1
|
Ghasedi S, Jafarian V, Ghajari Y, Bahari A, Mekanik M, Fardood ST. A Novel Encapsulation Approach to Enhance the Delivery and Antitumor Activity of Docetaxel in Breast Cancer Therapy. J Pharm Sci 2024:S0022-3549(24)00414-3. [PMID: 39276978 DOI: 10.1016/j.xphs.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Docetaxel (DTX) is one of the most potent anticancer drugs but its extensive side effects necessitate innovative formulations. In this study, we aimed to investigate the expression pattern of apoptotic proteins, cell cycle arrest, and apoptosis induction after treatment with encapsulated DTX in alginate-chitosan nanoparticles in both breast cancer cells (MCF-7) and peripheral blood mononuclear cells (PBMCs). The characterization of the nanoparticles revealed a spherical shape with a size <50 nm, a hydrodynamic diameter of 200 nm, a Polydispersity Index of 0.5, and an encapsulation efficiency of 98.75 %. The free drug was released completely within 11 h while encapsulated DTX was released only 34 % in 96 h. The encapsulated drug indicated higher cytotoxicity on MCF-7 cells and the half inhibitory concentration (IC50) value was 2 µg/ml after 72 h. Quantitative real-time PCR demonstrated a significant increase in cell death as the expression of apoptosis regulatory protein (Bcl-2) was downregulated with no impact on Bax in the MCF-7 cells. A notable decrease in the expression pattern of pro-inflammatory cytokine (IL-1β) in PBMCs indicated less inflammation induction. Flow cytometry analysis revealed that the newly formulated drug induced less opoptosis in PBMCs than the free DTX. Cell cycle arrest in the sub-G1 phase was observed for the free drug while the encapsulated drug exhibited no significant changes. Our results suggest the high toxicity of the formulated drug in contrast to the free DTX on the MCF-7 cell line, minimal blood cell side effects, and no inflammation positioning it as a promising alternative to free docetaxel.
Collapse
Affiliation(s)
- Shabnam Ghasedi
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Vahab Jafarian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Yasaman Ghajari
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Abbas Bahari
- Department of Biotechnology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mahsa Mekanik
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | | |
Collapse
|
2
|
Li M, Tang S, Peng X, Sharma G, Yin S, Hao Z, Li J, Shen J, Dai C. Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions. Antioxidants (Basel) 2024; 13:452. [PMID: 38671900 PMCID: PMC11047733 DOI: 10.3390/antiox13040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene's potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain.
Collapse
Affiliation(s)
- Meng Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, China;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Shutao Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China;
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.L.); (S.T.); (S.Y.); (Z.H.)
| |
Collapse
|
3
|
Dai C, Sharma G, Liu G, Shen J, Shao B, Hao Z. Therapeutic detoxification of quercetin for aflatoxin B1-related toxicity: Roles of oxidative stress, inflammation, and metabolic enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123474. [PMID: 38309422 DOI: 10.1016/j.envpol.2024.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Aflatoxins (AFTs), a type of mycotoxin mainly produced by Aspergillus parasiticus and Aspergillus flavus, could be detected in food, feed, Chinese herbal medicine, grain crops and poses a great threat to public health security. Among them, aflatoxin B1 (AFB1) is the most toxic one. Exposure to AFB1 poses various health risks to both humans and animals, including the development of chronic inflammatory diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. The molecular mechanisms underlying these risks are intricate and dependent on specific contexts. This review primarily focuses on summarizing the protective effects of quercetin, a natural phenolic compound, in mitigating the toxic effects induced by AFB1 in both in vitro experiments and animal models. Additionally, the review explores the molecular mechanisms that underlie these protective effects. Quercetin has been demonstrated to not only have the direct inhibitory action on the production of AFTs from Aspergillus, both also possess potent ameliorative effects against AFB1-induced cytotoxicity, hepatotoxicity, and neurotoxicity. These effects are attributed to the inhibition of oxidative stress, mitochondrial dysfunction, mitochondrial apoptotic pathway, and inflammatory response. It could also directly target several metabolic enzymes (i.e., CYP3As and GSTA1) to reduce the production of toxic metabolites of AFB1 within cells, then reduce AFB1-induced cytotoxicity. In conclusion, this review highlights quercetin is a promising detoxification agent for AFB1. By advancing our understanding of the protective mechanisms offered by quercetin, we aim to contribute to the development of effective detoxification agents against AFB1, ultimately promoting better health outcomes.
