1
|
Pandey A, Rohweder PJ, Chan LM, Ongpipattanakul C, Chung DH, Paolella B, Quimby FM, Nguyen N, Verba KA, Evans MJ, Craik CS. Therapeutic Targeting and Structural Characterization of a Sotorasib-Modified KRAS G12C-MHC I Complex Demonstrate the Antitumor Efficacy of Hapten-Based Strategies. Cancer Res 2025; 85:329-341. [PMID: 39656104 PMCID: PMC11733532 DOI: 10.1158/0008-5472.can-24-2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025]
Abstract
Antibody-based therapies have emerged as a powerful strategy for the management of diverse cancers. Unfortunately, tumor-specific antigens remain challenging to identify and target. Recent work established that inhibitor-modified peptide adducts derived from KRAS G12C are competent for antigen presentation via MHC I and can be targeted by antibody-based therapeutics, offering a means to directly target an intracellular oncoprotein at the cell surface with combination therapies. Here, we validated the antigen display of "haptenated" KRAS G12C peptide fragments on tumors in mouse models treated with the FDA-approved KRAS G12C covalent inhibitor sotorasib using PET/CT imaging of an 89Zr-labeled P1B7 IgG antibody, which selectively binds sotorasib-modified KRAS G12C-MHC I complexes. Targeting this peptide-MHC I complex with radioligand therapy using 225Ac- or 177Lu-P1B7 IgG effectively inhibited tumor growth in combination with sotorasib. Elucidation of the 3.1 Å cryo-EM structure of P1B7 bound to a haptenated KRAS G12C peptide-MHC I complex confirmed that the sotorasib-modified KRAS G12C peptide is presented via a canonical binding pose and showed that P1B7 binds the complex in a T-cell receptor-like manner. Together, these findings demonstrate the potential value of targeting unique oncoprotein-derived, haptenated MHC I complexes with radioligand therapeutics and provide a structural framework for developing next generation antibodies. Significance: Radioligand therapy using an antibody targeting KRAS-derived, sotorasib-modified MHC I complexes elicits antitumor effects superior to those of sotorasib alone and provides a potential strategy to repurpose sotorasib as a hapten to overcome resistance.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Peter J. Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lieza M. Chan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Dong hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Bryce Paolella
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Fiona M. Quimby
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ngoc Nguyen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Kliment A. Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
2
|
Jia X, Crawford JC, Gebregzabher D, Monson EA, Mettelman RC, Wan Y, Ren Y, Chou J, Novak T, McQuilten HA, Clarke M, Bachem A, Foo IJ, Fritzlar S, Carrera Montoya J, Trenerry AM, Nie S, Leeming MG, Nguyen THO, Kedzierski L, Littler DR, Kueh A, Cardamone T, Wong CY, Hensen L, Cabug A, Laguna JG, Agrawal M, Flerlage T, Boyd DF, Van de Velde LA, Habel JR, Loh L, Koay HF, van de Sandt CE, Konstantinov IE, Berzins SP, Flanagan KL, Wakim LM, Herold MJ, Green AM, Smallwood HS, Rossjohn J, Thwaites RS, Chiu C, Scott NE, Mackenzie JM, Bedoui S, Reading PC, Londrigan SL, Helbig KJ, Randolph AG, Thomas PG, Xu J, Wang Z, Chua BY, Kedzierska K. High expression of oleoyl-ACP hydrolase underpins life-threatening respiratory viral diseases. Cell 2024; 187:4586-4604.e20. [PMID: 39137778 DOI: 10.1016/j.cell.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.
Collapse
Affiliation(s)
- Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jeremy Chase Crawford
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Deborah Gebregzabher
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ebony A Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yanmin Wan
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yanqin Ren
- Shanghai Public Health Clinical Centre, Fudan University, Shanghai 201508, China
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tanya Novak
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Michele Clarke
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J Foo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Svenja Fritzlar
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Dene R Littler
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrew Kueh
- Walter Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Tina Cardamone
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira Cabug
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jaime Gómez Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group, University of Córdoba, International Excellence Agrifood Campus "CeiA3", 14014 Córdoba, Spain
| | - Mona Agrawal
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David F Boyd
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lee-Ann Van de Velde
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Igor E Konstantinov
- Department of Cardiothoracic Surgery, Royal Children's Hospital, University of Melbourne, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Parkville, VIC 3052, Australia
| | - Stuart P Berzins
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Marco J Herold
- Walter Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amanda M Green
- Center for Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Karla J Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Infectious Diseases Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA
| | - Jianqing Xu
- Shanghai Public Health Clinical Centre and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Center for Influenza Disease and Emergence Response (CIDER), Athens, GA, USA.
| |
Collapse
|
3
|
Cheng TY, Praveena T, Govindarajan S, Almeida CF, Pellicci DG, Arkins WC, Van Rhijn I, Venken K, Elewaut D, Godfrey DI, Rossjohn J, Moody DB. Lipidomic scanning of self-lipids identifies headless antigens for natural killer T cells. Proc Natl Acad Sci U S A 2024; 121:e2321686121. [PMID: 39141352 PMCID: PMC11348285 DOI: 10.1073/pnas.2321686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/12/2024] [Indexed: 08/15/2024] Open
Abstract
To broadly measure the spectrum of cellular self-antigens for natural killer T cells (NKT), we developed a sensitive lipidomics system to analyze lipids trapped between CD1d and NKT T cell receptors (TCRs). We captured diverse antigen complexes formed in cells from natural endogenous lipids, with or without inducing endoplasmic reticulum (ER) stress. After separating protein complexes with no, low, or high CD1d-TCR interaction, we eluted lipids to establish the spectrum of self-lipids that facilitate this interaction. Although this unbiased approach identified fifteen molecules, they clustered into only two related groups: previously known phospholipid antigens and unexpected neutral lipid antigens. Mass spectrometry studies identified the neutral lipids as ceramides, deoxyceramides, and diacylglycerols, which can be considered headless lipids because they lack polar headgroups that usually form the TCR epitope. The crystal structure of the TCR-ceramide-CD1d complex showed how the missing headgroup allowed the TCR to predominantly contact CD1d, supporting a model of CD1d autoreactivity. Ceramide and related headless antigens mediated physiological TCR binding affinity, weak NKT cell responses, and tetramer binding to polyclonal human and mouse NKT cells. Ceramide and sphingomyelin are oppositely regulated components of the "sphingomyelin cycle" that are altered during apoptosis, transformation, and ER stress. Thus, the unique molecular link of ceramide to NKT cell response, along with the recent identification of sphingomyelin blockers of NKT cell activation, provide two mutually reinforcing links for NKT cell response to sterile cellular stress conditions.
