1
|
Zhang H, Luan S, Wang F, Yang L, Chen S, Li Z, Wang X, Wang WP, Chen LQ, Wang Y. The Role of Exosomes in Central Immune Tolerance and Myasthenia Gravis. Immunol Invest 2024:1-23. [PMID: 39680429 DOI: 10.1080/08820139.2024.2440772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Immune homeostasis plays a crucial role in immunology andis dependent on both central and peripheral tolerance. Centraltolerance and peripheral tolerance occur in the thymus and thesecondary lymphoid tissues, respectively. Tolerance breakdown andimmune regulation defects can lead to autoimmune disorders. In thisreview article, we aimed to describe the role of exosomes inregulating central tolerance and provide a summary of their effectson the pathogenesis, diagnosis, and therapeutic potential inmyasthenia gravis (MG). METHODS Articles for this review wereidentified using the PubMed database. RESULTS As the primarylymphoid organ, the thymus is responsible for building an immunecompetent, yet self-tolerant of T-cell population. Thymic statesinclude thymoma, thymic hyperplasia, and thymic atrophy, which canexert a significant influence on the central immune tolerance andrepresent specific characteristics of MG. Previous studies have foundthat exosomes derived from human thymic epithelial cells carryantigen-presenting molecules and a wide range of tissue restrictedantigens, which may indicate a vital role of thymic exosomes in MG.Besides, exosomal miRNAs and lncRNAs may also play a critical role inthe pathophysiology of MG. CONCLUSION This review provides thetherapeutic and diagnostic potential of exosomes in MG patients.
Collapse
Affiliation(s)
- Hanlu Zhang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Yang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Sicheng Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyang Li
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xuyang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Ping Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yun Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Erhan S, Bilgic B, Ergen E, Erek M, Ergul Ekiz E, Ozcan M, Or ME, Dokuzeylul B, Matur E. Evaluation of the Diversities in the Inflammatory Responses in Cats With Bacterial and Viral Infections. Vet Med Sci 2024; 10:e70098. [PMID: 39474776 PMCID: PMC11522849 DOI: 10.1002/vms3.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Understanding the nature of inflammatory responses in cats with bacterial and viral infections is essential for accurately managing the infection. This study aimed to investigate the diversities of inflammatory responses between bacterial and viral infections in cats to figure out their role in the pathophysiology of these infections. METHODS Seventy-five owned cats were included in the study. The evaluations were performed based on three groups: healthy control, bacterial infection group (those with bronchopneumonia and gastrointestinal tract and urinary tract infections) and viral infection group (21 with feline coronavirus [FCoV], 3 with feline leukaemia virus [FeLV] and 1 with feline calicivirus), each containing 25 individuals. Total and differential leukocyte counts, C-reactive protein (CRP), transforming growth factor beta (TGF-β), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) concentrations were assessed in the blood samples collected from sick and healthy animals. RESULTS No statistically significant difference was noted in serum TNF-α, IL-1β and IL-10 concentrations of the infected cats (p = 0.996, p = 0.160 and p = 0.930, respectively). Serum TGF-β concentration in the viral infection group was reduced compared to the healthy control (p = 0.001). In contrast, WBC count and IL-6 and CRP concentrations were increased in the cats with bronchopneumonia, gastrointestinal tract infections and urinary tract infections compared to the healthy control and viral infection groups (p = 0.001, p = 0.001 and p = 0.001, respectively). CONCLUSION This study revealed significant differences between bacterial and viral infections regarding the fashion of inflammatory responses in cats, and the relevant data will undoubtedly contribute to the management and control of feline infectious diseases, rendering the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Songul Erhan
- Graduate Education InstituteIstanbul University‐CerrahpasaIstanbulTurkey
| | - Bengu Bilgic
- Department of Internal DiseaseFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ezgi Ergen
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Mert Erek
- Department of PhysiologyFaculty of Veterinary MedicineVan Yuzuncu Yıl UniversityVanTurkey
| | - Elif Ergul Ekiz
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Mukaddes Ozcan
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Mehmet Erman Or
- Department of Internal DiseaseFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Banu Dokuzeylul
- Department of Internal DiseaseFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| | - Erdal Matur
- Department of PhysiologyFaculty of Veterinary MedicineIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
3
|
Jin M, Seed RI, Cai G, Shing T, Wang L, Ito S, Cormier A, Wankowicz SA, Jespersen JM, Baron JL, Carey ND, Campbell MG, Yu Z, Tang PK, Cossio P, Wen W, Lou J, Marks J, Nishimura SL, Cheng Y. Dynamic allostery drives autocrine and paracrine TGF-β signaling. Cell 2024; 187:6200-6219.e23. [PMID: 39288764 PMCID: PMC11531391 DOI: 10.1016/j.cell.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
TGF-β, essential for development and immunity, is expressed as a latent complex (L-TGF-β) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvβ8 activates L-TGF-β1/GARP. The dogma is that mature TGF-β must physically dissociate from L-TGF-β1 for signaling to occur. Our previous studies discovered that αvβ8-mediated TGF-β autocrine signaling can occur without TGF-β1 release from its latent form. Here, we show that mice engineered to express TGF-β1 that cannot release from L-TGF-β1 survive without early lethal tissue inflammation, unlike those with TGF-β1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-β1 signaling without release where αvβ8 binding redistributes the intrinsic flexibility of L-TGF-β1 to expose TGF-β1 to its receptors. Dynamic allostery explains the TGF-β3 latency/activation mechanism and why TGF-β3 functions distinctly from TGF-β1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
Collapse
Affiliation(s)
- Mingliang Jin
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Guoqing Cai
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Tiffany Shing
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Li Wang
- Department of Pathology, UCSF, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | | | | | - Jody L Baron
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Nicholas D Carey
- Department of Medicine and UCSF Liver Center, UCSF, San Francisco, CA, USA
| | - Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Phu K Tang
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | | | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA; Howard Hughes Medical Institute, UCSF, San Francisco, CA, USA.
| |
Collapse
|
4
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
5
|
Jeong M, Cortopassi F, See JX, De La Torre C, Cerwenka A, Stojanovic A. Vitamin A-treated natural killer cells reduce interferon-gamma production and support regulatory T-cell differentiation. Eur J Immunol 2024; 54:e2250342. [PMID: 38593338 DOI: 10.1002/eji.202250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.