Collapse
Affiliation(s)
- Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gaoyi Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Centre for Disease Control and Prevention, Beijing, 100013, PR China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Ezzat GM, Meki ARMA, Meligy FY, Omar H, Nassar AY. Antiapoptotic and chemotaxis-stimulating effects of poly (D, L-lactide-co-glycolide)-chitosan and whey proteins against aflatoxicosis-induced splenic and thymic atrophy. Mol Biol Rep 2023; 50:9805-9824. [PMID: 37840065 PMCID: PMC10676322 DOI: 10.1007/s11033-023-08902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Aflatoxin B (AFB) induces toxicological effects on the liver and immune organs. The whey proteins can modulate the immune response during aflatoxicosis. Our work evaluates the novel polylactic acid-glycolic acid-chitosan-encapsulated bovine and camel whey proteins against AFB-induced thymic and splenic atrophy in rats. METHODS AND RESULTS Seventy adult male Wister albino rats were divided into a control healthy group (G1) and six AFB1-intoxicated groups (G2-G7). One of the following supplements: distilled water, camel whey proteins (CWP), bovine whey proteins, poly (D, L-lactide-co-glycolide) (PLGA)- chitosan-loaded with camel whey protein microparticles (CMP), PLGA-chitosan loaded with bovine whey protein microparticles (BMP), and PLGA-chitosan nanoparticles were administered as prophylactic supplements to AFB1-intoxicated groups. The AFB-treated group showed significantly higher hepatic levels of oxidative stress and lower levels of antioxidants. In the aflatoxicated group, atrophy of the splenic lymphatic nodules and disfigurement in the organisation with an apparent decrease in the thickness of the cortex in the thymus were observed, as well as a decrease in splenic and thymic CD4+T and CD8+T lymphocytes. Moreover, CXCL12 levels were downregulated, whereas tumour necrosis factor-alpha, nuclear factor kappa B, and cleaved caspase-3 levels were upregulated. CWP, BMP, and CMP supplements markedly decreased oxidative stress, inflammation, and apoptosis, as well as significantly raised CXCL12, CD4+T, and CD8+T cells. CONCLUSIONS The CWP, BMP, and CMP supplements rescue the liver and immune tissues from the toxic effects of AFB through their antioxidant, antiapoptotic, anti-inflammatory, and chemotaxis-enhancing roles.
Collapse
Affiliation(s)
- Ghada M Ezzat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Biochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, 11196, Jordan
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hend Omar
- Animal Health Research Institute, Assiut, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
5
|
Shahbazi Asil M, Zarifian N, Valafar A, Shirani D, Mehrzad J. Noticeable immune dysregulation-and-suppression in parvovirus affected dogs. Vet Immunol Immunopathol 2023; 265:110663. [PMID: 37939594 DOI: 10.1016/j.vetimm.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is one of the most common causes of infectious diarrhea in small animals, with high mortality and morbidity. Information on the specific treatment option(s) for CPV diseases (CPVD) is unachievably little. So, the treatment is mainly supportive one. Disruption of dog's innate immune system in viral diseases simply occurs; presumably, the CPV-2 may change the level of some TLRs, interleukins, CD4 and CD8 in the leukocytes of CPVD dogs, and disruptive activities of these immune molecules might be attributable to severe CPVD in dogs. Study on the role of the key immune molecules in CPVD is rare. Herein, by conducting and relating the clinical, para-clinical, immunological and molecular diagnostic tests, we tried to establish how some key immune molecules behave in blood of parvovirus affected dogs. As such, in the 1st study, the mRNA levels of TLR2, TLR4, TLR9, IL-1β, IL-6, CD4 and CD8 genes in the leukocytes of CPVD were assessed with quantitative (q)RT-PCR along with CPV-2 detection by rapid immunochromatography and PCR tests. In a 2nd study, the same measurements as in the 1st study were evaluated in two groups of mild versus severe clinical signs of CPVD. Both in the 1st and the 2nd studies leukopenia, much more pronounced in the severe CPVD, and immune dysregulation were observed. In the 1st study, a noticeable increase in the mRNA levels of TLR2 and TLR4 was detected with a slight decrease in TLR9 and a significant decrease in the expression of IL-1β, IL-6, CD4 and CD8 in leukocytes of CPV-infected dogs. Compared to the mild CPVD, the intense of downregulating effects on those immune molecules in the 2nd study was remarkably much more pronounced in the severe CPVD. Overall, it proves strong immune dysregulation and suppression/incompetence and potential T-cells exhaustion in severely CPV-2-affected dogs. Technically and clinically, this would be substantially applicable in canine medicine. By targeting those key immune molecules and their signaling pathways, new clinicodiagnostic approaches for CPVD can be evolved, and biotechnicoclinically this would be substantially applicable in all physiopathological conditions of dogs.
