1
|
Wang H, Feng S, Pan E, Ji X, Zhou M, Zhang S, Xu B, Feng H, Yin J, Dong Z. Ferulic acid alleviates long-term avermectin-induced damage to the spleen of carp and restores its inflammatory response and oxidative balance. J Environ Sci (China) 2025; 151:616-626. [PMID: 39481967 DOI: 10.1016/j.jes.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 11/03/2024]
Abstract
Extensive use of avermectin (AVM) in agriculture can seriously contaminate fish in aquaculture. Ferulic acid (FA) is a strong antioxidant sourced from plants and is widely applied in food and medicine, but its protective function on the immunological damage caused by AVM is still lacking. In this study, carp were chronically exposed to (1/10 96 hr LC50) AVM for 30 day(s), with a dietary supplement of FA (400 mg/kg) to assess its effects on carp spleen. The experimental groups (n = 10) included: control, AVM-exposed (2.404 µg/L), FA + AVM co-treated, and FA alone. Long-term AVM exposure altered spleen tissue, reducing serum complement C3 (p < 0.01) and immunoglobulin M levels (p < 0.001), and increasing pro-inflammatory tnf-α (p < 0.001), il-6 (p < 0.001), il-1β (p < 0.001), and inos mRNA levels, whilst down-regulating the anti-inflammatory tgf-β (p < 0.05). Additionally, it disrupted the balance of oxidative stress indicators such as MDA (p < 0.001), T-AOC, GSH, and CAT, leading to spleen tissue apoptosis (42.4%). However, the addition of FA reversed these conditions, elevated the anti-inflammatory factor, and improved spleen immune function following chronic exposure to AVM in carp. Moreover, the ability to restore oxidative homeostasis in carp by adjusting the Nrf2/NQO-1 axis protected the health of spleen tissues. This discovery also supports the development of fish feed for aquaculture.
Collapse
Affiliation(s)
- Hanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shenye Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Baoshi Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huimiao Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jilei Yin
- Department of Traditional Chinese Medicine, Jiangsu Union Technical Institute Lianyungang Branch institute of Traditional Chinese Medicine, Lianyungang 222006, China.
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
3
|
Lu A, Tsai YT, Tsai MS, Hsu CM, Yang YH, Liu CY, Chang GH. Pathogens and Prognosis of Deep Neck Infection in Patients With Liver Cirrhosis. Laryngoscope 2025. [PMID: 39891419 DOI: 10.1002/lary.32028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE This study aims to investigate the differences in pathogenic bacterial spectra between patients with deep neck infection (DNI) with and without liver cirrhosis (LC). The goal is to identify specific pathogens prevalent in LC-DNI to guide the selection of empiric antibiotics, improving treatment outcomes and prognosis. STUDY DESIGN This is a retrospective study. METHODS The Chang Gung Research Database (CGRD) is a deidentified medical database encompassing seven hospitals within Taiwan's largest medical system. We analyzed data from 2004 to 2018 on DNI patients hospitalized with or without LC, categorizing them into these two groups. This study primarily focused on comparing the bacterial culture results of these groups, alongside an analysis of their treatment modalities (medication alone or surgery) and prognostic outcomes. RESULTS From a total of 11,455 DNI patients identified in the CGRD, 76 LC-DNI patients and 11,178 non-LC-DNI patients met the inclusion criteria after exclusions. The LC group had significantly higher rates of surgical debridement (34.2% vs. 19.4%, p = 0.002), ICU admission (22.4% vs. 10.7%, p = 0.004), and mediastinal complications (7.9% vs. 2.1%, p = 0.005). Although the overall mortality rates were not significantly different between the two groups (6.6% vs. 4.6%, p = 0.401), the mediastinitis-related mortality rate was significantly higher in the LC-DNI group (2.6% vs. 0.2%, p = 0.015). Bacterial culture analysis revealed that LC-DNI patients predominantly presented with Klebsiella pneumoniae (KP) as the primary facultative anaerobic pathogen, whereas non-LC-DNI patients were most infected with Viridans streptococcus (VS). For anaerobic bacteria, both groups consistently cultured Peptostreptococcus micros and Prevotella intermedia as the predominant species. CONCLUSIONS LC-DNI patients are predominantly infected with KP, a Gram-negative bacillus, unlike the Gram-positive cocci, VS, in non-LC-DNI. Anaerobic pathogens were similar in both groups. Empiric antibiotics for LC-DNI should target KP and anaerobes to improve outcomes. LEVEL OF EVIDENCE 3 Laryngoscope, 2025.
Collapse
Affiliation(s)
- Ang Lu
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Te Tsai
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Hsu Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chia-Yen Liu
- Health Information and Epidemiology Laboratory of Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Iseki M, Sakamoto Y, Takezaki D, Matsuda Y, Inoue M, Morizane S, Mukai T. Epstein-Barr Virus-Induced 3 Attributes to TLR7-Mediated Splenomegaly. Immunology 2025. [PMID: 39876525 DOI: 10.1111/imm.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Epstein-Barr virus-induced 3 (EBI3) functions as a component of the heterodimer cytokine IL-27, which regulates innate and acquired immune responses. The expression of EBI3 gene is induced by Toll-like receptors (TLRs). Repeated treatment with imiquimod (IMQ), a TLR7 agonist, induces splenomegaly and cytopaenia due to increased splenic function. Although immune cell activation is speculated to play a role in chronic infection-mediated splenomegaly, the detailed mechanisms remain unknown. This study shows that IMQ treatment induces marked splenomegaly and severe bicytopaenia (anaemia and thrombocytopaenia) in wild-type mice. In IMQ-treated mice, myeloid cell populations in the spleen increased, and extramedullary haematopoiesis was observed. RNA-seq analysis revealed the upregulation of type I interferon (IFN)-related genes in the spleens of IMQ-treated mice. IMQ-induced pathological changes were partially mitigated by EBI3 deficiency. To investigate the mechanism of the improved phenotypes in the Ebi3 KO mice, we examined the involvement of IL-27, a heterodimer of EBI3 and IL-27p28. The expression of Il27a, which encodes IL-27p28, was increased in the spleen and peripheral blood by IMQ treatment. Furthermore, IL-27 stimulation upregulated type I IFN-related genes in bone marrow-derived macrophage cultures without type I IFN. These findings suggest that EBI3 deficiency mitigated IMQ-mediated pathological changes, presumably via a lack of IL-27 formation. Our study thus provides insights into the molecular mechanisms underlying chronic infection-mediated splenomegaly.
Collapse
Affiliation(s)
- Masanori Iseki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Yuma Sakamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Daiki Takezaki
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mariko Inoue
- Medical Bioresource Research Unit, Central Research Institute, Kawasaki Medical School, Kurashiki, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyuki Mukai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
5
|
Bobrin VA, Sharma-Brymer SE, Monteiro MJ. Temperature-Directed Morphology Transformation Method for Precision-Engineered Polymer Nanostructures. ACS NANO 2025; 19:3054-3084. [PMID: 39801086 DOI: 10.1021/acsnano.4c14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
With polymer nanoparticles now playing an influential role in biological applications, the synthesis of nanoparticles with precise control over size, shape, and chemical functionality, along with a responsive ability to environmental changes, remains a significant challenge. To address this challenge, innovative polymerization methods must be developed that can incorporate diverse functional groups and stimuli-responsive moieties into polymer nanostructures, which can then be tailored for specific biological applications. By combining the advantages of emulsion polymerization in an environmentally friendly reaction medium, high polymerization rates due to the compartmentalization effect, chemical functionality, and scalability, with the precise control over polymer chain growth achieved through reversible-deactivation radical polymerization, our group developed the temperature-directed morphology transformation (TDMT) method to produce polymer nanoparticles. This method utilized temperature or pH responsive nanoreactors for controlled particle growth and with the added advantages of controlled surface chemical functionality and the ability to produce well-defined asymmetric structures (e.g., tadpoles and kettlebells). This review summarizes the fundamental thermodynamic and kinetic principles that govern particle formation and control using the TDMT method, allowing precision-engineered polymer nanoparticles, offering a versatile and an efficient means to produce 3D nanostructures directly in water with diverse morphologies, high purity, high solids content, and controlled surface and internal functionality. With such control over the nanoparticle features, the TDMT-generated nanostructures could be designed for a wide variety of biological applications, including antiviral coatings effective against SARS-CoV-2 and other pathogens, reversible scaffolds for stem cell expansion and release, and vaccine and drug delivery systems.