Collapse
Affiliation(s)
- Tan-Yun Cheng
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Srinath Govindarajan
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Catarina F. Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Daniel G. Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Wellington C. Arkins
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| | - Koen Venken
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dirk Elewaut
- Molecular Immunology and Inflammation Unit, Vlaams Instituut voor Biotechnologie, Center for Inflammation Research, Ghent University, 9052Ghent, Belgium
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Pediatrics (Rheumatology unit), Ghent University, 9000Ghent, Belgium
| | - Dale I. Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CardiffCF14 4XN, UK
| | - D. Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02210
| |
Collapse
|
4
|
Chancellor A, Alan Simmons R, Khanolkar RC, Nosi V, Beshirova A, Berloffa G, Colombo R, Karuppiah V, Pentier JM, Tubb V, Ghadbane H, Suckling RJ, Page K, Crean RM, Vacchini A, De Gregorio C, Schaefer V, Constantin D, Gligoris T, Lloyd A, Hock M, Srikannathasan V, Robinson RA, Besra GS, van der Kamp MW, Mori L, Calogero R, Cole DK, De Libero G, Lepore M. Promiscuous recognition of MR1 drives self-reactive mucosal-associated invariant T cell responses. J Exp Med 2023; 220:e20221939. [PMID: 37382893 PMCID: PMC10309188 DOI: 10.1084/jem.20221939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells use canonical semi-invariant T cell receptors (TCR) to recognize microbial riboflavin precursors displayed by the antigen-presenting molecule MR1. The extent of MAIT TCR crossreactivity toward physiological, microbially unrelated antigens remains underexplored. We describe MAIT TCRs endowed with MR1-dependent reactivity to tumor and healthy cells in the absence of microbial metabolites. MAIT cells bearing TCRs crossreactive toward self are rare but commonly found within healthy donors and display T-helper-like functions in vitro. Experiments with MR1-tetramers loaded with distinct ligands revealed significant crossreactivity among MAIT TCRs both ex vivo and upon in vitro expansion. A canonical MAIT TCR was selected on the basis of extremely promiscuous MR1 recognition. Structural and molecular dynamic analyses associated promiscuity to unique TCRβ-chain features that were enriched within self-reactive MAIT cells of healthy individuals. Thus, self-reactive recognition of MR1 represents a functionally relevant indication of MAIT TCR crossreactivity, suggesting a potentially broader role of MAIT cells in immune homeostasis and diseases, beyond microbial immunosurveillance.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Rory M. Crean
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, Bath, UK
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | | | | - Gurdyal S. Besra
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, UK
| | | | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
5
|
Shahine A, Van Rhijn I, Rossjohn J, Moody DB. CD1 displays its own negative regulators. Curr Opin Immunol 2023; 83:102339. [PMID: 37245411 PMCID: PMC10527790 DOI: 10.1016/j.coi.2023.102339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
After two decades of the study of lipid antigens that activate CD1-restricted T cells, new studies show how autoreactive αβ T-cell receptors (TCRs) can directly recognize the outer surface of CD1 proteins in ways that are lipid-agnostic. Most recently, this lipid agnosticism has turned to negativity, with the discovery of natural CD1 ligands that dominantly negatively block autoreactive αβ TCR binding to CD1a and CD1d. This review highlights the basic differences between positive and negative regulation of cellular systems. We outline strategies to discover lipid inhibitors of CD1-reactive T cells, whose roles in vivo are becoming clear, especially in CD1-mediated skin disease.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Liman N, Park JH. Markers and makers of NKT17 cells. Exp Mol Med 2023; 55:1090-1098. [PMID: 37258582 PMCID: PMC10317953 DOI: 10.1038/s12276-023-01015-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/02/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are thymus-generated innate-like αβ T cells that undergo terminal differentiation in the thymus. Such a developmental pathway differs from that of conventional αβ T cells, which are generated in the thymus but complete their functional maturation in peripheral tissues. Multiple subsets of iNKT cells have been described, among which IL-17-producing iNKT cells are commonly referred to as NKT17 cells. IL-17 is considered a proinflammatory cytokine that can play both protective and pathogenic roles and has been implicated as a key regulatory factor in many disease settings. Akin to other iNKT subsets, NKT17 cells acquire their effector function during thymic development. However, the cellular mechanisms that drive NKT17 subset specification, and how iNKT cells in general acquire their effector function prior to antigen encounter, remain largely unknown. Considering that all iNKT cells express the canonical Vα14-Jα18 TCRα chain and all iNKT subsets display the same ligand specificity, i.e., glycolipid antigens in the context of the nonclassical MHC-I molecule CD1d, the conundrum is explaining how thymic NKT17 cell specification is determined. Mapping of the molecular circuitry of NKT17 cell differentiation, combined with the discovery of markers that identify NKT17 cells, has provided new insights into the developmental pathway of NKT17 cells. The current review aims to highlight recent advances in our understanding of thymic NKT17 cell development and to place these findings in the larger context of iNKT subset specification and differentiation.
Collapse
Affiliation(s)
- Nurcin Liman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Ueki K, Sueyoshi K, Inuki S, Fujimoto Y. Chemical Synthesis and Molecular Interaction Analysis of α-Galactosyl Ceramide Derivatives as CD1d Ligands. Methods Mol Biol 2023; 2613:13-22. [PMID: 36587067 DOI: 10.1007/978-1-0716-2910-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CD1d is a non-classical major histocompatibility complex (MHC) protein, responsible for lipid antigen presentation, which presents lipids to natural killer T (NKT) cells. Various CD1d lipid ligands have been reported, including microbial and endogenous glycolipids/phospholipids. Among them, an α-galactosylceramide (α-GalCer), a representative CD1d ligand, is one of the most potent ligands and its derivatives have been developed. In this chapter, the chemistry of α-GalCer and its derivatives are described with an emphasis on their chemical syntheses and molecular interaction analysis with CD1d are described.
Collapse
Affiliation(s)
- Kazunari Ueki
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kodai Sueyoshi
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yukari Fujimoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan.
| |
Collapse
|
8
|
Erausquin E, Morán-Garrido M, Sáiz J, Barbas C, Dichiara-Rodríguez G, Urdiciain A, López-Sagaseta J. Identification of a broad lipid repertoire associated to the endothelial cell protein C receptor (EPCR). Sci Rep 2022; 12:15127. [PMID: 36068249 PMCID: PMC9448719 DOI: 10.1038/s41598-022-18844-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Evidence is mounting that the nature of the lipid bound to the endothelial cell protein C receptor (EPCR) has an impact on its biological roles, as observed in anticoagulation and more recently, in autoimmune disease. Phosphatidylethanolamine and phosphatidylcholine species dominate the EPCR lipid cargo, yet, the extent of diversity in the EPCR-associated lipid repertoire is still unknown and remains to be uncovered. We undertook mass spectrometry analyses to decipher the EPCR lipidome, and identified species not yet described as EPCR ligands, such as phosphatidylinositols and phosphatidylserines. Remarkably, we found further, more structurally divergent lipids classes, represented by ceramides and sphingomyelins, both in less abundant quantities. In support of our mass spectrometry results and previous studies, high-resolution crystal structures of EPCR in three different space groups point to a prevalent diacyl phospholipid moiety in EPCR’s pocket but a mobile and ambiguous lipid polar head group. In sum, these studies indicate that EPCR can associate with varied lipid classes, which might impact its properties in anticoagulation and the onset of autoimmune disease.
Collapse
Affiliation(s)
- Elena Erausquin
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain.,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain.,Navarra University Hospital, 31008, Pamplona, Navarra, Spain
| | - María Morán-Garrido
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Coral Barbas
- Centre of Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Gilda Dichiara-Rodríguez
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain.,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain.,Navarra University Hospital, 31008, Pamplona, Navarra, Spain
| | - Alejandro Urdiciain
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain.,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain.,Navarra University Hospital, 31008, Pamplona, Navarra, Spain
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed, 31008, Pamplona, Navarra, Spain. .,Public University of Navarra (UPNA), 31008, Pamplona, Navarra, Spain. .,Navarra University Hospital, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
9
|
Bhattacharje G, Ghosh A, Das AK. Understanding the Mannose Transfer Mechanism of Mycobacterial Phosphatidyl-myo-inositol Mannosyltransferase A from Molecular Dynamics Simulations. ACS OMEGA 2022; 7:19288-19304. [PMID: 35721920 PMCID: PMC9202250 DOI: 10.1021/acsomega.2c00832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Glycolipids like phosphatidylinositol hexamannosides (PIM6) and lipoglycans, such as lipomannan (LM) and lipoarabinomannan (LAM), play crucial roles in virulence, survival, and antibiotic resistance of various mycobacterial species. Phosphatidyl-myo-inositol mannosyltransferase A (PimA) catalyzes the transfer of the mannose moiety (M) from GDP-mannose (GDPM) to phosphatidyl-myo-inositol (PI) to synthesize GDP and phosphatidyl-myo-inositol monomannoside (PIM). This PIM is mannosylated, acylated, and further modified to give rise to the higher PIMs, LM, and LAM. It is yet to be known how PI, PIM, PI-GDPM, and PIM-GDP interact with PimA. Here, we report the docked structures of PI and PIM to understand how the substrates and the products interact with PimA. Using molecular dynamics (MD) simulations for 300 ns, we have investigated how various ligand-bound conformations change the dynamics of PimA. Our studies demonstrated the "open to closed" motions of PimA. We observed that PimA is least dynamic when bound to both GDPM and PI. MD simulations indicated that the loop residues 59-70 and the α-helical residues 73-86 of PimA play important roles while interacting with both PI and PIM. MD analyses also suggested that the residues Y9, P59, R68, L69, N97, R196, R201, K202, and R228 of PimA play significant roles in the mannose transfer reaction. Overall, docking studies and MD simulations provide crucial insights to design future therapeutic drugs against mycobacterial PimA.