Collapse
Affiliation(s)
- Milad Shahbazi Asil
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Niloofar Zarifian
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Valafar
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Darioush Shirani
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Zhang J, Fang Y, Fu Y, Jalukar S, Ma J, Liu Y, Guo Y, Ma Q, Ji C, Zhao L. Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes. Poult Sci 2023; 102:102862. [PMID: 37419049 PMCID: PMC10466245 DOI: 10.1016/j.psj.2023.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
This study was aimed to investigate the effects of yeast polysaccharides (YPS) on growth performance, intestinal health, and aflatoxin metabolism in livers of broilers fed diets naturally contaminated with mixed mycotoxins (MYCO). A total of 480 one-day-old Arbor Acre male broilers were randomly allocated into a 2 × 3 factorial arrangement of treatments (8 replicates with 10 birds per replicate) for 6 wk to assess the effects of 3 levels of YPS (0, 1, or 2 g/kg) on the broilers fed diets contaminated with or without MYCO (95 μg/kg aflatoxin B1, 1.5 mg/kg deoxynivalenol, and 490 μg/kg zearalenone). Results showed that mycotoxins contaminated diets led to significant increments in serum malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, mRNA expressions of TLR4 and 4EBP1 associated with oxidative stress, mRNA expressions of CYP1A1, CYP1A2, CYP2A6, and CYP3A4 associated with hepatic phase Ⅰ metabolizing enzymes, mRNA expressions of p53 associated with hepatic mitochondrial apoptosis, and AFB1 residues in the liver (P < 0.05); meanwhile dietary MYCO decreased the jejunal villus height (VH), villus height/crypt depth (VH/CD), the activity of serum total antioxidant capacity (T-AOC), mRNA expressions of jejunal HIF-1α, HMOX, and XDH associated with oxidative stress, mRNA expressions of jejunal CLDN1, ZO1, and ZO2, and mRNA expression of GST associated with hepatic phase Ⅱ metabolizing enzymes of broilers (P < 0.05). Notably, the adverse effects induced by MYCO on broilers were mitigated by supplementation with YPS. Dietary YPS supplementation reduced the concentrations of serum MDA and 8-OHdG, jejunal CD, mRNA expression of jejunal TLR2, and 4EBP1, hepatic CYP1A2, and p53, and the AFB1 residues in the liver (P < 0.05), and elevated the serum T-AOC and SOD, jejunal VH, and VH/CD, and mRNA expression of jejunal XDH, hepatic GST of broilers (P < 0.05). There were significant interactions between MYCO and YPS levels on the growth performance (BW, ADFI, ADG, and F/G) at d 1 to 21, d 22 to 42, and d 1 to 42, serum GSH-Px activity, and mRNA expression of jejunal CLDN2 and hepatic ras of broilers (P < 0.05). In contrast with MYCO group, the addition of YPS increased BW, ADFI, and ADG, the serum GSH-Px activity (14.31%-46.92%), mRNA levels of jejunal CLDN2 (94.39%-103.02%), decreased F/G, and mRNA levels of hepatic ras (57.83%-63.62%) of broilers (P < 0.05). In conclusion, dietary supplements with YPS protected broilers from mixed mycotoxins toxicities meanwhile keeping normal performance of broilers, presumably via reducing intestinal oxidative stress, protecting intestinal structural integrity, and improving hepatic metabolic enzymes to minimize the AFB1 residue in the liver and enhance the performance of broilers.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yong Fang
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yutong Fu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sangita Jalukar
- Arm and Hammer Animal and Food Production, Mason City, IA 50401, USA
| | - Jinglin Ma
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Yanrong Liu
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Guo
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Karami Z, Mehrzad J, Akrami M, Hosseinkhani S. Anti-inflammation-based treatment of atherosclerosis using Gliclazide-loaded biomimetic nanoghosts. Sci Rep 2023; 13:13880. [PMID: 37620556 PMCID: PMC10449813 DOI: 10.1038/s41598-023-41136-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
In the study, a biomimetic platform for anti-inflammatory-based treatment of atherosclerotic plaque was developed. Gliclazide (GL) as an anti-inflammasome agent was encapsulated in PLGA nanoparticles (NP), which were coated by monocyte membrane using an extrusion procedure. The size and zeta potential of the nanoghost (NG) changed to 292 and - 10 nm from 189.5 to -34.1 in the core NP. In addition, the actual size of 62.5 nm with a coating layer of 5 nm was measured using TEM. The NG was also showed a sustained release profile with the drug loading content of about 4.7%. Beside to attenuated TNFα, decrease in gene expression levels of NLRP3, MyD88, NOS, IL-1β, IL-18 and caspases 1/3/8/9 in LPS-primed monocytes exposed to NG strongly indicated remarkable inflammation control. After systemic toxicity evaluation and pharmacokinetic analysis of NP and NG, intravenous NG treatment of rabbits with experimentally induced atherosclerosis revealed remarkably less plaque lesions, foam cells, lipid-laden macrophages, and pathological issues in tunica media of aorta sections. Higher expression of CD163 than CD68 in aorta of NG-treated rabbits strongly reveals higher M2/M1 macrophage polarization. The bio/hemocompatible, biomimetic and anti-inflammatory NG can be considered as a potential platform for immunotherapy of particularly atherosclerosis in the field of personalized medicine.