Collapse
Affiliation(s)
- Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Surya E Sharma-Brymer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Zhu Y, Zhao Q, Gu P, Fan Y, Ma N, Zhang W, Bao Y, Wang X, Shi W. PLGA co-loaded Salvia miltiorrhiza polysaccharide and Mn 2+ as an adjuvant to induce potent immunity. Int J Biol Macromol 2025; 300:140050. [PMID: 39855513 DOI: 10.1016/j.ijbiomac.2025.140050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Developing a novel and potent adjuvant with excellent biocompatibility for immune response augmentation is crucial for enhancing vaccine efficacy. Here, we prepared a stable PLGA nanoparticle by encapsulating MnCl2/Salvia miltiorrhiza polysaccharide (MS-PLGA) and employed it as an adjuvant in the model antigen OVA (MS-PLGA-OVA) to elicit potent immunity. The biological experiments indicated that the MS-PLGA-OVA could effectively recruit APCs to the injection site and provoke long-term antibodies. Compared with the conventional Alum adjuvanted group, the MS-PLGA-OVA increased the IgG2a antibody titers and CD8+T cells maturation, triggering cytotoxic T lymphocyte response and inducing the activation of memory T cells. Importantly, the MS-PLGA could up-regulate the expression of TLRs and cGAS-STING pathway-related genes, thus increasing the DCs maturation, as well as the secretion of interleukin and IFN-β. Collectively, the MS-PLGA system may provide a novel and efficient adjuvant platform for various prophylactic vaccines and insights for the development of the next-generation nano adjuvant.
Collapse
Affiliation(s)
- Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Yingsai Fan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Ning Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Wuchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China.
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, No. 2596 Lekai South Street, Baoding 071000, China.
| |
Collapse
|
7
|
Jin X, Tan W, Sun J, Jiang H, Chen J. Downregulation of CCR2 reduces ventricular remodeling after myocardial infarction by splenic nerve neuromodulation in acute and chronic rat models. Int Immunopharmacol 2025; 148:114009. [PMID: 39832456 DOI: 10.1016/j.intimp.2024.114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Pathological remodeling after myocardial infarction (MI) confers the development of heart failure. Our prior research has indicated that splenic nerve neuromodulation mitigates myocardial ischemia-reperfusion injury (IRI) by reducing levels of proinflammatory factors. This study aims to explore the potential therapeutic benefits of splenic nerve neuromodulation in MI and the underlying mechanism. METHODS Splenic nerve neuromodulation was performed through electrical splenic nerve stimulation (SpNS). In the acute myocardial IRI model, post-mortem analyses encompassed RNA sequencing and a range of molecular biology techniques, with the application of CCR2 antagonists (RS-504393) to inhibit the CCR2. In the chronic MI model, rats underwent echocardiographic assessment four weeks post-MI, after which tissues were harvested. RESULTS In the acute IRI model, the negative regulation of chemokines production pathway was enriched by RNA-seq, and SpNS reduced the levels of CCR2, CCL2, and CCL7. The administration of RS-504393 decreased cardiomyocyte apoptosis, reduced myocardial damage, and lowered proinflammatory cytokines levels following myocardial IRI. Additionally, SpNS was shown to inhibit oxidative stress, proinflammatory cytokine levels, and cardiac collagen deposition, as observed four weeks post-MI. SpNS also restrained sympathetic nerve remodeling and improved left ventricular function, in part by downregulating CCR2 in the chronic MI model. CONCLUSIONS SpNS demonstrated significant improvements in cardiac function, reductions of cardiac remodeling and inhibitions of excessive sympathetic activation in the chronic MI model by downregulation of CCR2. Our study provides novel evidence that splenic nerve neuromodulation may serve as a potential therapeutic intervention in MI patients.
Collapse
Affiliation(s)
- Xiaoxing Jin
- Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060 PR China
| | - Jian Chen
- Department of Cardiovascular Medicine, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhu Hai 519000 PR China.
| |
Collapse
|
8
|
Narasipura EA, Ma Y, Tiwade PB, VanKeulen-Miller R, Fung V, Fenton OS. A Chemoinformatic-Guided Synthesis of a Spleen-Expressing mRNA Lipid Nanoparticle Platform. Bioconjug Chem 2025; 36:54-65. [PMID: 39704424 DOI: 10.1021/acs.bioconjchem.4c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
mRNA lipid nanoparticles (LNPs) are a powerful technology that are actively being investigated for their ability to prevent, treat, and study disease. However, a major limitation remains: achieving extrahepatic mRNA expression. The development of new carriers could enable the expression of mRNA in non-liver targets, thus expanding the utility of mRNA-based medicines. In this study, we use a combination of chemoinformatic-guided material synthesis and design of experiment optimization for the development of a spleen-expressing lipid nanoparticle (SE-LNP). We begin with the synthesis of a novel cholesterol derivative followed by SE-LNP formulation and design of experiment-guided optimization to identify three lead SE-LNPs. We then evaluate their in vitro delivery mechanism, in vivo biodistribution, and protein expression in mice, ultimately achieving spleen-preferential expression. The goal of this paper is thus to create LNPs that preferentially express mRNA in the spleen upon intravenous delivery, demonstrating the potential of LNPs to modulate gene expression in extrahepatic tissues for disease treatment.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Xue L, Xiong X, Zhao G, Molina-Arocho W, Palanki R, Xiao Z, Han X, Yoon IC, Figueroa-Espada CG, Xu J, Gong N, Shi Q, Chen Q, Alameh MG, Vaughan AE, Haldar M, Wang K, Weissman D, Mitchell MJ. Multiarm-Assisted Design of Dendron-like Degradable Ionizable Lipids Facilitates Systemic mRNA Delivery to the Spleen. J Am Chem Soc 2025; 147:1542-1552. [PMID: 39742515 DOI: 10.1021/jacs.4c10265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as pivotal vehicles for messenger RNA (mRNA) delivery to hepatocytes upon systemic administration and to antigen-presenting cells following intramuscular injection. However, achieving systemic mRNA delivery to non-hepatocytes remains challenging without the incorporation of targeting ligands such as antibodies, peptides, or small molecules. Inspired by comb-like polymeric architecture, here we utilized a multiarm-assisted design to construct a library of 270 dendron-like degradable ionizable lipids by altering the structures of amine heads and multiarmed tails for optimal mRNA delivery. Following in vitro high-throughput screening, a series of top-dendron-like LNPs with high transfection efficacy were identified. These dendron-like ionizable lipids facilitated greater mRNA delivery to the spleen in vivo compared to ionizable lipid analogs lacking dendron-like structure. Proteomic analysis of corona-LNP pellets showed enhancement of key protein clusters, suggesting potential endogenous targeting to the spleen. A lead dendron-like LNP formulation, 18-2-9b2, was further used to encapsulate Cre mRNA and demonstrated excellent genome modification in splenic macrophages, outperforming a spleen-tropic MC3/18PA LNP in the Ai14 mice model. Moreover, 18-2-9b2 LNP encapsulating therapeutic BTB domain and CNC homologue 1 (BACH1) mRNA exhibited proficient BACH1 expression and subsequent Spic downregulation in splenic red pulp macrophages (RPM) in a Spic-GFP transgene model upon intravenous administration. These results underscore the potential of dendron-like LNPs to facilitate mRNA delivery to splenic macrophages, potentially opening avenues for a range of mRNA-LNP therapeutic applications, including regenerative medicine, protein replacement, and gene editing therapies.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, China
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William Molina-Arocho
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qiangqiang Shi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Qinyuan Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Aby K, Antony R, Yang T, Longo FM, Li Y. ProBDNF as a Myokine in Skeletal Muscle Injury: Role in Inflammation and Potential for Therapeutic Modulation of p75 NTR. Int J Mol Sci 2025; 26:401. [PMID: 39796256 PMCID: PMC11721097 DOI: 10.3390/ijms26010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood. Using a model of tourniquet-induced ischemia-reperfusion (IR) injury of the hindlimb, this study presents, for the first time, strong and novel evidence that following IR injury, proBDNF is released from skeletal muscle into circulation as an endocrine signaling molecule. Further, this study shows that 1 day post-IR injury, the proBDNF receptor, p75NTR, is upregulated 12-fold in splenic monocytes, which are known to be quickly mobilized to the injury site. We demonstrate that p75NTR plays a role in the activation of splenic monocytes, and that treatment with a p75NTR small-molecule modulator, LM11A-31, significantly reduced monocyte inflammatory responses upon lipopolysaccharide stimulation. Overall, the present study establishes proBDNF as a myokine that plays a significant role in skeletal muscle injury-induced inflammation through its receptor, p75NTR, which may be modulated using LM11A-31 as potential translational therapeutic against injury and inflammation.
