients with SLE, non-genotyped healthy controls, and genotyped healthy controls that carry either the homozygous risk or non-risk IRF5-SLE haplotype were used in this study. The multiplex ELISA using antibodies detecting myeloperoxidase (MPO), citrullinated histone H3 (CitH3) and DNA provided reliable detection of NETs in plasma samples from SLE patients and healthy donors that carry IRF5 genetic risk. An immunofluorescence smear assay that utilizes only 1 µl of patient plasma provided similar results and data correlate to multiplex ELISA findings. The immunofluorescence smear assay is a relatively simple, inexpensive, and quantifiable method of NET detection for small volumes of patient plasma.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jenna Battaglia
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- *Correspondence: Betsy J. Barnes,
| |
Collapse
|
7
|
Bayless RL, Sheats MK, Jones SL. Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil Apoptosis. Front Vet Sci 2022; 9:900453. [PMID: 35782542 PMCID: PMC9247543 DOI: 10.3389/fvets.2022.900453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils play a major role in many equine conditions, including equine asthma, laminitis, and intestinal ischemia and reperfusion injury, and therefore represent an attractive target for innovative therapeutic approaches. Novel strategies for reducing neutrophilic inflammation include modulation of neutrophil functions and lifespan. Withaferin A (WFA) is a phytochemical with well-established in vitro and in vivo anti-inflammatory properties, but its direct effects on neutrophils are largely unknown. We hypothesized that WFA would inhibit adhesion, migration, and respiratory burst by equine neutrophils and promote timely apoptosis of primed equine neutrophils. Consistent with this hypothesis, our data show that WFA causes a significant, concentration-dependent inhibition of equine neutrophil adhesion, migration, and respiratory burst in response to diverse stimuli. Further, WFA treatment increased apoptosis of equine neutrophils exposed to GM-CSF for 24 h. This pro-apoptotic effect of WFA was not observed in unprimed neutrophils, nor at the 2-h time point relevant to our functional neutrophil experiments. Our data demonstrate that WFA may reduce neutrophil-mediated inflammation through multiple mechanisms, including suppression of inflammatory responses and promotion of apoptosis. Additional research is needed to elucidate the molecular mechanisms for these effects and evaluate the potential clinical use of WFA in veterinary and human patients.
Collapse
Affiliation(s)
- Rosemary L Bayless
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Samuel L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Association of neutrophil to lymphocyte ratio with preterm necrotizing enterocolitis: a retrospective case-control study. BMC Gastroenterol 2022; 22:248. [PMID: 35581541 PMCID: PMC9112240 DOI: 10.1186/s12876-022-02329-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022] Open
Abstract
Background There have been few studies on the relationship between the neutrophil to lymphocyte ratio (NLR) and necrotizing enterocolitis (NEC). We conducted a retrospective case-control study to investigate this relationship in preterm neonates. Methods A total of 199 preterm neonates diagnosed with NEC between January 2018 and January 2020 were included in this study. For each preterm infant with NEC that was admitted to the neonatal intensive care unit (NICU), controls were preterm neonates (matched for gestation and year of birth) who were not diagnosed with NEC. Exclusion criteria were post-maturity, small or large for gestational age (week of pregnancy), congenital major anomalies, and cyanotic congenital heart disease. Univariate and multivariate logistic regression analyses were used to identify the association between NLR and preterm NEC. Results This study included 93 preterm neonates with NEC and 106 matched controls. There were no significant differences in gestational age (GA), birth weight (BW), age, sex, vaginal delivery (VD), chorioamnionitis (CA), and gestational diabetes mellitus (GDM) between the groups. Compared with the control group, the lower and higher NLR levels in the NEC group were statistically different. Following univariate analysis, NLR was a risk factor for NEC (odds ratio [OR], 1.40; 95% confidence interval [CI], 1.00–1.90; P = 0.042), and according to multivariate analysis, risk factors for NEC were NLR ≥ 3.20 and NLR < 1.60, within 1 week before NEC diagnosis. Thus, NLR values of ≥ 1.60 and < 3.20 were determined as the predictive cut-off values for protecting preterm infants from NEC (Model I: OR, 0.20; 95% CI, 0.10–0.40; P < 0.001) and (Model II: OR, 0.10; 95% CI, 0.00–0.40; P < 0.001]. Conclusions NLR ≥ 1.60 and NLR < 3.20 were associated with a decreased risk of NEC in preterm infants.
