1
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
3
|
Dabour MS, Abdelgawad IY, Sadaf B, Daniel MR, Grant MKO, Seelig D, Zordoky BN. Losmapimod ameliorates doxorubicin-induced cardiotoxicity through attenuating senescence and inflammatory pathways. Biomed Pharmacother 2024; 179:117288. [PMID: 39146767 PMCID: PMC11447837 DOI: 10.1016/j.biopha.2024.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Irreversible cardiotoxicity limits the clinical application of doxorubicin (DOX). DOX-induced cardiotoxicity has been associated with induction of senescence and activation of the p38 MAPK pathway. Losmapimod (LOSM), an orally active p38 MAPK inhibitor, is an anti-inflammatory agent with cardioprotective effects. Nevertheless, the effect of LOSM against DOX-induced cardiotoxicity has not been reported. In this study, we determined the effects of LOSM on DOX-induced chronic cardiotoxicity in C57BL/6 N mice. Five-week-old C57BL/6 N mice were fed diet containing LOSM (estimated daily intake 12 mg/kg/day) or a control diet for four days. Thereafter, mice were randomized to receive six weekly intraperitoneal injections of either DOX (4 mg/kg) or saline. Three days after the last injection, cardiac function was assessed by trans-thoracic echocardiography. Activation of p38, JNK, and ERK1/2 MAPKs were assessed by immunoblotting in the heart and liver. Gene expressions of senescence, inflammatory, oxidative stress, and mitochondrial function markers were quantified using real-time PCR and serum inflammatory markers were assessed by Luminex. Our results demonstrated that LOSM attenuated p38 MAPK activation, ameliorated DOX-induced cardiac dysfunction, and abrogated DOX-induced expression of the senescence marker p21Cip1. Additionally, LOSM demonstrated anti-inflammatory effects, with reduced cardiac Il-1α and Il-6 gene expression in DOX-treated mice. Systemic inflammation, assessed by serum cytokine levels, showed decreased IL-6 and CXCL1 in both DOX-treated mice and mice on LOSM diet. LOSM significantly increased mitofusin2 gene expression, which may enhance mitochondrial fusion. These findings underscore the potential therapeutic efficacy of p38 MAPK inhibition, exemplified by LOSM, in ameliorating DOX-induced cardiotoxicity, senescence, and inflammation.
Collapse
Affiliation(s)
- Mohamed S Dabour
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Egypt.
| | - Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Bushra Sadaf
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA; Faculty of Pharmacy, the University of Lahore, Lahore, Pakistan.
| | - Mary R Daniel
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, College of Veterinary Medicine, Saint Paul, MN 55108, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Qiao RB, Dai WH, Li W, Yang X, He DM, Gao R, Cui YQ, Wang RX, Ma XY, Wang FJ, Liang HP. The cytochrome P4501A1 (CYP1A1) inhibitor bergamottin enhances host tolerance to multidrug-resistant Vibrio vulnificus infection. Chin J Traumatol 2024; 27:295-304. [PMID: 38981821 PMCID: PMC11401496 DOI: 10.1016/j.cjtee.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
PURPOSE Vibrio vulnificus (V. Vulnificus) infection is characterized by rapid onset, aggressive progression, and challenging treatment. Bacterial resistance poses a significant challenge for clinical anti-infection treatment and is thus the subject of research. Enhancing host infection tolerance represents a novel infection prevention strategy to improve patient survival. Our team initially identified cytochrome P4501A1 (CYP1A1) as an important target owing to its negative modulation of the body's infection tolerance. This study explored the superior effects of the CYP1A1 inhibitor bergamottin compared to antibiotic combination therapy on the survival of mice infected with multidrug-resistant V. Vulnificus and the protection of their vital organs. METHODS An increasing concentration gradient method was used to induce multidrug-resistant V. Vulnificus development. We established a lethal infection model in C57BL/6J male mice and evaluated the effect of bergamottin on mouse survival. A mild infection model was established in C57BL/6J male mice, and the serum levels of creatinine, urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were determined using enzyme-linked immunosorbent assay to evaluate the effect of bergamottin on liver and kidney function. The morphological changes induced in the presence of bergamottin in mouse organs were evaluated by hematoxylin and eosin staining of liver and kidney tissues. The bacterial growth curve and organ load determination were used to evaluate whether bergamottin has a direct antibacterial effect on multidrug-resistant V. Vulnificus. Quantification of inflammatory factors in serum by enzyme-linked immunosorbent assay and the expression levels of inflammatory factors in liver and kidney tissues by real-time quantitative polymerase chain reaction were performed to evaluate the effect of bergamottin on inflammatory factor levels. Western blot analysis of IκBα, phosphorylated IκBα, p65, and phosphorylated p65 protein expression in liver and kidney tissues and in human hepatocellular carcinomas-2 and human kidney-2 cell lines was used to evaluate the effect of bergamottin on the nuclear factor kappa-B signaling pathway. One-way ANOVA and Kaplan-Meier analysis were used for statistical analysis. RESULTS In mice infected with multidrug-resistant V. Vulnificus, bergamottin prolonged survival (p = 0.014), reduced the serum creatinine (p = 0.002), urea nitrogen (p = 0.030), aspartate aminotransferase (p = 0.029), and alanine aminotransferase (p = 0.003) levels, and protected the cellular morphology of liver and kidney tissues. Bergamottin inhibited interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α expression in serum (IL-1β: p = 0.010, IL-6: p = 0.029, TNF-α: p = 0.025) and inhibited the protein expression of the inflammatory factors IL-1β, IL-6, TNF-α in liver (IL-1β: p = 0.010, IL-6: p = 0.011, TNF-α: p = 0.037) and kidney (IL-1β: p = 0.016, IL-6: p = 0.011, TNF-α: p = 0.008) tissues. Bergamottin did not affect the proliferation of multidrug-resistant V. Vulnificus or the bacterial load in the mouse peritoneal lavage fluid (p = 0.225), liver (p = 0.186), or kidney (p = 0.637). CONCLUSION Bergamottin enhances the tolerance of mice to multidrug-resistant V. Vulnificus infection. This study can serve as a reference and guide the development of novel clinical treatment strategies for V. Vulnificus.
Collapse
Affiliation(s)
- Ruo-Bai Qiao
- The College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China; The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Wei-Hong Dai
- Emergency Department, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
| | - Wei Li
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Xue Yang
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Dong-Mei He
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Rui Gao
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Yin-Qin Cui
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Ri-Xing Wang
- Emergency Department, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China
| | - Xiao-Yuan Ma
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China
| | - Fang-Jie Wang
- The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China.
| | - Hua-Ping Liang
- The College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China; The First Research Department, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center (Daping Hospital), Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Velho TR, Raquel H, Figueiredo N, Neves-Costa A, Pedroso D, Santos I, Willmann K, Moita LF. Immunomodulatory Effects and Protection in Sepsis by the Antibiotic Moxifloxacin. Antibiotics (Basel) 2024; 13:742. [PMID: 39200042 PMCID: PMC11350752 DOI: 10.3390/antibiotics13080742] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is a leading cause of death in Intensive Care Units. Despite its prevalence, sepsis remains insufficiently understood, with no substantial qualitative improvements in its treatment in the past decades. Immunomodulatory agents may hold promise, given the significance of TNF-α and IL-1β as sepsis mediators. This study examines the immunomodulatory effects of moxifloxacin, a fluoroquinolone utilized in clinical practice. THP1 cells were treated in vitro with either PBS or moxifloxacin and subsequently challenged with lipopolysaccharide (LPS) or E. coli. C57BL/6 mice received intraperitoneal injections of LPS or underwent cecal ligation and puncture (CLP), followed by treatment with PBS, moxifloxacin, meropenem or epirubicin. Atm-/- mice underwent CLP and were treated with either PBS or moxifloxacin. Cytokine and organ lesion markers were quantified via ELISA, colony-forming units were assessed from mouse blood samples, and DNA damage was evaluated using a comet assay. Moxifloxacin inhibits the secretion of TNF-α and IL-1β in THP1 cells stimulated with LPS or E. coli. Intraperitoneal administration of moxifloxacin significantly increased the survival rate of mice with severe sepsis by 80% (p < 0.001), significantly reducing the plasma levels of cytokines and organ lesion markers. Notably, moxifloxacin exhibited no DNA damage in the comet assay, and Atm-/- mice were similarly protected following CLP, boasting an overall survival rate of 60% compared to their PBS-treated counterparts (p = 0.003). Moxifloxacin is an immunomodulatory agent, reducing TNF-α and IL-1β levels in immune cells stimulated with LPS and E. coli. Furthermore, moxifloxacin is also protective in an animal model of sepsis, leading to a significant reduction in cytokines and organ lesion markers. These effects appear unrelated to its antimicrobial activity or induction of DNA damage.