Collapse
Affiliation(s)
- Katherine Aby
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA;
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ryan Antony
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA;
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (T.Y.); (F.M.L.)
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; (T.Y.); (F.M.L.)
| | - Yifan Li
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA;
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
11
|
Wang YH, Liao JM, Jan MS, Wang M, Su HH, Tsai WH, Liu PH, Tsuei YS, Huang SS. Prophylactic use of probiotics as an adjunctive treatment for ischemic stroke via the gut-spleen-brain axis. Brain Behav Immun 2025; 123:784-798. [PMID: 39442634 DOI: 10.1016/j.bbi.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
A growing body of research has focused on the role of spleen in orchestrating brain injury through the peripheral immune system following stroke, highlighting the brain-spleen axis as a potential target for mitigating neuronal damage during stroke. The gut microbiota plays a pivotal role in the bidirectional communication between the gut and the brain. Several studies have suggested that probiotic supplements hold promise as a strategic approach to maintaining a balanced intestinal microecology, reducing the apoptosis of intestinal epithelial cells, protecting the intestinal mucosal and blood-brain barrier (BBB), enhancing both intestinal and systemic immune functions, and thereby potentially affecting the pathogenesis and progression of ischemic stroke. In this study, we aimed to clarify the neuroprotective effects of supplementation with Lactobacillus, specifically Limosilactobacillus reuteri GMNL-89 (G89) and Lacticaseibacillus paracasei GMNL-133 (G133) on ischemic stroke and investigate how G89 and G133 modulate the communication mechanisms between the gut, brain, and spleen following ischemic stroke. We explored the neuroprotection and the underlying mechanisms of Lactobacillus supplementation in C57BL/6 mice subjected to permanent middle cerebral artery occlusion. Our results revealed that oral treatment with G89 or G133 alone, as well as oral administration combining G89 and G133, significantly decreased the infarct volume and improved the neurological function in mice with ischemic stroke. Moreover, G89 treatment alone preserved the tight junction integrity of gut barrier, while G133 alone and the combined treatment of G89 and G133 would significantly decreased the BBB permeability, and thereby significantly attenuated stroke-induced local and systemic inflammatory responses. Both G89 and G133 regulated cytotoxic T cells, and the balance between T helper 1 cells and T helper 2 cells in the spleen following ischemic stroke. Additionally, the combined administration of G89 and G133 improved the gut dysbiosis and significantly increased the concentration of short-chain fatty acids. In conclusion, our findings suggest that G89 and G133 may be used as nutrient supplements, holding promise as a prospective approach to combat ischemic stroke by modulating the gut-spleen-brain axis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Meilin Wang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan
| | - Wan-Hua Tsai
- Research and Development Department, GenMont Biotech Incorporation, Tainan 741014, Taiwan
| | - Pei-Hsun Liu
- Department & Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuang-Seng Tsuei
- College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Surgical Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Verterans General Hospital, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Chen S, Wei W, Wang Z, Zhu J, Zhang H, Wang G, Guo N, Li J, Mu Y, Zhang N, Li Z. Extremely low-frequency electromagnetic fields targeting spleen modifies the populations of immunocytes in the spleen. Bioelectromagnetics 2025; 46:e22532. [PMID: 39690927 DOI: 10.1002/bem.22532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024]
Abstract
Our study focused on investigating the bioeffects of extremely low-frequency electromagnetic fields (ELF-EMFs) on the immune function of the spleen. We designed an electromagnetic instrument that can locally target on spleen, the spleens of mice were locally exposed to the ELF-EMF (50 Hz, 30 mT) for 14 days (4 h/day). Parallelly, the isolated splenic T cells were exposed to ELF-EMF (50 Hz, 15 mT) for 2 h. After the exposure, the splenocyte showed a reduced apoptosis rate. Among the splenocytes, the CD4+ T cells and natural killer cells accumulated, the percentage of B cells decreased. In vitro study demonstrated that ELF-EMF induced the alteration of T cell subsets, showing an increased percentage of CD4+ T cells and a decreased percentage of CD8+ T cells. Within CD4+ T cells, the population of T helper (Th) 17 cells increased, and the population of regulatory T cells (Treg) cells decreased. The enrichment of the nuclear factor (NF)-κB pathway in the splenic T cells was found to be reduced after exposure to ELF-EMF. Our findings suggest that ELF-EMF regulated the immune function of the spleen by changing the proportion of immune cells in the spleen. Specifically, the differentiation of spleen T cells was induced by ELF-EMF toward Th17 cells and inhibited by ELF-EMF into Treg cells. The NF-κB signaling pathway probably accounts for the effects of ELF-EMF on the spleen T cells.
Collapse
Affiliation(s)
- Sijia Chen
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Wei
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ziang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiazhen Zhu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hailong Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guihu Wang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanhua Mu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Naming Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Yang X, Gao X, Xu C, Ni T, Sheng Y, Wang J, Sun X, Yuan J, Zhang L, Wang Y. Cryoablation synergizes with anti-PD-1 immunotherapy induces an effective abscopal effect in murine model of cervical cancer. Transl Oncol 2025; 51:102175. [PMID: 39489086 PMCID: PMC11565560 DOI: 10.1016/j.tranon.2024.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/15/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), especially anti-PD-1/PD-L1 antibodies, have emerged as promising therapeutic options for cervical cancer. However, the efficacy of anti-PD-1 antibody monotherapy is limited. Cryoablation could elicit an anti-tumor immune response, thereby presenting itself as a potential approach to augment the response of ICIs. The aim of our study was to investigate the systemic immunological effects of cryoablation and the potential synergistic anti-tumor effects of cryoablation and anti-PD-1 antibody in cervical cancer. METHODS We established U14 murine bilateral subcutaneous cervical cancer model, wherein the primary tumors were treated with cryoablation. Flow cytometry, immunohistochemistry and RNA-seq were used to analyze the immune cell infiltration and immune-associated pathways in the secondary tumor. RESULTS Our study revealed that cryoablation reprogrammed the immune landscape, leading to an enhanced infiltration of CD8+ T cell in distant tumors. Cryoablation created a conducive environment for increasing the efficacy of anti-PD-1 immunotherapy. Cryoablation in combination with anti-PD-1 antibody inhibited distant tumors growth and improved mouse survival. Mechanistically, this combination therapy could augment the infiltration of CD8+ T cells, CD4+ T cells, dendritic cells and M1-like tumor-associated macrophages, enhance multiple aspects of antitumor immune response, and reduce immunosuppressive cells such as M2-like tumor-associated macrophages and myeloid-derived suppressor cells in distant tumors. CONCLUSIONS Combination therapy with cryoablation and anti-PD-1 antibody induces an effective abscopal effect in murine model of cervical cancer and may be a novel therapeutic approach for patients with advanced/recurrent cervical cancer.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chen Xu
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jing Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao Sun
- Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiangjing Yuan
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lin Zhang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty of gynecologic oncology, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
14
|
Mundry CS, Triplett AA, Shah OS, Chaitankar V, McAndrews KL, Ly QP, Cox JL, Eberle KC, Mehla K, Swanson BJ, Lazenby A, Klute KA, Grandgenett PM, Hollingsworth MA. Single-cell RNA-sequencing of human spleens reveals an IDO-1 + tolerogenic dendritic cell subset in pancreatic cancer patients that is absent in normal individuals. Cancer Lett 2024; 607:217321. [PMID: 39547331 DOI: 10.1016/j.canlet.2024.217321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Local and systemic immunosuppression are prominent features of pancreatic cancer, rendering anti-tumor effector cells inactive and immunotherapeutic approaches ineffective. The spleen, an understudied point of antigen-presentation and T cell priming in humans, holds particular importance in pancreatic cancer due to its proximity to the developing tumor. As main effectors of antigen presentation, dendritic cells display antigens to lymphocytes, thereby bridging the innate and adaptive immune response. While tumor-infiltrating anti-inflammatory dendritic cells have been described, splenic dendritic cells have historically just been considered to stimulate the anti-tumor immune response. Here, we describe, for the first time, the presence of an immunosuppressive, tolerogenic IDO1+ dendritic cell subset in the spleens of pancreatic cancer patients that likely contributes to systemic immunosuppression that is associated with pancreatic ductal adenocarcinoma. Network analysis of scRNA seq data reveals extensive communication networks between the identified tolerogenic DC cluster and numerous immune cell populations in the spleen. Interactions with innate and adaptive immune cells suggest a broad influence on leukocyte trafficking and immune regulation within the spleen microenvironment. The identification of signaling pathways involving AHR and IDO-1, CCL19, NECTIN2, CLEC2D, and others elucidates potential mechanisms underlying the immunosuppressive functions of this cell type.
