1
|
Ma J, Ayres CM, Brambley CA, Chandran SS, Rosales TJ, Corcelli SA, Kovrigin EL, Klebanoff CA, Baker BM. Dynamic allostery in the peptide/MHC complex enables TCR neoantigen selectivity. RESEARCH SQUARE 2024:rs.3.rs-4457195. [PMID: 38854019 PMCID: PMC11160895 DOI: 10.21203/rs.3.rs-4457195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The inherent cross-reactivity of the T cell receptor (TCR) is balanced by high specificity, which often manifests in confounding ways not easily interpretable from static structures. We show here that TCR discrimination between an HLA-A*03:01 (HLA-A3)-restricted public neoantigen derived from mutant PIK3CA and its wild-type (WT) counterpart emerges from motions within the HLA binding groove that vary with the identity of the peptide's first primary anchor. The motions form a dynamic gate that in the complex with the WT peptide impedes a large conformational change required for TCR binding. The more rigid neoantigen is insusceptible to this limiting dynamic, and with the gate open, is able to transit its central tryptophan residue underneath the peptide backbone to the contralateral side of the HLA-A3 peptide binding groove, facilitating TCR binding. Our findings reveal a novel mechanism driving TCR specificity for a cancer neoantigen that is rooted in the dynamic and allosteric nature of peptide/MHC-I complexes, with implications for resolving long-standing and often confounding questions about the determinants of T cell specificity.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Chad A. Brambley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Smita S. Chandran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
| | - Tatiana J. Rosales
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Evgenii L. Kovrigin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher A. Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
2
|
Rosenberg AM, Ayres CM, Medina-Cucurella AV, Whitehead TA, Baker BM. Enhanced T cell receptor specificity through framework engineering. Front Immunol 2024; 15:1345368. [PMID: 38545094 PMCID: PMC10967027 DOI: 10.3389/fimmu.2024.1345368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 04/12/2024] Open
Abstract
Development of T cell receptors (TCRs) as immunotherapeutics is hindered by inherent TCR cross-reactivity. Engineering more specific TCRs has proven challenging, as unlike antibodies, improving TCR affinity does not usually improve specificity. Although various protein design approaches have been explored to surmount this, mutations in TCR binding interfaces risk broadening specificity or introducing new reactivities. Here we explored if TCR specificity could alternatively be tuned through framework mutations distant from the interface. Studying the 868 TCR specific for the HIV SL9 epitope presented by HLA-A2, we used deep mutational scanning to identify a framework mutation above the mobile CDR3β loop. This glycine to proline mutation had no discernable impact on binding affinity or functional avidity towards the SL9 epitope but weakened recognition of SL9 escape variants and led to fewer responses in a SL9-derived positional scanning library. In contrast, an interfacial mutation near the tip of CDR3α that also did not impact affinity or functional avidity towards SL9 weakened specificity. Simulations indicated that the specificity-enhancing mutation functions by reducing the range of loop motions, limiting the ability of the TCR to adjust to different ligands. Although our results are likely to be TCR dependent, using framework engineering to control TCR loop motions may be a viable strategy for improving the specificity of TCR-based immunotherapies.
Collapse
Affiliation(s)
- Aaron M. Rosenberg
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Cory M. Ayres
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | | | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Brian M. Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
3
|
Chang-Gonzalez AC, Mallis RJ, Lang MJ, Reinherz EL, Hwang W. Asymmetric framework motion of TCRαβ controls load-dependent peptide discrimination. eLife 2024; 13:e91881. [PMID: 38167271 PMCID: PMC10869138 DOI: 10.7554/elife.91881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Mechanical force is critical for the interaction between an αβ T cell receptor (TCR) and a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell activation. However, the underlying mechanism remains unclear. We use all-atom molecular dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or antagonist peptides under different extensions to simulate the effects of applied load on the complex, elucidating their divergent biological responses. We found that TCR α and β chains move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while antagonists destabilize it. Simulations of the Cβ FG-loop deletion, which reduces the catch bond response, and simulations with in silico mutant peptides further support the observed behaviors. The present results highlight the combined role of interdomain motion, fluctuating forces, and interfacial contacts in determining the mechanical response and fine peptide discrimination by a TCR, thereby resolving the conundrum of nearly identical crystal structures of TCRαβ-pMHC agonist and antagonist complexes.
Collapse
Affiliation(s)
- Ana C Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Robert J Mallis
- Department of Dermatology, Harvard Medical SchoolBostonUnited States
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Oncology, Dana-Farber Cancer InstituteBostonUnited States
| | - Matthew J Lang
- Department of Chemistry and Biomolecular Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Molecular Physiology and Biophysics, Vanderbilt UniversityNashvilleUnited States
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Oncology, Dana-Farber Cancer InstituteBostonUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Materials Science & Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Physics & Astronomy, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
4
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Nakagawa K, Sugiyama R. Tacrolimus treatment in women with repeated implantation failures. Reprod Med Biol 2024; 23:e12558. [PMID: 38196832 PMCID: PMC10775185 DOI: 10.1002/rmb2.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
Background Tacrolimus is an immunosuppressive drug that works as a calcineurin inhibitor to improve the reproductive outcomes for women who have experienced multiple implantation failures (RIF) and show elevated type 1 helper T (Th1)/Th2 cell ratios. Methods In the first part of this review, we indicate how we re-evaluated the cut-off index for selecting the participants in a tacrolimus regimen via transferred euploid blastocysts. In the second part, we cite cases where tacrolimus has improved the live birth rate for women who have experienced recurrent pregnancy losses (PRL) and we introduce the utility of tacrolimus treatment to prevent obstetrical complications. Main Findings After reconsideration of the cut-off index (Th1/Th2 ≥ 11.8), however, the pregnancy rates of women with tacrolimus were significantly higher than those of women without tacrolimus. The PRL women treated with tacrolimus showed significantly lower rates of biochemical pregnancy, but higher live-birth rates compared with women who were not treated with tacrolimus. Moreover, prior severe obstetrical complications could be controlled via the administration of tacrolimus during pregnancy. Conclusion Tacrolimus has become indispensable in the field of solid-organ transplantation, and in the near future, it should become an essential agent in the reproductive field, as well.
Collapse
Affiliation(s)
- Koji Nakagawa
- Center for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Rikikazu Sugiyama
- Center for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| |
Collapse
|
6
|
Boughter CT, Meier-Schellersheim M. Conserved biophysical compatibility among the highly variable germline-encoded regions shapes TCR-MHC interactions. eLife 2023; 12:e90681. [PMID: 37861280 PMCID: PMC10631762 DOI: 10.7554/elife.90681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
T cells are critically important components of the adaptive immune system primarily responsible for identifying and responding to pathogenic challenges. This recognition of pathogens is driven by the interaction between membrane-bound T cell receptors (TCRs) and antigenic peptides presented on major histocompatibility complex (MHC) molecules. The formation of the TCR-peptide-MHC complex (TCR-pMHC) involves interactions among germline-encoded and hypervariable amino acids. Germline-encoded and hypervariable regions can form contacts critical for complex formation, but only interactions between germline-encoded contacts are likely to be shared across many of all the possible productive TCR-pMHC complexes. Despite this, experimental investigation of these interactions have focused on only a small fraction of the possible interaction space. To address this, we analyzed every possible germline-encoded TCR-MHC contact in humans, thereby generating the first comprehensive characterization of these largely antigen-independent interactions. Our computational analysis suggests that germline-encoded TCR-MHC interactions that are conserved at the sequence level are rare due to the high amino acid diversity of the TCR CDR1 and CDR2 loops, and that such conservation is unlikely to dominate the dynamic protein-protein binding interface. Instead, we propose that binding properties such as the docking orientation are defined by regions of biophysical compatibility between these loops and the MHC surface.
Collapse
Affiliation(s)
- Christopher T Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
7
|
Fast E, Dhar M, Chen B. TAPIR: a T-cell receptor language model for predicting rare and novel targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557285. [PMID: 37745475 PMCID: PMC10515850 DOI: 10.1101/2023.09.12.557285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
T-cell receptors (TCRs) are involved in most human diseases, but linking their sequences with their targets remains an unsolved grand challenge in the field. In this study, we present TAPIR (T-cell receptor and Peptide Interaction Recognizer), a T-cell receptor (TCR) language model that predicts TCR-target interactions, with a focus on novel and rare targets. TAPIR employs deep convolutional neural network (CNN) encoders to process TCR and target sequences across flexible representations (e.g., beta-chain only, unknown MHC allele, etc.) and learns patterns of interactivity via several training tasks. This flexibility allows TAPIR to train on more than 50k either paired (alpha and beta chain) or unpaired TCRs (just alpha or beta chain) from public and proprietary databases against 1933 unique targets. TAPIR demonstrates state-of-the-art performance when predicting TCR interactivity against common benchmark targets and is the first method to demonstrate strong performance when predicting TCR interactivity against novel targets, where no examples are provided in training. TAPIR is also capable of predicting TCR interaction against MHC alleles in the absence of target information. Leveraging these capabilities, we apply TAPIR to cancer patient TCR repertoires and identify and validate a novel and potent anti-cancer T-cell receptor against a shared cancer neoantigen target (PIK3CA H1047L). We further show how TAPIR, when extended with a generative neural network, is capable of directly designing T-cell receptor sequences that interact with a target of interest.