Collapse
Affiliation(s)
- Tiago R. Velho
- Department of Cardiothoracic Surgery, Hospital de Santa Maria, Unidade Local de Saúde de Santa Maria, Av. Prof. Egas Moniz, 1649-035 Lisbon, Portugal;
- Cardiothoracic Surgery Research Unit, Centro Cardiovascular da Universidade de Lisboa (CCUL@RISE), Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Helena Raquel
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Nuno Figueiredo
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
- Department of General Surgery, Hospital Lusíadas Lisboa, 1500-458 Lisbon, Portugal
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
- Department of General Surgery, Hospital de São Bernardo, Unidade Local de Saúde da Arrábida, 2910-446 Setúbal, Portugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
| | - Luís F. Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal (N.F.); (A.N.-C.); (D.P.)
- Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| |
Collapse
|
6
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
7
|
Ziegler AC, Haider RS, Hoffmann C, Gräler MH. S1PR3 agonism and S1P lyase inhibition rescue mice in the severe state of experimental sepsis. Biomed Pharmacother 2024; 174:116575. [PMID: 38599060 DOI: 10.1016/j.biopha.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care. In search for additional treatment options, we recently discovered the inhibition of the sphingosine 1-phosphate (S1P) lyase and subsequent activation of the S1P receptor type 3 (S1PR3) in pre-conditioning experiments as promising targets for sepsis prevention. Here, we demonstrate that treatment of septic mice with the direct S1P lyase inhibitor C31 or the S1PR3 agonist CYM5541 in the advanced phase of sepsis resulted in a significantly increased survival rate. A single dose of each compound led to a rapid decline of sepsis severity in treated mice and coincided with decreased cytokine release and increased lung barrier function with unaltered bacterial load. The survival benefit of both compounds was completely lost in S1PR3 deficient mice. Treatment of the murine macrophage cell line J774.1 with either C31 or CYM5541 resulted in decreased protein kinase B (Akt) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) phosphorylation without alteration of the mitogen-activated protein kinase (MAPK) p38 and p44/42 phosphorylation. Thus, activation of S1PR3 in the acute phase of sepsis by direct agonism or S1P lyase inhibition dampened Akt and JNK phosphorylation, resulting in decreased cytokine release, improved lung barrier stability, rapid decline of sepsis severity and better survival in mice.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany
| | - Raphael S Haider
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany; Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, UK
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, Jena D-07745, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2. Jena D-07745, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena 07740, Germany.
| |
Collapse
|
8
|
Thomas-Rüddel D, Bauer M, Moita LF, Helbig C, Schlattmann P, Ehler J, Rahmel T, Meybohm P, Gründling M, Schenk H, Köcher T, Brunkhorst FM, Gräler M, Heger AJ, Weis S. Epirubicin for the Treatment of Sepsis and Septic Shock (EPOS-1): study protocol for a randomised, placebo-controlled phase IIa dose-escalation trial. BMJ Open 2024; 14:e075158. [PMID: 38653508 PMCID: PMC11043739 DOI: 10.1136/bmjopen-2023-075158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Sepsis remains the major cause of death among hospitalised patients in intensive care. While targeting sepsis-causing pathogens with source control or antimicrobials has had a dramatic impact on morbidity and mortality of sepsis patients, this strategy remains insufficient for about one-third of the affected individuals who succumb. Pharmacological targeting of mechanisms that reduce sepsis-defining organ dysfunction may be beneficial. When given at low doses, the anthracycline epirubicin promotes tissue damage control and lessens the severity of sepsis independently of the host-pathogen load by conferring disease tolerance to infection. Since epirubicin at higher doses can be myelotoxic, a first dose-response trial is necessary to assess the potential harm of this drug in this new indication. METHODS AND ANALYSIS Epirubicin for the Treatment of Sepsis and Septic Shock-1 is a randomised, double-blind, placebo-controlled phase 2 dose-escalation phase IIa clinical trial to assess the safety of epirubicin as an adjunctive in patients with sepsis. The primary endpoint is the 14-day myelotoxicity. Secondary and explorative outcomes include 30-day and 90-day mortality, organ dysfunction, pharmacokinetic/pharmacodynamic (PK/PD) and cytokine release. Patients will be randomised in three consecutive phases. For each study phase, patients are randomised to one of the two study arms (epirubicin or placebo) in a 4:1 ratio. Approximately 45 patients will be recruited. Patients in the epirubicin group will receive a single dose of epirubicin (3.75, 7.5 or 15 mg/m2 depending on the study phase. After each study phase, a data and safety monitoring board will recommend continuation or premature stopping of the trial. The primary analyses for each dose level will report the proportion of myelotoxicity together with a 95% CI. A potential dose-toxicity association will be analysed using a logistic regression model with dose as a covariate. All further analyses will be descriptive. ETHICS AND DISSEMINATION The protocol is approved by the German Federal Institute for Drugs and Medical Devices. The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05033808.
Collapse
Affiliation(s)
- Daniel Thomas-Rüddel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | | | - Christiane Helbig
- Center for Clinical Studies, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences, and Data Science, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Tim Rahmel
- Clinic for Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Gründling
- Department of Anesthesiology, Greifswald, University Hospital of Greifswald, Greifswald, Germany
| | - Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, Wien, Austria
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Markus Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Ann-Julika Heger
- Center for Clinical Studies, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Leibniz Institute for Infection Biology and Natural Products Research, Hans-Knöll Institute - HKI, Jena, Germany
| |
Collapse
|
9
|
Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, Finfer S, Hotchkiss RS, Marshall J, Openshaw PJM, Seymour CW, Venet F, Vincent JL, Le Tourneau C, Maitland-van der Zee AH, McInnes IB, van der Poll T. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. THE LANCET. RESPIRATORY MEDICINE 2024; 12:323-336. [PMID: 38408467 PMCID: PMC11025021 DOI: 10.1016/s2213-2600(23)00468-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Thierry Calandra
- Service of Immunology and Allergy, Center of Human Immunology Lausanne, Department of Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kenneth J Baillie
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon Finfer
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Richard S Hotchkiss
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - John Marshall
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | | | - Christopher W Seymour
- Department of Critical Care Medicine, The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iain B McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Liang R, Ye ZW, Qin Z, Xie Y, Yang X, Sun H, Du Q, Luo P, Tang K, Hu B, Cao J, Wong XHL, Ling GS, Chu H, Shen J, Yin F, Jin DY, Chan JFW, Yuen KY, Yuan S. PMI-controlled mannose metabolism and glycosylation determines tissue tolerance and virus fitness. Nat Commun 2024; 15:2144. [PMID: 38459021 PMCID: PMC10923791 DOI: 10.1038/s41467-024-46415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.