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aleata A Triplett
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Osama Shiraz Shah
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vijender Chaitankar
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle L McAndrews
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Quan P Ly
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kirsten C Eberle
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamiya Mehla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Audrey Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelsey A Klute
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Sasaki Y, Maeda T, Hojo M, Miura T, Ishikawa K, Funayama E, Okada K, Yamamoto Y. Synergistic anti-tumor effects of oncolytic virus and anti-programmed cell death protein 1 antibody combination therapy: For suppression of lymph node and distant metastasis in a murine melanoma model. Biochem Biophys Res Commun 2024; 740:151011. [PMID: 39571230 DOI: 10.1016/j.bbrc.2024.151011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
It is believed that oncolytic viruses (OVs) exert both direct anti-tumor effects by intratumoral injection as well as indirect anti-tumor effects by activating systemic immunity. In phase III clinical trials, OV and anti-programmed cell death-1 (aPD-1) antibody combination therapy showed no significant differences in overall survival and progression-free survival in patients with unresectable advanced melanoma. In the study, OVs can exert only indirect anti-tumor effects in non-injected, systemic lesions. If the tumor is at a stage where both direct and indirect anti-tumor effects of OVs can be expected, OVs may further enhance the therapeutic effect, in addition to the clinically expected therapeutic effect. Therefore, we investigated whether canerpaturev (C-REV) and aPD-1 antibody combination therapy suppresses tumor progression in a murine melanoma model. Our findings showed that the C-REV and aPD-1 antibody combination therapy suppressed tumor progression in a murine melanoma model. The combination therapy stimulated systemic immunity in lymphoid tissues by activating helper T cells and B cells to enhance adaptive and humoral immunity, as well as by increasing effector/memory T cell fractions. Synergistically enhanced systemic anti-tumor effects suppressed lymph node and lung metastases. These findings suggest that direct anti-tumor effects by infecting and destroying cancer cells from within and indirect anti-tumor effects enhanced by the combination therapy worked simultaneously to suppress tumor progression. Our results may provide evidence to support the usefulness of OV and aPD-1 antibody combination therapy as a neoadjuvant therapy in the surgical treatment of melanoma.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Masahiro Hojo
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Japan.
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan.
| |
Collapse
|
16
|
Zoletto S, Pizzi M, De Crescenzo A, Friziero A, D’Amore F, Carli G, Vianelli N, Auteri G, Bertozzi I, Nichele I, Binotto G, Dei Tos AP, Scarmozzino F, D’Amore ESG, Ceccato J, Sabattini E, Cinetto F, Piazza F, Visentin A, Zambello R, Trentin L, Vianello F. Predictors of Splenectomy Response in Immune Thrombocytopenia: A Multicentric Italian Study. J Clin Med 2024; 14:30. [PMID: 39797114 PMCID: PMC11722461 DOI: 10.3390/jcm14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Splenectomy leads to a high rate of remission in chronic primary immune thrombocytopenia (ITP), but its unpredictable long-term positive outcomes and that it is a irreversible surgical approach discourage clinicians and patients. The identification of predictors of response may redefine the timing of splenectomy. In this retrospective, multicentric study we aimed to investigate clinical-histological predictors of splenectomy response in ITP patients and provide an easy-to-use score to predict splenectomy response in ITP. Methods: We considered a discovery set (n = 17) and a validation set (n = 30) of adult ITP patients, who underwent splenectomy for refractory disease in three Italian referral centers for ITP. Results: We found that the presence of autoimmune comorbidities, daily steroid dose prior to splenectomy, age at diagnosis and age at splenectomy were significantly associated with the outcome. Variables singly associated with an adverse outcome were combined into a clinical and a clinical-pathological score, allowing us to define a "high-risk" group which accounted for about 80% of the disease relapses observed in this cohort. At the same time, a certain clinical-pathological score indicated a "high-risk" group characterized by significantly poorer outcomes. Results were confirmed in the validation cohort. Conclusions: An integrated set of clinical and histological parameters may predict the response to splenectomy in ITP patients. While these findings provide valuable insights, they were derived from a small cohort of patients and therefore require validation in larger, more diverse populations to ensure their generalizability and robustness.
Collapse
Affiliation(s)
- Simone Zoletto
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (M.P.); (A.P.D.T.); (F.S.)
| | - Andrea De Crescenzo
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Alberto Friziero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy;
| | - Fabio D’Amore
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Giuseppe Carli
- Hematology Unit, San Bortolo Hospital, 36100 Vicenza, Italy;
| | - Nicola Vianelli
- Institute of Hematology, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (N.V.); (G.A.)
| | - Giuseppe Auteri
- Institute of Hematology, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy; (N.V.); (G.A.)
| | - Irene Bertozzi
- Department of Medicine-DIMED, University of Padua, 35122 Padua, Italy;
| | - Ilaria Nichele
- Department of Cell Therapy and Hematology, San Bortolo Hospital, 36100 Vicenza, Italy;
| | - Gianni Binotto
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (M.P.); (A.P.D.T.); (F.S.)
| | - Federico Scarmozzino
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (M.P.); (A.P.D.T.); (F.S.)