Collapse
Affiliation(s)
- Ethan Fast
- Vcreate, Inc., Menlo Park, CA, 94025, USA
| | | | | |
Collapse
|
8
|
Chang-Gonzalez AC, Mallis RJ, Lang MJ, Reinherz EL, Hwang W. Asymmetric framework motion of TCR αβ controls load-dependent peptide discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557064. [PMID: 37745603 PMCID: PMC10515854 DOI: 10.1101/2023.09.10.557064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Mechanical force is critical for the interaction between an αβT cell receptor (TCR) and a peptide-bound major histocompatibility complex (pMHC) molecule to initiate productive T-cell activation. However, the underlying mechanism remains unclear. We use all-atom molecular dynamics simulations to examine the A6 TCR bound to HLA-A*02:01 presenting agonist or antagonist peptides under different extensions to simulate the effects of applied load on the complex, elucidating their divergent biological responses. We found that TCR α and β chains move asymmetrically, which impacts the interface with pMHC, in particular the peptide-sensing CDR3 loops. For the wild-type agonist, the complex stabilizes in a load-dependent manner while antagonists destabilize it. Simulations of the Cβ FG-loop deletion, which reduces the catch bond response, and simulations with in silico mutant peptides further support the observed behaviors. The present results highlight the combined role of interdomain motion, fluctuating forces, and interfacial contacts in determining the mechanical response and fine peptide discrimination by a TCR, thereby resolving the conundrum of nearly identical crystal structures of TCRαβ-pMHC agonist and antagonist complexes.
Collapse
Affiliation(s)
- Ana C. Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Robert J. Mallis
- Dept. Dermatology, Harvard Medical School, Boston, MA, USA
- Lab. of Immunobio., Dana-Farber Cancer Inst., Boston, MA, USA
- Dept. Med. Oncology, Dana-Farber Cancer Inst., Boston, MA, USA
| | - Matthew J. Lang
- Dept. Chem. and Biomolec. Eng., Vanderbilt Univ., Nashville, TN, USA
- Dept. Molec. Physiology and Biophys., Vanderbilt Univ., Nashville, TN, USA
| | - Ellis L. Reinherz
- Dept. Medicine, Harvard Medical School, Boston, MA, USA
- Lab. of Immunobio., Dana-Farber Cancer Inst., Boston, MA, USA
- Dept. Med. Oncology, Dana-Farber Cancer Inst., Boston, MA, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Dept. Phys. & Astronomy, Texas A&M Univ., College Station, TX, USA
| |
Collapse
|
9
|
Ghoreyshi ZS, George JT. Quantitative approaches for decoding the specificity of the human T cell repertoire. Front Immunol 2023; 14:1228873. [PMID: 37781387 PMCID: PMC10539903 DOI: 10.3389/fimmu.2023.1228873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
T cell receptor (TCR)-peptide-major histocompatibility complex (pMHC) interactions play a vital role in initiating immune responses against pathogens, and the specificity of TCRpMHC interactions is crucial for developing optimized therapeutic strategies. The advent of high-throughput immunological and structural evaluation of TCR and pMHC has provided an abundance of data for computational approaches that aim to predict favorable TCR-pMHC interactions. Current models are constructed using information on protein sequence, structures, or a combination of both, and utilize a variety of statistical learning-based approaches for identifying the rules governing specificity. This review examines the current theoretical, computational, and deep learning approaches for identifying TCR-pMHC recognition pairs, placing emphasis on each method's mathematical approach, predictive performance, and limitations.
Collapse
Affiliation(s)
- Zahra S. Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Engineering Medicine Program, Texas A&M University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
10
|
Gouttefangeas C, Klein R, Maia A. The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer. Front Immunol 2023; 14:1212546. [PMID: 37409132 PMCID: PMC10319254 DOI: 10.3389/fimmu.2023.1212546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 07/07/2023] Open
Abstract
T cells are main actors of the immune system with an essential role in protection against pathogens and cancer. The molecular key event involved in this absolutely central task is the interaction of membrane-bound specific T cell receptors with peptide-MHC complexes which initiates T cell priming, activation and recall, and thus controls a range of downstream functions. While textbooks teach us that the repertoire of mature T cells is highly diverse, it is clear that this diversity cannot possibly cover all potential foreign peptides that might be encountered during life. TCR cross-reactivity, i.e. the ability of a single TCR to recognise different peptides, offers the best solution to this biological challenge. Reports have shown that indeed, TCR cross-reactivity is surprisingly high. Hence, the T cell dilemma is the following: be as specific as possible to target foreign danger and spare self, while being able to react to a large spectrum of body-threatening situations. This has major consequences for both autoimmune diseases and cancer, and significant implications for the development of T cell-based therapies. In this review, we will present essential experimental evidence of T cell cross-reactivity, implications for two opposite immune conditions, i.e. autoimmunity vs cancer, and how this can be differently exploited for immunotherapy approaches. Finally, we will discuss the tools available for predicting cross-reactivity and how improvements in this field might boost translational approaches.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ana Maia
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Peng X, Lei Y, Feng P, Jia L, Ma J, Zhao D, Zeng J. Characterizing the interaction conformation between T-cell receptors and epitopes with deep learning. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Maringer Y, Nelde A, Schroeder SM, Schuhmacher J, Hörber S, Peter A, Karbach J, Jäger E, Walz JS. Durable spike-specific T cell responses after different COVID-19 vaccination regimens are not further enhanced by booster vaccination. Sci Immunol 2022; 7:eadd3899. [PMID: 36318037 PMCID: PMC9798886 DOI: 10.1126/sciimmunol.add3899] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several COVID-19 vaccines are approved to prevent severe disease outcome after SARS-CoV-2 infection. Whereas induction and functionality of antiviral antibody response are largely studied, the induction of T cells upon vaccination with the different approved COVID-19 vaccines is less studied. Here, we report on T cell immunity 4 weeks and 6 months after different vaccination regimens and 4 weeks after an additional booster vaccination in comparison with SARS-CoV-2 T cell responses in convalescents and prepandemic donors using interferon-gamma ELISpot assays and flow cytometry. Increased T cell responses and cross-recognition of B.1.1.529 Omicron variant-specific mutations were observed ex vivo in mRNA- and heterologous-vaccinated donors compared with vector-vaccinated donors. Nevertheless, potent expandability of T cells targeting the spike protein was observed for all vaccination regimens, with frequency, diversity, and the ability to produce several cytokines of vaccine-induced T cell responses comparable with those in convalescent donors. T cell responses for all vaccinated donors significantly exceeded preexisting cross-reactive T cell responses in prepandemic donors. Booster vaccination led to a significant increase in anti-spike IgG responses, which showed a marked decline 6 months after complete vaccination. In contrast, T cell responses remained stable over time after complete vaccination with no significant effect of booster vaccination on T cell responses and cross-recognition of Omicron BA.1 and BA.2 mutations. This suggested that booster vaccination is of particular relevance for the amelioration of antibody response. Together, our work shows that different vaccination regimens induce broad and long-lasting spike-specific CD4+ and CD8+ T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Yacine Maringer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sarah M. Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Juliane Schuhmacher
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Corresponding author.
| |
Collapse
|
13
|
Georgakilas GK, Galanopoulos AP, Tsinaris Z, Kyritsi M, Mouchtouri VA, Speletas M, Hadjichristodoulou C. Machine-Learning-Assisted Analysis of TCR Profiling Data Unveils Cross-Reactivity between SARS-CoV-2 and a Wide Spectrum of Pathogens and Other Diseases. BIOLOGY 2022; 11:1531. [PMID: 36290433 PMCID: PMC9598299 DOI: 10.3390/biology11101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022]
Abstract
During the last two years, the emergence of SARS-CoV-2 has led to millions of deaths worldwide, with a devastating socio-economic impact on a global scale. The scientific community's focus has recently shifted towards the association of the T cell immunological repertoire with COVID-19 progression and severity, by utilising T cell receptor sequencing (TCR-Seq) assays. The Multiplexed Identification of T cell Receptor Antigen (MIRA) dataset, which is a subset of the immunoACCESS study, provides thousands of TCRs that can specifically recognise SARS-CoV-2 epitopes. Our study proposes a novel Machine Learning (ML)-assisted approach for analysing TCR-Seq data from the antigens' point of view, with the ability to unveil key antigens that can accurately distinguish between MIRA COVID-19-convalescent and healthy individuals based on differences in the triggered immune response. Some SARS-CoV-2 antigens were found to exhibit equal levels of recognition by MIRA TCRs in both convalescent and healthy cohorts, leading to the assumption of putative cross-reactivity between SARS-CoV-2 and other infectious agents. This hypothesis was tested by combining MIRA with other public TCR profiling repositories that host assays and sequencing data concerning a plethora of pathogens. Our study provides evidence regarding putative cross-reactivity between SARS-CoV-2 and a wide spectrum of pathogens and diseases, with M. tuberculosis and Influenza virus exhibiting the highest levels of cross-reactivity. These results can potentially shift the emphasis of immunological studies towards an increased application of TCR profiling assays that have the potential to uncover key mechanisms of cell-mediated immune response against pathogens and diseases.