Collapse
Affiliation(s)
- Zahra Karami
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, and Institute of Biomaterials, University of Tehran and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
He XN, Zeng ZZ, Feng L, Wu P, Jiang WD, Liu Y, Zhang L, Mi HF, Kuang SY, Tang L, Zhou XQ. Aflatoxin B1 damaged structural barrier through Keap1a/Nrf2/ MLCK signaling pathways and immune barrier through NF-κB/ TOR signaling pathways in gill of grass carp (Ctenopharyngodon idella). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106424. [PMID: 36863152 DOI: 10.1016/j.aquatox.2023.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Aquafeeds are susceptible to contamination caused by aflatoxin B1 (AFB1). The gill of fish is an important respiratory organ. However, few studies have investigated the effects of dietary AFB1 exposure on gill. This study aimed to discuss the effects of AFB1 on the structural and immune barrier of grass carp gill. Dietary AFB1 increased reactive oxygen species (ROS) levels, protein carbonyl (PC) and malondialdehyde (MDA) contents, which consequently caused oxidative damage. In contrast, dietary AFB1 decreased antioxidant enzymes activities, relative genes expression (except MnSOD) and the contents of glutathione (GSH) (P < 0.05), which are partly regulated by NF-E2-related factor 2 (Nrf2/Keap1a). Moreover, dietary AFB1 caused DNA fragmentation. The relative genes of apoptosis (except Bcl-2, McL-1 and IAP) were significantly upregulated (P < 0.05), and apoptosis was likely upregulated through p38 mitogen-activated protein kinase (p38MAPK). The relative expressions of genes associated with tight junction complexes (TJs) (except ZO-1 and claudin-12) were significantly decreased (P < 0.05), and TJs were likely regulated by myosin light chain kinase (MLCK). Overall, dietary AFB1 disrupted the structural barrier of gill. Furthermore, AFB1 increased gill sensitivity to F. columnare, increased Columnaris disease and decreased the production of antimicrobial substances (P < 0.05) in grass carp gill, and upregulated the expression of genes involved with pro-inflammatory factors (except TNF-α and IL-8) and the pro-inflammatory response partly attributed to the regulation by nuclear factor κB (NF-κB). Meanwhile, the anti-inflammatory factors were downregulated (P < 0.05) in grass carp gill after challenge with F. columnare, which was partly attributed to the target of rapamycin (TOR). These results suggested that AFB1 aggravated the disruption of the immune barrier of grass carp gill after being challenge with F. columnare. Finally, the upper limit of safety of AFB1 for grass carp, based on Columnaris disease, was 31.10 μg/kg diet.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen-Zhen Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Lu Zhang
- Tongwei Research Institute, Chengdu 600438, China
| | - Hai-Feng Mi
- Tongwei Research Institute, Chengdu 600438, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
9
|
Dai C, Tian E, Hao Z, Tang S, Wang Z, Sharma G, Jiang H, Shen J. Aflatoxin B1 Toxicity and Protective Effects of Curcumin: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2022; 11:antiox11102031. [PMID: 36290754 PMCID: PMC9598162 DOI: 10.3390/antiox11102031] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most significant classes of mycotoxins, aflatoxins (AFTs), can cause a variety of detrimental outcomes, including cancer, hepatitis, aberrant mutations, and reproductive issues. Among the 21 identified AFTs, aflatoxin B1 (AFB1) is the most harmful to humans and animals. The mechanisms of AFB1-induced toxicity are connected to the generation of excess reactive oxygen species (ROS), upregulation of CYP450 activities, oxidative stress, lipid peroxidation, apoptosis, mitochondrial dysfunction, autophagy, necrosis, and inflammatory response. Several signaling pathways, including p53, PI3K/Akt/mTOR, Nrf2/ARE, NF-κB, NLRP3, MAPKs, and Wnt/β-catenin have been shown to contribute to AFB1-mediated toxic effects in mammalian cells. Curcumin, a natural product with multiple therapeutic activities (e.g., anti-inflammatory, antioxidant, anticancer, and immunoregulation activities), could revise AFB1-induced harmful effects by targeting these pathways. Therefore, the potential therapeutic use of curcumin against AFB1-related side effects and the underlying molecular mechanisms are summarized. This review, in our opinion, advances significant knowledge, sparks larger discussions, and drives additional improvements in the hazardous examination of AFTs and detoxifying the application of curcumin.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Correspondence:
| | - Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhihui Hao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhanhui Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haiyang Jiang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Malvandi AM, Shahba S, Mehrzad J, Lombardi G. Metabolic Disruption by Naturally Occurring Mycotoxins in Circulation: A Focus on Vascular and Bone Homeostasis Dysfunction. Front Nutr 2022; 9:915681. [PMID: 35811967 PMCID: PMC9263741 DOI: 10.3389/fnut.2022.915681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring food/feed contaminants have become a significant global issue due to animal and human health implications. Despite risk assessments and legislation setpoints on the mycotoxins' levels, exposure to lower amounts occurs, and it might affect cell homeostasis. However, the inflammatory consequences of this possible everyday exposure to toxins on the vascular microenvironment and arterial dysfunction are unexplored in detail. Circulation is the most accessible path for food-borne toxins, and the consequent metabolic and immune shifts affect systemic health, both on vascular apparatus and bone homeostasis. Their oxidative nature makes mycotoxins a plausible underlying source of low-level toxicity in the bone marrow microenvironment and arterial dysfunction. Mycotoxins could also influence the function of cardiomyocytes with possible injury to the heart. Co-occurrence of mycotoxins can modulate the metabolic pathways favoring osteoblast dysfunction and bone health losses. This review provides a novel insight into understanding the complex events of coexposure to mixed (low levels) mycotoxicosis and subsequent metabolic/immune disruptions contributing to chronic alterations in circulation.