Collapse
Affiliation(s)
- Ronghui Liang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaomeng Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haoran Sun
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Peng Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bodan Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xavier Hoi-Leong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Guang-Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Lin Q, Zeng R, Yang J, Xu Z, Jin S, Wei G. Prognostic stratification of sepsis through DNA damage response based RiskScore system: insights from single-cell RNA-sequencing and transcriptomic profiling. Front Immunol 2024; 15:1345321. [PMID: 38404591 PMCID: PMC10884272 DOI: 10.3389/fimmu.2024.1345321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Background A novel risk scoring system, predicated on DNA damage response (DDR), was developed to enhance prognostic predictions and potentially inform the creation of more effective therapeutic protocols for sepsis. Methods To thoroughly delineate the expression profiles of DDR markers within the context of sepsis, an analytical approach utilizing single-cell RNA-sequencing (scRNA-seq) was implemented. Our study utilized single-cell analysis techniques alongside weighted gene co-expression network analysis (WGCNA) to pinpoint the genes that exhibit the most substantial associations with DNA damage response (DDR). Through Cox proportional hazards LASSO regression, we distinguished DDR-associated genes and established a risk model, enabling the stratification of patients into high- and low-risk groups. Subsequently, we carried out an analysis to determine our model's predictive accuracy regarding patient survival. Moreover, we examined the distinct biological characteristics, various signal transduction routes, and immune system responses in sepsis patients, considering different risk categories and outcomes related to survival. Lastly, we conducted experimental validation of the identified genes through in vivo and in vitro assays, employing RT-PCR, ELISA, and flow cytometry. Results Both single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic analyses have demonstrated a strong correlation between DNA damage response (DDR) levels and sepsis prognosis. Specific cell subtypes, including monocytes, megakaryocytes, CD4+ T cells, and neutrophils, have shown elevated DDR activity. Cells with increased DDR scores exhibited more robust and numerous interactions with other cell populations. The weighted gene co-expression network analysis (WGCNA) and single-cell analyses revealed 71 DDR-associated genes. We developed a four-gene risk scoring system using ARL4C, CD247, RPL7, and RPL31, identified through univariate COX, LASSO COX regression, and log-rank (Mantel-Cox) tests. Nomograms, calibration plots, and decision curve analyses (DCA) regarding these specific genes have provided significant clinical benefits for individuals diagnosed with sepsis. The study suggested that individuals categorized as lower-risk demonstrated enhanced infiltration of immune cells, upregulated expression of immune regulators, and a more prolific presence of immune-associated functionalities and pathways. RT-qPCR analyses on a sepsis rat model revealed differential gene expression predominantly in the four targeted genes. Furthermore, ARL4C knockdown in sepsis model in vivo and vitro caused increased inflammatory response and a worse prognosis. Conclusion The delineated DDR expression landscape offers insights into sepsis pathogenesis, whilst our riskScore model, based on a robust four-gene signature, could underpin personalized sepsis treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Guan Wei
- Department of Emergency Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
12
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Samoni S, De Rosa S, Ronco C, Castellano G. Update on persistent acute kidney injury in critical illnesses. Clin Kidney J 2023; 16:1813-1823. [PMID: 37915904 PMCID: PMC10616499 DOI: 10.1093/ckj/sfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 11/03/2023] Open
Abstract
Acute kidney injury (AKI) affects about half of patients admitted to the intensive care unit (ICU), and worsens their short- and long-term outcomes. Apparently self-limiting AKI episodes initiate a progression toward chronic kidney disease (CKD) through cellular and molecular mechanisms that are yet to be explained. In particular, persistent AKI, defined in 2016 by the Acute Dialysis Quality Initiative as an AKI which lasts more than 48 h from its onset, has been correlated with higher morbidity and mortality, and with a higher progression to acute kidney disease (AKD) and CKD than transient AKI (i.e. AKI with a reversal within 48 h). This classification has been also used in the setting of solid organ transplantation, demonstrating similar outcomes. Due to its incidence and poor prognosis and because prompt interventions seem to change its course, persistent AKI should be recognized early and followed-up also after its recovery. However, while AKI and CKD are well-described syndromes, persistent AKI and AKD are relatively new entities. The purpose of this review is to highlight the key phases of persistent AKI in ICU patients in terms of both clinical and mechanistic features in order to offer to clinicians and researchers an updated basis from which to start improving patients' care and direct future research.
Collapse
Affiliation(s)
- Sara Samoni
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences – CISMed, University of Trento, Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Trento, Italy
| | - Claudio Ronco
- Department of Medicine, University of Padova, Padova, Italy
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
- Department of Nephrology, Dialysis and Renal Transplantation, San Bortolo Hospital, Vicenza, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Powell RE, Soares MP, Weis S. What's new in intensive care: disease tolerance. Intensive Care Med 2023; 49:1235-1237. [PMID: 37353606 PMCID: PMC10556172 DOI: 10.1007/s00134-023-07130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Rachel E Powell
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sebastian Weis
- Institute for Infection Disease and Infection Control & Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, Am, Klinikum 1, 07749, Jena, Germany.
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), 07745, Jena, Germany.
| |
Collapse
|
15
|
Luo S, Lyu Z, Ge L, Li Y, Liu Y, Yuan Y, Zhao R, Huang L, Zhao J, Huang H, Luo Y. ATAXIA TELANGIECTASIA MUTATED PROTECTS AGAINST LIPOPOLYSACCARIDE-INDUCED BLOOD-BRAIN BARRIER DISRUPTION BY REGULATING ATK/DRP1-MEDIATED MITOCHONDRIAL HOMEOSTASIS. Shock 2023; 60:100-109. [PMID: 37141173 PMCID: PMC10417231 DOI: 10.1097/shk.0000000000002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
ABSTRACT Background: Protein kinase ataxia telangiectasia mutated (ATM) regulates the function of endothelial cells and responds quickly to endotoxin. However, the function of ATM in lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) disruption remains unknown. This study aimed to investigate the role and underlying mechanism of ATM in the regulation of the BBB function in sepsis. Methods: We used LPS to induce BBB disruption in vivo and to establish an in vitro model of cerebrovascular endothelial cells. Blood-brain barrier disruption was assessed by measuring Evans blue leakage and expression of vascular permeability regulators. To investigate the role of ATM, its inhibitor AZD1390 and clinically approved doxorubicin, an anthracycline that can activate ATM, were administered as scheduled. To explore the underlying mechanism, protein kinase B (AKT) inhibitor MK-2206 was administered to block the AKT/dynamin-related protein 1 (DRP1) pathway. Results: Lipopolysaccharide challenge induced significant BBB disruption, ATM activation, and mitochondrial translocation. Inhibiting ATM with AZD1390 aggravated BBB permeability as well as the following neuroinflammation and neuronal injury, while activation of ATM by doxorubicin abrogated these defects. Further results obtained in brain microvascular endothelial cells showed that ATM inhibition reduced the phosphorylation of DRP1 at serine (S) 637, promoted excessive mitochondrial fission, and resulted in mitochondrial malfunction. By activating ATM, doxorubicin increased the protein binding between ATM and AKT and promoted the phosphorylated activation of AKT at S473, which could directly phosphorylate DRP1 at S637 to repress excessive mitochondrial fission. Consistently, the protective role of ATM was abolished by the AKT inhibitor MK-2206. Conclusions: Ataxia telangiectasia mutated protects against LPS-induced BBB disruption by regulating mitochondrial homeostasis, at least in part, through the AKT/DRP1 pathway.
Collapse
Affiliation(s)
- Shiyuan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochen Lyu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Ge
- School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yinjiao Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Yuan
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology Program in Molecular Medicine University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjun Huang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Jiang B, Schmitt MJ, Rand U, Company C, Dramaretska Y, Grossmann M, Serresi M, Čičin-Šain L, Gargiulo G. Pharmacological modulators of epithelial immunity uncovered by synthetic genetic tracing of SARS-CoV-2 infection responses. SCIENCE ADVANCES 2023; 9:eadf4975. [PMID: 37343108 PMCID: PMC10284557 DOI: 10.1126/sciadv.adf4975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Epithelial immune responses govern tissue homeostasis and offer drug targets against maladaptation. Here, we report a framework to generate drug discovery-ready reporters of cellular responses to viral infection. We reverse-engineered epithelial cell responses to SARS-CoV-2, the viral agent fueling the ongoing COVID-19 pandemic, and designed synthetic transcriptional reporters whose molecular logic comprises interferon-α/β/γ and NF-κB pathways. Such regulatory potential reflected single-cell data from experimental models to severe COVID-19 patient epithelial cells infected by SARS-CoV-2. SARS-CoV-2, type I interferons, and RIG-I drive reporter activation. Live-cell image-based phenotypic drug screens identified JAK inhibitors and DNA damage inducers as antagonistic modulators of epithelial cell response to interferons, RIG-I stimulation, and SARS-CoV-2. Synergistic or antagonistic modulation of the reporter by drugs underscored their mechanism of action and convergence on endogenous transcriptional programs. Our study describes a tool for dissecting antiviral responses to infection and sterile cues and rapidly discovering rational drug combinations for emerging viruses of concern.