Collapse
Affiliation(s)
- Mingeum Jeong
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesco Cortopassi
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jia-Xiang See
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Ma R, Sun JH, Wang YY. The role of transforming growth factor-β (TGF-β) in the formation of exhausted CD8 + T cells. Clin Exp Med 2024; 24:128. [PMID: 38884843 PMCID: PMC11182817 DOI: 10.1007/s10238-024-01394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
CD8 + T cells exert a critical role in eliminating cancers and chronic infections, and can provide long-term protective immunity. However, under the exposure of persistent antigen, CD8 + T cells can differentiate into terminally exhausted CD8 + T cells and lose the ability of immune surveillance and disease clearance. New insights into the molecular mechanisms of T-cell exhaustion suggest that it is a potential way to improve the efficacy of immunotherapy by restoring the function of exhausted CD8 + T cells. Transforming growth factor-β (TGF-β) is an important executor of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Recent studies have shown that TGF-β is one of the drivers for the development of exhausted CD8 + T cells. In this review, we summarized the role and mechanisms of TGF-β in the formation of exhausted CD8 + T cells and discussed ways to target those to ultimately enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Cancer Institute, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jin-Han Sun
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
- Cancer Institute, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
7
|
Liu Y, Zhang J, Yang G, Tang C, Li X, Lu L, Long K, Sun J, Ding Y, Li X, Li M, Ge L, Ma J. Effects of the commensal microbiota on spleen and mesenteric lymph node immune function: investigation in a germ-free piglet model. Front Microbiol 2024; 15:1398631. [PMID: 38933022 PMCID: PMC11201156 DOI: 10.3389/fmicb.2024.1398631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-β/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Guitao Yang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
8
|
Ma Y, Jiang T, Zhu X, Xu Y, Wan K, Zhang T, Xie M. Efferocytosis in dendritic cells: an overlooked immunoregulatory process. Front Immunol 2024; 15:1415573. [PMID: 38835772 PMCID: PMC11148234 DOI: 10.3389/fimmu.2024.1415573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Zhu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yizhou Xu
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Wan
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingxuan Zhang
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Miaorong Xie
- Department of Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wang L, Jin G, Zhou Q, Liu Y, Zhao X, Li Z, Yin N, Peng M. Induction of immortal-like and functional CAR T cells by defined factors. J Exp Med 2024; 221:e20232368. [PMID: 38530240 PMCID: PMC10965394 DOI: 10.1084/jem.20232368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Long-term antitumor efficacy of chimeric antigen receptor (CAR) T cells depends on their functional persistence in vivo. T cells with stem-like properties show better persistence, but factors conferring bona fide stemness to T cells remain to be determined. Here, we demonstrate the induction of CAR T cells into an immortal-like and functional state, termed TIF. The induction of CARTIF cells depends on the repression of two factors, BCOR and ZC3H12A, and requires antigen or CAR tonic signaling. Reprogrammed CARTIF cells possess almost infinite stemness, similar to induced pluripotent stem cells while retaining the functionality of mature T cells, resulting in superior antitumor effects. Following the elimination of target cells, CARTIF cells enter a metabolically dormant state, persisting in vivo with a saturable niche and providing memory protection. TIF represents a novel state of T cells with unprecedented stemness, which confers long-term functional persistence of CAR T cells in vivo and holds broad potential in T cell therapies.
Collapse
Affiliation(s)
- Lixia Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Gang Jin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiuping Zhou
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yanyan Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaocui Zhao
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Na Yin
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Min Peng
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Taiyuan, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
10
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Jin R, Xu H, Zhou M, Lin F, Xu W, Xu A. EGR1 Mediated Reduction of Fibroblast Secreted-TGF-β1 Exacerbated CD8 + T Cell Inflammation and Migration in Vitiligo. Inflammation 2024; 47:503-512. [PMID: 37880426 DOI: 10.1007/s10753-023-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Vitiligo is a T cell-mediated depigment skin disease caused by the complex interplay between melanocyte dysfunction, environmental stimulation, and dysregulated immune signals. Transforming growth factor-β1 (TGF-β1), which typically derives from regulatory T cells, has long been identified at low levels in the peripheral system of vitiligo patients. Here, through RNA-sequencing and transcription factor enrichment, we revealed that in response to CD8+ T cell-secreted interferon-gamma (IFN-γ), stromal fibroblast downregulates early growth response 1 (EGR1) activity, leading to TGF-β1 deficiency. The defective immune regulation loop further exacerbated local CD8+ T cell inflammation and promoted inflammatory cell migration in vitiligo. Thus, fibroblast-derived TGF-β1 plays an important stromal signal in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Rong Jin
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Hao Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China.
| |
Collapse
|
12
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
13
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
14
|
Haque TT, Weissler KA, Schmiechen Z, Laky K, Schwartz DM, Li J, Locci M, Turfkruyer M, Yao C, Schaughency P, Leak L, Lack J, Kanno Y, O'Shea J, Frischmeyer-Guerrerio PA. TGFβ prevents IgE-mediated allergic disease by restraining T follicular helper 2 differentiation. Sci Immunol 2024; 9:eadg8691. [PMID: 38241399 DOI: 10.1126/sciimmunol.adg8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024]
Abstract
Allergic diseases are common, affecting more than 20% of the population. Genetic variants in the TGFβ pathway are strongly associated with atopy. To interrogate the mechanisms underlying this association, we examined patients and mice with Loeys-Dietz syndrome (LDS) who harbor missense mutations in the kinase domain of TGFΒR1/2. We demonstrate that LDS mutations lead to reduced TGFβ signaling and elevated total and allergen-specific IgE, despite the presence of wild-type T regulatory cells in a chimera model. Germinal center activity was enhanced in LDS and characterized by a selective increase in type 2 follicular helper T cells (TFH2). Expression of Pik3cg was increased in LDS TFH cells and associated with reduced levels of the transcriptional repressor SnoN. PI3Kγ/mTOR signaling in LDS naïve CD4+ T cells was elevated after T cell receptor cross-linking, and pharmacologic inhibition of PI3Kγ or mTOR prevented exaggerated TFH2 and antigen-specific IgE responses after oral antigen exposure in an adoptive transfer model. Naïve CD4+ T cells from nonsyndromic allergic individuals also displayed decreased TGFβ signaling, suggesting that our mechanistic discoveries may be broadly relevant to allergic patients in general. Thus, TGFβ plays a conserved, T cell-intrinsic, and nonredundant role in restraining TFH2 development via the PI3Kγ/mTOR pathway and thereby protects against allergic disease.
Collapse
Affiliation(s)
- Tamara T Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine A Weissler
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Schmiechen
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Laky
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Li
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Turfkruyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen Yao
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul Schaughency
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lashawna Leak
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuka Kanno
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John O'Shea
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Vishnyakova P, Gantsova E, Kiseleva V, Lazarev D, Knyazev E, Poltavets A, Iskusnykh M, Muminova K, Potapova A, Khodzhaeva Z, Elchaninov A, Fatkhudinov T, Sukhikh G. MicroRNA miR-27a as a possible regulator of anti-inflammatory macrophage phenotype in preeclamptic placenta. Placenta 2024; 145:151-161. [PMID: 38141416 DOI: 10.1016/j.placenta.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The role of the TGFβ signaling pathway, an important cascade responsible for the anti-inflammatory polarization of macrophages, in the development of both early- and late-onset preeclampsia (eoPE and loPE), remains poorly understood. In this study, we examined the components of the TGFβ signaling cascade and macrophage markers within placental tissue in normal pregnancy and in PE. METHODS Patients with eoPE, loPE, and normal pregnancy were enrolled in the study (n = 10 in each group). Following techniques were used for the investigation: immunohistochemistry analysis, western blotting, qRT-PCR, isolation of monocytes by magnetic sorting, transfection, microRNA sequencing, and bioinformatic analysis. RESULTS We observed a significant decrease in the anti-inflammatory macrophage marker CD206 in the loPE group, alongside with a significant down-regulation of CD206 protein production in both eoPE and loPE groups. The level of CD68-positive cells and relative levels of CD163 and MARCO production were comparable across the groups. However, we identified a significant decrease in the TGFβ receptor 2 production and its gene expression in the PE group. Further analysis revealed a link between TGFBR2 and MRC1 (CD206) genes through a single miRNA, hsa-miR-27a-3p. Transfecting CD14-derived macrophages with the hsa-miR-27a-3p mimic significantly changed TGFBR2 production, indicating the potential role of this miRNA in regulating the TGFβ signaling pathway. We also revealed the up-regulation of hsa-miR-27a-5p and hsa-miR-27a-3p in the trophoblast BeWo b30 cell line under the severe hypoxia condition and the fact that TGFBR2 3' UTR could serve as a potential target for these miRNAs. DISCUSSION Our findings uncover a novel potential therapeutic target for managing patients with PE, significantly contributing to a deeper comprehension of the underlying mechanisms involved in the development of this pathology.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia.