Collapse
Affiliation(s)
- Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Amir Mohammad Malvandi ; orcid.org/0000-0003-1243-2372
| | - Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
12
|
Mehrzad J, Zahraei Salehi T, Khosravi A, Hosseinkhani S, Tahamtani Y, Hajizadeh-Saffar E, Moazenchi M, Malvandi AM. Environmentally occurring aflatoxins B1 and M1 notifyably harms pancreatic islets. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2010758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Khosravi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
13
|
Madeen EP, Maldarelli F, Groopman JD. Environmental Pollutants, Mucosal Barriers, and Pathogen Susceptibility; The Case for Aflatoxin B 1 as a Risk Factor for HIV Transmission and Pathogenesis. Pathogens 2021; 10:1229. [PMID: 34684180 PMCID: PMC8537633 DOI: 10.3390/pathogens10101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
HIV transmission risk is dependent on the infectivity of the HIV+ partner and personal susceptibility risk factors of the HIV- partner. The mucosal barrier, as the internal gatekeeper between environment and self, concentrates and modulates the internalization of ingested pathogens and pollutants. In this review, we summarize the localized effects of HIV and dietary toxin aflatoxin B1 (AFB1), a common pollutant in high HIV burden regions, e.g., at the mucosal barrier, and evidence for pollutant-viral interactions. We compiled literature on HIV and AFB1 geographic occurrences, mechanisms of action, related co-exposures, personal risk factors, and HIV key determinants of health. AFB1 exposure and HIV sexual transmission hotspots geographically co-localize in many low-income countries. AFB1 distributes to sexual mucosal tissues generating inflammation, microbiome changes and a reduction of mucosal barrier integrity, effects that are risk factors for increasing HIV susceptibility. AFB1 exposure has a positive correlation to HIV viral load, a risk factor for increasing the infectivity of the HIV+ partner. The AFB1 exposure and metabolism generates inflammation that recruits HIV susceptible cells and generates chemokine/cytokine activation in tissues exposed to HIV. Although circumstantial, the available evidence makes a compelling case for studies of AFB1 exposure as a risk factor for HIV transmission, and a modifiable new component for combination HIV prevention efforts.