Collapse
Affiliation(s)
- Ben Jiang
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ulfert Rand
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Yuliia Dramaretska
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Melanie Grossmann
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Luka Čičin-Šain
- Helmholtz-Zentrum für Infektionsforschung GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
17
|
Hussain I, Sureshkumar HK, Bauer M, Rubio I. Starvation Protects Hepatocytes from Inflammatory Damage through Paradoxical mTORC1 Signaling. Cells 2023; 12:1668. [PMID: 37371138 PMCID: PMC10297036 DOI: 10.3390/cells12121668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Background and aims: Sepsis-related liver failure is associated with a particularly unfavorable clinical outcome. Calorie restriction is a well-established factor that can increase tissue resilience, protect against liver failure and improve outcome in preclinical models of bacterial sepsis. However, the underlying molecular basis is difficult to investigate in animal studies and remains largely unknown. METHODS We have used an immortalized hepatocyte line as a model of the liver parenchyma to uncover the role of caloric restriction in the resilience of hepatocytes to inflammatory cell damage. In addition, we applied genetic and pharmacological approaches to investigate the contribution of the three major intracellular nutrient/energy sensor systems, AMPK, mTORC1 and mTORC2, in this context. RESULTS We demonstrate that starvation reliably protects hepatocytes from cellular damage caused by pro-inflammatory cytokines. While the major nutrient- and energy-related signaling pathways AMPK, mTORC2/Akt and mTORC1 responded to caloric restriction as expected, mTORC1 was paradoxically activated by inflammatory stress in starved, energy-deprived hepatocytes. Pharmacological inhibition of mTORC1 or genetic silencing of the mTORC1 scaffold Raptor, but not its mTORC2 counterpart Rictor, abrogated the protective effect of starvation and exacerbated inflammation-induced cell death. Remarkably, mTORC1 activation in starved hepatocytes was uncoupled from the regulation of autophagy, but crucial for sustained protein synthesis in starved resistant cells. CONCLUSIONS AMPK engagement and paradoxical mTORC1 activation and signaling mediate protection against pro-inflammatory stress exerted by caloric restriction in hepatocytes.
Collapse
Affiliation(s)
- Iqra Hussain
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
| | - Harini K. Sureshkumar
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
| | - Michael Bauer
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Ignacio Rubio
- Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Member of the Leibniz Center for Photonics in Infection Research (LPI), 07747 Jena, Germany; (I.H.)
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
18
|
Jia Y, Ren S, Song L, Wang S, Han W, Li J, Yu Y, Ma B. PGLYRP1-mIgG2a-Fc inhibits macrophage activation via AKT/NF-κB signaling and protects against fatal lung injury during bacterial infection. iScience 2023; 26:106653. [PMID: 37113764 PMCID: PMC10102533 DOI: 10.1016/j.isci.2023.106653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Severe bacterial pneumonia leads to acute respiratory distress syndrome (ARDS), with a high incidence rate and mortality. It is well-known that continuous and dysregulated macrophage activation is vital for aggravating the progression of pneumonia. Here, we designed and produced an antibody-like molecule, peptidoglycan recognition protein 1-mIgG2a-Fc (PGLYRP1-Fc). PGLYRP1 was fused to the Fc region of mouse IgG2a with high binding to macrophages. We demonstrated that PGLYRP1-Fc ameliorated lung injury and inflammation in ARDS, without affecting bacterial clearance. Besides, PGLYRP1-Fc reduced AKT/nuclear factor kappa-B (NF-κB) activation via the Fc segment bound Fc gamma receptor (FcγR)-dependent mechanism, making macrophage unresponsive, and immediately suppressed proinflammatory response upon bacteria or lipopolysaccharide (LPS) stimulus in turn. These results confirm that PGLYRP1-Fc protects against ARDS by promoting host tolerance with reduced inflammatory response and tissue damage, irrespective of the host's pathogen burden, and provide a promising therapeutic strategy for bacterial infection.
Collapse
Affiliation(s)
- Yan Jia
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Shan Ren
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District, Shanghai 200000, China
| | - Luyao Song
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Siyi Wang
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Wei Han
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| | - Yan Yu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang District, Shanghai 200000, China
| | - BuYong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Minhang, Shanghai 200000, China
| |
Collapse
|
19
|
Muralidhara P, Kumar A, Chaurasia MK, Bansal K. Topoisomerases in Immune Cell Development and Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:126-133. [PMID: 36596219 PMCID: PMC7614072 DOI: 10.4049/jimmunol.2200650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 01/04/2023]
Abstract
DNA topoisomerases (TOPs) are complex enzymatic machines with extraordinary capacity to maintain DNA topology during torsion-intensive steps of replication and transcription. Recently, TOPs have gained significant attention for their tissue-specific function, and the vital role of TOPs in immune homeostasis and dysfunction is beginning to emerge. TOPs have been implicated in various immunological disorders such as autoimmunity, B cell immunodeficiencies, and sepsis, underscoring their importance in immune regulation. However, much remains unknown about immunological underpinnings of TOPs, and a deeper understanding of the role of TOPs in the immune system will be critical for yielding significant insights into the etiology of immunological disorders. In this review, we first discuss the recent literature highlighting the contribution of TOPs in the development of immune cells, and we further provide an overview of their importance in immune cell responses.
Collapse
Affiliation(s)
- Prerana Muralidhara
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Amit Kumar
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Mukesh Kumar Chaurasia
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India,Corresponding author ()
| |
Collapse
|
20
|
Dong JY, Yin HL, Hao H, Liu Y. Research Progress on Autophagy Regulation by Active Ingredients of Traditional Chinese Medicine in the Treatment of Acute Lung Injury. J Inflamm Res 2023; 16:1671-1691. [PMID: 37092134 PMCID: PMC10120836 DOI: 10.2147/jir.s398203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
Autophagy is a highly conserved process that maintains cell stability in eukaryotes, participates in the turnover of intracellular substances to maintain cell function, helps to resist pathogen invasion, and improves cell tolerance to environmental changes. Autophagy has been observed in many diseases, and the symptoms of these diseases are significantly improved by regulating autophagy. Autophagy is also involved in the development of lung diseases. Studies have shown that autophagy may play a beneficial or harmful role in acute lung injury (ALI), and ALI has been treated with traditional Chinese medicine designed to promote or inhibit autophagy. In this paper, the molecular mechanism and common pathways regulating autophagy and the relationship between autophagy and ALI are introduced, and the active ingredients of traditional Chinese medicine that improve ALI symptoms by regulating autophagy are summarized.