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Dmitry Lazarev
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Marina Iskusnykh
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia; Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
17
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
18
|
Taber A, Konecny A, Oda SK, Scott-Browne J, Prlic M. TGF-β broadly modifies rather than specifically suppresses reactivated memory CD8 T cells in a dose-dependent manner. Proc Natl Acad Sci U S A 2023; 120:e2313228120. [PMID: 37988468 PMCID: PMC10691214 DOI: 10.1073/pnas.2313228120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) directly acts on naive, effector, and memory T cells to control cell fate decisions, which was shown using genetic abrogation of TGF-β signaling. TGF-β availability is altered by infections and cancer; however, the dose-dependent effects of TGF-β on memory CD8 T cell (Tmem) reactivation are still poorly defined. We examined how activation and TGF-β signals interact to shape the functional outcome of Tmem reactivation. We found that TGF-β could suppress cytotoxicity in a manner that was inversely proportional to the strength of the activating TCR or proinflammatory signals. In contrast, even high doses of TGF-β had a comparatively modest effect on IFN-γ expression in the context of weak and strong reactivation signals. Since CD8 Tmem may not always receive TGF-β signals concurrently with reactivation, we also explored whether the temporal order of reactivation versus TGF-β signals is of importance. We found that exposure to TGF-β before or after an activation event were both sufficient to reduce cytotoxic effector function. Concurrent ATAC-seq and RNA-seq analysis revealed that TGF-β altered ~10% of the regulatory elements induced by reactivation and also elicited transcriptional changes indicative of broadly modulated functional properties. We confirmed some changes on the protein level and found that TGF-β-induced expression of CCR8 was inversely proportional to the strength of the reactivating TCR signal. Together, our data suggest that TGF-β is not simply suppressing CD8 Tmem but modifies functional and chemotactic properties in context of their reactivation signals and in a dose-dependent manner.
Collapse
Affiliation(s)
- Alexis Taber
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA98109
| | - Andrew Konecny
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA98109
- Department of Immunology, University of Washington, Seattle, WA98195
| | - Shannon K. Oda
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA98101
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA98105
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO80206
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO80045
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA98109
- Department of Immunology, University of Washington, Seattle, WA98195
| |
Collapse
|
19
|
Laudisi F, Stolfi C, Monteleone I, Monteleone G. TGF-β1 signaling and Smad7 control T-cell responses in health and immune-mediated disorders. Eur J Immunol 2023; 53:e2350460. [PMID: 37611637 DOI: 10.1002/eji.202350460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Transforming growth factor (TGF)-β1, a member of the TGF-β superfamily, is produced by many immune and nonimmune cells and has pleiotropic effects on both innate and adaptive immunity, especially in the control of T-cell differentiation and function. Consistently, loss of TGF-β1 function is associated with exacerbated T-cell-dependent inflammatory responses that culminate in pathological processes in allergic and immune-mediated diseases. In this review, we highlight the roles of TGF-β1 in immunity, focusing mainly on its ability to promote differentiation of regulatory T cells, T helper (Th)-17, and Th9 cells, thus contributing to amplifying or restricting T-cell responses in health and human diseases (e.g., inflammatory bowel diseases, type 1 diabetes, asthma, and MS). In addition, we discuss the involvement of Smad7, an inhibitor of TGF-β1 signaling, in immune-mediated disorders (e.g., psoriasis, rheumatoid arthritis, MS, and inflammatory bowel diseases), as well as the discordant results of clinical trials with mongersen, an oral pharmaceutical compound containing a Smad7 antisense oligonucleotide, in patients with Crohn's disease. Further work is needed to ascertain the reasons for such a discrepancy as well as to identify better candidates for treatment with Smad7 inhibitors.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Derakhshan Nazari MH, Shahrokh S, Ghanbari-Maman L, Maleknia S, Ghorbaninejad M, Meyfour A. Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: A prospective study. Heliyon 2023; 9:e21154. [PMID: 37928018 PMCID: PMC10623293 DOI: 10.1016/j.heliyon.2023.e21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples. A comprehensive gene expression and functional analysis was performed and identified 313 significantly altered genes, among which IL6 and INHBA were highlighted as overexpressed genes in the baseline mucosal biopsies of UCN, whose cooperation may lead to a decrease in the Tregs population. Besides, screening the abundances of immune cell subpopulations showed neutrophils' accumulation increasing the inflammation. Furthermore, the correlation of KRAS signaling activation with unresponsiveness to anti-TNF mAb was observed using network analysis. Using 50x repeated 10-fold cross-validation LASSO feature selection and a stack ensemble machine learning algorithm, a five-mRNA prognostic panel including IL13RA2, HCAR3, CSF3, INHBA, and MMP1 was introduced that could predict the response of UC patients to anti-TNF antibodies with an average accuracy of 95.3 %. The predictive capacity of the introduced biomarker panel was also validated in two independent cohorts (44 UC patients). Moreover, we presented a distinct immune cell landscape and gene signature for UCN to anti-TNF drugs and further studies should be considered to make this predictive biomarker panel and therapeutic targets applicable in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ghanbari-Maman
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Morgan RC, Frank C, Greger M, Attaway M, Sigvardsson M, Bartom ET, Kee BL. TGF-β Promotes the Postselection Thymic Development and Peripheral Function of IFN-γ-Producing Invariant NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1376-1384. [PMID: 37702745 PMCID: PMC10592054 DOI: 10.4049/jimmunol.2200809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
IFN-γ-producing invariant NKT (iNKT)1 cells are lipid-reactive innate-like lymphocytes that are resident in the thymus and peripheral tissues where they protect against pathogenic infection. The thymic functions of iNKT1 cells are not fully elucidated, but subsets of thymic iNKT cells modulate CD8 T cell, dendritic cell, B cell, and thymic epithelial cell numbers or function. In this study, we show that a subset of murine thymic iNKT1 cells required TGF-β-induced signals for their postselection development, to maintain hallmark TGF-β-induced genes, and for expression of the adhesion receptors CD49a and CD103. However, the residency-associated receptor CD69 was not TGF-β signaling-dependent. Recently described CD244+ c2 thymic iNKT1 cells, which produce IFN-γ without exogenous stimulation and have NK-like characteristics, reside in this TGF-β-responsive population. Liver and spleen iNKT1 cells do not share this TGF-β gene signature, but nonetheless TGF-β impacts liver iNKT1 cell phenotype and function. Our findings provide insight into the heterogeneity of mechanisms guiding iNKT1 cell development in different tissues and suggest a close association between a subset of iNKT1 cells and TGF-β-producing cells in the thymus that support their development.