Collapse
Affiliation(s)
- Georgios K. Georgakilas
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
- Laboratory of Genetics, Department of Biology, University of Patras, 26500 Patras, Greece
| | - Achilleas P. Galanopoulos
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | - Zafeiris Tsinaris
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Maria Kyritsi
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Varvara A. Mouchtouri
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41222 Larisa, Greece
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larisa, Greece
| | | |
Collapse
|
14
|
Erausquin E, Serra P, Parras D, Santamaria P, López-Sagaseta J. Structural plasticity in I-Ag7 links autoreactivity to hybrid insulin peptides in type I diabetes. Front Immunol 2022; 13:924311. [PMID: 35967292 PMCID: PMC9365947 DOI: 10.3389/fimmu.2022.924311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
We recently provided evidence for promiscuous recognition of several different hybrid insulin peptides (HIPs) by the highly diabetogenic, I-Ag7-restricted 4.1-T cell receptor (TCR). To understand the structural determinants of this phenomenon, we solved the structure of an agonistic HIP/I-Ag7 complex, both in isolation as well as bound to the 4.1-TCR. We find that HIP promiscuity of the 4.1-TCR is dictated, on the one hand, by an amino acid sequence pattern that ensures I-Ag7 binding and, on the other hand, by the presence of three acidic residues at positions P5, P7 and P8 that favor an optimal engagement by the 4.1-TCR’s complementary determining regions. Surprisingly, comparison of the TCR-bound and unbound HIP/I-Ag7 structures reveals that 4.1-TCR binding triggers several novel and unique structural motions in both the I-Ag7 molecule and the peptide that are essential for docking. This observation indicates that the type 1 diabetes-associated I-Ag7 molecule is structurally malleable and that this plasticity allows the recognition of multiple peptides by individual TCRs that would otherwise be unable to do so.
Collapse
Affiliation(s)
- Elena Erausquin
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, Spain
- Navarra University Hospital, Pamplona, Spain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Jacinto López-Sagaseta, ; Pere Santamaria,
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, Navarra, Spain
- Public University of Navarra (UPNA), Pamplona, Spain
- Navarra University Hospital, Pamplona, Spain
- *Correspondence: Jacinto López-Sagaseta, ; Pere Santamaria,
| |
Collapse
|
15
|
Walters LC, Rozbesky D, Harlos K, Quastel M, Sun H, Springer S, Rambo RP, Mohammed F, Jones EY, McMichael AJ, Gillespie GM. Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes. Cell Rep 2022; 39:110959. [PMID: 35705051 PMCID: PMC9380258 DOI: 10.1016/j.celrep.2022.110959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Daniel Rozbesky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Max Quastel
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Hong Sun
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Robert P Rambo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
16
|
Ayres CM, Baker BM. Peptide-dependent tuning of major histocompatibility complex motional properties and the consequences for cellular immunity. Curr Opin Immunol 2022; 76:102184. [PMID: 35550277 PMCID: PMC10052791 DOI: 10.1016/j.coi.2022.102184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
T cell receptors (TCRs) and other receptors of the immune system recognize peptides presented by class I or class II major histocompatibility complex (MHC) proteins. Although we generally distinguish between the MHC protein and its peptide, at an atomic level the two form a structural composite, which allows peptides to influence MHC properties and vice versa. One consequence is the peptide-dependent tuning of MHC structural dynamics, which contributes to protein structural adaptability and influences how receptors identify and bind targets. Peptide-dependent tuning of MHC protein dynamics can impact processes such as antigenicity, TCR cross-reactivity, and T cell repertoire selection. Motional tuning extends beyond the binding groove, influencing peptide selection and exchange, as well as interactions with other immune receptors. Here, we review recent findings showing how peptides can affect the dynamic and adaptable nature of MHC proteins. We highlight consequences for immunity and demonstrate how MHC proteins have evolved to be highly sensitive dynamic reporters, with broad immunological consequences.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
17
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
18
|
Ciacchi L, Farenc C, Dahal-Koirala S, Petersen J, Sollid LM, Reid HH, Rossjohn J. Structural basis of T cell receptor specificity and cross-reactivity of two HLA-DQ2.5-restricted gluten epitopes in celiac disease. J Biol Chem 2022; 298:101619. [PMID: 35065967 PMCID: PMC8857473 DOI: 10.1016/j.jbc.2022.101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Celiac disease is a T cell-mediated chronic inflammatory condition often characterized by human leukocyte antigen (HLA)-DQ2.5 molecules presenting gluten epitopes derived from wheat, barley, and rye. Although some T cells exhibit cross-reactivity toward distinct gluten epitopes, the structural basis underpinning such cross-reactivity is unclear. Here, we investigated the T-cell receptor specificity and cross-reactivity of two immunodominant wheat gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). We show by surface plasmon resonance that a T-cell receptor alpha variable (TRAV) 4+-T-cell receptor beta variable (TRBV) 29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1 with similar affinity, whereas a TRAV4- (TRAV9-2+) TCR recognized HLA-DQ2.5-glia-ω1 only. We further determined the crystal structures of the TRAV4+-TRBV29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1, as well as the structure of an epitope-specific TRAV9-2+-TRBV7-3+ TCR-HLA-DQ2.5-glia-ω1 complex. We found that position 7 (p7) of the DQ2.5-glia-α1a and DQ2.5-glia-ω1 epitopes made very limited contacts with the TRAV4+ TCR, thereby explaining the TCR cross-reactivity across these two epitopes. In contrast, within the TRAV9-2+ TCR-HLA-DQ2.5-glia-ω1 ternary complex, the p7-Gln was situated in an electrostatic pocket formed by the hypervariable CDR3β loop of the TCR and Arg70β from HLA-DQ2.5, a polar network which would not be supported by the p7-Leu residue of DQ2.5-glia-α1a. In conclusion, we provide additional insights into the molecular determinants of TCR specificity and cross-reactivity to two closely-related epitopes in celiac disease.
Collapse
Affiliation(s)
- Laura Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shiva Dahal-Koirala
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway; K. G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway; K. G. Jebsen Centre for Coeliac Disease Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
19
|
Rickenbach C, Gericke C. Specificity of Adaptive Immune Responses in Central Nervous System Health, Aging and Diseases. Front Neurosci 2022; 15:806260. [PMID: 35126045 PMCID: PMC8812614 DOI: 10.3389/fnins.2021.806260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
The field of neuroimmunology endorses the involvement of the adaptive immune system in central nervous system (CNS) health, disease, and aging. While immune cell trafficking into the CNS is highly regulated, small numbers of antigen-experienced lymphocytes can still enter the cerebrospinal fluid (CSF)-filled compartments for regular immune surveillance under homeostatic conditions. Meningeal lymphatics facilitate drainage of brain-derived antigens from the CSF to deep cervical lymph nodes to prime potential adaptive immune responses. During aging and CNS disorders, brain barriers and meningeal lymphatic functions are impaired, and immune cell trafficking and antigen efflux are altered. In this context, alterations in the immune cell repertoire of blood and CSF and T and B cells primed against CNS-derived autoantigens have been observed in various CNS disorders. However, for many diseases, a causal relationship between observed immune responses and neuropathological findings is lacking. Here, we review recent discoveries about the association between the adaptive immune system and CNS disorders such as autoimmune neuroinflammatory and neurodegenerative diseases. We focus on the current challenges in identifying specific T cell epitopes in CNS diseases and discuss the potential implications for future diagnostic and treatment options.