Collapse
Affiliation(s)
- Gourab Bhattacharje
- Department
of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Ghosh
- School
of Energy Science and Engineering, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
- P.K.
Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department
of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
Hopkins GV, Cochrane S, Onion D, Fairclough LC. The Role of Lipids in Allergic Sensitization: A Systematic Review. Front Mol Biosci 2022; 9:832330. [PMID: 35495627 PMCID: PMC9047936 DOI: 10.3389/fmolb.2022.832330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immunoglobulin E (IgE)-mediated allergies are increasing in prevalence, with IgE-mediated food allergies currently affecting up to 10% of children and 6% of adults worldwide. The mechanisms underpinning the first phase of IgE-mediated allergy, allergic sensitization, are still not clear. Recently, the potential involvement of lipids in allergic sensitization has been proposed, with reports that they can bind allergenic proteins and act on immune cells to skew to a T helper type 2 (Th2) response. Objectives: The objective of this systematic review is to determine if there is strong evidence for the role of lipids in allergic sensitization. Methods: Nineteen studies were reviewed, ten of which were relevant to lipids in allergic sensitization to food allergens, nine relevant to lipids in aeroallergen sensitization. Results: The results provide strong evidence for the role of lipids in allergies. Intrinsic lipids from allergen sources can interact with allergenic proteins to predominantly enhance but also inhibit allergic sensitization through various mechanisms. Proposed mechanisms included reducing the gastrointestinal degradation of allergenic proteins by altering protein structure, reducing dendritic cell (DC) uptake of allergenic proteins to reduce immune tolerance, regulating Th2 cytokines, activating invariant natural killer T (iNKT) cells through CD1d presentation, and directly acting upon toll-like receptors (TLRs), epithelial cells, keratinocytes, and DCs. Conclusion: The current literature suggests intrinsic lipids are key influencers of allergic sensitization. Further research utilising human relevant in vitro models and clinical studies are needed to give a reliable account of the role of lipids in allergic sensitization.
Collapse
Affiliation(s)
- Georgina V. Hopkins
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Stella Cochrane
- SEAC, Unilever, Colworth Science Park, Sharnbrook, United Kingdom
| | - David Onion
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| | - Lucy C. Fairclough
- School of Life Sciences, The University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Lerkvaleekul B, Apiwattanakul N, Tangnararatchakit K, Jirapattananon N, Srisala S, Vilaiyuk S. Associations of lymphocyte subpopulations with clinical phenotypes and long-term outcomes in juvenile-onset systemic lupus erythematosus. PLoS One 2022; 17:e0263536. [PMID: 35130317 PMCID: PMC8820627 DOI: 10.1371/journal.pone.0263536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Juvenile-onset systemic lupus erythematosus (JSLE) is a complex and heterogeneous immune-mediated disease. Cellular components have crucial roles in disease phenotypes and outcomes. We aimed to determine the associations of lymphocyte subsets with clinical manifestations and long-term outcomes in JSLE patients. METHODS A cohort of 60 JSLE patients provided blood samples during active disease, of whom 34 provided further samples during inactive disease. In a longitudinal study, blood samples were obtained from 49 of the JSLE patients at 0, 3, and 6 months. The healthy control (HC) group consisted of 42 age-matched children. Lymphocyte subsets were analyzed by flow cytometry. RESULTS The percentages of CD4+ T, γδ T, and NK cells were significantly decreased in JSLE patients compared with HC, while the percentages of CD8+ T, NKT, and CD19+ B cells were significantly increased. The percentage of regulatory T cells (Tregs) was significantly lower in JSLE patients with lupus nephritis (LN) than in non-LN JSLE patients and HC. The patients were stratified into high and low groups by the median frequency of each lymphocyte subset. The γδ T cells high group and NK cells high group were significantly related to mucosal ulcer. The CD4+ T cells high group was significantly associated with arthritis, and the NKT cells high group was substantially linked with autoimmune hemolytic anemia. The CD8+ T cells low group was mainly related to vasculitis, and the Tregs low group was significantly associated with LN. The percentage of Tregs was significantly increased at 6 months of follow-up, and the LN JSLE group had a lower Treg percentage than the non-LN JSLE group. Predictors of remission on therapy were high Tregs, high absolute lymphocyte count, direct Coombs test positivity, and LN absence at enrollment. CONCLUSION JSLE patients exhibited altered lymphocyte subsets, which were strongly associated with clinical phenotypes and long-term outcomes.
Collapse
Affiliation(s)
- Butsabong Lerkvaleekul
- Faculty of Medicine Ramathibodi Hospital, Division of Rheumatology, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Faculty of Medicine Ramathibodi Hospital, Division of Infectious Disease, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Kanchana Tangnararatchakit
- Faculty of Medicine Ramathibodi Hospital, Division of Nephrology, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Nisa Jirapattananon
- Faculty of Medicine Ramathibodi Hospital, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Supanart Srisala
- Faculty of Medicine Ramathibodi Hospital, Research Center, Mahidol University, Bangkok, Thailand
| | - Soamarat Vilaiyuk
- Faculty of Medicine Ramathibodi Hospital, Division of Rheumatology, Department of Pediatrics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
13
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Wang L, Wu Q, Liu J, Zhang H, Bai L. Lactic acid inhibits iNKT cell functions via a phosphodiesterase-5 dependent pathway. Biochem Biophys Res Commun 2021; 547:9-14. [PMID: 33588236 DOI: 10.1016/j.bbrc.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022]
Abstract
Lactic acid in tumor microenvironment inhibits iNKT cell functions and thus dampens their anti-tumor efficacy. The underlying mechanisms remain unclear. Here, we show that phosphodiesterase-5 inhibitors, sildenafil and tadalafil, promote IFN-γ and IL-4 production in iNKT cells in a cGMP-PKG pathway dependent manner. To favor their cytokine production, iNKT cells reduce Pde5a mRNA lever after activation. In line with the reduction of cytokines caused by lactic acid, lactic acid elevates Pde5a mRNA lever in activated iNKT cells. As a result, phosphodiesterase-5 inhibitor partially restores the cytokine production in lactic acid-treated cells. Our results demonstrate that phosphodiesterase-5 inhibits cytokine production in iNKT cells, and that contributes to the lactic acid-caused dysfunction of iNKT cells.
Collapse
Affiliation(s)
- Lili Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Qielan Wu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Jiwei Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Huimin Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| | - Li Bai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
15
|
Abstract
The high expression of CD1a on Langerhans cells in normal human skin suggests a central role for this lipid antigen presenting molecule in skin homeostasis and immunity. Although the lipid antigen presenting function of CD1a has been known for years, the physiological and pathological functions of the CD1a system in human skin remain incompletely understood. This review provides an overview of this active area of investigation, and discusses recent insights into the functions of CD1a, CD1a-restricted T cells, and lipid antigens in inflammatory and allergic skin disease. We include recent publications and work presented at the biennial CD1-MR1 EMBO workshop held in 2019 in Oxford, regarding lipids that increase and those that decrease T cell responses to CD1a.
Collapse
Affiliation(s)
- Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Oxford National Institute for Health Research Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Cotton RN, Cheng TY, Wegrecki M, Le Nours J, Orgill DP, Pomahac B, Talbot SG, Willis RA, Altman JD, de Jong A, Ogg G, Van Rhijn I, Rossjohn J, Clark RA, Moody DB. Human skin is colonized by T cells that recognize CD1a independently of lipid. J Clin Invest 2021; 131:140706. [PMID: 33393500 PMCID: PMC7773353 DOI: 10.1172/jci140706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A' roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.