| | | | - Jessica Ceccato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Elena Sabattini
- Haemolymphopathology Unit, Sant’Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Francesco Cinetto
- Rare Disease Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, ULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Francesco Piazza
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Renato Zambello
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
| | - Fabrizio Vianello
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, 35122 Padua, Italy; (S.Z.); (A.D.C.); (F.D.); (G.B.); (J.C.); (F.P.); (A.V.); (R.Z.); (L.T.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| |
Collapse
|
17
|
Song M, Ivkov R, Korangath P. Dendritic cell activation by iron oxide nanoparticles depends on the extracellular environment. NANOSCALE ADVANCES 2024; 7:209-218. [PMID: 39569333 PMCID: PMC11575603 DOI: 10.1039/d4na00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Nanoparticles can exert immune modulating effects in a host depending on composition, mode of administration, and type of disease. Although the specific mechanisms of nanoparticle-induced immune responses remain unclear, their uptake by macrophages and other phagocytic innate immune cells is considered to be a key event. Our objective here was to ascertain if nanoparticle-mediated activation of dendritic cells (DCs) occurs in vitro or in vivo when exposed to hydroxyethyl starch-coated iron oxide nanoparticles. For the present studies, our choice of nanoparticles, animal model, and experimental design is motivated by our previously published observations that systemic exposure can induce antitumor adaptive immune responses in mouse models of metastatic breast cancer. Here, we began by assessing the potential toxicity of systemic exposure to commercially available starch-coated Bionized Nanoferrite® nanoparticles (BP) by measuring body weight, complete blood count, and enzyme parameters in healthy FVB/NJ mice after repeated BP dosing. We observed no evidence of toxicity at doses up to 25 mg Fe per mouse, five-fold higher than those used in subsequent in vivo experiments. We then measured the expression of surface maturation markers (CD86, MHC II) in DCs incubated with BP in vitro. Although DCs cultured with BP revealed high levels of nanoparticle uptake, neither JAWSII dendritic cells nor bone marrow derived dendritic cells (BMDCs) showed significant changes in marker expression to indicate stimulation of maturation and effector function. To assess whether BP interactions in vivo produced different effects, we analyzed CD80, CD86, and MHC II expression of DCs recovered from the livers, spleens, bone marrows, and lymph nodes of mice injected once with BP (5 mg Fe). Interestingly, only DCs in spleens and bone marrow cells responded to BP exposure. DCs recovered from other organs showed no evidence of increased activation. These findings highlight complex interactions between living systems and nanoparticles, and their potential to mediate context-specific and selective activation of innate immune cells. Our study also emphasizes that results obtained from in vitro experiments must be interpreted with caution, as they may not faithfully represent responses in living systems.
Collapse
Affiliation(s)
- Mason Song
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University 1550 Orleans Street, Cancer Research Building - II, Rm 416 Baltimore MD 21231 USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University Baltimore MD 21231 USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University Baltimore 21218 USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine, Johns Hopkins University 1550 Orleans Street, Cancer Research Building - II, Rm 416 Baltimore MD 21231 USA
- Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University Baltimore MD 21231 USA
| |
Collapse
|
18
|
Zhang Q, Wang Q, Zheng J, Zhang J, Zhang G, Ying F, Liu D, Wen J, Li Q, Zhao G. Single-cell RNA sequencing of the spleen reveals differences in Salmonella typhimurium infection mechanisms between different chicken breeds. Poult Sci 2024; 104:104669. [PMID: 39793244 DOI: 10.1016/j.psj.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed. Compared to Beijing-You, Cobb showed higher survival rates, lower liver load, and milder spleen damage after Salmonella infection. We characterized chicken spleen CD45+ immune cells by single-cell RNA sequencing and identified 9 distinct cell types among 54,487 cells. In Beijing-You, mono-macrophages expressed higher levels of pro-inflammatory factors, including IL1B, IL6, and M-CSF, after bacterial infection. In Cobb, Tregs exhibited intense inflammatory inhibition and highly expressed CTLA4, LAG3 and other immunosuppressive regulators. In addition, we found complex macrophage phenotypes during bacterial infection, with a tendency in macrophages from pro-inflammatory phenotypes (Mac-IL1B) to anti-inflammatory phenotypes (Mac-C1QC/Mac-MARCO). This study represents the first single-cell transcriptomic analysis of chicken spleen and compares the immune responses of Beijing-You and Cobb after bacterial infection. These findings provide insight into the mechanism of inflammation regulation in different broiler breeds.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qiao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jumei Zheng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jin Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Fan Ying
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
19
|
Zhou H, Menzel L, Baish JW, O'Melia MJ, Darragh LB, Specht E, Effiom DN, Czapla J, Lei PJ, Rajotte JJ, Liu L, Nikmaneshi MR, Razavi MS, Vander Heiden MG, Ubellacker JM, Munn LL, Karam SD, Boland GM, Cohen S, Padera TP. Cancer immunotherapy response persists after lymph node resection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.19.558262. [PMID: 37781599 PMCID: PMC10541098 DOI: 10.1101/2023.09.19.558262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Lymphatic transport facilitates the presentation of cancer antigens in tumor-draining lymph nodes (tdLNs), leading to T cell activation and the generation of systemic antitumor immune surveillance. Surgical removal of LNs to control cancer progression is routine in clinical practice. However, whether removing tdLNs impairs immune checkpoint blockade (ICB) is still controversial. Our analysis demonstrates that melanoma patients remain responsive to PD-1 checkpoint blockade after LN dissection. We were able to recapitulate the persistent response to ICB after complete LN resection in murine melanoma and mammary carcinoma models. Mechanistically, soluble antigen and antigen-carrying migratory dendritic cells are diverted to non-directly tumor draining LNs (non-tdLNs) after tdLN dissection. Consistently, robust ICB responses in patients with head and neck cancer after primary tumor and tdLN resection correlated with the presence of reactive LNs in distant areas. These findings indicate that non-tdLNs sufficiently compensate for the removal of direct tdLNs and sustain the response to ICB.
Collapse
|
20
|
Todd LA, Le Dreff-Kerwin E, Bui-Marinos MP, Dharmasiddhi IPW, Vo NTK, Katzenback BA. Development and use of two Xenopus laevis spleen stromal cell lines to study the role of splenic stromal cells in anuran immune processes. Mol Immunol 2024; 176:96-110. [PMID: 39602982 DOI: 10.1016/j.molimm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
The spleen is an important immune organ in adult Xenopus laevis, supporting the differentiation of B cells and acting as the main peripheral lymphoid organ. Key to these processes are the supporting non-hematopoietic cells, or stromal cells, within the spleen tissue. Despite the importance of the spleen to frog immunity, few frog cell lines originating from spleen tissue have been reported. In this study, we report on the establishment and characterization of two cell lines originating from X. laevis spleen tissue, Xela S5F and Xela S5E. Morphological observations and gene expression profiling suggest that Xela S5F is fibroblast-like and Xela S5E is epithelial-like. Both cell lines express transcripts corresponding to a variety of hematopoietic growth factors, suggesting their potential utility as a feeder cell line to support ex vivo myelopoietic cell differentiation. Xela S5F and Xela S5E produce transcripts for a diversity of pattern recognition receptors including toll-like receptors, scavenger receptors, and cytosolic nucleic acid sensors, suggesting anuran spleen stromal cells may be important cellular sensors of pathogens filtered through the spleen. This idea is supported by the increase in transcript levels for antiviral and proinflammatory genes in both cell lines in response to treatment with the commercially available toll-like receptor ligands, flagellin and poly(I:C). However, despite the ability to sense extracellular synthetic analogues of viral nucleic acids [i.e. poly(I:C)] and susceptibility and permissibility of both cell lines to frog virus 3 (FV3), a large double-stranded DNA virus that infects amphibians, neither cell line upregulates key antiviral or proinflammatory transcripts when challenged with FV3. The establishment of Xela S5F and S5E cell lines expands the current X. laevis invitrome and provides new in vitro cell model systems to investigate the role of splenic stromal cells in anuran immune functions.