Collapse
Affiliation(s)
- Erin P. Madeen
- Department of Cancer Prevention, National Institute of Health, Shady Grove, MD 21773, USA
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - John D. Groopman
- Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
14
|
Najafi S, Mohammadi G, Mohri M, Hosseinkhani S, Mehrzad J. Colostrum fails to prevent bovine/camelid neonatal neutrophil damage from AFB 1. J Immunotoxicol 2021; 17:43-50. [PMID: 32124641 DOI: 10.1080/1547691x.2020.1725693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Exposure to environmental toxicants that affect the immune system and overall health of many mammals is mostly unavoidable. One of the more common substances is the mycotoxins, especially carcinogenic aflatoxin (AF)B1 which also causes immune suppression/dysregulation in exposed hosts. The present study analyzed the effects of naturally occurring levels of AFB1 on apoptosis of healthy bovine and camelid neonatal neutrophils (PMN) that were isolated both before and after host consumption of colostrum. Cells from bovine and camel neonates (n = 12 sets of PMN/mammal/timepoint) were exposed for 24 h to a low level of AFB1 (i.e. 10 ng AFB1/ml) and then intracellular ATP content and caspase-3, -7, and -9 activities (determined by bioluminescence) were assessed. The results indicated a significant lessening of intracellular ATP content and equivalents of luminescence intensity in AFB1-treated PMN in all studied samples, i.e. isolated pre-and post-colostrum consumption. In contrast, caspase-3, -7, and -9 activities in both pre- and post-colostrum consumption bovine and camelid PMN were noticeably increased (∼>2-fold). The damaging effects of AFB1 were more pronounced in bovine neonate PMN than in camelid ones. These results showed that camelid or bovine neonatal PMN collected pre- and post-colostrum are sensitive (moreso after consumption) to naturally occurring levels of AFB1. While merits of colostrum are well known, its failure to mitigate toxic effects of AFB1 in what would translate into a critical period in the development of immune competence (i.e. during the first few days of life in bovine and camelid calves) is surprising. The observed in vitro toxicities can help clarify underlying mechanisms of immune disorders caused by AFs in animals/humans.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Mohri
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
16
|
Mehrzad J. Environmentally relevant level of aflatoxin B1 and the role of (non)oxidative immuno-/neurodysregulation and toxicity. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Fattahi N, Bahari A, Ramazani A, Koolivand D. In vitro immunobiological assays of methotrexate-stearic acid conjugate in human PBMCs. Immunobiology 2020; 225:151984. [DOI: 10.1016/j.imbio.2020.151984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
|
18
|
Development of quantitative magnetic beads-based flow cytometry fluorescence immunoassay for aflatoxin B1. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Bao L, Hao C, Wang J, Wang D, Zhao Y, Li Y, Yao W. High-Dose Cyclophosphamide Administration Orchestrates Phenotypic and Functional Alterations of Immature Dendritic Cells and Regulates Th Cell Polarization. Front Pharmacol 2020; 11:775. [PMID: 32523537 PMCID: PMC7261842 DOI: 10.3389/fphar.2020.00775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
High-dose cyclophosphamide (CTX) inhibits the immune response. Dendritic cells (DCs) are professional antigen presenting cells (APCs) with a crucial role in initiating immune responses and sustaining immune tolerance. The relative contribution of DCs to immunosuppression induced by high-dose CTX is not well-documented. In this study, we employed the CTX-induced immunosuppressive rat model to examine alterations in DCs. We generated and cultured monocyte-derived immature DCs (imDCs) in vitro and explored their capacity of antigen uptake, T cell priming, cytokine production, and surface marker expression following high-dose CTX. Subsequently, we co-cultured CTX-treated imDCs with Th cells to determine Th cell polarization, and further explored the Toll-like receptor/Myeloid differentiation primary response 88/Mitogen-activated protein kinase (TLR/MyD88/MAPK) pathway. Our results show reduced cell number and surface maker alterations in splenic CD103+ DCs of CTX-treated immunosuppressed rats. In vitro, high-dose CTX weakened the antigen uptake capacity and enhanced the T cell priming capacity of imDCs, in addition to triggering imDC surface marker alterations. TLR, MyD88, and MAPK expression levels, involved in mediating Th cell polarization, were also significantly elevated. Our collective findings indicate that high-dose CTX administration potentiates phenotypic and functional alterations of imDC. Such changes may contribute to the regulation of Th polarization.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, China.,Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Statistics, Hebei General Hospital, Shijiazhuang, China
| | - Di Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Youliang Zhao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yiping Li
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Mehrzad J, Fazel F, Pouyamehr N, Hosseinkhani S, Dehghani H. Naturally Occurring Level of Aflatoxin B 1 Injures Human, Canine and Bovine Leukocytes Through ATP Depletion and Caspase Activation. Int J Toxicol 2019; 39:30-38. [PMID: 31868052 DOI: 10.1177/1091581819892613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aflatoxin (AF) B1 is a potent hepatotoxic, mutagenic, teratogenic mycotoxin and may cause immune suppression/dysregulation in humans and animals. Toxic effects of AFB1 on key mammalian immune cells (ie, leukocytes) needs to be mechanistically elucidated. In this study, along with the determination of AFB1's LC50 for certain leukocytes, we analyzed the effect of naturally occurring levels of AFB1 on apoptosis/necrosis of neutrophils, lymphocytes, and monocytes from healthy young humans (20- to 25-year-old male), dogs (1- to 2-year-old Persian/herd breed), and cattle (1- to 2-year-old cattle). Leukocytes were incubated for approximately 24 hours with naturally occurring levels of AFB1 (10 ng/mL). Intracellular adenosine triphosphate (ATP) depletion and caspase-3/7 activity were then determined by luciferase-dependent bioluminescence (BL). Furthermore, the necrotic leukocytes were measured using propidium iodide (PI)-related flow cytometry. A significant decrease (24%-45%, 33.2% ± 2.7%) in intracellular ATP content was observed in AFB1-treated neutrophils, lymphocytes, and monocytes in all studied mammals. Also, with such a low level (10 ng/mL) of AFB1, BL-based caspase-3/7 activity (BL intensity) in all 3 tested mammalian leukocyte lineages was noticeably increased (∼>2-fold). Flow cytometry-based PI staining (for viability assay) of the AFB1-treated leukocytes showed slightly/insignificantly more increase of necrotic (PI+) neutrophils, lymphocytes, and monocytes in human, dogs, and cattle. Even though in vitro LC50s for AFB1' (∼20,000-40,000 ng/mL) were approximately 2,000 to 4,000 times higher than background, these studies demonstrate leukocytes from human and farm/companion animals are sensitive to naturally occurring levels of AFB1. The observed in vitro ATP depletion and caspase activation in AFB1-exposed leukocytes can partially explain the underlying mechanisms of AFB1-induced immune disorders in mammals.