Collapse
Affiliation(s)
- Jin-yan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Hong-Lin Yin
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Correspondence: Hao Hao; Yang Liu, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China, Tel +86-13583119291; +86-13864018185, Email ;
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
21
|
Xu J, Xiao N, Zhou D, Xie L. Disease tolerance: a protective mechanism of lung infections. Front Cell Infect Microbiol 2023; 13:1037850. [PMID: 37207185 PMCID: PMC10189053 DOI: 10.3389/fcimb.2023.1037850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
Resistance and tolerance are two important strategies employed by the host immune response to defend against pathogens. Multidrug-resistant bacteria affect the resistance mechanisms involved in pathogen clearance. Disease tolerance, defined as the ability to reduce the negative impact of infection on the host, might be a new research direction for the treatment of infections. The lungs are highly susceptible to infections and thus are important for understanding host tolerance and its precise mechanisms. This review focuses on the factors that induce lung disease tolerance, cell and molecular mechanisms involved in tissue damage control, and the relationship between disease tolerance and sepsis immunoparalysis. Understanding the exact mechanism of lung disease tolerance could allow better assessment of the immune status of patients and provide new ideas for the treatment of infections.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| |
Collapse
|
22
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
23
|
Autophagy induced by taurolidine protects against polymicrobial sepsis by promoting both host resistance and disease tolerance. Proc Natl Acad Sci U S A 2022; 119:e2121244119. [PMID: 35512102 PMCID: PMC9171638 DOI: 10.1073/pnas.2121244119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease resistance and tolerance are evolutionarily conserved yet distinct defense strategies that protect the host against microbial infection. Here, we report that taurolidine administered before the start of infection confers protection against polymicrobial sepsis by promoting resistance and tolerance. Notably, taurolidine given after the onset of infection also rescues mice from sepsis-associated lethality by enhancing disease tolerance to organ damage. This protection relies on an intact autophagy pathway, as taurolidine fails to protect autophagy-deficient mice against microbial sepsis. Specifically, taurolidine induces light chain 3-associated phagocytosis, but not xenophagy, in macrophages, resulting in an augmented bactericidal activity with enhanced cellular resistance to infection. These results highlight the importance of autophagy induction for taurolidine-augmented host resistance and disease tolerance and subsequent protection. Sepsis, septic shock, and their sequelae are the leading causes of death in intensive care units, with limited therapeutic options. Disease resistance and tolerance are two evolutionarily conserved yet distinct defense strategies that protect the host against microbial infection. Here, we report that taurolidine administered at 6 h before septic challenge led to strong protection against polymicrobial sepsis by promoting both host resistance and disease tolerance characterized by accelerated bacterial clearance, ameliorated organ damage, and diminished vascular and gut permeability. Notably, taurolidine administered at 6 h after septic challenge also rescued mice from sepsis-associated lethality by enhancing disease tolerance to tissue and organ injury. Importantly, this in vivo protection afforded by taurolidine depends on an intact autophagy pathway, as taurolidine protected wild-type mice but was unable to rescue autophagy-deficient mice from microbial sepsis. In vitro, taurolidine induced light chain 3-associated phagocytosis in innate phagocytes and autophagy in vascular endothelium and gut epithelium, resulting in augmented bactericidal activity and enhanced cellular tolerance to endotoxin-induced damage in these cells. These results illustrate that taurolidine-induced autophagy augments both host resistance and disease tolerance to bacterial infection, thereby conferring protection against microbial sepsis.
Collapse
|
24
|
Wang H, Huang J, Yi W, Li J, He N, Kang L, He Z, Chen C. Identification of Immune-Related Key Genes as Potential Diagnostic Biomarkers of Sepsis in Children. J Inflamm Res 2022; 15:2441-2459. [PMID: 35444449 PMCID: PMC9015049 DOI: 10.2147/jir.s359908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The pathogenesis of sepsis is still unclear due to its complexity, especially in children. This study aimed to analyse the immune microenvironment and regulatory networks related to sepsis in children at the molecular level and to identify key immune-related genes to provide a new basis for the early diagnosis of sepsis. Methods The GSE145227 and GSE26440 datasets were downloaded from the Gene Expression Omnibus. The analyses included differentially expressed genes (DEGs), functional enrichment, immune cell infiltration, the competing endogenous RNA (ceRNA) interaction network, weighted gene coexpression network analysis (WGCNA), protein–protein interaction (PPI) network, key gene screening, correlation of sepsis molecular subtypes/immune infiltration with key gene expression, the diagnostic capabilities of key genes, and networks describing the interaction of key genes with transcription factors and small-molecule compounds. Finally, real-time quantitative PCR (RT–qPCR) was performed to verify the expression of key genes. Results A total of 236 immune-related DEGs, most of which were enriched in immune-related biological functions, were found. Further analysis of immune cell infiltration showed that M0 macrophages and neutrophils infiltrated more in the sepsis group, while fewer activated memory CD4+ T cells, resting memory CD4+ T cells, and CD8+ T cells did. The interaction network of ceRNA was successfully constructed. Six key genes (FYN, FBL, ATM, WDR75, FOXO1 and ITK) were identified by WGCNA and PPI analysis. We found strong associations between key genes and constructed septic molecular subtypes or immune cell infiltration. Receiver operating characteristic analysis showed that the area under the curve values of the key genes for diagnosis were all greater than 0.84. Subsequently, we successfully constructed an interaction network of key genes and transcription factors/small-molecule compounds. Finally, the key genes in the samples were verified by RT–qPCR. Conclusion Our results offer new insights into the pathogenesis of sepsis in children and provide new potential diagnostic biomarkers for the disease.
Collapse
Affiliation(s)
- Huabin Wang
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Wenfang Yi
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Jiahong Li
- Department of Neonatal Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Nannan He
- Department of Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Liangliang Kang
- Department of Pediatric Intensive Care Unit, Shenzhen Children’s Hospital, Shenzhen, 518000, People’s Republic of China
| | - Zhijie He
- Department of Intensive Care Unit, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510000, People’s Republic of China
- Correspondence: Zhijie He; Chun Chen, Email ;
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
- Department of Pediatric Intensive Care Unit, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| |
Collapse
|
25
|
Carroll JE, Bower JE, Ganz PA. Cancer-related accelerated ageing and biobehavioural modifiers: a framework for research and clinical care. Nat Rev Clin Oncol 2022; 19:173-187. [PMID: 34873313 PMCID: PMC9974153 DOI: 10.1038/s41571-021-00580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
A growing body of evidence indicates that patients with cancer who receive cytotoxic treatments (such as chemotherapy or radiotherapy) have an increased risk of accelerated physical and cognitive ageing. Furthermore, accelerated biological ageing is a suspected driving force behind many of these observed effects. In this Review, we describe the mechanisms of biological ageing and how they apply to patients with cancer. We highlight the important role of specific behavioural factors, namely stress, sleep and lifestyle-related factors such as physical activity, weight management, diet and substance use, in the accelerated ageing of patients with cancer and cancer survivors. We also present a framework of how modifiable behaviours could operate to either increase the risk of accelerated ageing, provide protection, or promote resilience at both the biological level and in terms of patient-reported outcomes.
Collapse
Affiliation(s)
- Judith E Carroll
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, CA, USA.
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| | - Julienne E Bower
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Patricia A Ganz
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Health Policy & Management, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Medicine (Hematology-Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Chora AF, Pedroso D, Kyriakou E, Pejanovic N, Colaço H, Gozzelino R, Barros A, Willmann K, Velho T, Moita CF, Santos I, Pereira P, Carvalho S, Martins FB, Ferreira JA, de Almeida SF, Benes V, Anrather J, Weis S, Soares MP, Geerlof A, Neefjes J, Sattler M, Messias AC, Neves-Costa A, Moita LF. DNA damage independent inhibition of NF-κB transcription by anthracyclines. eLife 2022; 11:77443. [PMID: 36476511 PMCID: PMC9771368 DOI: 10.7554/elife.77443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.