Collapse
|
9
|
Trifan A, Bostănaru AC, Luca SV, Temml V, Akram M, Herdlinger S, Kulinowski Ł, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Mareș M, Schuster D. Honokiol and Magnolol: Insights into Their Antidermatophytic Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:2522. [PMID: 34834886 PMCID: PMC8620735 DOI: 10.3390/plants10112522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/15/2023]
Abstract
Dermatophyte infections represent a significant public health concern, with an alarming negative impact caused by unsuccessful therapeutic regimens. Natural products have been highlighted as a promising alternative, due to their long-standing traditional use and increasing scientific recognition. In this study, honokiol and magnolol, the main bioactives from Magnolia spp. bark, were investigated for their antidermatophytic activity. The antifungal screening was performed using dermatophyte standard strains and clinical isolates. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) were determined in accordance with EUCAST-AFST guidelines, with minor modifications. The effects on ergosterol biosynthesis were assessed in Trichophyton rubrum cells by HPLC-DAD. Putative interactions with terbinafine against T. rubrum were evaluated by the checkerboard method. Their impact on cells' viability and pro-inflammatory cytokines (IL-1β, IL-8 and TNF-α) was shown using an ex vivo human neutrophils model. Honokiol and magnolol were highly active against tested dermatophytes, with MIC and MFC values of 8 and 16 mg/L, respectively. The mechanism of action involved the inhibition of ergosterol biosynthesis, with accumulation of squalene in T. rubrum cells. Synergy was assessed for binary mixtures of magnolol with terbinafine (FICI = 0.50), while honokiol-terbinafine combinations displayed only additive effects (FICI = 0.56). In addition, magnolol displayed inhibitory effects towards IL-1β, IL-8 and TNF-α released from lipopolysaccharide (LPS)-stimulated human neutrophils, while honokiol only decreased IL-1β secretion, compared to the untreated control. Overall, honokiol and magnolol acted as fungicidal agents against dermatophytes, with impairment of ergosterol biosynthesis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Muhammad Akram
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Sonja Herdlinger
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdeidet el-Matn B.P. 90656, Lebanon;
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| |
Collapse
|
10
|
Trifan A, Luca SV, Bostănaru AC, Brebu M, Jităreanu A, Cristina RT, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Sieniawska E, Mareș M. Apiaceae Essential Oils: Boosters of Terbinafine Activity against Dermatophytes and Potent Anti-Inflammatory Effectors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112378. [PMID: 34834740 PMCID: PMC8623916 DOI: 10.3390/plants10112378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/03/2023]
Abstract
Dermatophyte infections represent an important public health concern, affecting up to 25% of the world's population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its clinical use is hampered by side effects, drug-drug interactions, and the emergence of resistant clinical isolates. Combination therapy, associating terbinafine and essential oils (EOs), represents a promising strategy in the treatment of dermatophytosis. In this study, we screened the potential of selected Apiaceae EOs (ajowan, coriander, caraway, and anise) to improve the antifungal activity of terbinafine against T. rubrum ATCC 28188 and T. mentagrophytes ATCC 9533. The chemical profile of EOs was analyzed by gas chromatography. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of EOs/main compounds were determined according to EUCAST-AFST guidelines, with minor modifications. The checkerboard microtiter method was used to identify putative synergistic combinations of EOs/main constituents with terbinafine. The influence of EOs on the viability and pro-inflammatory cytokine production (IL-1β, IL-8 and TNF-α) was determined using an ex vivo human neutrophils model. The binary associations of tested EOs with terbinafine were found to be synergistic against T. rubrum, with FICI values of 0.26-0.31. At the tested concentrations (6.25-25 mg/L), EOs did not exert cytotoxic effects towards human neutrophils. Anise EO was the most potent inhibitor of IL-1β release (46.49% inhibition at 25 mg/L), while coriander EO displayed the highest inhibition towards IL-8 and TNF-α production (54.15% and 54.91%, respectively). In conclusion, the synergistic combinations of terbinafine and investigated Apiaceae EOs could be a starting point in the development of novel topical therapies against T. rubrum-related dermatophytosis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Correspondence: (A.T.); (A.-C.B.)
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
- Correspondence: (A.T.); (A.-C.B.)
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, Petru Poni Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | - Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Romeo-Teodor Cristina
- Department of Pharmacology, The Banat University of Agricultural Sciences and Veterinary Medicine, 300645 Timisoara, Romania;
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdaidet el-Matn B.P. 90656, Lebanon;
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| |
Collapse
|
11
|
Mol S, Hafkamp FMJ, Varela L, Simkhada N, Taanman-Kueter EW, Tas SW, Wauben MHM, Groot Kormelink T, de Jong EC. Efficient Neutrophil Activation Requires Two Simultaneous Activating Stimuli. Int J Mol Sci 2021; 22:ijms221810106. [PMID: 34576270 PMCID: PMC8467451 DOI: 10.3390/ijms221810106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are abundantly present in the synovium and synovial fluid of patients suffering from arthritis. Neutrophils can be activated by a multitude of stimuli and the current dogma states that this is a two-step process, consisting of a priming step followed by an activation step. Considering that neutrophil activation occurs in an inflammatory environment, where multiple stimuli are present, we argue that a two-step process is highly unlikely. Here, we indeed demonstrate that neutrophils require simultaneous ligation of two different receptors for efficient activation. We isolated human peripheral blood neutrophils and cultured them with various combinations of stimuli (GM-CSF, fMLF, TNF, and LPS). Next, we evaluated essential neutrophil functions, including degranulation and ROS production using flow cytometry, mediator release using ELISA, NETosis by a live cell imaging method, phagocytosis by imaging flow cytometry, and extracellular vesicle (EV) release quantified by high-resolution flow cytometry. Exposure of neutrophils to any combination of stimuli, but not to single stimuli, resulted in significant degranulation, and mediator and EV release. Furthermore, ROS production increased substantially by dual stimulation, yet appeared to be more dependent on the type of stimulation than on dual stimulation. Phagocytosis was induced to its maximum capacity by a single stimulus, while NETosis was not induced by any of the used physiological stimuli. Our data indicate that neutrophil activation is tightly regulated and requires activation by two simultaneous stimuli, which is largely independent of the combination of stimuli.