Collapse
Affiliation(s)
- Roxroy C. Morgan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Cameron Frank
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
| | - Munmun Greger
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| | - Mary Attaway
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| | | | - Elizabeth T. Bartom
- Dept. of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago IL
| | - Barbara L. Kee
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
22
|
Lao P, Chen J, Tang L, Zhang J, Chen Y, Fang Y, Fan X. Regulatory T cells in lung disease and transplantation. Biosci Rep 2023; 43:BSR20231331. [PMID: 37795866 PMCID: PMC10611924 DOI: 10.1042/bsr20231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023] Open
Abstract
Pulmonary disease can refer to the disease of the lung itself or the pulmonary manifestations of systemic diseases, which are often connected to the malfunction of the immune system. Regulatory T (Treg) cells have been shown to be important in maintaining immune homeostasis and preventing inflammatory damage, including lung diseases. Given the increasing amount of evidence linking Treg cells to various pulmonary conditions, Treg cells might serve as a therapeutic strategy for the treatment of lung diseases and potentially promote lung transplant tolerance. The most potent and well-defined Treg cells are Foxp3-expressing CD4+ Treg cells, which contribute to the prevention of autoimmune lung diseases and the promotion of lung transplant rejection. The protective mechanisms of Treg cells in lung disease and transplantation involve multiple immune suppression mechanisms. This review summarizes the development, phenotype and function of CD4+Foxp3+ Treg cells. Then, we focus on the therapeutic potential of Treg cells in preventing lung disease and limiting lung transplant rejection. Furthermore, we discussed the possibility of Treg cell utilization in clinical applications. This will provide an overview of current research advances in Treg cells and their relevant application in clinics.
Collapse
Affiliation(s)
- Peizhen Lao
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jingyi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Longqian Tang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Jiwen Zhang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuxi Chen
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Yuyin Fang
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| | - Xingliang Fan
- Institute of Biological and Food Engineering, Guangdong University of Education, 351 Xingang Middle Road, Guangzhou 510303, PR China
| |
Collapse
|
23
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
24
|
Li K, Wei X, Yang J. Cytokine networks that suppress fish cellular immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104769. [PMID: 37423553 DOI: 10.1016/j.dci.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Immunosuppressive cytokines are a class of cytokines produced by immune cells and certain non-immune cells that have a suppressive effect on immune function. Currently known immunosuppressive cytokines include interleukin (IL)-10, transforming growth factor beta (TGF-β), IL-35, and IL-37. Although latest sequencing technologies have facilitated the identification of immunosuppressive cytokines in fish, IL-10 and TGF-β were the most well-known ones that have been widely studied and received continuous attention. Fish IL-10 and TGF-β have been identified as anti-inflammatory and immunosuppressive factors, acting on both innate and adaptive immune systems. However, unlike mammals, teleost fish underwent a third or fourth whole-genome duplication event, which significantly expanded the gene family associated with the cytokine signaling pathway, making the function and mechanism of these molecules need further investigation. In this review, we summarize the advances of studies on fish immunosuppressive cytokines IL-10 and TGF-β since their identification, mainly focusing on production, signaling transduction, and effects on the immunological function. This review aims to expand the understanding of the immunosuppressive cytokine network in fish.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Martínez-Enguita D, Dwivedi SK, Jörnsten R, Gustafsson M. NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures. Brief Bioinform 2023; 24:bbad293. [PMID: 37587790 PMCID: PMC10516364 DOI: 10.1093/bib/bbad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
Precision medicine relies on the identification of robust disease and risk factor signatures from omics data. However, current knowledge-driven approaches may overlook novel or unexpected phenomena due to the inherent biases in biological knowledge. In this study, we present a data-driven signature discovery workflow for DNA methylation analysis utilizing network-coherent autoencoders (NCAEs) with biologically relevant latent embeddings. First, we explored the architecture space of autoencoders trained on a large-scale pan-tissue compendium (n = 75 272) of human epigenome-wide association studies. We observed the emergence of co-localized patterns in the deep autoencoder latent space representations that corresponded to biological network modules. We determined the NCAE configuration with the strongest co-localization and centrality signals in the human protein interactome. Leveraging the NCAE embeddings, we then trained interpretable deep neural networks for risk factor (aging, smoking) and disease (systemic lupus erythematosus) prediction and classification tasks. Remarkably, our NCAE embedding-based models outperformed existing predictors, revealing novel DNA methylation signatures enriched in gene sets and pathways associated with the studied condition in each case. Our data-driven biomarker discovery workflow provides a generally applicable pipeline to capture relevant risk factor and disease information. By surpassing the limitations of knowledge-driven methods, our approach enhances the understanding of complex epigenetic processes, facilitating the development of more effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- David Martínez-Enguita
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Sanjiv K Dwivedi
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Rebecka Jörnsten
- Department of Mathematical Sciences, Chalmers University of Technology, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| |
Collapse
|
26
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
28
|
Pontoriero A, Critelli P, Chillari F, Ferrantelli G, Sciacca M, Brogna A, Parisi S, Pergolizzi S. Modulation of Radiation Doses and Chimeric Antigen Receptor T Cells: A Promising New Weapon in Solid Tumors-A Narrative Review. J Pers Med 2023; 13:1261. [PMID: 37623511 PMCID: PMC10455986 DOI: 10.3390/jpm13081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Tumor behavior is determined by its interaction with the tumor microenvironment (TME). Chimeric antigen receptor (CART) cell therapy represents a new form of cellular immunotherapy (IT). Immune cells present a different sensitivity to radiation therapy (RT). RT can affect tumor cells both modifying the TME and inducing DNA damage, with different effects depending on the low and high doses delivered, and can favor the expression of CART cells. CART cells are patients' T cells genetically engineered to recognize surface structure and to eradicate cancer cells. High-dose radiation therapy (HDRT, >10-20 Gy/fractions) converts immunologically "cold" tumors into "hot" ones by inducing necrosis and massive inflammation and death. LDRT (low-dose radiation therapy, >5-10 Gy/fractions) increases the expansion of CART cells and leads to non-immunogenetic death. An innovative approach, defined as the LATTICE technique, combines a high dose in higher FDG- uptake areas and a low dose to the tumor periphery. The association of RT and immune checkpoint inhibitors increases tumor immunogenicity and immune response both in irradiated and non-irradiated sites. The aim of this narrative review is to clarify the knowledge, to date, on CART cell therapy and its possible association with radiation therapy in solid tumors.
Collapse
Affiliation(s)
- Antonio Pontoriero
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Paola Critelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Federico Chillari
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Giacomo Ferrantelli
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Miriam Sciacca
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Anna Brogna
- Radiotherapy Unit, Medical Physics Unit, A.O.U. “G. Martino”, 98125 Messina, Italy;
| | - Silvana Parisi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (A.P.); (F.C.); (G.F.); (M.S.); (S.P.); (S.P.)
| |
Collapse
|
29
|
Gauthier T, Yao C, Dowdy T, Jin W, Lim YJ, Patiño LC, Liu N, Ohlemacher SI, Bynum A, Kazmi R, Bewley CA, Mitrovic M, Martin D, Morell RJ, Eckhaus M, Larion M, Tussiwand R, O’Shea J, Chen W. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Sci Signal 2023; 16:eade0385. [PMID: 37552767 PMCID: PMC11145950 DOI: 10.1126/scisignal.ade0385] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Changes in metabolism of macrophages are required to sustain macrophage activation in response to different stimuli. We showed that the cytokine TGF-β (transforming growth factor-β) regulates glycolysis in macrophages independently of inflammatory cytokine production and affects survival in mouse models of sepsis. During macrophage activation, TGF-β increased the expression and activity of the glycolytic enzyme PFKL (phosphofructokinase-1 liver type) and promoted glycolysis but suppressed the production of proinflammatory cytokines. The increase in glycolysis was mediated by an mTOR-c-MYC-dependent pathway, whereas the inhibition of cytokine production was due to activation of the transcriptional coactivator SMAD3 and suppression of the activity of the proinflammatory transcription factors AP-1, NF-κB, and STAT1. In mice with LPS-induced endotoxemia and experimentally induced sepsis, the TGF-β-induced enhancement in macrophage glycolysis led to decreased survival, which was associated with increased blood coagulation. Analysis of septic patient cohorts revealed that the expression of PFKL, TGFBRI (which encodes a TGF-β receptor), and F13A1 (which encodes a coagulation factor) in myeloid cells positively correlated with COVID-19 disease. Thus, these results suggest that TGF-β is a critical regulator of macrophage metabolism and could be a therapeutic target in patients with sepsis.