Collapse
Affiliation(s)
- Lauren A Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | | | | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | |
Collapse
|
21
|
Calvillo-Rodriguez KM, Rivera-Lazarin AL, Tamez-Guerra R, Martinez-Torres AC, Rodriguez-Padilla C. Splenocytes antitumor cytotoxicity assessment after prophylactic vaccination or drug treatment of tumor-bearing mice. Methods Cell Biol 2024; 191:197-210. [PMID: 39824556 DOI: 10.1016/bs.mcb.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Affiliation(s)
- Kenny Misael Calvillo-Rodriguez
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ana Luisa Rivera-Lazarin
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Reyes Tamez-Guerra
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ana Carolina Martinez-Torres
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Cristina Rodriguez-Padilla
- Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
22
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2024:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
23
|
Zhao J, Zhao Y, Qin H, Ye Y, Zhang L, Ding R, Cao W, Zhang Y, Duan C, Leng H, Li Y, Wang B, Hu L, Liu E, Qu P. Characterization of small RNAs in the spleen of MASH in a non-human primate model. Genomics 2024; 116:110953. [PMID: 39419194 DOI: 10.1016/j.ygeno.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its advanced stage, metabolic dysfunction-associated steatohepatitis (MASH), are increasingly recognized as a global health issue. This study examines the role of small RNAs in the spleen of MASH using a non-human primate model. We performed high-throughput small RNA sequencing on spleen tissues from MASH-primates, revealing significant alterations in the expression of small non-coding RNAs, especially miRNAs. Notably, miR-96, miR-182, miR-183, and miR-122 showed differential expression in MASH spleens. Predictive and validation studies have identified potential target genes, such as PTX3 and NFIX, that were significantly dysregulated in spleens of MASH. These findings characterized small RNAs in spleen of MASH and offer a novel insight for further research for MASH.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yuelei Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Hongyu Qin
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yun Ye
- Central Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Liwei Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Chenjing Duan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Haoze Leng
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi,China
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.
| | - Pengxiang Qu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China; Spring Biological Technology Development Co., Ltd, Fangchenggang, Guangxi 538000, China.
| |
Collapse
|
24
|
Liu HX, Ding LL, Chen YY, Wen SY. Exploring the therapeutic potential of polysaccharide from Portulaca oleracea L.: A review of phytochemistry and immunomodulatory effect. Carbohydr Res 2024; 545:109298. [PMID: 39490030 DOI: 10.1016/j.carres.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Portulaca oleracea L., a plant with both edible and medicinal properties, is traditionally valued for its diuretic, antipyretic, antiseptic, antispasmodic, and anthelmintic functions in folk medicine. P. oleracea polysaccharide (POP), a pivotal bioactive component, has various biological activities. Notably, their immunomodulatory capabilities have emerged as a significant area of research. The extraction, purification, monosaccharide composition, structure characterization, and biological activity of POP have been extensively investigated to identify the active components and to clarify their pharmacological actions and underlying molecular mechanisms. It aims to delineate the pharmacological mechanisms and molecular pathways associated with these polysaccharides, thereby underscoring their therapeutic promise and nutritional significance. Furthermore, the review critically examines the current research landscape of POP, identifying gaps and proposing innovative perspectives to enrich the scientific discourse surrounding these bioactive compounds.
Collapse
Affiliation(s)
- Hai-Xin Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ling-Ling Ding
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
25
|
Almasry Y, Alodhaibi I, Nammor T, Lerman A, Lerman LO, Zhu XY. Kidney injury: the spleno-renal connection and splenic tyrosine kinase. J Nephrol 2024; 37:2151-2160. [PMID: 39388044 DOI: 10.1007/s40620-024-02121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Kidney injury is a major medical burden and one of the most common reasons for hospitalization and poor life quality. Kidney injury can include acute kidney injury, chronic kidney disease, and immune-mediated kidney diseases most of which have no definitive therapy. The spleen is a secondary lymphoid organ in the reticuloendothelial system that plays an important role in protecting the body from various diseases. Notably, spleen tyrosine kinase, a non-receptor tyrosine kinase, is a crucial player that aids in immunity and protection and is highly expressed in the kidney and hematopoietic cells. It has been shown that alterations in spleen tyrosine kinase function or expression could lead to a wide range of diseases and abnormalities. Over the past decade, the role of spleen and spleen tyrosine kinase in multiple kidney diseases has emerged. Evidence suggests that modulating the spleno-renal connection through activation of the cholinergic anti-inflammatory pathway can be a promising strategy for protecting against kidney injury. Imitating the protective function of the spleen through interleukin-10-extracellular vesicles can also be of therapeutic value. In addition, evidence showed that inhibition of the spleen tyrosine kinase leads to amelioration of the kidney injury. However, further exploration and long-term studies are needed to unravel the spleno-renal connection, as well as the efficacy of spleen tyrosine kinase inhibitors, before they can be used as means for treatment of kidney injury.
Collapse
Affiliation(s)
- Yazan Almasry
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55901, USA
- College of Medicine, Alfaisal University, 11543, Riyadh, Saudi Arabia
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, 11543, Riyadh, Saudi Arabia
- Department of Hematology and Oncology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Talah Nammor
- College of Medicine, Alfaisal University, 11543, Riyadh, Saudi Arabia
- Department of Urology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55901, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55901, USA.
| |
Collapse
|
26
|
Wauters AC, Scheerstra JF, van Leent MMT, Teunissen AJP, Priem B, Beldman TJ, Rother N, Duivenvoorden R, Prévot G, Munitz J, Toner YC, Deckers J, van Elsas Y, Mora-Raimundo P, Chen G, Nauta SA, Verschuur AVD, Griffioen AW, Schrijver DP, Anbergen T, Li Y, Wu H, Mason AF, van Stevendaal MHME, Kluza E, Post RAJ, Joosten LAB, Netea MG, Calcagno C, Fayad ZA, van der Meel R, Schroeder A, Abdelmohsen LKEA, Mulder WJM, van Hest JCM. Polymersomes with splenic avidity target red pulp myeloid cells for cancer immunotherapy. NATURE NANOTECHNOLOGY 2024; 19:1735-1744. [PMID: 39085390 PMCID: PMC11567884 DOI: 10.1038/s41565-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Regulating innate immunity is an emerging approach to improve cancer immunotherapy. Such regulation requires engaging myeloid cells by delivering immunomodulatory compounds to hematopoietic organs, including the spleen. Here we present a polymersome-based nanocarrier with splenic avidity and propensity for red pulp myeloid cell uptake. We characterized the in vivo behaviour of four chemically identical yet topologically different polymersomes by in vivo positron emission tomography imaging and innovative flow and mass cytometry techniques. Upon intravenous administration, relatively large and spherical polymersomes accumulated rapidly in the spleen and efficiently targeted myeloid cells in the splenic red pulp. When loaded with β-glucan, intravenously administered polymersomes significantly reduced tumour growth in a mouse melanoma model. We initiated our nanotherapeutic's clinical translation with a biodistribution study in non-human primates, which revealed that the platform's splenic avidity is preserved across species.