Collapse
Affiliation(s)
- Sanne Mol
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
- Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; (L.V.); (M.H.M.W.)
| | - Florianne M. J. Hafkamp
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Laura Varela
- Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; (L.V.); (M.H.M.W.)
| | - Neena Simkhada
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Esther W. Taanman-Kueter
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Sander W. Tas
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marca H. M. Wauben
- Department Biomolecular Health Sciences, Faculty Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands; (L.V.); (M.H.M.W.)
| | - Tom Groot Kormelink
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
| | - Esther C. de Jong
- Department Experimental Immunology, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands; (S.M.); (F.M.J.H.); (N.S.); (E.W.T.-K.); (S.W.T.); (T.G.K.)
- Correspondence: ; Tel.: +31-2-0566-4963
| |
Collapse
|
12
|
Blaszczak AM, Jalilvand A, Hsueh WA. Adipocytes, Innate Immunity and Obesity: A Mini-Review. Front Immunol 2021; 12:650768. [PMID: 34248937 PMCID: PMC8264354 DOI: 10.3389/fimmu.2021.650768] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| | - Anahita Jalilvand
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| | - Willa A Hsueh
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| |
Collapse
|
13
|
Huitema L, Phillips T, Alexeev V, Igoucheva O. Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 30:1724-1733. [PMID: 34142388 PMCID: PMC9290674 DOI: 10.1111/exd.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is a mechanobullous skin fragility disorder characterized by defective epithelial adhesion, leading to mechanical stress‐induced skin blistering. Based on the level of tissue separation within the dermal‐epidermal junction, EB is categorized into simplex (EBS), junctional (JEB), dystrophic (DEB) and Kindler syndrome. There is no cure for EB, and painful chronic cutaneous wounds are one of the major complications in recessive (RDEB) patients. Although RDEB is considered a cutaneous disease, recent data support the underlying systemic immunological defects. Furthermore, chronic wounds are often colonized with pathogenic microbiota, leading to excessive inflammation and altered wound healing. Consequently, patients with RDEB suffer from a painful sensation of chronic, cutaneous itching/burning and an endless battle with bacterial infections. To improve their quality of life and life expectancy, it is important to prevent cutaneous infections, dampen chronic inflammation and stimulate wound healing. A clear scientific understanding of the immunological events underlying the maintenance of chronic poorly healing wounds in RDEB patients is necessary to improve disease management and better understand other wound healing disorders. In this review, we summarize current knowledge of the role of professional phagocytes, such as neutrophils, macrophages and dendritic cells, the role of T‐cell‐mediated immunity in lymphoid organs, and the association of microbiota with poor wound healing in RDEB. We conclude that RDEB patients have an underlying immunity defect that seems to affect antibacterial immunity.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, Kambas K, Hahn J, Braster Q, Soehnlein O, Hoffmann MH, Es HHGV, Raats JMH. Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol 2021; 18:1528-1544. [PMID: 32203195 PMCID: PMC8166830 DOI: 10.1038/s41423-020-0381-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.
Collapse
Affiliation(s)
- Renato G S Chirivi
- ModiQuest B.V., Oss, The Netherlands.
- Citryll B.V., Oss, The Netherlands.