Collapse
Affiliation(s)
- Rachel N. Cotton
- Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tan-Yun Cheng
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcin Wegrecki
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Dennis P. Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Simon G. Talbot
- Division of Plastic and Reconstructive Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Richard A. Willis
- NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - John D. Altman
- NIH Tetramer Core Facility, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Annemieke de Jong
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York, USA
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, United Kingdom
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- School of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Rachael A. Clark
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Joyce S, Okoye GD, Van Kaer L. Natural Killer T Lymphocytes Integrate Innate Sensory Information and Relay Context to Effector Immune Responses. Crit Rev Immunol 2021; 41:55-88. [PMID: 35381143 PMCID: PMC11078124 DOI: 10.1615/critrevimmunol.2021040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector lymphocytes, have evolved to integrate information relayed by the innate sensory immune system about the state of the local tissue environment and to pass on this context to downstream effector innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like lymphoid lineage cells during development can control the quality and magnitude of an immune response to a tissue-altering pathogen and facilitate the formation of memory engrams within the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αβ TCR-expressing T cell subsets-such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst we briefly consider the commonalities in the origins and functions of these diverse lymphoid subsets to provide context, the primary topic of this review is to discuss how the semi-invariant natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. What emerges from this discourse is the question: Has a "limbic immune system" emerged (screaming quietly in plain sight!) out of what has been dubbed "in-betweeners"?
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
18
|
Kumar A, Hill TM, Gordy LE, Suryadevara N, Wu L, Flyak AI, Bezbradica JS, Van Kaer L, Joyce S. Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells. Proc Natl Acad Sci U S A 2020; 117:17156-17165. [PMID: 32611812 PMCID: PMC7382224 DOI: 10.1073/pnas.2001665117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell
- Thymocytes
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Timothy M Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Chemistry and Life Science, US Military Academy, West Point, NY 10996
| | - Laura E Gordy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biology, Caltech, Pasadena, CA 91125
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
19
|
Perroteau J, Navet B, Devilder MC, Hesnard L, Scotet E, Gapin L, Saulquin X, Gautreau-Rolland L. Contribution of the SYK Tyrosine kinase expression to human iNKT self-reactivity. Eur J Immunol 2020; 50:1454-1467. [PMID: 32460359 DOI: 10.1002/eji.201948416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/15/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
Invariant Natural Killer T (iNKT) cells are particular T lymphocytes at the frontier between innate and adaptative immunities. They participate in the elimination of pathogens or tumor cells, but also in the development of allergic reactions and autoimmune diseases. From their first descriptions, the phenomenon of self-reactivity has been described. Indeed, they are able to recognize exogenous and endogenous lipids. However, the mechanisms underlying the self-reactivity are still largely unknown, particularly in humans. Using a CD1d tetramer-based sensitive immunomagnetic approach, we generated self-reactive iNKT cell lines from blood circulating iNKT cells of healthy donors. Analysis of their functional characteristics in vitro showed that these cells recognized endogenous lipids presented by CD1d molecules through their TCR that do not correspond to α-glycosylceramides. TCR sequencing and transcriptomic analysis of T cell clones revealed that a particular TCR signature and an expression of the SYK protein kinase were two mechanisms supporting human iNKT self-reactivity. The SYK expression, strong in the most self-reactive iNKT clones and variable in ex vivo isolated iNKT cells, seems to decrease the activation threshold of iNKT cells and increase their overall antigenic sensitivity. This study indicates that a modulation of the TCR intracellular signal contributes to iNKT self-reactivity.
Collapse
Affiliation(s)
| | - Benjamin Navet
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | | | - Leslie Hesnard
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | |
Collapse
|
20
|
Abstract
Recent studies suggest that murine invariant natural killer T (iNKT) cell development culminates in three terminally differentiated iNKT cell subsets denoted as NKT1, 2, and 17 cells. Although these studies corroborate the significance of the subset division model, less is known about the factors driving subset commitment in iNKT cell progenitors. In this review, we discuss the latest findings in iNKT cell development, focusing in particular on how T-cell receptor signal strength steers iNKT cell progenitors toward specific subsets and how early progenitor cells can be identified. In addition, we will discuss the essential factors for their sustenance and functionality. A picture is emerging wherein the majority of thymic iNKT cells are mature effector cells retained in the organ rather than developing precursors.
Collapse
Affiliation(s)
- Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hristo Georgiev
- Center for Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
21
|
Riffelmacher T, Kronenberg M. Metabolic Triggers of Invariant Natural Killer T-Cell Activation during Sterile Autoinflammatory Disease. Crit Rev Immunol 2020; 40:367-378. [PMID: 33463949 PMCID: PMC7116673 DOI: 10.1615/critrevimmunol.2020035158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ample evidence exists for activation of invariant natural killer T (iNKT) cells in a sterile manner by endogenous ligands or microbial antigens from the commensal flora, indicating that iNKT cells are not truly self-tolerant. Their controlled autoreactivity state is disturbed in many types of sterile inflammatory disease, resulting in their central role in modulating autoimmune responses. This review focuses on sterile iNKT-cell responses that are initiated by metabolic triggers, such as obesity-associated inflammation and fatty liver disease, as a manifestation of metabolic disease and dyslipidemia, as well as ischemia reperfusion injuries and sickle cell disease, characterized by acute lack of oxygen and oxidative stress response on reperfusion. In the intestine, inflammation and iNKT-cell response type are shaped by the microbiome as an extended "self". Disease- and organ-specific differences in iNKT-cell response type are summarized and help to define common pathways that shape iNKT-cell responses in the absence of exogenous antigen.
Collapse
Affiliation(s)
- Thomas Riffelmacher
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA 92037
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
22
|
Almeida CF, Sundararaj S, Le Nours J, Praveena T, Cao B, Burugupalli S, Smith DGM, Patel O, Brigl M, Pellicci DG, Williams SJ, Uldrich AP, Godfrey DI, Rossjohn J. Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors. Nat Commun 2019; 10:5242. [PMID: 31748533 PMCID: PMC6868179 DOI: 10.1038/s41467-019-12941-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Type I and type II natural killer T (NKT) cells are restricted to the lipid antigen-presenting molecule CD1d. While we have an understanding of the antigen reactivity and function of type I NKT cells, our knowledge of type II NKT cells in health and disease remains unclear. Here we describe a population of type II NKT cells that recognise and respond to the microbial antigen, α-glucuronosyl-diacylglycerol (α-GlcADAG) presented by CD1d, but not the prototypical type I NKT cell agonist, α-galactosylceramide. Surprisingly, the crystal structure of a type II NKT TCR-CD1d-α-GlcADAG complex reveals a CD1d F’-pocket-docking mode that contrasts sharply with the previously determined A’-roof positioning of a sulfatide-reactive type II NKT TCR. Our data also suggest that diverse type II NKT TCRs directed against distinct microbial or mammalian lipid antigens adopt multiple recognition strategies on CD1d, thereby maximising the potential for type II NKT cells to detect different lipid antigens. Natural killer T (NKT) cells include type I that express semi-invariant T cell receptor (TCR), and type II that cover a broader repertoire. Here the authors describe the crystal structure of a type II NKT TCR complexed with CD1d/antigen to propose that type II NKT TCRs may adapt multiple CD1d docking modes to maximise antigen recognition efficacy.
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Srinivasan Sundararaj
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - T Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Benjamin Cao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Satvika Burugupalli
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dylan G M Smith
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Onisha Patel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Manfred Brigl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel G Pellicci
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Spencer J Williams
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.,School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia. .,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
23
|
Wang J, Guillaume J, Janssens J, Remesh SG, Ying G, Bitra A, Van Calenbergh S, Zajonc DM. A molecular switch in mouse CD1d modulates natural killer T cell activation by α-galactosylsphingamides. J Biol Chem 2019; 294:14345-14356. [PMID: 31391251 DOI: 10.1074/jbc.ra119.009963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
Type I natural killer T (NKT) cells are a population of innate like T lymphocytes that rapidly respond to α-GalCer presented by CD1d via the production of both pro- and anti-inflammatory cytokines. While developing novel α-GalCer analogs that were meant to be utilized as potential adjuvants because of their production of pro-inflammatory cytokines (Th1 skewers), we generated α-galactosylsphingamides (αGSA). Surprisingly, αGSAs are not potent antigens in vivo despite their strong T-cell receptor (TCR)-binding affinities. Here, using surface plasmon resonance (SPR), antigen presentation assays, and X-ray crystallography (yielding crystal structures of 19 different binary (CD1d-glycolipid) or ternary (CD1d-glycolipid-TCR) complexes at resolutions between 1.67 and 2.85 Å), we characterized the biochemical and structural details of αGSA recognition by murine NKT cells. We identified a molecular switch within murine (m)CD1d that modulates NKT cell activation by αGSAs. We found that the molecular switch involves a hydrogen bond interaction between Tyr-73 of mCD1d and the amide group oxygen of αGSAs. We further established that the length of the acyl chain controls the positioning of the amide group with respect to the molecular switch and works synergistically with Tyr-73 to control NKT cell activity. In conclusion, our findings reveal important mechanistic insights into the presentation and recognition of glycolipids with polar moieties in an otherwise apolar milieu. These observations may inform the development αGSAs as specific NKT cell antagonists to modulate immune responses.