Collapse
Affiliation(s)
- Thierry Gauthier
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Chen Yao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Wenwen Jin
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Yun-Ji Lim
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Liliana C. Patiño
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Na Liu
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Andrew Bynum
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Rida Kazmi
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mladen Mitrovic
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Michael Eckhaus
- Division of Veterinary Resources, Pathology Service, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Roxane Tussiwand
- Immune Regulation Unit, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - John O’Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - WanJun Chen
- Mucosal Immunology Section, National Institutes of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, Maryland, USA, 20892
| |
Collapse
|
30
|
Honda T, Kabashima K, Kunisawa J. Exploring the roles of prostanoids, leukotriens, and dietary fatty acids in cutaneous inflammatory diseases: Insights from pharmacological and genetic approaches. Immunol Rev 2023; 317:95-112. [PMID: 36815685 DOI: 10.1111/imr.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
- 5. A*Star Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Taber A, Konecny A, Scott-Browne J, Prlic M. TGF-β broadly modifies rather than specifically suppresses reactivated memory CD8 T cells in a dose-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550871. [PMID: 37546887 PMCID: PMC10402134 DOI: 10.1101/2023.07.27.550871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Transforming growth factor β (TGF-β) directly acts on naïve, effector and memory T cells to control cell fate decisions, which was shown using genetic abrogation of TGF-β signaling. TGF-β availability is altered by infections and cancer, however the dose-dependent effects of TGF-β on memory CD8 T cell (Tmem) reactivation are still poorly defined. We examined how activation and TGF-β signals interact to shape the functional outcome of Tmem reactivation. We found that TGF-β could suppress cytotoxicity in a manner that was inversely proportional to the strength of the activating TCR or pro-inflammatory signals. In contrast, even high doses of TGF-β had a comparatively modest effect on IFN-γ expression in the context of weak and strong reactivation signals. Since CD8 Tmem may not always receive TGF-β signals concurrently with reactivation, we also explored whether the temporal order of reactivation versus TGF-β signals is of importance. We found that exposure to TGF-β prior to as well as after an activation event were both sufficient to reduce cytotoxic effector function. Concurrent ATAC-seq and RNA-seq analysis revealed that TGF-β altered ~10% of the regulatory elements induced by reactivation and also elicited transcriptional changes indicative of broadly modulated functional properties. We confirmed some changes on the protein level and found that TGF-β-induced expression of CCR8 was inversely proportional to the strength of the reactivating TCR signal. Together, our data suggest that TGF-β is not simply suppressing CD8 Tmem, but modifies functional and chemotactic properties in context of their reactivation signals and in a dose-dependent manner.
Collapse
Affiliation(s)
- Alexis Taber
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA
| | - Andrew Konecny
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA
- Department of Immunology, University of Washington, Seattle, WA 98195
| |
Collapse
|
32
|
Neshat SY, Bauer SJ, Rhodes KR, Quiroz VM, Wong VW, Lowmaster SM, Tzeng SY, Green JJ, Doloff JC. Improvement of Islet Engrafts via Treg Induction Using Immunomodulating Polymeric Tolerogenic Microparticles. ACS Biomater Sci Eng 2023; 9:3522-3534. [PMID: 37233985 DOI: 10.1021/acsbiomaterials.3c00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Type 1 diabetes (T1D) is a life-threatening condition for which islet transplantation offers a way to extend longevity and vastly improve quality of life, but the degree and duration of success can vary greatly due to the patient's protective immunity against foreign material. The field is in need of cellular engineering modalities to promote a localized, tolerogenic environment to protect transplanted islet tissue. Artificial antigen-presenting cells (aAPCs) can be designed exogenously to mimic immune cells, such as dendritic cells, and administered to patients, allowing greater control over T cell differentiation. As regulatory T cell (Treg) modulation can reduce the activity of cytotoxic T-effector populations, this strategy can be used to promote immune acceptance of both biomaterials and cellular transplants, such as islets. A new class of poly(lactic-co-glycolic acid) (PLGA) and PLGA/PBAE-blend aAPCs containing transforming growth factor beta and conjugated with anti-CD3 and anti-CD28 antibodies, called tolerogenic aAPCs (TolAPCs), are specifically designed to generate a tolerogenic response by inducing Tregs. We characterized TolAPCs' physical and chemical properties via advanced particle imaging and sizing modalities and investigated their impact on the local and systemic immune system across BALB/c and C57BL/6 mouse strains as well as healthy male and female mice via histologic, gene expression, and immunofluorescence staining methods. Strain-specific differences were observed, whereas sex made no difference in the TolAPC response. TolAPCs stimulated the expansion of FOXP3+ Tregs and provided islet cell protection, maintaining improved glucose-stimulated insulin secretion in vitro when co-cultured with cytotoxic CD8+ T cells. We also explored the ability of this TolAPC platform to promote tolerance in a streptozotocin-induced murine T1D C57BL/6 mouse model. We achieved partial islet protection over the first few days following co-injection with PLGA/PBAE TolAPCs; however, grafts failed soon thereafter. Analysis of the local injection site demonstrated that other immune cell types, including APCs and cytotoxic natural killer cells, increased in the islet injection site. While we aimed to promote a localized tolerogenic microenvironment in vivo using biodegradable TolAPCs to induce Tregs and extend islet transplant durability, further TolAPC improvements will be required to both elongate efficacy and control additional immune cell responders.
Collapse
Affiliation(s)
- Sarah Y Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stuart J Bauer
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kelly R Rhodes
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Victor M Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Valerie W Wong
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Shirley M Lowmaster
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Departments of Ophthalmology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Joshua C Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Oncology, Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
33
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
34
|
Hu Y, Xu B, He J, Shan H, Zhou G, Wang D, Bai L, Shang H, Nie L, Pan F, Lan HY, Wang Q. Hypermethylation of Smad7 in CD4 + T cells is associated with the disease activity of rheumatoid arthritis. Front Immunol 2023; 14:1104881. [PMID: 36845150 PMCID: PMC9947360 DOI: 10.3389/fimmu.2023.1104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background Smad7 is protective in a mouse model of rheumatoid arthritis. Here we investigated whether Smad7-expressing CD4+ T cells and the methylation of Smad7 gene in CD4+ T cells contribute to the disease activity of RA in patients. Methods Peripheral CD4+ T cells were collected from 35 healthy controls and 57 RA patients. Smad7 expression by CD4+ T cells were determined and correlated with the clinical parameters of RA including RA score and serum levels of IL-6, CRP, ESR, DAS28-CRP, DAS28-ESR, Swollen joints and Tender joints. Bisulfite sequencing (BSP-seq) was used to determine the DNA methylation in Smad7 promoter (-1000 to +2000) region in CD4+ T cells. In addition, a DNA methylation inhibitor, 5-Azacytidine (5-AzaC), was added to CD4+ T cells to examine the possible role of Smad7 methylation in CD4+ T cell differentiation and functional activity. Results Compared to the heath controls, Smad7 expression was significantly decreased in CD4+ T cells from RA patients and inversely correlated with the RA activity score and serum levels of IL-6 and CRP. Importantly, loss of Smad7 in CD4+ T cell was associated with the alteration of Th17/Treg balance by increasing Th17 over the Treg population. BSP-seq detected that DNA hypermethylation occurred in the Smad7 promoter region of CD4+ T cells obtained from RA patients. Mechanistically, we found that the DNA hypermethylation in the Smad7 promoter of CD4+ T cells was associated with decreased Smad7 expression in RA patients. This was associated with overreactive DNA methyltransferase (DMNT1) and downregulation of the methyl-CpG binding domain proteins (MBD4). Inhibition of DNA methylation by treating CD4+ T cells from RA patients with 5-AzaC significantly increased Smad7 mRNA expression along with the increased MBD4 but reduced DNMT1 expression, which was associated with the rebalance in the Th17/Treg response. Conclusion DNA hypermethylation at the Smad7 promoter regions may cause a loss of Smad7 in CD4+ T cells of RA patients, which may contribute to the RA activity by disrupting the Th17/Treg balance.