| | | | | | - Maximilien Euler
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | - Galina Bogatkevich
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Konstantinos Kambas
- Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupoli, Greece
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
15
|
Trifan A, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Marcourt L, Wolfender JL, Wolfram E, Esslinger N, Grubelnik A, Luca SV. Symphytum officinale L.: Liquid-liquid chromatography isolation of caffeic acid oligomers and evaluation of their influence on pro-inflammatory cytokine release in LPS-stimulated neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113169. [PMID: 32739565 DOI: 10.1016/j.jep.2020.113169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Symphytum officinale L. (comfrey, Boraginaceae) has been traditionally used for millennia in joint distortions, myalgia, bone fractures and hematomas. However, key activity-determining constituents and molecular mechanisms underlying its use have not been completely elucidated. AIM OF THE STUDY The objective of this study was to isolate and identify the major compounds from a hydroethanolic root extract of S. officinale and evaluate their antioxidant potential, alongside their effect on the cytokine production of ex vivo stimulated neutrophils, thus providing scientific support for the traditional use of comfrey root. MATERIAL AND METHODS Four caffeic acid oligomers were isolated from comfrey roots by liquid-liquid chromatography, their structures being established by MS and NMR analyses. In vitro antioxidant evaluation was performed by DPPH and ABTS assays. The cytotoxicity of isolated compounds was established by flow cytometry. The effect on cytokine release, such as interleukin (IL)-1β, IL-8 and tumor necrosis factor alpha (TNF-α), in lipopolysaccharide (LPS)-stimulated neutrophils was determined by enzyme-linked immunosorbent assay (ELISA). RESULTS The main constituents found in comfrey root were represented by four caffeic acid oligomers, namely globoidnan B (1), rabdosiin (2), rosmarinic acid (3) and globoidnan A (4). Rabdosiin, globoidnans A and B were isolated for the first time from S. officinale. In the in vitro antioxidant tests, compound 2 was the most active, with EC50 values in DPPH and ABTS assays of 29.14 ± 0.43 and 11.13 ± 0.39, respectively. Neutrophils' viability over the tested concentration domain of 12.5-50 μM was not altered. At 50 μM, all compounds significantly inhibited IL-1β release, with compound 3 (45.60% release vs. LPS stimulated neutrophils) being the most active, followed by compounds 1 (53.85%), 2 (69.89%) and 4 (60.68%). CONCLUSIONS The four caffeic acid oligomers reported in S. officinale root may contribute to the overall anti-inflammatory activity for which comfrey preparations are used in traditional medicine.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania.
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Department of Pharmacognosy, Medical University of Lublin, 20-093, Lublin, Poland.
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Aleksandra Kruk
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, IPSWS, University of Geneva, CMU, 1211, Geneva 4, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, IPSWS, University of Geneva, CMU, 1211, Geneva 4, Switzerland.
| | - Evelyn Wolfram
- Phytopharmacy and Natural Products Research Group, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | | | - Simon Vlad Luca
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115, Iasi, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
16
|
Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The Neutrophil: Constant Defender and First Responder. Front Immunol 2020; 11:571085. [PMID: 33072112 PMCID: PMC7541934 DOI: 10.3389/fimmu.2020.571085] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The role of polymorphonuclear neutrophils (PMNs) in biology is often recognized during pathogenesis associated with PMN hyper- or hypo-functionality in various disease states. However, in the vast majority of cases, PMNs contribute to resilience and tissue homeostasis, with continuous PMN-mediated actions required for the maintenance of health, particularly in mucosal tissues. PMNs are extraordinarily well-adapted to respond to and diminish the damaging effects of a vast repertoire of infectious agents and injurious processes that are encountered throughout life. The commensal biofilm, a symbiotic polymicrobial ecosystem that lines the mucosal surfaces, is the first line of defense against pathogenic strains that might otherwise dominate, and is therefore of critical importance for health. PMNs regularly interact with the commensal flora at the mucosal tissues in health and limit their growth without developing an overt inflammatory reaction to them. These PMNs exhibit what is called a para-inflammatory phenotype, and have reduced inflammatory output. When biofilm growth and makeup are disrupted (i.e., dysbiosis), clinical symptoms associated with acute and chronic inflammatory responses to these changes may include pain, erythema and swelling. However, in most cases, these responses indicate that the immune system is functioning properly to re-establish homeostasis and protect the status quo. Defects in this healthy everyday function occur as a result of PMN subversion by pathological microbial strains, genetic defects or crosstalk with other chronic inflammatory conditions, including cancer and rheumatic disease, and this can provide some avenues for therapeutic targeting of PMN function. In other cases, targeting PMN functions could worsen the disease state. Certain PMN-mediated responses to pathogens, for example Neutrophil Extracellular Traps (NETs), might lead to undesirable symptoms such as pain or swelling and tissue damage/fibrosis. Despite collateral damage, these PMN responses limit pathogen dissemination and more severe damage that would otherwise occur. New data suggests the existence of unique PMN subsets, commonly associated with functional diversification in response to particular inflammatory challenges. PMN-directed therapeutic approaches depend on a greater understanding of this diversity. Here we outline the current understanding of PMNs in health and disease, with an emphasis on the positive manifestations of tissue and organ-protective PMN-mediated inflammation.