Collapse
Affiliation(s)
- Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Christoph Gericke
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
20
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
21
|
Riedel F, Aparicio-Soto M, Curato C, Thierse HJ, Siewert K, Luch A. Immunological Mechanisms of Metal Allergies and the Nickel-Specific TCR-pMHC Interface. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10867. [PMID: 34682608 PMCID: PMC8535423 DOI: 10.3390/ijerph182010867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Besides having physiological functions and general toxic effects, many metal ions can cause allergic reactions in humans. We here review the immune events involved in the mediation of metal allergies. We focus on nickel (Ni), cobalt (Co) and palladium (Pd), because these allergens are among the most prevalent sensitizers (Ni, Co) and immediate neighbors in the periodic table of the chemical elements. Co-sensitization between Ni and the other two metals is frequent while the knowledge on a possible immunological cross-reactivity using in vivo and in vitro approaches remains limited. At the center of an allergic reaction lies the capability of a metal allergen to form T cell epitopes that are recognized by specific T cell receptors (TCR). Technological advances such as activation-induced marker assays and TCR high-throughput sequencing recently provided new insights into the interaction of Ni2+ with the αβ TCR-peptide-major histocompatibility complex (pMHC) interface. Ni2+ functionally binds to the TCR gene segment TRAV9-2 or a histidine in the complementarity determining region 3 (CDR3), the main antigen binding region. Thus, we overview known, newly identified and hypothesized mechanisms of metal-specific T cell activation and discuss current knowledge on cross-reactivity.
Collapse
Affiliation(s)
- Franziska Riedel
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| | - Marina Aparicio-Soto
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Caterina Curato
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Hermann-Josef Thierse
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Katherina Siewert
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
| | - Andreas Luch
- Department for Chemicals and Product Safety, Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (H.-J.T.); (K.S.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2, 14195 Berlin, Germany
| |
Collapse
|
22
|
Truong HV, Sgourakis NG. Dynamics of MHC-I molecules in the antigen processing and presentation pathway. Curr Opin Immunol 2021; 70:122-128. [PMID: 34153556 PMCID: PMC8622473 DOI: 10.1016/j.coi.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
The endogenous antigen processing and presentation (APP) is a fundamental pathway found in jawed vertebrates, which allows for a set of epitope peptides sampled from the intracellular proteome to be assembled and displayed on class I proteins of the major histocompatibility complex (MHC-I). Peptide/MHC-I antigens enable different aspects of adaptive immunity to emerge, by providing a basis for recognition of self vs. non-self by T cells and Natural Killer (NK) cells. Pioneering studies of pMHC-I molecules and their higher-order protein complexes with molecular chaperones and membrane receptors have gleaned important insights into the peptide loading and antigen recognition mechanisms. While X-ray and cryoEM structures have provided us with static snapshots of different MHC-I assembly stages, complementary biophysical techniques have revealed that MHC-I molecules are highly mobile on a range of biologically relevant timescales, which bears importance for their assembly, peptide repertoire selection, membrane display and turnover. This review summarizes insights gained from experimental and simulation studies aimed at investigating MHC-I dynamics, and their functional implications.
Collapse
Affiliation(s)
- Hau V Truong
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. The discriminatory power of the T cell receptor. eLife 2021; 10:e67092. [PMID: 34030769 PMCID: PMC8219380 DOI: 10.7554/elife.67092] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ∼ 1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.
Collapse
Affiliation(s)
- Johannes Pettmann
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | - Anna Huhn
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Boston University, Department of Mathematics and StatisticsBostonUnited States
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
24
|
Ma J, Ayres CM, Hellman LM, Devlin JR, Baker BM. Dynamic allostery controls the peptide sensitivity of the Ly49C natural killer receptor. J Biol Chem 2021; 296:100686. [PMID: 33891944 PMCID: PMC8138769 DOI: 10.1016/j.jbc.2021.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Using a variety of activating and inhibitory receptors, natural killer (NK) cells protect against disease by eliminating cells that have downregulated class I major histocompatibility complex (MHC) proteins, such as in response to cell transformation or viral infection. The inhibitory murine NK receptor Ly49C specifically recognizes the class I MHC protein H-2Kb. Unusual among NK receptors, Ly49C exhibits a peptide-dependent sensitivity to H-2Kb recognition, which has not been explained despite detailed structural studies. To gain further insight into Ly49C peptide sensitivity, we examined Ly49C recognition biochemically and through the lens of dynamic allostery. We found that the peptide sensitivity of Ly49C arises through small differences in H-2Kb-binding affinity. Although molecular dynamics simulations supported a role for peptide-dependent protein dynamics in producing these differences in binding affinity, calorimetric measurements indicated an enthalpically as opposed to entropically driven process. A quantitative linkage analysis showed that this emerges from peptide-dependent dynamic tuning of electrostatic interactions across the Ly49C–H-2Kb interface. We propose a model whereby different peptides alter the flexibility of H-2Kb, which in turn changes the strength of electrostatic interactions across the protein–protein interface. Our results provide a quantitative assessment of how peptides alter Ly49C-binding affinity, suggest the underlying mechanism, and demonstrate peptide-driven allostery at work in class I MHC proteins. Lastly, our model provides a solution for how dynamic allostery could impact binding of some, but not all, class I MHC partners depending on the structural and chemical composition of the interfaces.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada, USA
| | - Jason R Devlin
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
25
|
Merkle PS, Trabjerg E, Hongjian S, Ferber M, Cuendet MA, Jørgensen TJD, Luescher I, Irving M, Zoete V, Michielin O, Rand KD. Probing the Conformational Dynamics of Affinity-Enhanced T Cell Receptor Variants upon Binding the Peptide-Bound Major Histocompatibility Complex by Hydrogen/Deuterium Exchange Mass Spectrometry. Biochemistry 2021; 60:859-872. [PMID: 33689297 DOI: 10.1021/acs.biochem.1c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of the T cell receptor (TCR) to its cognate, peptide antigen-loaded major histocompatibility complex (pMHC) is a key interaction for triggering T cell activation and ultimately elimination of the target cell. Despite the importance of this interaction for cellular immunity, a comprehensive molecular understanding of TCR specificity and affinity is lacking. We conducted hydrogen/deuterium exchange mass spectrometry (HDX-MS) analyses of individual affinity-enhanced TCR variants and clinically relevant pMHC class I molecules (HLA-A*0201/NY-ESO-1157-165) to investigate the causality between increased binding affinity and conformational dynamics in TCR-pMHC complexes. Differential HDX-MS analyses of TCR variants revealed that mutations for affinity enhancement in TCR CDRs altered the conformational response of TCR to pMHC ligation. Improved pMHC binding affinity was in general observed to correlate with greater differences in HDX upon pMHC binding in modified TCR CDR loops, thereby providing new insights into the TCR-pMHC interaction. Furthermore, a specific point mutation in the β-CDR3 loop of the NY-ESO-1 TCR associated with a substantial increase in binding affinity resulted in a substantial change in pMHC binding kinetics (i.e., very slow kon, revealed by the detection of EX1 HDX kinetics), thus providing experimental evidence for a slow induced-fit binding mode. We also examined the conformational impact of pMHC binding on an unrelated TRAV12-2 gene-encoded TCR directed against the immunodominant MART-126-35 cancer antigen restricted by HLA-A*0201. Our findings provide a molecular basis for the observed TRAV12-2 gene bias in natural CD8+ T cell-based immune responses against the MART-1 antigen, with potential implications for general ligand discrimination and TCR cross-reactivity processes.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- HLA-A2 Antigen/genetics
- Protein Conformation
- Hydrogen Deuterium Exchange-Mass Spectrometry
- Protein Binding
- Peptides/chemistry
- Peptides/metabolism
- Peptides/immunology
- Major Histocompatibility Complex
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Deuterium Exchange Measurement
- Mutation
Collapse
Affiliation(s)
- Patrick S Merkle
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Esben Trabjerg
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Song Hongjian
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathias Ferber
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Michel A Cuendet
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Immanuel Luescher
- Ludwig Branch for Cancer Research of the University of Lausanne, 8001 Zurich, Switzerland
| | - Melita Irving
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Ludwig Branch for Cancer Research of the University of Lausanne, 8001 Zurich, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Smith AR, Alonso JA, Ayres CM, Singh NK, Hellman LM, Baker BM. Structurally silent peptide anchor modifications allosterically modulate T cell recognition in a receptor-dependent manner. Proc Natl Acad Sci U S A 2021; 118:e2018125118. [PMID: 33468649 PMCID: PMC7848747 DOI: 10.1073/pnas.2018125118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Presentation of peptides by class I MHC proteins underlies T cell immune responses to pathogens and cancer. The association between peptide binding affinity and immunogenicity has led to the engineering of modified peptides with improved MHC binding, with the hope that these peptides would be useful for eliciting cross-reactive immune responses directed toward their weak binding, unmodified counterparts. Increasing evidence, however, indicates that T cell receptors (TCRs) can perceive such anchor-modified peptides differently than wild-type (WT) peptides, although the scope of discrimination is unclear. We show here that even modifications at primary anchors that have no discernible structural impact can lead to substantially stronger or weaker T cell recognition depending on the TCR. Surprisingly, the effect of peptide anchor modification can be sensed by a TCR at regions distant from the site of modification, indicating a through-protein mechanism in which the anchor residue serves as an allosteric modulator for TCR binding. Our findings emphasize caution in the use and interpretation of results from anchor-modified peptides and have implications for how anchor modifications are accounted for in other circumstances, such as predicting the immunogenicity of tumor neoantigens. Our data also highlight an important need to better understand the highly tunable dynamic nature of class I MHC proteins and the impact this has on various forms of immune recognition.