Collapse
Affiliation(s)
- Yiping Hu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Bihua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Juan He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Hongying Shan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
| | - Gengmin Zhou
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lu Bai
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hongxi Shang
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Liping Nie
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Fan Pan
- Center for Cancer Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China,*Correspondence: Qingwen Wang, ; Hui Yao Lan, ; Fan Pan,
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Department of Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People’s Hospital, Guangzhou, China,*Correspondence: Qingwen Wang, ; Hui Yao Lan, ; Fan Pan,
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China,Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China,*Correspondence: Qingwen Wang, ; Hui Yao Lan, ; Fan Pan,
| |
Collapse
|
35
|
Bai X, Li X, Qiao C, Tang Y, Zhao R, Peng X. Progress in the relationship between P2X7R and colorectal cancer. Mol Biol Rep 2023; 50:1687-1699. [PMID: 36417079 DOI: 10.1007/s11033-022-07939-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a nonselective cation channel of the purinergic receptor family. P2X7R is activated by adenosine triphosphate (ATP) and plays a significant role in inflammatory and autoimmune diseases by triggering cellular signal transduction. More importantly, P2X7R is abnormally expressed in many tumor cells and is involved in the progression of various tumor cells. Studies have shown that the irregular expression of P2X7R in colorectal cancer (CRC) can not only indirectly affect the occurrence and development of CRC by promoting inflammatory bowel disease but also directly affect the proliferation and metastasis of CRC cells. P2X7R plays a bidirectional role in cancer induction and inhibition by mediating complex signaling pathways in CRC, and its expression level is closely related to the overall survival of CRC patients. Therefore, P2X7R may be a biomarker and potential therapeutic target for the development and prognosis of CRC. In this paper, we review the research progress on P2X7R in CRC.
Collapse
Affiliation(s)
- Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province , Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
36
|
Lee SW, Lee GW, Kim HO, Cho JH. Shaping Heterogeneity of Naive CD8 + T Cell Pools. Immune Netw 2023; 23:e2. [PMID: 36911807 PMCID: PMC9995989 DOI: 10.4110/in.2023.23.e2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
Immune diversification helps protect the host against a myriad of pathogens. CD8+ T cells are essential adaptive immune cells that inhibit the spread of pathogens by inducing apoptosis in infected host cells, ultimately ensuring complete elimination of infectious pathogens and suppressing disease development. Accordingly, numerous studies have been conducted to elucidate the mechanisms underlying CD8+ T cell activation, proliferation, and differentiation into effector and memory cells, and to identify various intrinsic and extrinsic factors regulating these processes. The current knowledge accumulated through these studies has led to a huge breakthrough in understanding the existence of heterogeneity in CD8+ T cell populations during immune response and the principles underlying this heterogeneity. As the heterogeneity in effector/memory phases has been extensively reviewed elsewhere, in the current review, we focus on CD8+ T cells in a "naïve" state, introducing recent studies dealing with the heterogeneity of naive CD8+ T cells and discussing the factors that contribute to such heterogeneity. We also discuss how this heterogeneity contributes to establishing the immense complexity of antigen-specific CD8+ T cell response.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Gil-Woo Lee
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea
| | | | - Jae-Ho Cho
- Medical Research Center for Combinatorial Tumor Immunotherapy, Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun 58128, Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun 58128, Korea.,BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
37
|
Arguinchona LM, Zagona-Prizio C, Joyce ME, Chan ED, Maloney JP. Microvascular significance of TGF-β axis activation in COVID-19. Front Cardiovasc Med 2023; 9:1054690. [PMID: 36684608 PMCID: PMC9852847 DOI: 10.3389/fcvm.2022.1054690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-β1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-β1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-β signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-β in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-β and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-β inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.
Collapse
Affiliation(s)
- Lauren M. Arguinchona
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caterina Zagona-Prizio
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Megan E. Joyce
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward D. Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States,National Jewish Health, Denver, CO, United States
| | - James P. Maloney
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: James P. Maloney,
| |
Collapse
|
38
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
39
|
Zhang Q, Geng M, Li K, Gao H, Jiao X, Ai K, Wei X, Yang J. TGF-β1 suppresses the T-cell response in teleost fish by initiating Smad3- and Foxp3-mediated transcriptional networks. J Biol Chem 2022; 299:102843. [PMID: 36581209 PMCID: PMC9860442 DOI: 10.1016/j.jbc.2022.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-β1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-β1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-β1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-β1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-β1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-β1 initiates the TGF-βR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-β1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-β1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-β1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
40
|
Rodari MM, Cerf-Bensussan N, Parlato M. Dysregulation of the immune response in TGF-β signalopathies. Front Immunol 2022; 13:1066375. [PMID: 36569843 PMCID: PMC9780292 DOI: 10.3389/fimmu.2022.1066375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family of cytokines exerts pleiotropic functions during embryonic development, tissue homeostasis and repair as well as within the immune system. Single gene defects in individual component of this signaling machinery cause defined Mendelian diseases associated with aberrant activation of TGF-β signaling, ultimately leading to impaired development, immune responses or both. Gene defects that affect members of the TGF-β cytokine family result in more restricted phenotypes, while those affecting downstream components of the signaling machinery induce broader defects. These rare disorders, also known as TGF-β signalopathies, provide the unique opportunity to improve our understanding of the role and the relevance of the TGF-β signaling in the human immune system. Here, we summarize this elaborate signaling pathway, review the diverse clinical presentations and immunological phenotypes observed in these patients and discuss the phenotypic overlap between humans and mice genetically deficient for individual components of the TGF-β signaling cascade.
Collapse
|
41
|
TGF-β Inhibitors for Therapeutic Management of Kidney Fibrosis. Pharmaceuticals (Basel) 2022; 15:ph15121485. [PMID: 36558936 PMCID: PMC9783223 DOI: 10.3390/ph15121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022] Open
Abstract
Kidney fibrosis is a common pathophysiological mechanism of chronic kidney disease (CKD) progression caused by several underlying kidney diseases. Among various contributors to kidney fibrosis, transforming growth factor-β1 (TGF-β1) is the major factor driving fibrosis. TGF-β1 exerts its profibrotic attributes via the activation of canonical and non-canonical signaling pathways, which induce proliferation and activation of myofibroblasts and subsequent accumulation of extracellular matrix. Over the past few decades, studies have determined the TGF-β1 signaling pathway inhibitors and evaluated whether they could ameliorate the progression of CKD by hindering kidney fibrosis. However, therapeutic strategies that block TGF-β1 signaling have usually demonstrated unsatisfactory results. Herein, we discuss the therapeutic concepts of the TGF-β1 signaling pathway and its inhibitors and review the current state of the art regarding regarding TGF-β1 inhibitors in CKD management.