Collapse
Affiliation(s)
- Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Nikola Tasevski
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Howard C Tenenbaum
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
17
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
18
|
Weigand M, Degroote RL, Amann B, Renner S, Wolf E, Hauck SM, Deeg CA. Proteome profile of neutrophils from a transgenic diabetic pig model shows distinct changes. J Proteomics 2020; 224:103843. [PMID: 32470542 DOI: 10.1016/j.jprot.2020.103843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
INSC94Y transgenic pigs develop a stable diabetic phenotype early after birth and therefore allow studying the influence of hyperglycemia on primary immune cells in an early stage of diabetes mellitus in vivo. Since immune response is altered in diabetes mellitus, with deviant neutrophil function discussed as one of the possible causes in humans and mouse models, we investigated these immune cells in INSC94Y transgenic pigs and wild type controls at protein level. A total of 2371 proteins were quantified by label-free LC-MS/MS. Subsequent differential proteome analysis of transgenic animals and controls revealed clear differences in protein abundances, indicating a deviant behavior of granulocytes in the diabetic state. Interestingly, abundance of myosin regulatory light chain 9 (MLC-2C) was increased 5-fold in cells of diabetic pigs. MLC-2C directly affects cell contractility by regulating myosin ATPase activity, can act as transcription factor and was also associated with inflammation. It might contribute to impaired neutrophil cell adhesion, migration and phagocytosis. Our study provides novel insights into proteome changes in neutrophils from a large animal model for permanent neonatal diabetes mellitus and points to dysregulation of neutrophil function even in an early stage of this disease. Data are available via ProteomeXchange with identifier PXD017274. SIGNIFICANCE: Our studies provide novel basic information about the neutrophil proteome of pigs and contribute to a better understanding of molecular mechanisms involved in altered immune cell function in an early stage diabetes. We demonstrate proteins that are dysregulated in neutrophils from a transgenic diabetic pig and have not been described in this context so far. The data presented here are highly relevant for veterinary medicine and have translational quality for diabetes in humans.
Collapse
Affiliation(s)
- Maria Weigand
- Department of Veterinary Sciences, LMU, Munich, Germany
| | | | - Barbara Amann
- Department of Veterinary Sciences, LMU, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Germany
| | | |
Collapse
|
19
|
Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, Summers C, Guck J, Chilvers ER. The mechanics of myeloid cells. Biol Cell 2020; 112:103-112. [DOI: 10.1111/boc.201900084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen R Bashant
- Department of MedicineUniversity of Cambridge Cambridge UK
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | - Nicole Toepfner
- Center for Molecular and Cellular BioengineeringBiotechnology Center, Technische Universität Dresden Dresden Germany
- Department of PediatricsUniversity Clinic Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | | | - Nehal N Mehta
- National Heart Lung and Blood InstituteNational Institutes of Health Bethesda MD USA
| | - Mariana J Kaplan
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | | | - Jochen Guck
- Max‐Planck‐Institut für die Physik des Lichts & Max‐Planck‐Zentrum für Physik und Medizin Erlangen Germany
| | | |
Collapse
|
20
|
Besteman SB, Callaghan A, Hennus MP, Westerlaken GH, Meyaard L, Bont LL. Signal inhibitory receptor on leukocytes (SIRL)-1 and leukocyte- associated immunoglobulin-like receptor (LAIR)-1 regulate neutrophil function in infants. Clin Immunol 2020; 211:108324. [DOI: 10.1016/j.clim.2019.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
|
21
|
Baien SH, Seele J, Henneck T, Freibrodt C, Szura G, Moubasher H, Nau R, Brogden G, Mörgelin M, Singh M, Kietzmann M, von Köckritz-Blickwede M, de Buhr N. Antimicrobial and Immunomodulatory Effect of Gum Arabic on Human and Bovine Granulocytes Against Staphylococcus aureus and Escherichia coli. Front Immunol 2020; 10:3119. [PMID: 32082302 PMCID: PMC7005937 DOI: 10.3389/fimmu.2019.03119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/20/2019] [Indexed: 02/03/2023] Open
Abstract
Gum arabic (GA) is a traditional herbal medicine from Acacia Senegal (L.) Willdenow trees, which consist of a complex mixture of polysaccharides and glycoproteins. It is used in daily applications for several diseases and is considered to protect against bacterial infections. The detailed mechanisms behind these observations are still unclear. In this study, we investigated the direct antibacterial activity of GA water and ethanol extracts against Staphylococcus (S.) aureus or Escherichia (E.) coli and the immunomodulating properties of those extracts on granulocytes as a first line of defense against bacteria. Firstly, the direct antimicrobial effect of GA was tested on three different S. aureus strains and two E. coli strains. The growth of bacteria was analyzed in the presence of different GA concentrations over time. GA water as well as ethanol extracts showed a significant growth inhibition in a concentration-dependent manner in the case of S. aureus Newman, S. aureus Rd5, and E. coli 25922, but not in the case of S. aureus USA300 and E. coli K1. Transmission electron microscopic analysis confirmed an antibacterial effect of GA on the bacteria. Secondly, the immunomodulatory effect of GA on the antimicrobial activity of bovine or human blood-derived granulocytes was evaluated. Interestingly, water and ethanol extracts enhanced antimicrobial activity of granulocytes by the induction of intracellular ROS production. In line with these data, GA increased the phagocytosis rate of E. coli. No effect was seen on neutrophil extracellular trap (NET) formation that mediates killing of extracellular bacteria such as S. aureus. In conclusion, we show that GA exhibits a direct antibacterial effect against some S. aureus and E. coli strains. Furthermore, GA boosts the antimicrobial activities of granulocytes and increases intracellular ROS production, which may lead to more phagocytosis and intracellular killing. These data might explain the described putative antimicrobial activity of GA used in traditional medicine.