Collapse
MESH Headings
- Allosteric Regulation
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Jurkat Cells
- Kinetics
- Models, Molecular
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Engineering
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Th2 Cells/cytology
- Th2 Cells/immunology
- Thermodynamics
Collapse
Affiliation(s)
- Angela R Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Jesus A Alonso
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Nishant K Singh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Lance M Hellman
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556;
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
27
|
Borrman T, Pierce BG, Vreven T, Baker BM, Weng Z. High-throughput modeling and scoring of TCR-pMHC complexes to predict cross-reactive peptides. Bioinformatics 2020; 36:5377-5385. [PMID: 33355667 PMCID: PMC8016493 DOI: 10.1093/bioinformatics/btaa1050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION The binding of T cell receptors (TCRs) to their target peptide MHC (pMHC) ligands initializes the cell-mediated immune response. In autoimmune diseases such as multiple sclerosis, the TCR erroneously recognizes self-peptides as foreign and activates an immune response against healthy cells. Such responses can be triggered by cross-recognition of the autoreactive TCR with foreign peptides. Hence, it would be desirable to identify such foreign-antigen triggers to provide a mechanistic understanding of autoimmune diseases. However, the large sequence space of foreign antigens presents an obstacle in the identification of cross-reactive peptides. RESULTS Here, we present an in silico modeling and scoring method which exploits the structural properties of TCR-pMHC complexes to predict the binding of cross-reactive peptides. We analyzed three mouse TCRs and one human TCR isolated from a patient with multiple sclerosis. Cross-reactive peptides for these TCRs were previously identified via yeast display coupled with deep sequencing, providing a robust dataset for evaluating our method. Modeling query peptides in their associated TCR-pMHC crystal structures, our method accurately selected the top binding peptides from sets containing more than a hundred thousand unique peptides. AVAILABILITY AND IMPLEMENTATION Analyses were performed using custom Python and R scripts available at https://github.com/tborrman/antigen-predict. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tyler Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
28
|
Nerli S, Sgourakis NG. Structure-Based Modeling of SARS-CoV-2 Peptide/HLA-A02 Antigens. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:553478. [PMID: 35047875 PMCID: PMC8757863 DOI: 10.3389/fmedt.2020.553478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2-specific CD4 and CD8 T cells have been shown to be present in individuals with acute, mild, and asymptomatic Coronavirus disease (COVID-19). Toward the development of diagnostic and therapeutic tools to fight COVID-19, it is important to predict and characterize T cell epitopes expressed by SARS-CoV-2. Here, we use RosettaMHC, a comparative modeling approach which leverages existing structures of peptide/MHC complexes available in the Protein Data Bank, to derive accurate 3D models for putative SARS-CoV-2 CD8 epitopes. We outline an application of our method to model 8-10 residue epitopic peptides predicted to bind to the common allele HLA-A*02:01, and we make our models publicly available through an online database (https://rosettamhc.chemistry.ucsc.edu). We further compare electrostatic surfaces with models of homologous peptide/HLA-A*02:01 complexes from human common cold coronavirus strains to identify epitopes which may be recognized by a shared pool of cross-reactive TCRs. As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models can be used to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Front Immunol 2020; 11:565096. [PMID: 33193332 PMCID: PMC7642207 DOI: 10.3389/fimmu.2020.565096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity. We further underscore the close inter-relationship of these two interconnected notions and the need to investigate each in the light of the other for a better understanding of T cell responsiveness for the effective clinical applications.
Collapse
Affiliation(s)
- Chloe H. Lee
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, Lübke M, Bauer J, Rieth J, Wacker M, Peter A, Hörber S, Traenkle B, Kaiser PD, Rothbauer U, Becker M, Junker D, Krause G, Strengert M, Schneiderhan-Marra N, Templin MF, Joos TO, Kowalewski DJ, Stos-Zweifel V, Fehr M, Rabsteyn A, Mirakaj V, Karbach J, Jäger E, Graf M, Gruber LC, Rachfalski D, Preuß B, Hagelstein I, Märklin M, Bakchoul T, Gouttefangeas C, Kohlbacher O, Klein R, Stevanović S, Rammensee HG, Walz JS. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol 2020; 22:74-85. [PMID: 32999467 DOI: 10.1038/s41590-020-00808-x] [Citation(s) in RCA: 400] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.
Collapse
Affiliation(s)
- Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Malte Roerden
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Maren Lübke
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Bjoern Traenkle
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Philipp D Kaiser
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Pharmaceutical Biotechnology, University of Tübingen, Tübingen, Germany
| | - Matthias Becker
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Daniel Junker
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,TWINCORE GmbH, Centre for Experimental and Clinical Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | | | - Markus F Templin
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas O Joos
- NMI, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | | | - Michael Fehr
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Armin Rabsteyn
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,Department of General Pediatrics, Oncology/Hematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anesthesia and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Julia Karbach
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Elke Jäger
- Department of Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Michael Graf
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Lena-Christin Gruber
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - David Rachfalski
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Beate Preuß
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Cécile Gouttefangeas
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Center for Bioinformatics and Department of Computer Science, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max-Planck-Institute for Developmental Biology, Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. .,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Belz TF, Bremer PT, Zhou B, Ellis B, Eubanks LM, Janda KD. Enhancement of a Heroin Vaccine through Hapten Deuteration. J Am Chem Soc 2020; 142:13294-13298. [PMID: 32700530 DOI: 10.1021/jacs.0c05219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The United States is in the midst of an unprecedented epidemic of opioid substance use disorder, and while pharmacotherapies including opioid agonists and antagonists have shown success, they can be inadequate and frequently result in high recidivism. With these challenges facing opioid use disorder treatments immunopharmacotherapy is being explored as an alternative therapy option and is based upon antibody-opioid sequestering to block brain entry. Development of a heroin vaccine has become a major research focal point; however, producing an efficient vaccine against heroin has been particularly challenging because of the need to generate not only a potent immune response but one against heroin and its multiple psychoactive molecules. In this study, we explored the consequence of regioselective deuteration of a heroin hapten and its impact upon the immune response against heroin and its psychoactive metabolites. Deuterium (HdAc) and cognate protium heroin (HAc) haptens were compared head to head in an inclusive vaccine study. Strikingly the HdAc vaccine granted greater efficacy in blunting heroin analgesia in murine behavioral models compared to the HAc vaccine. Binding studies confirmed that the HdAc vaccine elicited both greater quantities and equivalent or higher affinity antibodies toward heroin and 6-AM. Blood-brain biodistribution experiments corroborated these affinity tests. These findings suggest that regioselective hapten deuteration could be useful for the resurrection of previous drug of abuse vaccines that have met limited success in the past.
Collapse
Affiliation(s)
- Tyson F Belz
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Paul T Bremer
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,Cessation Therapeutics LLC, 3031 Tisch Way Ste 505, San Jose, California 95128, United States
| | - Bin Zhou
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Beverly Ellis
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lisa M Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, The Worm Institute of Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
32
|
Gonçalves P, El Daker S, Vasseur F, Serafini N, Lim A, Azogui O, Decaluwe H, Guy-Grand D, Freitas AA, Di Santo JP, Rocha B. Microbiota stimulation generates LCMV-specific memory CD8 + T cells in SPF mice and determines their TCR repertoire during LCMV infection. Mol Immunol 2020; 124:125-141. [PMID: 32563081 DOI: 10.1016/j.molimm.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Both mouse and human harbour memory phenotype CD8+ T cells specific for antigens in hosts that have not been previously exposed to these antigens. The origin and the nature of the stimuli responsible for generation of CD44hi CD8+ T cells in specific pathogen-free (SPF) mice remain controversial. It is known that microbiota plays a crucial role in the prevention and resolution of systemic infections by influencing myelopoiesis, regulating dendritic cells, inflammasome activation and promoting the production of type I and II interferons. By contrast, here we suggest that microbiota has a direct effect on generation of memory phenotype CD44hiGP33+CD8+ T cells. In SPF mice, it generates a novel GP33+CD44hiCD8+ T cell sub-population associating the properties of innate and genuine memory cells. These cells are highly enriched in the bone marrow, proliferate rapidly and express immediate effector functions. They dominate the response to LCMV and express particular TCRβ chains. The sequence of these selected TCRβ chains overlaps with that of GP33+CD8+ T cells directly selected by microbiota in the gut epithelium of SPF mice, demonstrating a common selection mechanism in gut and peripheral CD8+ T cell pool. Therefore microbiota has a direct role in priming T cell immunity in SPF mice and in the selection of TCRβ repertoires during systemic infection. We identify a mechanism that primes T cell immunity in SPF mice and may have a major role in colonization resistance and protection from infection.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France; INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France; Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France.