Collapse
Affiliation(s)
- Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jonas Janssens
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Soumya G Remesh
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Ge Ying
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Aruna Bitra
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037 .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
24
|
Gherardin NA, McCluskey J, Rossjohn J, Godfrey DI. The Diverse Family of MR1-Restricted T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 201:2862-2871. [PMID: 30397170 DOI: 10.4049/jimmunol.1801091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are characterized by a semi-invariant TCR that recognizes vitamin B metabolite Ags presented by the MHC-related molecule MR1. Their Ag restriction determines a unique developmental lineage, imbuing a tissue-homing, preprimed phenotype with antimicrobial function. A growing body of literature indicates that MR1-restricted T cells are more diverse than the MAIT term implies. Namely, it is increasingly clear that TCR α- and TCR β-chain diversity within the MR1-restricted repertoire provides a potential mechanism of Ag discrimination, and context-dependent functional variation suggests a role for MR1-restricted T cells in diverse physiological settings. In this paper, we summarize MR1-restricted T cell biology, with an emphasis on TCR diversity, Ag discrimination, and functional heterogeneity.
Collapse
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3168, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and.,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Zahran AM, Abdel-Rahim MH, Elsayh KI, Hassanien MM, Mahran SA, Hetta HF. Natural Killer and Natural Killer T Cells in Juvenile Systemic Lupus Erythematosus: Relation to Disease Activity and Progression. Arch Immunol Ther Exp (Warsz) 2019; 67:161-169. [PMID: 30944972 DOI: 10.1007/s00005-019-00537-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The contribution of innate immune cells, including natural killer (NK) and natural killer T (NKT) cells, in systemic lupus erythematosus (SLE) is still unclear. Herein, we examined the frequency of peripheral NK cells, CD56dim and CD56bright NK cells, and NKT cells in patients with juvenile SLE and their potential relations to SLE-related clinical and laboratory parameters. The study included 35 SLE children and 20 apparently healthy controls. After baseline clinical and lab work, SLE Disease Activity Index (SLEDAI-2K) and Pediatric Systemic Lupus International Collaborative Clinics/American College of Rheumatology (SLICC/ACR) Damage Index (Ped-SDI) scores were assessed. The frequency of peripheral NK cells, CD56dim and CD56bright NK cells, and NKT cells was examined using flow cytometry. SLE patients showed significantly lower frequency of NK cells and NKT cells and higher frequency of CD56bright NK cells compared to controls. Disease activity, urea, and creatinine correlated negatively with NK, but positively with CD56bright NK cells. NK and NKT cells exhibited inverse correlation with the renal biopsy activity index; however, CD56bright NK cells showed direct correlations with both activity and chronicity indices. Regarding Ped-SDI, renal, neuropsychiatry disorders, and growth failure correlated inversely with NK but directly with CD56bright NK cells. NKT cell inversely correlated with renal damage and delayed puberty. In conclusion, low frequency of NK and NKT and expansion of CD56bright NK cells are marked in juvenile SLE, particularly with activity. These changes have direct effect on renal impairment and growth failure, reflecting their potential influence on disease progression.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mona H Abdel-Rahim
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Khalid I Elsayh
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Hassanien
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa A Mahran
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt. .,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0595, USA.
| |
Collapse
|
26
|
TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol 2019; 17:e3000169. [PMID: 30822302 PMCID: PMC6420026 DOI: 10.1371/journal.pbio.3000169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/15/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)–dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides—namely monosialoganglioside GM3 and disialoganglioside GD3—as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells. Although the existence of self-antigens for invariant Natural Killer T (iNKT) cells is widely accepted, their precise nature remains a matter of debate. This study shows that two mammalian ganglioside species activate iNKT cells in a CD1d-dependent manner. Invariant natural killer T (iNKT) cells are a population of unconventional T lymphocytes that activate rapidly during inflammation due to their innate-like features. They are unconventional since they do not react to peptidic antigens (Ags) presented by classical major histocompatibility complex (MHC) molecules; instead, they recognize lipid-based Ags in the context of the MHC class I-like molecule CD1d. While numerous Ags of microbial origins have been described, their endogenous Ags are far less understood and remain a matter of strong debate. Here, we report that engagement of an innate receptor on the Ag-presenting cells leads to modulation of their lipid metabolism. This results in an enrichment of particular glycosphingolipid species that differ in both the nonpolar tail and polar head structures. Among those, two species have the potential to activate iNKT cells in a CD1d-dependent manner after further intracellular modifications. Based on these data, we propose a concept that iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced changes in CD1d-expressing cells. Given the presence of closely related molecules in some pathological conditions such as cancer, it will be interesting to evaluate the biological relevance of these Ags in disease states.
Collapse
|
27
|
A T-cell receptor escape channel allows broad T-cell response to CD1b and membrane phospholipids. Nat Commun 2019; 10:56. [PMID: 30610190 PMCID: PMC6320368 DOI: 10.1038/s41467-018-07898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
CD1 proteins are expressed on dendritic cells, where they display lipid antigens to T-cell receptors (TCRs). Here we describe T-cell autoreactivity towards ubiquitous human membrane phospholipids presented by CD1b. These T-cells discriminate between two major types of lipids, sphingolipids and phospholipids, but were broadly cross-reactive towards diverse phospholipids including phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. The crystal structure of a representative TCR bound to CD1b-phosphatidylcholine provides a molecular mechanism for this promiscuous recognition. We observe a lateral escape channel in the TCR, which shunted phospholipid head groups sideways along the CD1b-TCR interface, without contacting the TCR. Instead the TCR recognition site involved the neck region phosphate that is common to all major self-phospholipids but absent in sphingolipids. Whereas prior studies have focused on foreign lipids or rare self-lipids, we define a new molecular mechanism of promiscuous recognition of common self-phospholipids including those that are known targets in human autoimmune disease.
Collapse
|
28
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
29
|
Halder RC, Tran C, Prasad P, Wang J, Nallapothula D, Ishikawa T, Wang M, Zajonc DM, Singh RR. Self-glycerophospholipids activate murine phospholipid-reactive T cells and inhibit iNKT cell activation by competing with ligands for CD1d loading. Eur J Immunol 2018; 49:242-254. [PMID: 30508304 DOI: 10.1002/eji.201847717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
Glycosphingolipids and glycerophospholipids bind CD1d. Glycosphingolipid-reactive invariant NKT-cells (iNKT) exhibit myriad immune effects, however, little is known about the functions of phospholipid-reactive T cells (PLT). We report that the normal mouse immune repertoire contains αβ T cells, which recognize self-glycerophospholipids such as phosphatidic acid (PA) in a CD1d-restricted manner and don't cross-react with iNKT-cell ligands. PA bound to CD1d in the absence of lipid transfer proteins. Upon in vivo priming, PA induced an expansion and activation of T cells in Ag-specific manner. Crystal structure of the CD1d:PA complex revealed that the ligand is centrally located in the CD1d-binding groove opening for TCR recognition. Moreover, the increased flexibility of the two acyl chains in diacylglycerol ligands and a less stringent-binding orientation for glycerophospholipids as compared with the bindings of glycosphingolipids may allow glycerophospholipids to readily occupy CD1d. Indeed, PA competed with α-galactosylceramide to load onto CD1d, leading to reduced expression of CD1d:α-galactosylceramide complexes on the surface of dendritic cells. Consistently, glycerophospholipids reduced iNKT-cell proliferation, expansion, and cytokine production in vitro and in vivo. Such superior ability of self-glycerophospholipids to compete with iNKT-cell ligands to occupy CD1d may help maintain homeostasis between the diverse subsets of lipid-reactive T cells, with important pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Ramesh Chandra Halder
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Cynthia Tran
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Priti Prasad
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Meiying Wang
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
30
|
Shahine A. The intricacies of self-lipid antigen presentation by CD1b. Mol Immunol 2018; 104:27-36. [PMID: 30399491 DOI: 10.1016/j.molimm.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 01/13/2023]
Abstract
The CD1 family of glycoproteins are MHC class I-like molecules that present a wide array of self and foreign lipid antigens to T-cell receptors (TCRs) on T-cells. Humans express three classes of CD1 molecules, denoted as Group 1 (CD1a, CD1b, and CD1c), Group 2 (CD1d), and Group 3 (CD1e). Of the CD1 family of molecules, CD1b exhibits the largest and most complex antigen binding groove; allowing it the capabilities to present a broad spectrum of lipid antigens. While its role in foreign-lipid presentation in the context of mycobacterial infection are well characterized, understanding the roles of CD1b in autoreactivity are recently being elucidated. While the mechanisms governing proliferation of CD1b-restricted autoreactive T cells, regulation of CD1 gene expression, and the processes controlling CD1+ antigen presenting cell maturation are widely undercharacterized, the exploration of self-lipid antigens in the context of disease have recently come into focus. Furthermore, the recently expanded pool of CD1b crystal structures allow the opportunity to further analyze the molecular mechanisms of T-cell recognition and self-lipid presentation; where the intricacies of the two-compartment system, that accommodate both the presented self-lipid antigen and scaffold lipids, are scrutinized. This review delves into the immunological and molecular mechanisms governing presentation and T-cell recognition of the broad self-lipid repertoire of CD1b; with evidence mounting pointing towards a role in diseases such as microbial infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton Victoria 3800, Australia.