Collapse
Affiliation(s)
- Shima Hassan Baien
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jana Seele
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Timo Henneck
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christin Freibrodt
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - György Szura
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Hani Moubasher
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Roland Nau
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics, GmbH, Brunswick, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
22
|
Degroote RL, Weigand M, Hauck SM, Deeg CA. IL8 and PMA Trigger the Regulation of Different Biological Processes in Granulocyte Activation. Front Immunol 2020; 10:3064. [PMID: 32010136 PMCID: PMC6973177 DOI: 10.3389/fimmu.2019.03064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms driving specific regulation of neutrophils are not completely understood to date. In order to characterize fundamental granulocyte features on protein level, we analyzed changes in proteome composition as reaction to stress from cell activation processes. For this purpose, we isolated primary granulocytes from equine whole blood through density gradient centrifugation followed by sodium chloride lysis and stimulated cells for 30 min with interleukin-8 (IL8) due to its role as a chemotactic factor for neutrophils. We additionally used phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), which are primarily associated to neutrophil extracellular trap formation and release of reactive oxygen species. From mass spectrometry analysis, we identified a total of 2,032 proteins describing the whole granulocyte proteome, including 245 proteins (12% of identified proteome) newly associated to in vivo expression in primary equine granulocytes (hypothetical proteins). We also found distinct and different changes in protein abundance (ratio ≥ 2) after short stimulation of cells with various stimuli, pointing to rapid and differentiated reaction pattern. IL8 stimulation resulted in increased protein abundance of 58 proteins (3% of proteome), whereas PMA induced changed protein abundance of 207 (10 % of proteome) and LPS of 46 proteins (2% of proteome). Enrichment analyses clearly showed fundamental differences between stimuli, with primary association of IL8 stimulation to processes in immune response, receptor signaling and signal transduction. Top enrichment for PMA on the other hand pointed to vesicle mediated transport and exocytosis. Stimulation with LPS did not result in any significant enrichment. Although we detected 43% overlap of enrichment categories for IL8 and PMA stimulation, indicating that activation of neutrophils with different stimuli partly induces some similar biological processes and pathways, hierarchical clustering showed clear differences in distribution and biological relevance of clusters between the chosen stimuli. Our studies provide novel information on the granulocyte proteome and offer insights into early, differentiated granulocyte reaction to stimuli, which contribute to a better understanding of molecular mechanisms involved in activation and recruitment of neutrophils, through inflammatory stimuli.
Collapse
Affiliation(s)
- Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Maria Weigand
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
23
|
Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, Subburayalu J, Kaplan MJ, Summers C, Guck J, Chilvers ER, Toepfner N. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc Biol 2019; 105:1143-1153. [PMID: 30835869 PMCID: PMC7587463 DOI: 10.1002/jlb.ma0718-295rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly apparent that the biomechanical properties of neutrophils impact on their trafficking through the circulation and in particularly through the pulmonary capillary bed. The retention of polarized or shape-changed neutrophils in the lungs was recently proposed to contribute to acute respiratory distress syndrome pathogenesis. Accordingly, this study tested the hypothesis that neutrophil priming is coupled to morpho-rheological (MORE) changes capable of altering cell function. We employ real-time deformability cytometry (RT-DC), a recently developed, rapid, and sensitive way to assess the distribution of size, shape, and deformability of thousands of cells within seconds. During RT-DC analysis, neutrophils can be easily identified within anticoagulated "whole blood" due to their unique granularity and size, thus avoiding the need for further isolation techniques, which affect biomechanical cell properties. Hence, RT-DC is uniquely suited to describe the kinetics of MORE cell changes. We reveal that, following activation or priming, neutrophils undergo a short period of cell shrinking and stiffening, followed by a phase of cell expansion and softening. In some contexts, neutrophils ultimately recover their un-primed mechanical phenotype. The mechanism(s) underlying changes in human neutrophil size are shown to be Na+ /H+ antiport-dependent and are predicted to have profound implications for neutrophil movement through the vascular system in health and disease.