| | - Sary El Daker
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - Florence Vasseur
- INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France
| | - Nicolas Serafini
- Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France; INSERM U1223, Paris 75015, France
| | | | - Orly Azogui
- INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France
| | - Helene Decaluwe
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - Delphine Guy-Grand
- INSERM U1223, Paris 75015, France; Lymphopoiesis Unit, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris 75015, France
| | - Antonio A Freitas
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France
| | - James P Di Santo
- Innate Immunity Unit, INSERM, U668, Institut Pasteur, Paris 75015, France; INSERM U1223, Paris 75015, France
| | - Benedita Rocha
- Population Biology Unit, CNRS URA 196, Institut Pasteur, Paris 75015, France; INSERM, U1151, CNRS, UMR8253, Institut Necker Enfants Malades, Université Paris Descartes, Paris 75015, France.
| |
Collapse
|
33
|
Coles CH, McMurran C, Lloyd A, Hock M, Hibbert L, Raman MCC, Hayes C, Lupardus P, Cole DK, Harper S. T cell receptor interactions with human leukocyte antigen govern indirect peptide selectivity for the cancer testis antigen MAGE-A4. J Biol Chem 2020; 295:11486-11494. [PMID: 32532817 PMCID: PMC7450119 DOI: 10.1074/jbc.ra120.014016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
T cell-mediated immunity is governed primarily by T cell receptor (TCR) recognition of peptide-human leukocyte antigen (pHLA) complexes and is essential for immunosurveillance and disease control. This interaction is generally stabilized by interactions between the HLA surface and TCR germline-encoded complementarity-determining region (CDR) loops 1 and 2, whereas peptide selectivity is guided by direct interactions with the TCR CDR3 loops. Here, we solved the structure of a newly identified TCR in complex with a clinically relevant peptide derived from the cancer testis antigen melanoma antigen-A4 (MAGE-A4). The TCR bound pHLA in a position shifted toward the peptide's N terminus. This enabled the TCR to achieve peptide selectivity via an indirect mechanism, whereby the TCR sensed the first residue of the peptide through HLA residue Trp-167, which acted as a tunable gateway. Amino acid substitutions at peptide position 1 predicted to alter the HLA Trp-167 side-chain conformation abrogated TCR binding, indicating that this indirect binding mechanism is essential for peptide recognition. These findings extend our understanding of the molecular rules that underpin antigen recognition by TCRs and have important implications for the development of TCR-based therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David K Cole
- Immunocore Ltd., Abingdon, United Kingdom .,Cardiff University School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
34
|
Gejman RS, Jones HF, Klatt MG, Chang AY, Oh CY, Chandran SS, Korontsvit T, Zakahleva V, Dao T, Klebanoff CA, Scheinberg DA. Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a High-Throughput Genetic Platform. Cancer Immunol Res 2020; 8:672-684. [PMID: 32184297 PMCID: PMC7310334 DOI: 10.1158/2326-6066.cir-19-0745] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
T-cell receptor (TCR)-based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods.
Collapse
Affiliation(s)
- Ron S Gejman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Tri-Institutional MD-PhD Program (Memorial Sloan Kettering Cancer Center, Rockefeller University, Weill Cornell Medical College), New York, New York
- Weill Cornell Medicine, New York, New York
| | - Heather F Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Martin G Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron Y Chang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Claire Y Oh
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tatiana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Viktoriya Zakahleva
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A Klebanoff
- Weill Cornell Medicine, New York, New York
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
35
|
Affiliation(s)
- Pirooz Zareie
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Carine Farenc
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nicole L. La Gruta
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
36
|
Cuevas-Zuviría B, Mínguez-Toral M, Díaz-Perales A, Garrido-Arandia M, Pacios LF. Dynamic plasticity of the lipid antigen-binding site of CD1d is crucially favoured by acidic pH and helper proteins. Sci Rep 2020; 10:5714. [PMID: 32235847 PMCID: PMC7109084 DOI: 10.1038/s41598-020-62833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
CD1 molecules present lipid antigens for recognition by T-cell receptors (TCRs). Although a reasonably detailed picture of the CD1-lipid-TCR interaction exists, the initial steps regarding lipid loading onto and exchange between CD1 proteins remain elusive. The hydrophobic nature of lipids and the fact that CD1 molecules are unable to extract lipids from membranes raise the need for the assistance of helper proteins in lipid trafficking. However, the experimental study of this traffic in the endosomal compartments at which it occurs is so challenging that computational studies can help provide mechanistic insight into the associated processes. Here we present a multifaceted computational approach to obtain dynamic structural data on the human CD1d isotype. Conformational dynamics analysis shows an intrinsic flexibility associated with the protein architecture. Electrostatic properties together with molecular dynamics results for CD1d complexes with several lipids and helper proteins unravel the high dynamic plasticity of the antigen-binding site that is crucially favoured by acidic pH and the presence of helper proteins.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Marina Mínguez-Toral
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain.
| |
Collapse
|
37
|
Hopkins JR, Crean RM, Catici DAM, Sewell AK, Arcus VL, Van der Kamp MW, Cole DK, Pudney CR. Peptide cargo tunes a network of correlated motions in human leucocyte antigens. FEBS J 2020; 287:3777-3793. [PMID: 32134551 PMCID: PMC8651013 DOI: 10.1111/febs.15278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022]
Abstract
Most biomolecular interactions are typically thought to increase the (local) rigidity of a complex, for example, in drug‐target binding. However, detailed analysis of specific biomolecular complexes can reveal a more subtle interplay between binding and rigidity. Here, we focussed on the human leucocyte antigen (HLA), which plays a crucial role in the adaptive immune system by presenting peptides for recognition by the αβ T‐cell receptor (TCR). The role that the peptide plays in tuning HLA flexibility during TCR recognition is potentially crucial in determining the functional outcome of an immune response, with obvious relevance to the growing list of immunotherapies that target the T‐cell compartment. We have applied high‐pressure/temperature perturbation experiments, combined with molecular dynamics simulations, to explore the drivers that affect molecular flexibility for a series of different peptide–HLA complexes. We find that different peptide sequences affect peptide–HLA flexibility in different ways, with the peptide cargo tuning a network of correlated motions throughout the pHLA complex, including in areas remote from the peptide‐binding interface, in a manner that could influence T‐cell antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Rory M Crean
- Department of Biology and Biochemistry, University of Bath, UK.,Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Vickery L Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Christopher R Pudney
- Department of Biology and Biochemistry, University of Bath, UK.,Centre for Therapeutic Innovation, University of Bath, UK
| |
Collapse
|
38
|
Ma L, Zhang N, Qu Z, Liang R, Zhang L, Zhang B, Meng G, Dijkstra JM, Li S, Xia MC. A Glimpse of the Peptide Profile Presentation by Xenopus laevis MHC Class I: Crystal Structure of p Xela-UAA Reveals a Distinct Peptide-Binding Groove. THE JOURNAL OF IMMUNOLOGY 2019; 204:147-158. [PMID: 31776204 DOI: 10.4049/jimmunol.1900865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
The African clawed frog, Xenopus laevis, is a model species for amphibians. Before metamorphosis, tadpoles do not efficiently express the single classical MHC class I (MHC-I) molecule Xela-UAA, but after metamorphosis, adults express this molecule in abundance. To elucidate the Ag-presenting mechanism of Xela-UAA, in this study, the Xela-UAA structure complex (pXela-UAAg) bound with a peptide from a synthetic random peptide library was determined. The amino acid homology between the Xela-UAA and MHC-I sequences of different species is <45%, and these differences are fully reflected in the three-dimensional structure of pXela-UAAg. Because of polymorphisms and interspecific differences in amino acid sequences, pXela-UAAg forms a distinct peptide-binding groove and presents a unique peptide profile. The most important feature of pXela-UAAg is the two-amino acid insertion in the α2-helical region, which forms a protrusion of ∼3.8 Å that is involved in TCR docking. Comparison of peptide-MHC-I complex (pMHC-I) structures showed that only four amino acids in β2-microglobulin that were bound to MHC-I are conserved in almost all jawed vertebrates, and the most unique feature in nonmammalian pMHC-I molecules is that the AB loop bound β2-microglobulin. Additionally, the binding distance between pMHC-I and CD8 molecules in nonmammals is different from that in mammals. These unique features of pXela-UAAg provide enhanced knowledge of T cell immunity and bridge the knowledge gap regarding the coevolutionary progression of the MHC-I complex from aquatic to terrestrial species.