Collapse
Affiliation(s)
- Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Eleni Kyriakou
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Nadja Pejanovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Henrique Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Tiago Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, EPE, Avenida Professor Egas MonizLisbonPortugal
| | - Catarina F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Serviço de Cirurgia, Centro Hospitalar de SetúbalSetúbalPortugal
| | - Pedro Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Silvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Filipa Batalha Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - João A Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | | | | | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Friedrich-Schiller UniversityJenaGermany,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller UniversityJenaGermany,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI)JenaGermany
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMCLeidenNetherlands
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
| |
Collapse
|
27
|
Bauer M, Shankar-Hari M, Thomas-Rüddel DO, Wetzker R. Towards an ecological definition of sepsis: a viewpoint. Intensive Care Med Exp 2021; 9:63. [PMID: 34964952 PMCID: PMC8715410 DOI: 10.1186/s40635-021-00427-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
In critically ill patients with sepsis, there is a grave lack of effective treatment options to address the illness-defining inappropriate host response. Currently, treatment is limited to source control and supportive care, albeit with imminent approval of immune modulating drugs for COVID-19-associated lung failure the potential of host-directed strategies appears on the horizon. We suggest expanding the concept of sepsis by incorporating infectious stress within the general stress response of the cell to define sepsis as an illness state characterized by allostatic overload and failing adaptive responses along with biotic (pathogen) and abiotic (e.g., malnutrition) environmental stress factors. This would allow conceptualizing the failing organismic responses to pathogens in sepsis with an ancient response pattern depending on the energy state of cells and organs towards other environmental stressors in general. Hence, the present review aims to decipher the heuristic value of a biological definition of sepsis as a failing stress response. These considerations may motivate a better understanding of the processes underlying "host defense failure" on the organismic, organ, cell and molecular levels.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.,Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Daniel O Thomas-Rüddel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
29
|
Yang J, Do-Umehara HC, Zhang Q, Wang H, Hou C, Dong H, Perez EA, Sala MA, Anekalla KR, Walter JM, Liu S, Wunderink RG, Budinger GRS, Liu J. miR-221-5p-Mediated Downregulation of JNK2 Aggravates Acute Lung Injury. Front Immunol 2021; 12:700933. [PMID: 34899681 PMCID: PMC8656235 DOI: 10.3389/fimmu.2021.700933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Sepsis and acute lung injury (ALI) are linked to mitochondrial dysfunction; however, the underlying mechanism remains elusive. We previously reported that c-Jun N-terminal protein kinase 2 (JNK2) promotes stress-induced mitophagy by targeting small mitochondrial alternative reading frame (smARF) for ubiquitin-mediated proteasomal degradation, thereby preventing mitochondrial dysfunction and restraining inflammasome activation. Here we report that loss of JNK2 exacerbates lung inflammation and injury during sepsis and ALI in mice. JNK2 is downregulated in mice with endotoxic shock or ALI, concomitantly correlated inversely with disease severity. Small RNA sequencing revealed that miR-221-5p, which contains seed sequence matching to JNK2 mRNA 3’ untranslated region (3’UTR), is upregulated in response to lipopolysaccharide, with dynamically inverse correlation with JNK2 mRNA levels. miR-221-5p targets the 3’UTR of JNK2 mRNA leading to its downregulation. Accordingly, miR-221-5p exacerbates lung inflammation and injury during sepsis in mice by targeting JNK2. Importantly, in patients with pneumonia in medical intensive care unit, JNK2 mRNA levels in alveolar macrophages flow sorted from non-bronchoscopic broncholaveolar lavage (BAL) fluid were inversely correlated strongly and significantly with the percentage of neutrophils, neutrophil and white blood cell counts in BAL fluid. Our data suggest that miR-221-5p targets JNK2 and thereby aggravates lung inflammation and injury during sepsis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Hanh Chi Do-Umehara
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Qiao Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Huashan Wang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Changchun Hou
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Huali Dong
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Edith A Perez
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Marc A Sala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James M Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jing Liu
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Metabolic Reprogramming and Host Tolerance: A Novel Concept to Understand Sepsis-Associated AKI. J Clin Med 2021; 10:jcm10184184. [PMID: 34575294 PMCID: PMC8471000 DOI: 10.3390/jcm10184184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of sepsis that increases mortality and the risk of progression to chronic kidney disease. However, the mechanisms leading to sepsis-associated AKI are still poorly understood. The recognition that sepsis induces organ dysfunction in the absence of overt necrosis or apoptosis has led to the consideration that tubular epithelial cells (TEC) may deploy defense mechanisms to survive the insult. This concept dovetails well with the notion that the defense against infection does not only depend on the capacity of the immune system to limit the microbial load (known as resistance), but also on the capacity of cells and tissues to limit tissue injury (known as tolerance). In this review, we discuss the importance of TEC metabolic reprogramming as a defense strategy during sepsis, and how this cellular response is likely to operate through a tolerance mechanism. We discuss the fundamental role of specific regulatory nodes and of mitochondria in orchestrating this response, and how this opens avenues for the exploration of targeted therapeutic strategies to prevent or treat sepsis-associated AKI.
Collapse
|
31
|
Ntouros PA, Vlachogiannis NI, Pappa M, Nezos A, Mavragani CP, Tektonidou MG, Souliotis VL, Sfikakis PP. Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol 2021; 229:108765. [PMID: 34089859 PMCID: PMC8171000 DOI: 10.1016/j.clim.2021.108765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.
Collapse
Affiliation(s)
- Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
32
|
Mechanisms of Ataxia Telangiectasia Mutated (ATM) Control in the DNA Damage Response to Oxidative Stress, Epigenetic Regulation, and Persistent Innate Immune Suppression Following Sepsis. Antioxidants (Basel) 2021; 10:antiox10071146. [PMID: 34356379 PMCID: PMC8301080 DOI: 10.3390/antiox10071146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.
Collapse
|
33
|
Martin OCB, Bergonzini A, Lopez Chiloeches M, Paparouna E, Butter D, Theodorou SDP, Haykal MM, Boutet-Robinet E, Tebaldi T, Wakeham A, Rhen M, Gorgoulis VG, Mak T, Pateras IS, Frisan T. Influence of the microenvironment on modulation of the host response by typhoid toxin. Cell Rep 2021; 35:108931. [PMID: 33826883 DOI: 10.1016/j.celrep.2021.108931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/28/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Bacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram-negative bacteria, enriched in the microbiota of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We address the role of typhoid toxin in modulation of the host-microbial interaction in health and disease. Infection with a genotoxigenic Salmonella protects mice from intestinal inflammation. We show that the presence of an active genotoxin promotes DNA fragmentation and senescence in vivo, which is uncoupled from an inflammatory response and unexpectedly associated with induction of an anti-inflammatory environment. The anti-inflammatory response is lost when infection occurs in mice with acute colitis. These data highlight a complex context-dependent crosstalk between bacterial-genotoxin-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Maria Lopez Chiloeches
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Eleni Paparouna
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Deborah Butter
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sofia D P Theodorou
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria M Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800 Villejuif, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Toma Tebaldi
- Center for Biomedical Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tak Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
34
|
Kim E, Brown JS, Eroglu Z, Anderson AR. Adaptive Therapy for Metastatic Melanoma: Predictions from Patient Calibrated Mathematical Models. Cancers (Basel) 2021; 13:823. [PMID: 33669315 PMCID: PMC7920057 DOI: 10.3390/cancers13040823] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptive therapy is an evolution-based treatment approach that aims to maintain tumor volume by employing minimum effective drug doses or timed drug holidays. For successful adaptive therapy outcomes, it is critical to find the optimal timing of treatment switch points in a patient-specific manner. Here we develop a combination of mathematical models that examine interactions between drug-sensitive and resistant cells to facilitate melanoma adaptive therapy dosing and switch time points. The first model assumes genetically fixed drug-sensitive and -resistant popul tions that compete for limited resources. The second model considers phenotypic switching between drug-sensitive and -resistant cells. We calibrated each model to fit melanoma patient biomarker changes over time and predicted patient-specific adaptive therapy schedules. Overall, the models predict that adaptive therapy would have delayed time to progression by 6-25 months compared to continuous therapy with dose rates of 6-74% relative to continuous therapy. We identified predictive factors driving the clinical time gained by adaptive therapy, such as the number of initial sensitive cells, competitive effect, switching rate from resistant to sensitive cells, and sensitive cell growth rate. This study highlights that there is a range of potential patient-specific benefits of adaptive therapy and identifies parameters that modulate this benefit.