Collapse
Affiliation(s)
- Kathleen R Bashant
- Department of Medicine, University of Cambridge, Cambridge, UK
- National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Reinhard Berner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonhard Menschner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Kumawat K, Geerdink RJ, Hennus MP, Roda MA, van Ark I, Leusink-Muis T, Folkerts G, van Oort-Jansen A, Mazharian A, Watson SP, Coenjaerts FE, Bont L, Meyaard L. LAIR-1 Limits Neutrophilic Airway Inflammation. Front Immunol 2019; 10:842. [PMID: 31080449 PMCID: PMC6497752 DOI: 10.3389/fimmu.2019.00842] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation induces immune pathology. The mechanisms by which neutrophils are regulated to prevent injury and preserve tissue homeostasis are not completely understood. We recently identified the collagen receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1 as a functional inhibitory receptor on airway-infiltrated neutrophils in viral bronchiolitis patients. In the current study, we sought to examine the role of LAIR-1 in regulating airway neutrophil responses in vivo. LAIR-1-deficient (Lair1-/-) and wild-type mice were infected with respiratory syncytial virus (RSV) or exposed to cigarette smoke as commonly accepted models of neutrophil-driven lung inflammation. Mice were monitored for cellular airway influx, weight loss, cytokine production, and viral loads. After RSV infection, Lair1-/- mice show enhanced airway inflammation accompanied by increased neutrophil and lymphocyte recruitment to the airways, without effects on viral loads or cytokine production. LAIR-1-Fc administration in wild type mice, which blocks ligand induced LAIR-1 activation, augmented airway inflammation recapitulating the observations in Lair1-/- mice. Likewise, in the smoke-exposure model, LAIR-1 deficiency enhanced neutrophil recruitment to the airways and worsened disease severity. Intranasal CXCL1-mediated neutrophil recruitment to the airways was enhanced in mice lacking LAIR-1, supporting an intrinsic function of LAIR-1 on neutrophils. In conclusion, the immune inhibitory receptor LAIR-1 suppresses neutrophil tissue migration and acts as a negative regulator of neutrophil-driven airway inflammation during lung diseases. Following our recent observations in humans, this study provides crucial in-vivo evidence that LAIR-1 is a promising target for pharmacological intervention in such pathologies.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben J. Geerdink
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marije P. Hennus
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mojtaba Abdul Roda
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Anita van Oort-Jansen
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexandra Mazharian
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Frank E. Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Louis Bont
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linde Meyaard
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
25
|
Hiyoshi T, Domon H, Maekawa T, Nagai K, Tamura H, Takahashi N, Yonezawa D, Miyoshi T, Yoshida A, Tabeta K, Terao Y. Aggregatibacter actinomycetemcomitans induces detachment and death of human gingival epithelial cells and fibroblasts via elastase release following leukotoxin-dependent neutrophil lysis. Microbiol Immunol 2019; 63:100-110. [PMID: 30817027 DOI: 10.1111/1348-0421.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/09/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is considered to be associated with periodontitis. Leukotoxin (LtxA), which destroys leukocytes in humans, is one of this bacterium's major virulence factors. Amounts of neutrophil elastase (NE), which is normally localized in the cytoplasm of neutrophils, are reportedly increased in the saliva of patients with periodontitis. However, the mechanism by which NE is released from human neutrophils and the role of NE in periodontitis is unclear. In the present study, it was hypothesized that LtxA induces NE release from human neutrophils, which subsequently causes the breakdown of periodontal tissues. LtxA-treatment did not induce significant cytotoxicity against human gingival epithelial cells (HGECs) or human gingival fibroblasts (HGFs). However, it did induce significant cytotoxicity against human neutrophils, leading to NE release. Furthermore, NE and the supernatant from LtxA-treated human neutrophils induced detachment and death of HGECs and HGFs, these effects being inhibited by administration of an NE inhibitor, sivelestat. The present results suggest that LtxA mediates human neutrophil lysis and induces the subsequent release of NE, which eventually results in detachment and death of HGECs and HGFs. Thus, LtxA-induced release of NE could cause breakdown of periodontal tissue and thereby exacerbate periodontitis.
Collapse
Affiliation(s)
- Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Yonezawa
- Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomohiro Miyoshi
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
26
|
Voisin MB, Leoni G, Woodfin A, Loumagne L, Patel NS, Di Paola R, Cuzzocrea S, Thiemermann C, Perretti M, Nourshargh S. Neutrophil elastase plays a non-redundant role in remodeling the venular basement membrane and neutrophil diapedesis post-ischemia/reperfusion injury. J Pathol 2019; 248:88-102. [PMID: 30632166 PMCID: PMC6850085 DOI: 10.1002/path.5234] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/09/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a severe inflammatory insult associated with numerous pathologies, such as myocardial infarction, stroke and acute kidney injury. I/R injury is characterized by a rapid influx of activated neutrophils secreting toxic free radical species and degrading enzymes that can irreversibly damage the tissue, thus impairing organ functions. Significant efforts have been invested in identifying therapeutic targets to suppress neutrophil recruitment and activation post‐I/R injury. In this context, pharmacological targeting of neutrophil elastase (NE) has shown promising anti‐inflammatory efficacy in a number of experimental and clinical settings of I/R injury and is considered a plausible clinical strategy for organ care. However, the mechanisms of action of NE, and hence its inhibitors, in this process are not fully