Collapse
Affiliation(s)
- Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bing Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Geng Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; and
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Max Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
39
|
Bentzen AK, Hadrup SR. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. IMMUNO-ONCOLOGY AND TECHNOLOGY 2019; 2:1-10. [PMID: 35036898 PMCID: PMC8741623 DOI: 10.1016/j.iotech.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adoptive transfer of T-cell-receptor (TCR)-transduced T cells has shown promising results for cancer treatment, but has also produced severe immunotoxicities caused by on-target as well as off-target TCR recognition. Off-target toxicities are related to the ability of a single T cell to cross-recognize and respond to several different peptide–major histocompatibility complex (pMHC) antigens; a property that is essential for providing broad antigenic coverage despite a confined number of unique TCRs in the human body. However, this degeneracy makes it incredibly difficult to account for the range of targets that any TCR might recognize, which represents a major challenge for the clinical development of therapeutic TCRs. The prospect of using affinity-optimized TCRs has been impeded due to observations that affinity enhancement might alter the specificity of a TCR, thereby increasing the risk that it will cross-recognize endogenous tissue. Strategies for selecting safe TCRs for the clinic have included functional assessment after individual incubations with tissue-derived primary cells or with peptides substituted with single amino acids. However, these strategies have not been able to predict cross-recognition sufficiently, leading to fatal cross-reactivity in clinical trials. Novel technologies have emerged that enable extensive characterization of the exact interaction points of a TCR with pMHC, which provides a foundation from which to make predictions of the cross-recognition potential of individual TCRs. This review describes current advances in strategies for dissecting the molecular interaction points of TCRs, focusing on their potential as tools for predicting cross-recognition of TCRs in clinical development. T-cell-receptor (TCR) degeneracy plays a fundamental role in the capacity of our immune systems to recognize foreign antigens. TCR cross-reactivity provides an inherent risk in TCR–gene transfer cell therapies. Advances in description of TCR cross-recognition can guide the selection process for TCRs into clinical use.
Collapse
|
40
|
Karch R, Stocsits C, Ilieva N, Schreiner W. Intramolecular Domain Movements of Free and Bound pMHC and TCR Proteins: A Molecular Dynamics Simulation Study. Cells 2019; 8:cells8070720. [PMID: 31337065 PMCID: PMC6678086 DOI: 10.3390/cells8070720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
The interaction of antigenic peptides (p) and major histocompatibility complexes (pMHC) with T-cell receptors (TCR) is one of the most important steps during the immune response. Here we present a molecular dynamics simulation study of bound and unbound TCR and pMHC proteins of the LC13-HLA-B*44:05-pEEYLQAFTY complex to monitor differences in relative orientations and movements of domains between bound and unbound states of TCR-pMHC. We generated local coordinate systems for MHC α1- and MHC α2-helices and the variable T-cell receptor regions TCR Vα and TCR Vβ and monitored changes in the distances and mutual orientations of these domains. In comparison to unbound states, we found decreased inter-domain movements in the simulations of bound states. Moreover, increased conformational flexibility was observed for the MHC α2-helix, the peptide, and for the complementary determining regions of the TCR in TCR-unbound states as compared to TCR-bound states.
Collapse
Affiliation(s)
- Rudolf Karch
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Claudia Stocsits
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Nevena Ilieva
- Institute of Information and Communication Technologies (IICT), Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 25A, 1113 Sofia, Bulgaria
- CERN-TH, Esplanade des Particules 1, 1211 Geneva, Switzerland
| | - Wolfgang Schreiner
- Section of Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria.
| |
Collapse
|
41
|
Madura F, Rizkallah PJ, Legut M, Holland CJ, Fuller A, Bulek A, Schauenburg AJ, Trimby A, Hopkins JR, Wells SA, Godkin A, Miles JJ, Sami M, Li Y, Liddy N, Jakobsen BK, Loveridge EJ, Cole DK, Sewell AK. TCR-induced alteration of primary MHC peptide anchor residue. Eur J Immunol 2019; 49:1052-1066. [PMID: 31091334 PMCID: PMC6618058 DOI: 10.1002/eji.201948085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.
Collapse
Affiliation(s)
| | | | | | | | - Anna Fuller
- School of MedicineCardiff UniversityCardiffUK
| | - Anna Bulek
- School of MedicineCardiff UniversityCardiffUK
| | | | | | | | | | | | - John J. Miles
- School of MedicineCardiff UniversityCardiffUK
- Centre for Biodiscovery and Molecular Development of TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | | | - Yi Li
- Immunocore Ltd.AbingdonUK
| | | | | | - E. Joel Loveridge
- School of ChemistryCardiff UniversityCardiffUK
- Department of ChemistrySwansea UniversitySwanseaUK
| | - David K. Cole
- School of MedicineCardiff UniversityCardiffUK
- Immunocore Ltd.AbingdonUK
| | - Andrew K. Sewell
- School of MedicineCardiff UniversityCardiffUK
- Systems Immunity Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
42
|
Salutari I, Martin R, Caflisch A. The 3A6-TCR/superagonist/HLA-DR2a complex shows similar interface and reduced flexibility compared to the complex with self-peptide. Proteins 2019; 88:31-46. [PMID: 31237711 DOI: 10.1002/prot.25764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 11/11/2022]
Abstract
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.
Collapse
Affiliation(s)
- Ilaria Salutari
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Ji W, Niu L, Peng W, Zhang Y, Cheng H, Gao F, Shi Y, Qi J, Gao GF, Liu WJ. Salt bridge-forming residues positioned over viral peptides presented by MHC class I impacts T-cell recognition in a binding-dependent manner. Mol Immunol 2019; 112:274-282. [PMID: 31226552 PMCID: PMC7112684 DOI: 10.1016/j.molimm.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 11/28/2022]
Abstract
Crystal structure of HLA-B*4001 was determined. The salt bridges in HLA-B*4001 and H-2Kd have different structural characteristics. MHC I mutations that disrupt the salt bridge alleviate peptide binding. Mutations of the salt bridge-forming residues may impact TCR recognition, directly or indirectly.
The viral peptides presentation by major histocompatibility complex class I (MHC I) molecules play a pivotal role in T-cell recognition and the subsequent virus clearance. This process is delicately adjusted by the variant residues of MHC I, especially the residues in the peptide binding groove (PBG). In a series of MHC I molecules, a salt bridge is formed above the N-terminus of the peptides. However, the potential impact of the salt bridge on peptide binding and T-cell receptor (TCR) recognition of MHC I, as well as the corresponding molecular basis, are still largely unknown. Herein, we determined the structures of HLA-B*4001 and H-2Kd in which two different types of salt bridges (Arg62-Glu163 or Arg66-Glu163) across the PBG were observed. Although the two salt bridges led to different conformation shifts of both the MHC I α helix and the peptides, binding of the peptides with the salt bridge residues was relatively conserved. Furthermore, through a series of in vitro and in vivo investigations, we found that MHC I mutations that disrupt the salt bridge alleviate peptide binding and can weaken the TCR recognition of MHC I-peptide complexes. Our study may provide key references for understanding MHC I-restricted peptide recognition by T-cells.
Collapse
Affiliation(s)
- Wei Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Ling Niu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyu Peng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yongli Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - George F Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| | - William J Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
44
|
Ayres CM, Abualrous ET, Bailey A, Abraham C, Hellman LM, Corcelli SA, Noé F, Elliott T, Baker BM. Dynamically Driven Allostery in MHC Proteins: Peptide-Dependent Tuning of Class I MHC Global Flexibility. Front Immunol 2019; 10:966. [PMID: 31130956 PMCID: PMC6509175 DOI: 10.3389/fimmu.2019.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
T cell receptor (TCR) recognition of antigenic peptides bound and presented by class I major histocompatibility complex (MHC) proteins underlies the cytotoxic immune response to diseased cells. Crystallographic structures of TCR-peptide/MHC complexes have demonstrated how TCRs simultaneously interact with both the peptide and the MHC protein. However, it is increasingly recognized that, beyond serving as a static platform for peptide presentation, the physical properties of class I MHC proteins are tuned by different peptides in ways that are not always structurally visible. These include MHC protein motions, or dynamics, which are believed to influence interactions with a variety of MHC-binding proteins, including not only TCRs, but other activating and inhibitory receptors as well as components of the peptide loading machinery. Here, we investigated the mechanisms by which peptides tune the dynamics of the common class I MHC protein HLA-A2. By examining more than 50 lengthy molecular dynamics simulations of HLA-A2 presenting different peptides, we identified regions susceptible to dynamic tuning, including regions in the peptide binding domain as well as the distal α3 domain. Further analyses of the simulations illuminated mechanisms by which the influences of different peptides are communicated throughout the protein, and involve regions of the peptide binding groove, the β2-microglobulin subunit, and the α3 domain. Overall, our results demonstrate that the class I MHC protein is a highly tunable peptide sensor whose physical properties vary considerably with bound peptide. Our data provides insight into the underlying principles and suggest a role for dynamically driven allostery in the immunological function of MHC proteins.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Esam T Abualrous
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Alistair Bailey
- Institute for Life Sciences and Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Christian Abraham
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Lance M Hellman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Frank Noé
- Computational Molecular Biology Group, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
45
|
Yamaguchi K. Tacrolimus treatment for infertility related to maternal-fetal immune interactions. Am J Reprod Immunol 2019; 81:e13097. [PMID: 30689243 DOI: 10.1111/aji.13097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Many approaches have been used to achieve successful pregnancies in patients with infertility, though existing treatments remain unsatisfactory in patients with infertility caused by abnormal maternal-fetal immunity. However, our understanding of the immunological aspects of infertility has steadily progressed, aided by recent research into organ transplantation and cancer. The results of these recent analyses have led to the development and evaluation of several candidate immunological treatments, but the use of immunological treatments remains a novel approach. The current paper presents the hypothesis that tacrolimus may have potential as a candidate agent for the treatment of maternal-fetal immunity-related infertility.