| |
Collapse
|
31
|
Bagchi S, Genardi S, Wang CR. Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front Immunol 2018; 9:1616. [PMID: 30061888 PMCID: PMC6055000 DOI: 10.3389/fimmu.2018.01616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia, or altered blood lipid content, is a risk factor for developing cardiovascular disease. Furthermore, several autoimmune diseases, including systemic lupus erythematosus, psoriasis, diabetes, and rheumatoid arthritis, are correlated highly with dyslipidemia. One common thread between both autoimmune diseases and altered lipid levels is the presence of inflammation, suggesting that the immune system might act as the link between these related pathologies. Deciphering the role of innate and adaptive immune responses in autoimmune diseases and, more recently, obesity-related inflammation, have been active areas of research. The broad picture suggests that antigen-presenting molecules, which present self-peptides to autoreactive T cells, can result in either aggravation or amelioration of inflammation. However, very little is known about the role of self-lipid reactive T cells in dyslipidemia-associated autoimmune events. Given that a range of autoimmune diseases are linked to aberrant lipid profiles and a majority of lipid-specific T cells are reactive to self-antigens, it is important to examine the role of these T cells in dyslipidemia-related autoimmune ailments and determine if dysregulation of these T cells can be drivers of autoimmune conditions. CD1 molecules present lipids to T cells and are divided into two groups based on sequence homology. To date, most of the information available on lipid-reactive T cells comes from the study of group 2 CD1d-restricted natural killer T (NKT) cells while T cells reactive to group 1 CD1 molecules remain understudied, despite their higher abundance in humans compared to NKT cells. This review evaluates the mechanisms by which CD1-reactive, self-lipid specific T cells contribute to dyslipidemia-associated autoimmune disease progression or amelioration by examining available literature on NKT cells and highlighting recent progress made on the study of group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
32
|
Krovi SH, Gapin L. Invariant Natural Killer T Cell Subsets-More Than Just Developmental Intermediates. Front Immunol 2018; 9:1393. [PMID: 29973936 PMCID: PMC6019445 DOI: 10.3389/fimmu.2018.01393] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 01/01/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a CD1d-restricted T cell population that can respond to lipid antigenic stimulation within minutes by secreting a wide variety of cytokines. This broad functional scope has placed iNKT cells at the frontlines of many kinds of immune responses. Although the diverse functional capacities of iNKT cells have long been acknowledged, only recently have distinct iNKT cell subsets, each with a marked functional predisposition, been appreciated. Furthermore, the subsets can frequently occupy distinct niches in different tissues and sometimes establish long-term tissue residency where they can impact homeostasis and respond quickly when they sense perturbations. In this review, we discuss the developmental origins of the iNKT cell subsets, their localization patterns, and detail what is known about how different subsets specifically influence their surroundings in conditions of steady and diseased states.
Collapse
Affiliation(s)
- S. Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
33
|
Cotton RN, Shahine A, Rossjohn J, Moody DB. Lipids hide or step aside for CD1-autoreactive T cell receptors. Curr Opin Immunol 2018; 52:93-99. [PMID: 29738961 DOI: 10.1016/j.coi.2018.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
Abstract
Peptide and lipid antigens are presented to T cells when bound to MHC or CD1 proteins, respectively. The general paradigm of T cell antigen recognition is that T cell receptors (TCRs) co-recognize an epitope comprised of the antigen and antigen presenting molecule. Here we review the latest studies in which T cells operate outside the co-recognition paradigm: TCRs can broadly contact CD1 itself, but not the carried lipid. The essential structural feature in these new mechanisms is a large 'antigen free' zone on the outer surface of certain antigen presenting molecules. Whereas peptides dominate the exposed surface of MHC-peptide complexes, all human CD1 proteins have a closed, antigen-free surface, which is known as the A' roof. These new structural models help to interpret recent biological studies of CD1 autoreactive T cells in vivo, which have now been broadly observed in studies on TCR-transgenic mice, healthy humans and patients with autoimmune disease.
Collapse
Affiliation(s)
- Rachel N Cotton
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - D Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Gras S, Van Rhijn I, Shahine A, Le Nours J. Molecular recognition of microbial lipid-based antigens by T cells. Cell Mol Life Sci 2018; 75:1623-1639. [PMID: 29340708 PMCID: PMC6328055 DOI: 10.1007/s00018-018-2749-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.
Collapse
Affiliation(s)
- Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital/Harvard Medical School, Boston, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
35
|
O'Donnell VB, Rossjohn J, Wakelam MJ. Phospholipid signaling in innate immune cells. J Clin Invest 2018; 128:2670-2679. [PMID: 29683435 DOI: 10.1172/jci97944] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Phospholipids comprise a large body of lipids that define cells and organelles by forming membrane structures. Importantly, their complex metabolism represents a highly controlled cellular signaling network that is essential for mounting an effective innate immune response. Phospholipids in innate cells are subject to dynamic regulation by enzymes, whose activities are highly responsive to activation status. Along with their metabolic products, they regulate multiple aspects of innate immune cell biology, including shape change, aggregation, blood clotting, and degranulation. Phospholipid hydrolysis provides substrates for cell-cell communication, enables regulation of hemostasis, immunity, thrombosis, and vascular inflammation, and is centrally important in cardiovascular disease and associated comorbidities. Phospholipids themselves are also recognized by innate-like T cells, which are considered essential for recognition of infection or cancer, as well as self-antigens. This Review describes the major phospholipid metabolic pathways present in innate immune cells and summarizes the formation and metabolism of phospholipids as well as their emerging roles in cell biology and disease.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jamie Rossjohn
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, and.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
36
|
Wun KS, Reijneveld JF, Cheng TY, Ladell K, Uldrich AP, Le Nours J, Miners KL, McLaren JE, Grant EJ, Haigh OL, Watkins TS, Suliman S, Iwany S, Jimenez J, Calderon R, Tamara KL, Leon SR, Murray MB, Mayfield JA, Altman JD, Purcell AW, Miles JJ, Godfrey DI, Gras S, Price DA, Van Rhijn I, Moody DB, Rossjohn J. T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nat Immunol 2018; 19:397-406. [PMID: 29531339 PMCID: PMC6475884 DOI: 10.1038/s41590-018-0065-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
The hallmark function of αβ T cell antigen receptors (TCRs) involves the highly specific co-recognition of a major histocompatibility complex molecule and its carried peptide. However, the molecular basis of the interactions of TCRs with the lipid antigen-presenting molecule CD1c is unknown. We identified frequent staining of human T cells with CD1c tetramers across numerous subjects. Whereas TCRs typically show high specificity for antigen, both tetramer binding and autoreactivity occurred with CD1c in complex with numerous, chemically diverse self lipids. Such extreme polyspecificity was attributable to binding of the TCR over the closed surface of CD1c, with the TCR covering the portal where lipids normally protrude. The TCR essentially failed to contact lipids because they were fully seated within CD1c. These data demonstrate the sequestration of lipids within CD1c as a mechanism of autoreactivity and point to small lipid size as a determinant of autoreactive T cell responses.