Collapse
|
42
|
Huan T, Li H, Tang B. Radiotherapy plus CAR-T cell therapy to date: A note for cautions optimism? Front Immunol 2022; 13:1033512. [PMID: 36466874 PMCID: PMC9714575 DOI: 10.3389/fimmu.2022.1033512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing radiation, however, RT maintains largely palliative due to radioresistance. Factors such as hypoxia, the radiosensitivity of immune cells, and cancer stem cells (CSCs) all come into play in influencing the significant impact of radioresistance in the irradiated tumor microenvironment (TME). Due to the substantial advances in the treatment of malignant tumors, a promising approach is the genetically modified T cells with chimeric antigen receptors (CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related markers would eliminate radioresistant solid tumors. But solid tumors that support an immune deserted TME, are described as immunosuppressive and typically fail to respond to CAR-T cell therapy. And RT could overcome these immunosuppressive features; thus, growing evidence supports the combination of RT with CAR-T cell therapy. In this review, we provide a deep insight into the radioresistance mechanisms, advances, and barriers of CAR-T cells in response to solid tumors within TME. Therefore, we focus on how the combination strategy can be used to eliminate these barriers. Finally, we show the challenges of this therapeutic partnership.
Collapse
Affiliation(s)
- Tian Huan
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hongbo Li
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| | - Bin Tang
- Department of Rehabilitation Medicine, Jinhu County People’s Hospital, Huaian, Jiangsu, China
| |
Collapse
|
43
|
Lucarini V, Melaiu O, D’Amico S, Pastorino F, Tempora P, Scarsella M, Pezzullo M, De Ninno A, D’Oria V, Cilli M, Emionite L, Infante P, Di Marcotullio L, De Ioris MA, Barillari G, Alaggio R, Businaro L, Ponzoni M, Locatelli F, Fruci D. Combined mitoxantrone and anti-TGFβ treatment with PD-1 blockade enhances antitumor immunity by remodelling the tumor immune landscape in neuroblastoma. J Exp Clin Cancer Res 2022; 41:326. [PMID: 36397148 PMCID: PMC9670422 DOI: 10.1186/s13046-022-02525-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Poor infiltration of functioning T cells renders tumors unresponsive to checkpoint-blocking immunotherapies. Here, we identified a combinatorial in situ immunomodulation strategy based on the administration of selected immunogenic drugs and immunotherapy to sensitize poorly T-cell-infiltrated neuroblastoma (NB) to the host antitumor immune response. Methods 975A2 and 9464D NB cell lines derived from spontaneous tumors of TH-MYCN transgenic mice were employed to study drug combinations able of enhancing the antitumor immune response using in vivo and ex vivo approaches. Migration of immune cells towards drug-treated murine-derived organotypic tumor spheroids (MDOTS) were assessed by microfluidic devices. Activation status of immune cells co-cultured with drug-treated MDOTS was evaluated by flow cytometry analysis. The effect of drug treatment on the immune content of subcutaneous or orthotopic tumors was comprehensively analyzed by flow-cytometry, immunohistochemistry and multiplex immunofluorescence. The chemokine array assay was used to detect soluble factors released into the tumor microenvironment. Patient-derived organotypic tumor spheroids (PDOTS) were generated from human NB specimens. Migration and activation status of autologous immune cells to drug-treated PDOTS were performed. Results We found that treatment with low-doses of mitoxantrone (MTX) recalled immune cells and promoted CD8+ T and NK cell activation in MDOTS when combined with TGFβ and PD-1 blockade. This combined immunotherapy strategy curbed NB growth resulting in the enrichment of a variety of both lymphoid and myeloid immune cells, especially intratumoral dendritic cells (DC) and IFNγ- and granzyme B-expressing CD8+ T cells and NK cells. A concomitant production of inflammatory chemokines involved in remodelling the tumor immune landscape was also detected. Interestingly, this treatment induced immune cell recruitment against PDOTS and activation of CD8+ T cells and NK cells. Conclusions Combined treatment with low-dose of MTX and anti-TGFβ treatment with PD-1 blockade improves antitumor immunity by remodelling the tumor immune landscape and overcoming the immunosuppressive microenvironment of aggressive NB. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02525-9.
Collapse
|
44
|
Dang Q, Sun Z, Wang Y, Wang L, Liu Z, Han X. Ferroptosis: a double-edged sword mediating immune tolerance of cancer. Cell Death Dis 2022; 13:925. [PMID: 36335094 PMCID: PMC9637147 DOI: 10.1038/s41419-022-05384-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
The term ferroptosis was put forward in 2012 and has been researched exponentially over the past few years. Ferroptosis is an unconventional pattern of iron-dependent programmed cell death, which belongs to a type of necrosis and is distinguished from apoptosis and autophagy. Actuated by iron-dependent phospholipid peroxidation, ferroptosis is modulated by various cellular metabolic and signaling pathways, including amino acid, lipid, iron, and mitochondrial metabolism. Notably, ferroptosis is associated with numerous diseases and plays a double-edged sword role. Particularly, metastasis-prone or highly-mutated tumor cells are sensitive to ferroptosis. Hence, inducing or prohibiting ferroptosis in tumor cells has vastly promising potential in treating drug-resistant cancers. Immunotolerant cancer cells are not sensitive to the traditional cell death pathway such as apoptosis and necroptosis, while ferroptosis plays a crucial role in mediating tumor and immune cells to antagonize immune tolerance, which has broad prospects in the clinical setting. Herein, we summarized the mechanisms and delineated the regulatory network of ferroptosis, emphasized its dual role in mediating immune tolerance, proposed its significant clinical benefits in the tumor immune microenvironment, and ultimately presented some provocative doubts. This review aims to provide practical guidelines and research directions for the clinical practice of ferroptosis in treating immune-resistant tumors.
Collapse
Affiliation(s)
- Qin Dang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ziqi Sun
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yang Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
45
|
Robinson AM, Higgins BW, Shuparski AG, Miller KB, McHeyzer-Williams LJ, McHeyzer-Williams MG. Evolution of antigen-specific follicular helper T cell transcription from effector function to memory. Sci Immunol 2022; 7:eabm2084. [PMID: 36206356 PMCID: PMC9881730 DOI: 10.1126/sciimmunol.abm2084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding how follicular helper T cells (TFH) regulate the specialization, maturation, and differentiation of adaptive B cell immunity is crucial for developing durable high-affinity immune protection. Using indexed single-cell molecular strategies, we reveal a skewed intraclonal assortment of higher-affinity T cell receptors and the distinct molecular programming of the localized TFH compartment compared with emigrant conventional effector TH cells. We find a temporal shift in B cell receptor class switch, which permits identification of inflammatory and anti-inflammatory modules of transcriptional programming that subspecialize TFH function before and during the germinal center (GC) reaction. Late collapse of this local primary GC reaction reveals a persistent post-GC TFH population that discloses a putative memory TFH program. These studies define subspecialized antigen-specific TFH transcriptional programs that progressively change with antibody class-specific evolution of high-affinity B cell immunity and a memory TFH transcriptional program that emerges upon local GC resolution.