Collapse
Affiliation(s)
- Annelies C Wauters
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jari F Scheerstra
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram Priem
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Medical Oncology (NA Angiogenesis Laboratory), Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Thijs J Beldman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geoffrey Prévot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yohana C Toner
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Deckers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yuri van Elsas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Mora-Raimundo
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Gal Chen
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Vera D Verschuur
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arjan W Griffioen
- Department of Medical Oncology (NA Angiogenesis Laboratory), Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - David P Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tom Anbergen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yudong Li
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Alexander F Mason
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Marleen H M E van Stevendaal
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Richard A J Post
- Department of Mathematics and Computer Science, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Avi Schroeder
- The Luis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Willem J M Mulder
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Celik B, Rintz E, Sansanwal N, Khan S, Bigger B, Tomatsu S. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model. Hum Gene Ther 2024; 35:917-937. [PMID: 39446675 DOI: 10.1089/hum.2024.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by a mutation in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) gene resulting in progressive systemic skeletal dysplasia. There is currently no effective treatment available for this skeletal condition. Thus, the development of a new therapy stands as an unmet challenge in reversing or alleviating the progression of the disease. Our research, which could be a game-changer, hypothesizes that ex vivo lentiviral (LV) gene therapy (GT) could produce the supraphysiological level of active GALNS enzyme by hematopoietic stem cells (HSCs) transduced with LVs carrying the native GALNS gene under two different promoters (CBh and COL2A1), impacting bone and cartilage abnormalities in MPS IVA. We conditioned newborn knock-out (Galns-/-) MPS IVA mice with busulfan and intravenously transplanted LV-modified HSCs isolated from the bone marrow of Galns-/- donor mice. Transplanted mice were autopsied at 16 weeks, and tissues were collected to assess the therapeutic efficacy of modified HSCs in MPS IVA mice. Although HSC-LV-CBh-hGALNS provided a higher GALNS enzyme activity in plasma, HSC-LV-COL2A1-hGALNS stably corrected heart and bone abnormalities better under a low level of GALNS enzyme. Our findings suggest that ex vivo LV-GT may potentially treat MPS IVA.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Estera Rintz
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nidhi Sansanwal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Shaukat Khan
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Brian Bigger
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Shunji Tomatsu
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| |
Collapse
|
28
|
Chaudhary R, Azam MA, Dowand B, Singh A, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Mishra V. Chronic stress-mediated dysregulations in inflammatory, immune and oxidative circuitry impairs the therapeutic response of methotrexate in experimental autoimmune disease models. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03529-2. [PMID: 39453502 DOI: 10.1007/s00210-024-03529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Chronic stress is significantly implicated in the worsening of autoimmune disorders, contributing to elevated inflammation and diminished therapeutic efficacy. Here, in this study, we investigated the detrimental impact of an 8-week chronic unpredictable stress (CUS) protocol on the progression of arthritis and psoriasis using collagen-induced arthritis (CIA) and imiquimod (IMQ)-induced psoriasis rat models, respectively. Our objective was to elucidate how prolonged stress exacerbates disease severity and impairs the effectiveness of treatment drug. Following the induction of CIA and IMQ, rats were subjected to an 8-week CUS paradigm designed to simulate chronic stress conditions. Moreover, after 5 weeks of CUS, methotrexate (MTX; 2 mg/kg, administered once weekly for 3 weeks, intraperitoneally) was introduced as a therapeutic intervention. The severity of CUS-induced effects and the therapeutic impairment of MTX in arthritis and psoriasis rats were assessed through pathological examination of joint and epidermal tissues, respectively. Additionally, we measured various pro-inflammatory cytokine levels, including NF-κB (nuclear factor kappa B), IFN-γ (interferon-gamma), TNF-α (tumour necrosis factor alpha), IL (interleukin)-1β, IL-6, IL-17 and IL-23 using enzyme-linked immunosorbent assay (ELISA), analysed immune cells through complete haematological profiling and evaluated oxidative stress markers. Our findings revealed that CUS significantly aggravated the pathological features of both arthritis and psoriasis. Prolonged stress exposure led to heightened inflammatory responses, increased oxidative stress and more severe tissue damage. Moreover, the therapeutic efficacy of MTX was notably reduced in stressed rats compared to non-stressed, underscoring the detrimental effects of chronic stress on treatment outcomes. Taken together, our results emphasize the importance of considering chronic stress as a critical factor in the management of autoimmune diseases.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Mohd Akhtar Azam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Bhavana Dowand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, U.P., India.
| |
Collapse
|
29
|
Ho TL, Ahn SY, Ko EJ. Adjuvant potential of Peyssonnelia caulifera extract on the efficacy of an influenza vaccine in a murine model. Sci Rep 2024; 14:25353. [PMID: 39455811 PMCID: PMC11512024 DOI: 10.1038/s41598-024-76736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Natural adjuvants have recently garnered interest in the field of vaccinology as their immunostimulatory effects. In this study, we aimed to investigate the potential use of Peyssonnelia caulifera (PC), a marine alga, as a natural adjuvant for an inactivated split A/Puerto Rico/8/1934 H1N1 influenza vaccine (sPR8) in a murine model. We administered PC-adjuvanted vaccines to a murine model via intramuscular prime and boost vaccinations, and subsequently analyzed the induced immunological responses, particularly the production of antigen-specific IgG1 and IgG2a antibodies, memory T and B cell responses, and the protective efficacy against a lethal viral infection. PC extract significantly bolstered the vaccine efficacy, demonstrating balanced Th1/Th2 responses, increased memory T and B cell activities, and improved protection against viral infection. Notably, within 3 days post-vaccination, the PC adjuvant stimulated activation markers on dendritic cells (DCs) and macrophages at the inguinal lymph nodes (ILN), emphasizing its immunostimulatory capabilities. Furthermore, the safety profile of PC was confirmed, showing minimal local inflammation and no significant adverse effects post-vaccination. These findings contribute to our understanding of the immunomodulatory properties of natural adjuvants and suggest the promising roles of natural adjuvants in the development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
30
|
Shrestha KR, Kim S, Jo A, Ragothaman M, Yoo SY. In vivo safety evaluation and tracing of arginylglycylaspartic acid-engineered phage nanofiber in murine model. J Mater Chem B 2024; 12:10258-10271. [PMID: 39300937 DOI: 10.1039/d4tb00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The engineered phage YSY184, mimicking the extracellular matrix nanofiber, effectively promotes stem cell differentiation and angiogenesis. This study evaluated its safety in a mouse model, monitoring weight, immunogenicity, spleen immune responses, and macrophage infiltration. Rapid clearance of YSY184 was observed, with peak tissue presence within three hours, significantly reduced by 24 hours, and negligible after one month. No adverse physiological or pathological effects were detected post-administration, affirming YSY184's safety and underscore its potential for therapeutic use, warranting further clinical exploration.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - Sehoon Kim
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - Anna Jo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - Murali Ragothaman
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
31
|
Zhu L, Zhang M, Gao B, Zhang H, Zhang H, Zhang Y, Yu LL. Subchronic Toxicity of Mineral Oil Saturated Hydrocarbons (MOSH) in Relation to Its Carbon Number Range and Gender of Fischer F344 Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39364925 DOI: 10.1021/acs.jafc.4c04669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this work, the paraffin oil was first molecularly distilled into two mineral oil saturated hydrocarbons (MOSH) subfractions with their main carbon number range of C20-30 (84.58%) and C30-50 (89.65%), which were determined using a liquid chromatography-gas chromatography-flame ionization detector (LC-GC-FID) technique. Then, both female and male Fischer 344 (F344) rats were fed with the diets containing one of these two MOSH subfractions at the low (1.5 g/kg) or high dose (15 g/kg) for 6 months. It was found that the exposure of MOSH C20-30 subfraction could result in a significant increase of spleen weight index (4.64 ± 0.18 mg/g for female and 3.79 ± 0.31 mg/g for male rats) (P < 0.05), and irregular shape of white medulla, and the macrophage infiltration in mesenteric lymph node for both female and male rats, especially for the 15 g/kg MOSH C20-30-fed rats. Meanwhile, both MOSH C20-30 and C30-50 subfraction promoted inflammation and oxidative stress and had a negative effect on the immune function in both female and male rats. The metabolomics results further supported these observations, and indicated the down-regulation of cysteine and methionine metabolism, and glutathione metabolism pathway in female and male rats, respectively.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd., Shanghai 200137, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd., Shanghai 200137, China
| | - Hai Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co. Ltd., Shanghai 200137, China
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
32
|
Zhu Y, Liu X, Shi Y, Liu X, Li H, Ru S, Tian H. Prenatal exposure to bisphenol AF causes toxicities in liver, spleen, and kidney tissues of SD rats. Food Chem Toxicol 2024; 192:114939. [PMID: 39151878 DOI: 10.1016/j.fct.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
As a replacement for bisphenol A (BPA), bisphenol AF (BPAF) showed stronger maternal transfer and higher fetal accumulation than BPA. Therefore, concerns should be raised about the health risks of maternal exposure to BPAF during gestation on the offspring. In this study, SD rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to investigate the bioaccumulation and adverse effects in liver, spleen, and kidney tissues of the offspring at weaning period. Bioaccumulation of BPAF in these tissues with concentrations ranging from 1.56 ng/mg (in spleen of males) to 55.44 ng/mg (in liver of females) led to adverse effects at different biological levels, including increased relative weights of spleen and kidneys, histopathological damage in liver, spleen, and kidney, organ functional damage in liver, spleen, and kidney, upregulated expression of genes related to lipid metabolism (in liver), oxidative stress response (in kidney), immunity and inflammatory (in spleen). Furthermore, dysregulated metabolomics was identified in spleen, with 217 differential metabolites screened and 9 KEGG pathways significantly enriched. This study provides a comprehensive insight into the systemic toxicities of prenatal exposure to BPAF in SD rats. Given the broad applications and widespread occurrence of BPAF, its safety should be re-considered.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
33
|
Wang H, Wang Y, Chai Y, Zhang H, Chang Q, Li J, Zhang R, Bao J. Prolonged exposure to a music-enriched environment mitigates acute noise-induced inflammation and apoptosis in the chicken spleen by modulating the Keap-1/Nrf2 and NF-κB pathways. Poult Sci 2024; 103:104100. [PMID: 39094500 PMCID: PMC11345555 DOI: 10.1016/j.psj.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The rise of operational noise as an environmental pollutant for farm animals is an emerging concern. The mechanisms through which music can alleviate oxidative stress, inflammation, and apoptosis induced by noise exposure remain underexplored. This study aims to investigate the alleviating effects and underlying mechanisms of long-term music exposure on noise-induced damage to the chicken spleen. Male Arbor Acres (AA) broilers were divided into four groups: control (C), acute noise stimulation (NS), noise stimulation with music mitigation (NSM), and music only (M). NS and NSM groups were exposed to noise (simulating sudden intensity noise, 115 to 120dB) for 10 minutes daily for a week, starting at 14-days-old. NSM and M groups then received 28 days of 6-hour daily music (Mozart K.448, 60-65 dB). The results showed that noise stimulation significantly activated the Keap-1/Nrf2 and NF-κB signaling pathways. Long-term music intervention has also been demonstrated to successfully mitigate oxidative stress and abnormal apoptosis induced by acute noise stimulation. Microscopic examination of the spleen revealed that acute noise stimulation resulted in an increase in splenic cells, a decrease in lymphocytes, and blurred boundaries between the red and white pulps in the NS group. However, these pathological changes were alleviated in the NSM group following music intervention. Compared with the control group, the NS group exhibited significantly elevated oxidative stress parameters. In contrast, music intervention in the NSM group notably improved antioxidant capacity and partially alleviated morphological abnormalities in the spleen. Additionally, noise stimulation activated the NF-κB pathway, upregulating the downstream genes of the inflammatory factors IL-1β, IL-6, and TNF-α. Noise-induced mitochondrial damage led to apoptosis, as observed by TUNEL staining, along with increased gene and protein expression of Bcl-2, Bax, Cyt-C, Casp-3, Casp-8, and Casp-9. These findings indicate that acute noise exposure can induce splenic damage via oxidative stress, inflammation, and apoptosis by modulating the Keap-1/Nrf2 and NF-κB pathways. Prolonged music stimulation effectively mitigates noise-induced damage, offering a vital experimental foundation for further research on noise pollution's impact on organisms and music's alleviating role.