Collapse
Affiliation(s)
- Kwok S Wun
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Josephine F Reijneveld
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - Tan-Yun Cheng
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Emma J Grant
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Oscar L Haigh
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Thomas S Watkins
- Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity and Tropical Infectious Diseases Australian Institute of Tropical Health and Medicine, James Cook University, Cairn, Australia
| | - Sara Suliman
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - Sarah Iwany
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Megan B Murray
- Department of Global Health and Social Medicine, and Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - John D Altman
- Emory University School of Medicine, Atlanta, GA, USA
| | - Anthony W Purcell
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity and Tropical Infectious Diseases Australian Institute of Tropical Health and Medicine, James Cook University, Cairn, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie Gras
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Brigham and Women's Hospital Division of Rheumatology, Immunology and Allergy and Harvard Medical School, Boston, MA, USA.
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
- Division of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
37
|
Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective. Front Immunol 2017; 8:1858. [PMID: 29312339 PMCID: PMC5743650 DOI: 10.3389/fimmu.2017.01858] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
38
|
Popovic ZV, Rabionet M, Jennemann R, Krunic D, Sandhoff R, Gröne HJ, Porubsky S. Glucosylceramide Synthase Is Involved in Development of Invariant Natural Killer T Cells. Front Immunol 2017; 8:848. [PMID: 28785267 PMCID: PMC5519558 DOI: 10.3389/fimmu.2017.00848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells represent a unique population of CD1d-restricted T lymphocytes expressing an invariant T cell receptor encoded by Vα14-Jα18 and Vα24-Jα18 gene segments in mice and humans, respectively. Recognition of CD1d-loaded endogenous lipid antigen(s) on CD4/CD8-double positive (DP) thymocytes is essential for the development of iNKT cells. The lipid repertoire of DP thymocytes and the identity of the decisive endogenous lipid ligands have not yet been fully elucidated. Glycosphingolipids (GSL) were implicated to serve as endogenous ligands. However, further in vivo investigations were hampered by early embryonal lethality of mice deficient for the key GSL-synthesizing enzyme glucosylceramide (GlcCer) synthase [GlcCer synthase (GCS), EC 2.4.1.80]. We have now analyzed the GSL composition of DP thymocytes and shown that GlcCer represented the sole neutral GSL and the acidic fraction was composed of gangliosides. Furthermore, we report on a mouse model that by combination of Vav-promoter-driven iCre and floxed GCS alleles (VavCreGCSf/f) enabled an efficient depletion of GCS-derived GSL very early in the T cell development, reaching a reduction by 99.6% in DP thymocytes. Although the general T cell population remained unaffected by this depletion, iNKT cells were reduced by approximately 50% in thymus, spleen, and liver and showed a reduced proliferation and an increased apoptosis rate. The Vβ-chains repertoire and development of iNKT cells remained unaltered. The GSL-depletion neither interfered with expression of CD1d, SLAM, and Ly108 molecules nor impeded the antigen presentation on DP thymocytes. These results indicate that GlcCer-derived GSL, in particular GlcCer, contribute to the homeostatic development of iNKT cells.
Collapse
Affiliation(s)
- Zoran V Popovic
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mariona Rabionet
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Roger Sandhoff
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Porubsky
- Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
39
|
Clancy-Thompson E, Chen GZ, Tyler PM, Servos MM, Barisa M, Brennan PJ, Ploegh HL, Dougan SK. Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:159-171. [PMID: 28576977 PMCID: PMC5518629 DOI: 10.4049/jimmunol.1700214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/physiology
- Cell Differentiation
- Cytokines/genetics
- Cytokines/immunology
- Cytotoxicity, Immunologic/immunology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Transfer Techniques
- Organ Specificity
- Promyelocytic Leukemia Zinc Finger Protein
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Gui Zhen Chen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Marta Barisa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Patrick J Brennan
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02215
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215;
- Whitehead Institute for Biomedical Research, Cambridge, MA 02242; and
| |
Collapse
|
40
|
Stax AM, Tuengel J, Girardi E, Kitano N, Allan LL, Liu V, Zheng D, Panenka WJ, Guillaume J, Wong CH, van Calenbergh S, Zajonc DM, van den Elzen P. Autoreactivity to Sulfatide by Human Invariant NKT Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:97-106. [PMID: 28526683 DOI: 10.4049/jimmunol.1601976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like lymphocytes that recognize lipid Ags presented by CD1d. The prototypical Ag, α-galactosylceramide, strongly activates human and mouse iNKT cells, leading to the assumption that iNKT cell physiology in human and mouse is similar. In this article, we report the surprising finding that human, but not mouse, iNKT cells directly recognize myelin-derived sulfatide presented by CD1d. We propose that sulfatide is recognized only by human iNKT cells because of the unique positioning of the 3-O-sulfated β-galactose headgroup. Surface plasmon resonance shows that the affinity of human CD1d-sulfatide for the iNKT cell receptor is relatively low compared with CD1d-α-galactosylceramide (KD of 19-26 μM versus 1 μM). Apolipoprotein E isolated from human cerebrospinal fluid carries sulfatide that can be captured by APCs and presented by CD1d to iNKT cells. APCs from patients with metachromatic leukodystrophy, who accumulate sulfatides due to a deficiency in arylsulfatase-A, directly activate iNKT cells. Thus, we have identified sulfatide as a self-lipid recognized by human iNKT cells and propose that sulfatide recognition by innate T cells may be an important pathologic feature of neuroinflammatory disease and that sulfatide in APCs may contribute to the endogenous pathway of iNKT cell activation.
Collapse
Affiliation(s)
- Annelein M Stax
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jessica Tuengel
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Enrico Girardi
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Naoki Kitano
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Lenka L Allan
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Victor Liu
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Dongjun Zheng
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - William J Panenka
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Joren Guillaume
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; and
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Peter van den Elzen
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
41
|
Kumar A, Bezbradica JS, Stanic AK, Joyce S. Characterization and Functional Analysis of Mouse Semi-invariant Natural T Cells. ACTA ACUST UNITED AC 2017; 117:14.13.1-14.13.55. [PMID: 28369682 DOI: 10.1002/cpim.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Semi-invariant natural killer T (iNKT) cells are CD1d-restricted innate-like lymphocytes that recognize lipid agonists. Activated iNKT cells have immunoregulatory properties. Human and mouse iNKT cell functions elicited by different glycolipid agonists are highly conserved, making the mouse an excellent animal model for understanding iNKT cell biology in vivo. This unit describes basic methods for the characterization and quantification (see Basic Protocol 1) and functional analysis of mouse iNKT cells in vivo or in vitro. This unit also contains protocols that describe enrichment and purification of iNKT cells, generation of CD1d tetramer, and lipid antigen loading onto cell-bound and soluble CD1d for activation of NKT cell hybridomas. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Sebastian Joyce
- Veterans Administration, Tennessee Valley Healthcare System, Nashville, Tennessee.,Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
42
|
Chamoto K, Guo T, Scally SW, Kagoya Y, Anczurowski M, Wang CH, Rahman MA, Saso K, Butler MO, Chiu PPL, Julien JP, Hirano N. Key Residues at Third CDR3β Position Impact Structure and Antigen Recognition of Human Invariant NK TCRs. THE JOURNAL OF IMMUNOLOGY 2016; 198:1056-1065. [PMID: 28003379 DOI: 10.4049/jimmunol.1601556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
The human invariant NK (iNK) TCR is largely composed of the invariant TCR Vα24-Jα18 chain and semivariant TCR Vβ11 chains with variable CDR3β sequences. The direct role of CDR3β in Ag recognition has been studied extensively. Although it was noted that CDR3β can interact with CDR3α, how this interaction might indirectly influence Ag recognition is not fully elucidated. We observed that the third position of Vβ11 CDR3 can encode an Arg or Ser residue as a result of somatic rearrangement. Clonotypic analysis of the two iNK TCR types with a single amino acid substitution revealed that the staining intensity by anti-Vα24 Abs depends on whether Ser or Arg is encoded. When stained with an anti-Vα24-Jα18 Ab, human primary invariant NKT cells could be divided into Vα24 low- and high-intensity subsets, and Arg-encoding TCR Vβ11 chains were more frequently isolated from the Vα24 low-intensity subpopulation compared with the Vα24 high-intensity subpopulation. The Arg/Ser substitution also influenced Ag recognition as determined by CD1d multimer staining and CD1d-restricted functional responses. Importantly, in silico modeling validated that this Ser-to-Arg mutation could alter the structure of the CDR3β loop, as well as the CDR3α loop. Collectively, these results indicate that the Arg/Ser encoded at the third CDR3β residue can effectively modulate the overall structure of, and Ag recognition by, human iNK TCRs.