Collapse
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fazel
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nazaninzeynam Pouyamehr
- Department of Pathobiology, Faculty of Veterinary Medicine and Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Pathogenic Salmonella weakens avian enriched blood monocytes through ATP depletion, apoptosis induction and phagocytosis inefficiency. Vet Microbiol 2019; 240:108505. [PMID: 31902485 DOI: 10.1016/j.vetmic.2019.108505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Salmonella enterica Subsp enterica serovar Typhimurium (S. Typhimurium, ST) is one of the most important serovars of the genus Salmonella in human and animals. Because of its intracellular tropism, monocytes/macrophages are pivotal in killing of Salmonella serovars; they are also responsible for transporting of ST to extra-intestinal organs. To investigate the effect of the ST on the functions of avian innate immune cells, almost homogeneous enriched monocytes (EMo) were isolated from peripheral blood mononuclear cells of 2-3 weeks-old of healthy broilers. The EMo were then divided in three groups: control (media only), treatments (challenged with ST clinical isolates) and [doxorubicin (Dox), specifically as positive control for EMo apoptosis] groups. Cellular-molecular damage caused by ST in EMo was assessed with bioluminescence (for caspase-3, 7, and 9 activities and intracellular ATP content), chemiluminescence (for pro/anti-oxidant capacities) and flow cytometry (for apoptosis/necrosis). Further, phagocytosis capacity of post-ST challenged EMo was assessed using a flow cytometry-based internalisation of FITC-loaded polystyrene microparticles. Like the effects of Dox, in post-ST challenged EMo much higher caspase-3, 7 and 9 activities and ATP depletion along with decreased phagocytosis capacity and anti-oxidant load were observed. The results herein indicate that ST weakens EMo particularly through caspases activation/apoptosis. These findings can open a new window on the molecular aspects of Salmonella-macrophage interactions and immunopathology/pathogenicity of salmonellosis in animals especially avian species.
Collapse
|
22
|
Huang L, Zhao Z, Duan C, Wang C, Zhao Y, Yang G, Gao L, Niu C, Xu J, Li S. Lactobacillus plantarum C88 protects against aflatoxin B 1-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis. BMC Microbiol 2019; 19:170. [PMID: 31357935 PMCID: PMC6664579 DOI: 10.1186/s12866-019-1525-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Background Probiotics play an important role in the human and animal defense against liver damage. However, the protective mechanism of Lactobacillus plantarum C88 on chronic liver injury induced by mycotoxin remains unclear. Results In this study, the addition of L. plantarum C88 obviously ameliorated the increased contents of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total cholesterol and triglyceride, the diminish contents of total protein and albumin in serum of mice challenged with AFB1. Simultaneously, L. plantarum C88 attenuated the inflammatory response via significantly reducing the levels of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in serum. Furthermore, L. plantarum C88 remarkably down-regulated the nuclear factor kappa B (NF-κB) signaling pathways by weakening the expression of toll-like receptor 2 (TLR2) and TLR4, and inhibited NF-κB nuclear translocation through enhancing the expression of NF-κB inhibitor (IκB). Neutralization experiments confirmed that L. plantarum C88 decreased the levels of some pro-inflammatory factors due to the suppression of the NF-κB signaling pathways. Besides, L. plantarum C88 decreased the levels of Bax and Caspase-3, elevated the level of Bcl-2, and reduced mRNA expressions of Fatty acid synthetase receptor (Fas), FAS-associated death domain (FADD), TNF receptor associated death domain (TRADD) and Caspase-8 in the liver. Conclusions Probiotic L. plantarum C88 prevented AFB1-induced secretion of pro-inflammatory cytokines by modulating TLR2/NF-κB and TLR4/NF-κB pathways. The molecular mechanisms of L. plantarum C88 in ameliorating AFB1-induced excessive apoptosis included regulating the mitochondrial pathway and cell death receptor pathways. Electronic supplementary material The online version of this article (10.1186/s12866-019-1525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Huang
- School of Environment, Northeast Normal University, No. 2555 Jing-Yue Street, Changchun, Jilin Province, 130117, People's Republic of China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Cuicui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Lei Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Chunhua Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China
| | - Jingbo Xu
- School of Environment, Northeast Normal University, No. 2555 Jing-Yue Street, Changchun, Jilin Province, 130117, People's Republic of China.