Collapse
Affiliation(s)
- Eunjung Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea
| | - Joel S. Brown
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA;
| | - Zeynep Eroglu
- Cutaneous Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA;
| | - Alexander R.A. Anderson
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL 33612, USA;
| |
Collapse
|
35
|
Qin Z, Xiang K, Su DF, Sun Y, Liu X. Activation of the Cholinergic Anti-Inflammatory Pathway as a Novel Therapeutic Strategy for COVID-19. Front Immunol 2021; 11:595342. [PMID: 33633726 PMCID: PMC7901247 DOI: 10.3389/fimmu.2020.595342] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) underlined the urgent need for alleviating cytokine storm. We propose here that activating the cholinergic anti-inflammatory pathway (CAP) is a potential therapeutic strategy. However, there is currently no approved drugs targeting the regulatory pathway. It is evident that nicotine, anisodamine and some herb medicine, activate the CAP and exert anti-inflammation action in vitro and in vivo. As the vagus nerve affects both inflammation and specific immune response, we propose that vagus nerve stimulation by invasive or non-invasive devices and acupuncture at ST36, PC6, or GV20, are also feasible approaches to activate the CAP and control COVID-19. It is worth to investigate the efficacy and safety of the strategy in patients with COVID-19.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Kefa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ding-Feng Su
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
36
|
Urbauer E, Rath E, Haller D. Mitochondrial Metabolism in the Intestinal Stem Cell Niche-Sensing and Signaling in Health and Disease. Front Cell Dev Biol 2021; 8:602814. [PMID: 33469536 PMCID: PMC7813778 DOI: 10.3389/fcell.2020.602814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial metabolism, dynamics, and stress responses in the intestinal stem cell niche play a pivotal role in regulating intestinal epithelial cell homeostasis, including self-renewal and differentiation. In addition, mitochondria are increasingly recognized for their involvement in sensing the metabolic environment and their capability of integrating host and microbial-derived signals. Gastrointestinal diseases such as inflammatory bowel diseases and colorectal cancer are characterized by alterations of intestinal stemness, the microbial milieu, and mitochondrial metabolism. Thus, mitochondrial function emerges at the interface of determining health and disease, and failure to adapt mitochondrial function to environmental cues potentially results in aberrant tissue responses. A mechanistic understanding of the underlying role of mitochondrial fitness in intestinal pathologies is still in its infancy, and therapies targeting mitochondrial (dys)function are currently lacking. This review discusses mitochondrial signaling and metabolism in intestinal stem cells and Paneth cells as critical junction translating host- and microbe-derived signals into epithelial responses. Consequently, we propose mitochondrial fitness as a hallmark for intestinal epithelial cell plasticity, determining the regenerative capacity of the epithelium.
Collapse
Affiliation(s)
- Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany.,ZIEL Institute for Food & Health, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Rombauts A, Abelenda-Alonso G, Cuervo G, Gudiol C, Carratalà J. Role of the inflammatory response in community-acquired pneumonia: clinical implications. Expert Rev Anti Infect Ther 2021; 20:1261-1274. [PMID: 33034228 DOI: 10.1080/14787210.2021.1834848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite adequate antibiotic coverage, community-acquired pneumonia (CAP) remains a leading cause of hospitalization and mortality worldwide. It induces both a local pulmonary and a systemic inflammatory response, particularly significant in severe cases. The intensity of the dysregulated host response varies from patient to patient and has a negative impact on survival and other outcomes. AREAS COVERED This comprehensive review summarizes the pathophysiological aspects of the inflammatory response in CAP, briefly discusses the usefulness of biomarkers, and assesses the clinical evidence for modulating the inflammatory pathways. We searched PubMed for the most relevant studies, reviews, and meta-analysis until August 2020. EXPERT OPINION Notable efforts have been made to identify biomarkers that can accurately differentiate between viral and bacterial etiology, and indeed, to enhance risk stratification in CAP. However, none has proven ideal and no recommended biomarker-guided algorithms exist. Biomarker signatures from proteomic and metabolomic studies could be more useful for such assessments. To date, most studies have produced contradictory results concerning the role of immunomodulatory agents (e.g. corticosteroids, macrolides, and statins) in CAP. Adequately identifying the population who may benefit most from effective modulation of the inflammatory response remains a challenge.
Collapse
Affiliation(s)
- Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Gabriela Abelenda-Alonso
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Guillermo Cuervo
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Spanish Network for Research in Infectious Disease (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,University of Barcelona, Barcelona, Spain.,Institut Català d'Oncologia (ICO), Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain.,Spanish Network for Research in Infectious Disease (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Scicluna BP, Uhel F, van Vught LA, Wiewel MA, Hoogendijk AJ, Baessman I, Franitza M, Nürnberg P, Horn J, Cremer OL, Bonten MJ, Schultz MJ, van der Poll T. The leukocyte non-coding RNA landscape in critically ill patients with sepsis. eLife 2020; 9:58597. [PMID: 33305733 PMCID: PMC7775110 DOI: 10.7554/elife.58597] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
The extent of non-coding RNA alterations in patients with sepsis and their relationship to clinical characteristics, soluble mediators of the host response to infection, as well as an advocated in vivo model of acute systemic inflammation is unknown. Here we obtained whole blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation microarray analysis of leukocyte RNA we found that long non-coding RNA and, to a lesser extent, small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia. Integrating RNA profiles and plasma protein levels revealed known as well as previously unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark dissection of the blood leukocyte ‘regulome’ that can facilitate prioritization of future functional studies.
Collapse
Affiliation(s)
- Brendon P Scicluna
- Amsterdam UMC, University of Amsterdam, Center for Experimental Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam, Netherlands.,Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam, Netherlands
| | - Fabrice Uhel
- Amsterdam UMC, University of Amsterdam, Center for Experimental Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam, Netherlands
| | - Lonneke A van Vught
- Amsterdam UMC, University of Amsterdam, Center for Experimental Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam, Netherlands
| | - Maryse A Wiewel
- Amsterdam UMC, University of Amsterdam, Center for Experimental Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam, Netherlands
| | - Arie J Hoogendijk
- Amsterdam UMC, University of Amsterdam, Center for Experimental Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam, Netherlands
| | - Ingelore Baessman
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Janneke Horn
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care Medicine, Amsterdam, Netherlands
| | - Olaf L Cremer
- Department of Intensive Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc J Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcus J Schultz
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care Medicine, Amsterdam, Netherlands
| | - Tom van der Poll
- Amsterdam UMC, University of Amsterdam, Center for Experimental Molecular Medicine, Amsterdam Infection & Immunity, Amsterdam, Netherlands.,Amsterdam UMC, University of Amsterdam, Division of Infectious Diseases, Amsterdam, Netherlands
| | | |
Collapse
|
39
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
40
|
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, Shong M, Benes V, Weis S, Köcher T, Moita LF. Tetracycline Antibiotics Induce Host-Dependent Disease Tolerance to Infection. Immunity 2020; 54:53-67.e7. [PMID: 33058782 PMCID: PMC7840524 DOI: 10.1016/j.immuni.2020.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance. Doxycycline protects from sepsis beyond its direct antibacterial activity Doxycycline protection from infection is microbiome-independent Inhibition of mitochondrial protein synthesis induces disease tolerance Mild and transient perturbations of the mitochondrial ETC induce disease tolerance
Collapse
Affiliation(s)
- Henrique G Colaço
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Barros
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Neves-Costa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Dora Pedroso
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Velho
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Katharina L Willmann
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Pedro Faisca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Vladimir Benes
- EMBL Genomics Core Facilities, D-69117 Heidelberg, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Thomas Köcher
- Vienna BioCenter Core Facilities GmbH, 1030 Vienna, Austria
| | - Luís F Moita
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
41
|
Blaho VA. Sphingosine 1-phosphate escapes the Catch-22 of sepsis prevention and mitigation therapies. EBioMedicine 2020; 59:102952. [PMID: 32805627 PMCID: PMC7426207 DOI: 10.1016/j.ebiom.2020.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Victoria A Blaho
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A..