Collapse
Affiliation(s)
- Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Stephen W Scally
- Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Muhammed A Rahman
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Priscilla P L Chiu
- Division of Pediatric Surgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Structure and Function, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada; .,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity. J Immunol Res 2016; 2016:2876275. [PMID: 28070524 PMCID: PMC5192300 DOI: 10.1155/2016/2876275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/13/2016] [Indexed: 11/17/2022] Open
Abstract
Lipid-specific T cells comprise a group of T cells that recognize lipids bound to the MHC class I-like CD1 molecules. There are four isoforms of CD1 that are expressed at the surface of antigen presenting cells and therefore capable of presenting lipid antigens: CD1a, CD1b, CD1c, and CD1d. Each one of these isoforms has distinct structural features and cellular localizations, which promotes binding to a broad range of different types of lipids. Lipid antigens originate from either self-tissues or foreign sources, such as bacteria, fungus, or plants and their recognition by CD1-restricted T cells has important implications in infection but also in cancer and autoimmunity. In this review, we describe the characteristics of CD1 molecules and CD1-restricted lipid-specific T cells, highlighting the innate-like and adaptive-like features of different CD1-restricted T cell subtypes.
Collapse
|
44
|
Cruz Tleugabulova M, Escalante NK, Deng S, Fieve S, Ereño-Orbea J, Savage PB, Julien JP, Mallevaey T. Discrete TCR Binding Kinetics Control Invariant NKT Cell Selection and Central Priming. THE JOURNAL OF IMMUNOLOGY 2016; 197:3959-3969. [PMID: 27798168 DOI: 10.4049/jimmunol.1601382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells develop and differentiate in the thymus, segregating into iNKT1/2/17 subsets akin to Th1/2/17 classical CD4+ T cells; however, iNKT TCRs recognize Ags in a fundamentally different way. How the biophysical parameters of iNKT TCRs influence signal strength in vivo and how such signals affect the development and differentiation of these cells are unknown. In this study, we manipulated TCRs in vivo to generate clonotypic iNKT cells using TCR retrogenic chimeras. We report that the biophysical properties of CD1d-lipid-TCR interactions differentially impacted the development and effector differentiation of iNKT cells. Whereas selection efficiency strongly correlated with TCR avidity, TCR signaling, cell-cell conjugate formation, and iNKT effector differentiation correlated with the half-life of CD1d-lipid-TCR interactions. TCR binding properties, however, did not modulate Ag-induced iNKT cytokine production. Our work establishes that discrete TCR interaction kinetics influence iNKT cell development and central priming.
Collapse
Affiliation(s)
| | - Nichole K Escalante
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Stephanie Fieve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - June Ereño-Orbea
- The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jean-Philippe Julien
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada; and.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
45
|
Huang S, Moody DB. Donor-unrestricted T cells in the human CD1 system. Immunogenetics 2016; 68:577-96. [PMID: 27502318 PMCID: PMC5915868 DOI: 10.1007/s00251-016-0942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
The CD1 and MHC systems are specialized for lipid and peptide display, respectively. Here, we review evidence showing how cellular CD1a, CD1b, CD1c, and CD1d proteins capture and display many cellular lipids to T cell receptors (TCRs). Increasing evidence shows that CD1-reactive T cells operate outside two classical immunogenetic concepts derived from the MHC paradigm. First, because CD1 proteins are non-polymorphic in human populations, T cell responses are not restricted to the donor's genetic background. Second, the simplified population genetics of CD1 antigen-presenting molecules can lead to simplified patterns of TCR usage. As contrasted with donor-restricted patterns of MHC-TCR interaction, the donor-unrestricted nature of CD1-TCR interactions raises the prospect that lipid agonists and antagonists of T cells could be developed.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - D Branch Moody
- Divison of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
46
|
Zajonc DM. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Immunogenetics 2016; 68:561-76. [PMID: 27368414 DOI: 10.1007/s00251-016-0931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Class I-like CD1 molecules are in a family of antigen-presenting molecules that bind lipids and lipopeptides, rather than peptides for immune surveillance by T cells. Since CD1 lacks the high degree of polymorphism found in their major histocompatibility complex (MHC) class I molecules, different species express different numbers of CD1 isotypes, likely to be able to present structurally diverse classes of lipid antigens. In this review, we will present a historical overview of the structures of the different human CD1 isotypes and also discuss species-specific adaptations of the lipid-binding groove. We will discuss how single amino acid changes alter the shape and volume of the CD1 binding groove, how these minor changes can give rise to different numbers of binding pockets, and how these pockets affect the lipid repertoire that can be presented by any given CD1 protein. We will compare the structures of various lipid antigens and finally, we will discuss recognition of CD1-presented lipid antigens by antigen receptors on T cells (TCRs).
Collapse
Affiliation(s)
- Dirk M Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, CA, 92037, USA. .,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
47
|
Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics 2016; 68:639-48. [PMID: 27368411 DOI: 10.1007/s00251-016-0933-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T (iNKT) cells constitute a unique subset of innate-like T cells that have been shown to have crucial roles in a variety of immune responses. iNKT cells are characterized by their expression of both NK cell markers and an invariant T cell receptor (TCR) α chain, which recognizes glycolipids presented by the MHC class I-like molecule CD1d. Despite having a limited antigen repertoire, the iNKT cell response can be very complex, and participate in both protective and harmful immune responses. The protective role of these cells against a variety of pathogens has been particularly well documented. Through the use of these pathogen models, our knowledge of the breadth of the iNKT cell response has been expanded. Specific iNKT cell antigens have been isolated from several different bacteria, from which iNKT cells are critical for protection in mouse models. These responses can be generated by direct, CD1d-mediated activation, or indirect, cytokine-mediated activation, or a combination of the two. This can lead to secretion of a variety of different Th1, Th2, or Th17 cytokines, which differentially impact the downstream immune response against these pathogens. This critical role is emphasized by the conservation of these cells between mice and humans, warranting further investigation into how iNKT cells participate in protective immune responses, with the ultimate goal of harnessing their potential for treatment.
Collapse
|
48
|
Guo T, Chamoto K, Nakatsugawa M, Ochi T, Yamashita Y, Anczurowski M, Butler MO, Hirano N. Mouse and Human CD1d-Self-Lipid Complexes Are Recognized Differently by Murine Invariant Natural Killer T Cell Receptors. PLoS One 2016; 11:e0156114. [PMID: 27213277 PMCID: PMC4877060 DOI: 10.1371/journal.pone.0156114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 02/02/2023] Open
Abstract
Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs.
Collapse
Affiliation(s)
- Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenji Chamoto
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Toshiki Ochi
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yuki Yamashita
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Marcus O. Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2016; 38:470-83. [PMID: 27013447 PMCID: PMC6138764 DOI: 10.1016/j.bj.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
50
|
Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat Commun 2016; 7:10570. [PMID: 26875526 PMCID: PMC4756352 DOI: 10.1038/ncomms10570] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/29/2015] [Indexed: 11/25/2022] Open
Abstract
Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d–α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1+ type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7–8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A′-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d–α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition. The invariant αβTCR of type I NKT cells recognizes a lipid α-GalCer presented by CD1d. Here the authors describe atypical α-GalCer-reactive NKT cells with diverse TCRs, which bind to CD1d-α-GalCer in a manner distinct from type I NKT cells, thus unveiling greater diversity in lipid antigen recognition.
Collapse
|