understood. Here we conducted a comprehensive analysis of the impact of NE genetic deletion on neutrophil infiltration in four murine models of I/R injury as induced in the heart, kidneys, intestine and cremaster muscle. In all models, neutrophil migration into ischemic regions was significantly suppressed in NE−/− mice as compared with wild‐type controls. Analysis of inflamed cremaster muscle and mesenteric microvessels by intravital and confocal microscopy revealed a selective entrapment of neutrophils within venular walls, most notably at the level of the venular basement membrane (BM) following NE deletion/pharmacological blockade. This effect was associated with the suppression of NE‐mediated remodeling of the low matrix protein expressing regions within the venular BM used by transmigrating neutrophils as exit portals. Furthermore, whilst NE deficiency led to reduced neutrophil activation and vascular leakage, levels of monocytes and prohealing M2 macrophages were reduced in tissues of NE−/− mice subjected to I/R. Collectively our results identify a vital and non‐redundant role for NE in supporting neutrophil breaching of the venular BM post‐I/R injury but also suggest a protective role for NE in promoting tissue repair. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovanna Leoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University (LMU), Munich, Germany
| | - Abigail Woodfin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laure Loumagne
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nimesh Sa Patel
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Appelgren D, Dahle C, Knopf J, Bilyy R, Vovk V, Sundgren PC, Bengtsson AA, Wetterö J, Muñoz LE, Herrmann M, Höög A, Sjöwall C. Active NET formation in Libman–Sacks endocarditis without antiphospholipid antibodies: A dramatic onset of systemic lupus erythematosus. Autoimmunity 2018; 51:310-318. [DOI: 10.1080/08916934.2018.1514496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Appelgren
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rostyslav Bilyy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Vovk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Pia C. Sundgren
- Department of Diagnostic Radiology, Lund University Center for Medical Imaging and Physiology Skåne University Hospital, Clinical Sciences Lund, Lund, Sweden
| | - Anders A. Bengtsson
- Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Rheumatology, Lund, Sweden
| | - Jonas Wetterö
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Luis E. Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 – Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anders Höög
- Department of Oncology-Pathology, Karolinska Institute Karolinska University Hospital Cancer Center Karolinska, Stockholm, Sweden
- Department of Pathology, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Bronze-da-Rocha E, Santos-Silva A. Neutrophil Elastase Inhibitors and Chronic Kidney Disease. Int J Biol Sci 2018; 14:1343-1360. [PMID: 30123081 PMCID: PMC6097478 DOI: 10.7150/ijbs.26111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
End-stage renal disease (ESRD), the last stage of chronic kidney disease (CKD), is characterized by chronic inflammation and oxidative stress. Neutrophils are the front line cells that mediate an inflammatory response against microorganisms as they can migrate, produce reactive oxygen species (ROS), secrete neutrophil serine proteases (NSPs), and release neutrophil extracellular traps (NETs). Serine proteases inhibitors regulate the activity of serine proteases and reduce neutrophil accumulation at inflammatory sites. This review intends to relate the role of neutrophil elastase in CKD and the effects of neutrophil elastase inhibitors in predicting or preventing inflammation.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
29
|
van der Linden M, van den Hoogen LL, Westerlaken GHA, Fritsch-Stork RDE, van Roon JAG, Radstake TRDJ, Meyaard L. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford) 2018; 57:1228-1234. [PMID: 29608758 DOI: 10.1093/rheumatology/key067] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/21/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Increased release of neutrophil extracellular traps (NETs) is implicated in the activation of plasmacytoid dendritic cells, vascular disease and thrombosis in SLE and APS. However, studies comparing NET release between patients with SLE and APS are lacking. Here we evaluated plasma-induced NET release in a large cohort of patients with SLE, SLE + APS and primary APS in relation to clinical and serological parameters. METHODS Neutrophils from healthy controls were exposed to plasma of heterologous healthy controls (n = 27) or SLE (n = 55), SLE + APS (n = 38) or primary APS (PAPS) (n = 28) patients and NET release was quantified by immunofluorescence. In a subset of SLE patients, NET release was assessed in longitudinal samples before and after a change in treatment. RESULTS Plasma-induced NET release was increased in SLE and APS patients, with the highest NET release found in patients with SLE (±APS). Plasma of 60% of SLE, 61% of SLE + APS and 45% of PAPS patients induced NET release. NET release did not correlate with disease activity in SLE or APS. However, increased levels of anti-nuclear and anti-dsDNA autoantibodies were associated with increased NET release in SLE and APS. Only in SLE patients, elevated NET release and an increased number of low-density granulocytes were associated with a high IFN signature. CONCLUSION Increased NET release is associated with autoimmunity and inflammation in SLE and APS. Inhibition of NET release thus could be of potential benefit in a subset of patients with SLE and APS.
Collapse
Affiliation(s)
- Maarten van der Linden
- Laboratory of Translational Immunology, Department of Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lucas L van den Hoogen
- Laboratory of Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geertje H A Westerlaken
- Laboratory of Translational Immunology, Department of Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Laboratory of Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.,1st Medical Department and Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital and Sigmund Freud University, Vienna, Austria
| | - Joël A G van Roon
- Laboratory of Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|