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1363 Sheng-Tai Street, Changchun, Jilin Province, 130033, People's Republic of China.
| |
Collapse
|
23
|
Gao J, Wang J, Wu C, Hou F, Chang S, Wang Z, Pu Q, Guo D, Fu H. Fast screening of aflatoxins in dairy cattle feeds with CE-LIF method combined with preconcentration technique of vortex assisted low density solvent-microextraction. Electrophoresis 2018; 40:499-507. [PMID: 30467879 DOI: 10.1002/elps.201800339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
Abstract
Aflatoxin contamination in agricultural products poses a great threat to humans and livestock. The aim of this study was to establish a simple, rapid, highly sensitive, and inexpensive method for the simultaneous detection of aflatoxin B1 , B2 , G1 , and G2 in agricultural products. We used a vortex assisted low density solvent-microextraction (VALDS-ME) technique for sample preconcentration and sample detection was achieved with a CE-LIF method. Aflatoxins were separated in an uncoated fused-silica capillary with the MEKC mode and were excited by a 355 nm UV laser to produce native fluorescence for detection. The obtained LOD and LOQ for the four aflatoxins were in the range of 0.002-0.075 and 0.007-0.300 μg/L, respectively, and the analysis time was within 6.5 min. Using the established method, aflatoxins were screened in naturally contaminated dairy cattle feed samples including alfalfa, bran, and corn kernel. The result shows that the alfalfa and bran samples were contaminated with aflatoxins to varying degrees. Compared with other analytical techniques for aflatoxin screening in agricultural products, this CE-LIF method combined with VALDS-ME preconcentration technique is simple, rapid, highly efficient, and inexpensive.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Jing Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Chengxin Wu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Zhaofeng Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Ding Guo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Hua Fu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
24
|
Data on environmentally relevant level of aflatoxin B 1-induced human dendritic cells' functional alteration. Data Brief 2018; 18:1576-1580. [PMID: 29904659 PMCID: PMC5999520 DOI: 10.1016/j.dib.2018.04.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/01/2023] Open
Abstract
We assessed the effects of naturally occurring levels of AFB1 on the expression of key immune molecules and function of human monocyte-derived dendritic cells (MDDCs) by cell culture, RT-qPCR, and flow cytometry. Data here revealed that an environmentally relevant level of AFB1 led to remarkably weakened key functional capacity of DCs, up-regulation of key transcripts and DCs apoptosis, down-regulation of key phagocytic element, CD64, and creation of pseudolicensing direction of DCs. Flow cytometry data confirmed a damage towards DCs, i.e., increased apoptosis. The detailed data and their mechanistic effects and the outcome are available in this research article (Mehrzad et al., 2018) [1]. The impaired phagocytosis capacity with triggered pseudolicensing direction of MDDCs caused by AFB1 and dysregulation of the key functional genes could provide a mechanistic explanation for the observed in vivo immunotoxicity associated with this mycotoxin.
Collapse
|
25
|
Mehrzad J, Hosseinkhani S, Malvandi AM. Human Microglial Cells Undergo Proapoptotic Induction and Inflammatory Activation upon in vitro Exposure to a Naturally Occurring Level of Aflatoxin B1. Neuroimmunomodulation 2018; 25:176-183. [PMID: 30336475 DOI: 10.1159/000493528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Knowledge regarding interactions of AFB1 with the human nervous system and how a naturally occurring level of AFB1 could potentially induce neuroimmune dysregulation is very limited. To assess the cellular effects of AFB1 on the human brain, we used the human microglia cell line CHME5 as a model to pinpoint its potential in vivo translation. METHODS We used the CHME5 cell line culture system, multiplex qPCR, (chemi)bioluminescence, Luminex ELISA, and flow cytometry assays to evaluate the toxic effects of a naturally occurring level of AFB1 on human microglia. RESULTS A low concentration of AFB1 upregulates the mRNA expression of many proinflammatory molecules, such as TLRs, MyD88, NFκB, and CxCr4, induces intracellular ATP depletion, and increases caspase-3/7 activity at different time points following exposure to the toxin. Furthermore, AFB1-exposed microglia secreted significantly higher levels of IFN-γ and GM-CSF after treatment. We also observed a slight increase in the percentage of apoptotic microglia (annexin V+/PI-) at 48 h posttreatment. CONCLUSION Our work confirmed that the environmentally relevant level of AFB1 could cause an inflammatory reaction in human microglial cells that is potentially harmful or toxic to the homeostasis of the human central nervous system and might increase susceptibility to neurodegenerative diseases.
Collapse
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran,
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Mohammad Malvandi
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|