Collapse
Affiliation(s)
- Koushi Yamaguchi
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
46
|
Buckle AM, Borg NA. Integrating Experiment and Theory to Understand TCR-pMHC Dynamics. Front Immunol 2018; 9:2898. [PMID: 30581442 PMCID: PMC6293202 DOI: 10.3389/fimmu.2018.02898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
The conformational dynamism of proteins is well established. Rather than having a single structure, proteins are more accurately described as a conformational ensemble that exists across a rugged energy landscape, where different conformational sub-states interconvert. The interaction between αβ T cell receptors (TCR) and cognate peptide-MHC (pMHC) is no exception, and is a dynamic process that involves substantial conformational change. This review focuses on technological advances that have begun to establish the role of conformational dynamics and dynamic allostery in TCR recognition of the pMHC and the early stages of signaling. We discuss how the marriage of molecular dynamics (MD) simulations with experimental techniques provides us with new ways to dissect and interpret the process of TCR ligation. Notably, application of simulation techniques lags behind other fields, but is predicted to make substantial contributions. Finally, we highlight integrated approaches that are being used to shed light on some of the key outstanding questions in the early events leading to TCR signaling.
Collapse
Affiliation(s)
- Ashley M Buckle
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalie A Borg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
47
|
Ogunshola F, Anmole G, Miller RL, Goering E, Nkosi T, Muema D, Mann J, Ismail N, Chopera D, Ndung'u T, Brockman MA, Ndhlovu ZM. Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants. Nat Commun 2018; 9:5023. [PMID: 30479346 PMCID: PMC6258674 DOI: 10.1038/s41467-018-07209-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022] Open
Abstract
Some closely related human leukocyte antigen (HLA) alleles are associated with variable clinical outcomes following HIV-1 infection despite presenting the same viral epitopes. Mechanisms underlying these differences remain unclear but may be due to intrinsic characteristics of the HLA alleles or responding T cell repertoires. Here we examine CD8+ T cell responses against the immunodominant HIV-1 Gag epitope TL9 (TPQDLNTML180–188) in the context of the protective allele B*81:01 and the less protective allele B*42:01. We observe a population of dual-reactive T cells that recognize TL9 presented by both B*81:01 and B*42:01 in individuals lacking one allele. The presence of dual-reactive T cells is associated with lower plasma viremia, suggesting a clinical benefit. In B*42:01 expressing individuals, the dual-reactive phenotype defines public T cell receptor (TCR) clones that recognize a wider range of TL9 escape variants, consistent with enhanced control of viral infection through containment of HIV-1 sequence adaptation. Closely related HLA alleles presenting similar HIV-1 epitopes can be associated with variable clinical outcome. Here the authors report their findings on CD8+ T cell responses to the HIV-1 Gag-p24 TL9 immunodominant epitope in the context of closely related protective and less protective HLA alleles, and their differential effect on viral control
Collapse
Affiliation(s)
- Funsho Ogunshola
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Gursev Anmole
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Rachel L Miller
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Emily Goering
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Thandeka Nkosi
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Muema
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Denis Chopera
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mark A Brockman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada.
| | - Zaza M Ndhlovu
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
48
|
Crooks JE, Boughter CT, Scott LR, Adams EJ. The Hypervariable Loops of Free TCRs Sample Multiple Distinct Metastable Conformations in Solution. Front Mol Biosci 2018; 5:95. [PMID: 30483515 PMCID: PMC6243104 DOI: 10.3389/fmolb.2018.00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+ and CD8+ αβ T cell antigen recognition is determined by the interaction between the TCR Complementarity Determining Region (CDR) loops and the peptide-presenting MHC complex. These T cells are known for their ability to recognize multiple pMHC complexes, and for a necessary promiscuity that is required for their selection and function in the periphery. Crystallographic studies have previously elucidated the role of structural interactions in TCR engagement, but our understanding of the dynamic process that occurs during TCR binding is limited. To better understand the dynamic states that exist for TCR CDR loops in solution, and how this relates to their states when in complex with pMHC, we simulated the 2C T cell receptor in solution using all-atom molecular dynamics in explicit water and constructed a Markov State Model for each of the CDR3α and CDR3β loops. These models reveal multiple metastable states for the CDR3 loops in solution. Simulation data and metastable states reproduce known CDR3β crystal conformations, and reveal several novel conformations suggesting that CDR3β bound states are the result of search processes from nearby pre-existing equilibrium conformational states. Similar simulations of the invariant, Type I Natural Killer T cell receptor NKT15, which engages the monomorphic, MHC-like CD1d ligand, demonstrate that iNKT TCRs also have distinct states, but comparatively restricted degrees of motion.
Collapse
Affiliation(s)
- James E Crooks
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, United States
| | - Christopher T Boughter
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, United States
| | - L Ridgway Scott
- Department of Computer Science, University of Chicago, Chicago, IL, United States
| | - Erin J Adams
- Committee on Immunology University of Chicago, Chicago, IL, United States
| |
Collapse
|
49
|
Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC, Baker BM. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem Biol 2018; 14:934-942. [PMID: 30224695 PMCID: PMC6371774 DOI: 10.1038/s41589-018-0130-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
T cell receptor cross-reactivity allows a fixed T cell repertoire to respond to a much larger universe of potential antigens. Recent work has emphasized the importance of peptide structural and chemical homology, as opposed to sequence similarity, in T cell receptor cross-reactivity. Surprisingly though, T cell receptors can also cross-react between ligands with little physiochemical commonalities. Studying the clinically relevant receptor DMF5, we demonstrate that cross-recognition of such divergent antigens can occur through mechanisms that involve heretofore unanticipated rearrangements in the peptide and presenting MHC protein, including binding-induced peptide register shifts and extensions from MHC peptide binding grooves. Moreover, cross-reactivity can proceed even when such dramatic rearrangements do not translate into structural or chemical molecular mimicry. Beyond demonstrating new principles of T cell receptor cross-reactivity, our results have implications for efforts to predict and control T cell specificity and cross-reactivity, and highlight challenges associated with predicting T cell reactivities.
Collapse
Affiliation(s)
- Timothy P Riley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Lance M Hellman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juan L Mendoza
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jesus A Alonso
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kendra C Foley
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Michael I Nishimura
- Department of Surgery, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
50
|
Heterosubtypic Protections against Human-Infecting Avian Influenza Viruses Correlate to Biased Cross-T-Cell Responses. mBio 2018; 9:mBio.01408-18. [PMID: 30087171 PMCID: PMC6083907 DOI: 10.1128/mbio.01408-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Against a backdrop of seasonal influenza virus epidemics, emerging avian influenza viruses (AIVs) occasionally jump from birds to humans, posing a public health risk, especially with the recent sharp increase in H7N9 infections. Evaluations of cross-reactive T-cell immunity to seasonal influenza viruses and human-infecting AIVs have been reported previously. However, the roles of influenza A virus-derived epitopes in the cross-reactive T-cell responses and heterosubtypic protections are not well understood; understanding those roles is important for preventing and controlling new emerging AIVs. Here, among the members of a healthy population presumed to have previously been infected by pandemic H1N1 (pH1N1), we found that pH1N1-specific T cells showed cross- but biased reactivity to human-infecting AIVs, i.e., H5N1, H6N1, H7N9, and H9N2, which correlates with distinct protections. Through a T-cell epitope-based phylogenetic analysis, the cellular immunogenic clustering expanded the relevant conclusions to a broader range of virus strains. We defined the potential key conserved epitopes required for cross-protection and revealed the molecular basis for the immunogenic variations. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development. We revealed preexisting but biased T-cell reactivity of pH1N1 influenza virus to human-infecting AIVs, which provided distinct protections. The cross-reactive T-cell recognition had a regular pattern that depended on the T-cell epitope matrix revealed via bioinformatics analysis. Our study elucidated an overall profile of cross-reactivity to AIVs and provided useful recommendations for broad-spectrum vaccine development.
Collapse
|