| |
Collapse
|
42
|
Qin N, Wang Z, Liu Q, Song N, Wilson CL, Ehrhardt MJ, Shelton K, Easton J, Mulder H, Kennetz D, Edmonson MN, Rusch MC, Downing JR, Hudson MM, Nichols KE, Zhang J, Robison LL, Yasui Y. Pathogenic Germline Mutations in DNA Repair Genes in Combination With Cancer Treatment Exposures and Risk of Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer. J Clin Oncol 2020; 38:2728-2740. [PMID: 32496904 PMCID: PMC7430217 DOI: 10.1200/jco.19.02760] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To investigate cancer treatment plus pathogenic germline mutations (PGMs) in DNA repair genes (DRGs) for identification of childhood cancer survivors at increased risk of subsequent neoplasms (SNs). METHODS Whole-genome sequencing was performed on blood-derived DNA from survivors in the St Jude Lifetime Cohort. PGMs were evaluated in 127 genes from 6 major DNA repair pathways. Cumulative doses of chemotherapy and body region-specific radiotherapy (RT) were abstracted from medical records. Relative rates (RRs) and 95% CIs of SNs by mutation status were estimated using multivariable piecewise exponential models. RESULTS Of 4,402 survivors, 495 (11.2%) developed 1,269 SNs. We identified 538 PGMs in 98 DRGs (POLG, MUTYH, ERCC2, and BRCA2, among others) in 508 (11.5%) survivors. Mutations in homologous recombination (HR) genes were significantly associated with an increased rate of subsequent female breast cancer (RR, 3.7; 95% CI, 1.8 to 7.7), especially among survivors with chest RT ≥ 20 Gy (RR, 4.4; 95% CI, 1.6 to 12.4), or with a cumulative dose of anthracyclines in the second or third tertile (RR, 4.4; 95% CI, 1.7 to 11.4). Mutations in HR genes were also associated with an increased rate of subsequent sarcoma among those who received alkylating agent doses in the third tertile (RR, 14.9; 95% CI, 4.0 to 38.0). Mutations in nucleotide excision repair genes were associated with subsequent thyroid cancer for those treated with neck RT ≥ 30 Gy (RR, 12.9; 95% CI, 1.6 to 46.6) with marginal statistical significance. CONCLUSION Our study provides novel insights regarding the contribution of genetics, in combination with known treatment-related risks, for the development of SNs. These findings have the potential to facilitate identification of high-risk survivors who may benefit from genetic counseling and/or testing of DRGs, which may further inform personalized cancer surveillance and prevention strategies.
Collapse
Affiliation(s)
- Na Qin
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Qi Liu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Nan Song
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Carmen L. Wilson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Matthew J. Ehrhardt
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Kyla Shelton
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Heather Mulder
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Dennis Kennetz
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Michael N. Edmonson
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Michael C. Rusch
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - James R. Downing
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Kim E. Nichols
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
43
|
Weigel C, Hüttner SS, Ludwig K, Krieg N, Hofmann S, Schröder NH, Robbe L, Kluge S, Nierhaus A, Winkler MS, Rubio I, von Maltzahn J, Spiegel S, Gräler MH. S1P lyase inhibition protects against sepsis by promoting disease tolerance via the S1P/S1PR3 axis. EBioMedicine 2020; 58:102898. [PMID: 32711251 PMCID: PMC7381498 DOI: 10.1016/j.ebiom.2020.102898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Background One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. Methods Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. Findings Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. Interpretation Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. Funding This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).
Collapse
Affiliation(s)
- Cynthia Weigel
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Kristin Ludwig
- Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany
| | - Nadine Krieg
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Susann Hofmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany
| | - Nathalie H Schröder
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Linda Robbe
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martin S Winkler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
44
|
Vandewalle J, Vanderhaeghen T, Beyaert R, Libert C. Taking the STING Out of Sepsis? Cell Host Microbe 2020; 27:491-493. [PMID: 32272071 DOI: 10.1016/j.chom.2020.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this issue of Cell Host & Microbe, Zhang et al. use a sepsis mouse model to show that macrophage-specific release of coagulation factor F3 depends on pathogen detection and responses mediated by TMEM173/STING. The therapeutic power of targeting TMEM173/STING-F3 is evident in mice, but will it penetrate the sepsis bedside?
Collapse
Affiliation(s)
- Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
45
|
Ragu S, Matos-Rodrigues G, Lopez BS. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes (Basel) 2020; 11:E409. [PMID: 32283785 PMCID: PMC7230342 DOI: 10.3390/genes11040409] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.
Collapse
Affiliation(s)
| | | | - Bernard S. Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France; (S.R.); (G.M.-R.)
| |
Collapse
|
46
|
The cellular basis of organ failure in sepsis-signaling during damage and repair processes. Med Klin Intensivmed Notfmed 2020; 115:4-9. [PMID: 32236799 PMCID: PMC7220871 DOI: 10.1007/s00063-020-00673-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. This definition, updated in 2016, shifted the conceptual focus from exclusive attention to the systemic inflammatory response toward the multifactorial tissue damage that occurs during the progression of infection to sepsis and shock. Whereas targeting the inflammatory host response to infection did not translate into improved clinical management of sepsis, recent findings might shed new light on the maladaptive host–pathogen interaction in sepsis and pave the way for “theranostic” interventions. In addition to the well-known resistance responses of the immune system that result in pathogen clearance, “disease tolerance” has recently been acknowledged as a coping mechanism of presumably equal importance. We propose that both defense mechanisms, “resistance” and “disease tolerance”, can get out of control in sepsis. Whereas excessive activation of resistance pathways propagates tissue damage via immunopathology, an inappropriate “tolerance” might entail immunoparalysis accompanied by fulminant, recurrent or persisting infection. The review introduces key signaling processes involved in infection-induced “resistance” and “tolerance”. We propose that elaboration of these signaling pathways allows novel insights into sepsis-associated tissue damage and repair processes. Moreover theranostic opportunities for the specific treatment of sepsis-related hyperinflammation or immunoparalysis will be introduced. Agents specifically affecting either hyperinflammation or immunoparalysis in the course of sepsis might add to the therapeutic toolbox of personalized care in the field of organ dysfunction caused by infection. (This article is freely available.)
Collapse
|
47
|
Payen D. Immunity check should be performed for all patients with septic shock? No. Intensive Care Med 2020; 46:506-509. [PMID: 32123990 DOI: 10.1007/s00134-019-05923-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Didier Payen
- Anesthesiology and Critical Care, UFR de Médecine Villemin, Université Paris 7 Paris Cité Sorbonne, Paris, France.
| |
Collapse
|
48
|
Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, Eichmüller SB, König R. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol 2020; 16:e1007657. [PMID: 32097424 PMCID: PMC7059956 DOI: 10.1371/journal.pcbi.1007657] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/06/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.
Collapse
Affiliation(s)
- Franziska Hörhold
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Marcus Oswald
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Amol Kolte
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Daniela Röll
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer König
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| |
Collapse
|
49
|
Martin OC, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins (Basel) 2020; 12:E63. [PMID: 31973033 PMCID: PMC7076804 DOI: 10.3390/toxins12020063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
Affiliation(s)
- Océane C.B. Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33320 Bordeaux, France;
| | - Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, 17177 Stockholm, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
50
|
Transcriptional Suppression of the NLRP3 Inflammasome and Cytokine Release in Primary Macrophages by Low-Dose Anthracyclines. Cells 2019; 9:cells9010079. [PMID: 31905600 PMCID: PMC7016608 DOI: 10.3390/cells9010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 01/11/2023] Open
Abstract
Tissue-resident macrophages play critical roles in controlling homeostasis, tissue repair, and immunity. Inflammatory macrophages can sustain tissue damage and promote the development of fibrosis during infections and sterile tissue injury. The NLRP3 inflammasome and its effector cytokine IL-1β have been identified as important mediators of fibrosis. Epirubicin, an anthracycline topoisomerase II inhibitor, has been reported to inhibit myeloid inflammatory cytokine production and to promote tissue tolerance following bacterial infection. We investigated the anti-inflammatory properties of epirubicin on the NLRP3 inflammasome and TLR4-mediated inflammation in PMA-primed THP-1 and in primary human peritoneal macrophages (PM). Low-dose epirubicin at non-cytotoxic doses downregulated NLRP3 inflammasome components and reduced the release of cleaved caspase-1, bioactive IL-1β, and TNF-α following NLRP3 activation in a dose-dependent fashion. In addition, epirubicin attenuated inflammatory macrophage responses after TLR4 and TLR2 ligation. These anti-inflammatory effects were not mediated by the induction of autophagy or altered MAPK signaling, but as the result of a global transcriptional suppression of LPS-dependent genes. Epirubicin-treated macrophages displayed reduced acetylation of histone 3 lysine 9 (H3K9ac), suggesting anti-inflammatory epigenetic imprinting as one underlying mechanism.
Collapse
|