Collapse
|
46
|
Gouda P, Kay R, Habib M, Aziz A, Aziza E, Welsh R. Clinical features and complications of Loeys-Dietz syndrome: A systematic review. Int J Cardiol 2022; 362:158-167. [PMID: 35662564 DOI: 10.1016/j.ijcard.2022.05.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Loeys-Dietz syndrome (LDS) is a connective tissue disorder that arises from mutations altering the transforming growth factor β signalling pathway. Due to the recent discovery of the underlying genetic mutations leading to LDS, the spectrum of characteristics and complications is not fully understood. METHODS Our search included five databases (Pubmed, SCOPUS, Web of Science, EMBASE and google scholar) and included variations of "Loeys-Dietz Syndrome" as search terms, using all available data until February 2021. All study types were included. Three reviewers screened 1394 abstracts, of which 418 underwent full-text review and 392 were included in the final analysis. RESULTS We identified 3896 reported cases of LDS with the most commonly reported features and complications being: aortic aneurysms and dissections, arterial tortuosity, high arched palate, abnormal uvula and hypertelorism. LDS Types 1 and 2 share many clinical features, LDS Type 2 appears to have a more aggressive aortic disease. LDS Type 3 demonstrated an increased prevalence of mitral valve prolapse and arthritis. LDS Type 4 and 5 demonstrated a lower prevalence of musculoskeletal and cardiovascular involvement. Amongst 222 women who underwent 522 pregnancies, 4% experienced an aortic dissection and the peripartum mortality rate was 1%. CONCLUSION We observed that LDS is a multisystem connective tissue disorder that is associated with a high burden of complications, requiring a multidisciplinary approach. Ongoing attempts to better characterise these features will allow clinicians to appropriately screen and manage these complications.
Collapse
Affiliation(s)
- Pishoy Gouda
- University of Alberta, Division of Cariology, Edmonton, Alberta, Canada
| | - Robert Kay
- University of Alberta, Division of Cariology, Edmonton, Alberta, Canada
| | - Marina Habib
- Flinders University, School of Medicine, Adelaide, Australia
| | - Amir Aziz
- University of Alberta, Division of Cariology, Edmonton, Alberta, Canada
| | - Eitan Aziza
- University of Alberta, Division of Cariology, Edmonton, Alberta, Canada
| | - Robert Welsh
- University of Alberta, Division of Cariology, Edmonton, Alberta, Canada; Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
47
|
Zheng J, Duan H, You S, Liang B, Chen Y, Huang H. Research progress on the pathogenesis of Graves’ ophthalmopathy: Based on immunity, noncoding RNA and exosomes. Front Immunol 2022; 13:952954. [PMID: 36081502 PMCID: PMC9445982 DOI: 10.3389/fimmu.2022.952954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Graves’ ophthalmopathy (GO), also known as thyroid-associated ophthalmopathy, is a common potentially vision-threatening organ-specific autoimmune disease and the most common extrathyroidal manifestation of Graves’ disease. It can happen to those who have hyperthyroidism or euthyroidism. At present, the pathogenesis of GO has not been fully elucidated, and the majority of clinical treatments are symptomatic. Therefore, we are eager to discover any new therapeutic strategies that target the etiology of GO. To provide fresh ideas for the creation of new therapeutic techniques, this study primarily discusses the research state and progress of GO-related pathogenesis from the perspectives of GO’s cellular immunity, autoantigens, non-coding RNAs, and exosomes.
Collapse
Affiliation(s)
- Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Honghong Duan
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bo Liang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuping Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huibin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Huibin Huang,
| |
Collapse
|
48
|
Xie F, Zhou X, Su P, Li H, Tu Y, Du J, Pan C, Wei X, Zheng M, Jin K, Miao L, Wang C, Meng X, van Dam H, Ten Dijke P, Zhang L, Zhou F. Breast cancer cell-derived extracellular vesicles promote CD8 + T cell exhaustion via TGF-β type II receptor signaling. Nat Commun 2022; 13:4461. [PMID: 35915084 PMCID: PMC9343611 DOI: 10.1038/s41467-022-31250-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer immunotherapies have shown clinical success in various types of tumors but the patient response rate is low, particularly in breast cancer. Here we report that malignant breast cancer cells can transfer active TGF-β type II receptor (TβRII) via tumor-derived extracellular vesicles (TEV) and thereby stimulate TGF-β signaling in recipient cells. Up-take of extracellular vesicle-TβRII (EV-TβRII) in low-grade tumor cells initiates epithelial-to-mesenchymal transition (EMT), thus reinforcing cancer stemness and increasing metastasis in intracardial xenograft and orthotopic transplantation models. EV-TβRII delivered as cargo to CD8+ T cells induces the activation of SMAD3 which we demonstrated to associate and cooperate with TCF1 transcription factor to impose CD8+ T cell exhaustion, resulting in failure of immunotherapy. The levels of TβRII+ circulating extracellular vesicles (crEV) appears to correlate with tumor burden, metastasis and patient survival, thereby serve as a non-invasive screening tool to detect malignant breast tumor stages. Thus, our findings not only identify a possible mechanism by which breast cancer cells can promote T cell exhaustion and dampen host anti-tumor immunity, but may also identify a target for immune therapy against the most devastating breast tumors. Understanding the factors that hamper immune therapy in breast cancer may increase the range of patients who benefit. Here authors show that breast cancer cells produce and subsequently transfer active TGF-β type II receptors to CD8 + T cells to render them exhausted, thus paralyzing the anti-tumor immune response.
Collapse
Affiliation(s)
- Feng Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jinjin Du
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Pan
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiang Wei
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Liyan Miao
- The first affiliated hospital of soochow university, Suzhou, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
49
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Huang T, Huang J, Liao Z, Lan H, Jian X, Gu R, Ouyang J, Hu J, Liao H. Regenerating myofiber directs Tregs and Th17 responses in inflamed muscle through the intrinsic TGF-β signaling-mediated IL-6 production. Am J Physiol Endocrinol Metab 2022; 323:E92-E106. [PMID: 35532076 DOI: 10.1152/ajpendo.00247.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-β (TGF-β) is considered to be an important immune regulatory cytokine. However, it remains unknown whether and how the muscle fiber specific-TGF-β signaling is directly involved in intramuscular inflammatory regulation by affecting T cells. Here, we addressed these in a mouse tibialis anterior muscle Cardiotoxin injection-induced injury repair model in muscle creatine kinase (MCK)-Cre control or transgenic mice with TGF-β receptor II (TGF-βr2) being specifically deleted in muscle cells (SM TGF-βr2-/-). In control mice, TGF-β2 and TGF-βr2 were found significantly upregulated in muscle after the acute injury. In mutant mice, deficiency of TGF-β signaling in muscle cells caused more serious muscle inflammation, with the increased infiltration of macrophages and CD4+ T cells at the degeneration stage (D4) and the early stage of regeneration (D7) after myoinjury. Notably, the loss of TGF-β signaling in myofibers dramatically affected CD4+ T cell function and delayed T cells withdrawal at the later stage of muscle regeneration (D10 and D15), marked by the elevated Th17, but the impaired Tregs response. Furthermore, in vivo and in vitro, the intrinsic TGF-β signaling affected immune behaviors of muscle cells and directed CD4+ T cells differentiation by impairing IL-6 production and release. It suggests that local muscle inflammation can be inhibited potentially by directly activating the TGF-β signaling pathway in muscle cells to suppress Th17, but induce Tregs responses. Thus, according to the results of this study, we found a new idea for the control of local acute inflammation in skeletal muscle.NEW & NOTEWORTHY Myofiber mediates muscle inflammatory response through activating the intrinsic TGF-β signaling. The specific TGF-β signaling activation contributes to myofiber IL-6 production and directs muscle-specific Th17 and Treg cell responses.
Collapse
Affiliation(s)
- Tao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Anatomy, School of Basic Medical Science, Guizhou Medical University, Guizhou, China
| | - JingWen Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - ZhaoHong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - HaiQiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - XiaoTing Jian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - RuiCai Gu
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|