Collapse
Affiliation(s)
- Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haoran Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qingqing Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
34
|
Ran X, Yan X, Ma G, Liang Z, Zhuang H, Tang X, Chen X, Cao X, Liu X, Huang Y, Wang Y, Zhang X, Luo P, Shen L. Integration of proteomics and metabolomics analysis investigate mechanism of As-induced immune injury in rat spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116913. [PMID: 39208582 DOI: 10.1016/j.ecoenv.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50 mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Collapse
Affiliation(s)
- Xiaoqian Ran
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaolu Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China; Guizhou Ecological Food Innovation Engineering Research Center, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| | - Liming Shen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
35
|
Joo HK, Kim S, Choi E, Jin H, Lee YR, Lee EO, Kim CS, Jeon BH. Heterozygous Apex1 deficiency exacerbates lipopolysaccharide-induced systemic inflammation in a murine model. Free Radic Biol Med 2024; 223:96-108. [PMID: 39067624 DOI: 10.1016/j.freeradbiomed.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
The biological role of apurinic/apyrimidinic endonuclease 1/redox factor-1 (Apex1) in modulating systemic inflammation remains unclear. This study aimed to assess the impact of Apex1 deficiency on systemic inflammation triggered by lipopolysaccharide (LPS) in a murine model. The methods involved transcriptomic analysis and assessments of inflammatory responses in age-matched 8-week-old Apex1+/- and wild-type Apex1+/+ mice, generated using the CRISPR/Cas9 system. Apex1+/- mice displayed no overt changes in body weight, however, Apex1 protein expressions in tissues were significantly reduced compared to wild-type mice. Furthermore, in Apex1+/- mice transcriptomic analysis showed that genes associated with antioxidant pathways were downregulated, and levels of superoxide production, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) were increased. Moreover, hematological analysis showed increased neutrophil levels and a twofold increase in the count of splenic lymphocyte antigen 6 family member G+ (Ly6G+) neutrophils in the Apex1+/- mice compared to those in Apex1+/+ mice. Furthermore, following LPS treatment, the levels of cytokines and chemokines, including interleukin-1β, interleukin-10, tumor necrosis factor-α, and monocyte chemoattractant protein 1, increased in the Apex1+/- mice. The Kaplan-Meier curve showed a significant reduction in the survival rates of Apex1+/- mice treated with LPS compared to those of Apex1+/+ mice. The hepatic and lung injury scores and Ly6G+ neutrophil infiltration levels also increased in Apex1+/- mice after LPS treatment. These results showed that Apex1 deficiency exacerbated the LPS-induced tissue damage in the lung and liver. These findings illustrate that in vivo Apex1 deficiency exacerbates LPS-induced systemic inflammation, tissue damage, and mortality in a murine model, highlighting the crucial role of Apex1 in mitigating inflammatory responses and maintaining a holistic physiological equilibrium.
Collapse
Affiliation(s)
- Hee Kyoung Joo
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Sungmin Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Eunju Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Hao Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Yu-Ran Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Eun-Ok Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Cuk-Seong Kim
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | - Byeong Hwa Jeon
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea; Department of Physiology, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| |
Collapse
|
36
|
Liu Y, Nie X, Yao X, Shou H, Yuan Y, Ge Y, Tong X, Lee HY, Gao X. Developing an erythrocyte‒MHC-I conjugate for cancer treatment. Cell Discov 2024; 10:99. [PMID: 39349449 PMCID: PMC11443136 DOI: 10.1038/s41421-024-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/08/2024] [Indexed: 10/02/2024] Open
Abstract
Mature erythrocytes are known to lack major histocompatibility complex (MHC) proteins. However, the presence of MHC molecules on erythrocytes has been occasionally reported, though without a defined function. In this study, we designed erythrocyte conjugated solely with a fusion protein consisting of an antigenic peptide linked to MHC class I (MHC-I) protein, termed MHC-I‒Ery. The modified erythrocyte, decorated with the peptide derived from human papillomavirus (HPV) 16 oncoprotein E6/E7, effectively activated antigen-specific CD8+ T cells in peripheral blood mononuclear cells (PBMCs) from HPV16+ cervical cancer patients. Additionally, MHC-I‒Ery monotherapy was shown to inhibit antigen-positive tumor growth in mice. This treatment immediately activated CD8+ T cells and reduced suppressive myeloid cells in the spleen, leading to systemic anti-tumor activity. Safety and tolerability evaluations of MHC-I‒Ery in non-human primates further supported its clinical potential. Our results first demonstrated that erythrocytes equipped solely with antigen peptide‒MHC-I complexes can robustly stimulate the immune system, suggesting a novel and promising approach for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Yuehua Liu
- Zhejiang University, School of Basic Medical Science, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoqian Nie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xingyun Yao
- Zhejiang University, School of Basic Medical Science, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huafeng Shou
- Department of Gynecology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Yang Yuan
- Westlake Therapeutics Co., Ltd., Hangzhou, Zhejiang, China
| | - Yun Ge
- Westlake Therapeutics Co., Ltd., Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Department of Hematology, Zhejiang Provincial People's hospital, Hangzhou, Zhejiang, China.
| | - Hsiang-Ying Lee
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Yu JF, Wen Y, Li M. An Active Self-Mitochondria-Targeting Cyanine Immunomodulator for Near-Infrared II Fluorescence Imaging-Guided Synergistic Photodynamic Immunotherapy. Adv Healthc Mater 2024; 13:e2401061. [PMID: 38849128 DOI: 10.1002/adhm.202401061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Photodynamic therapy targeting mitochondria represents a promising therapeutic strategy for fighting diverse types of cancers. However, the currently available photosensitizers (PSs) suffer from insufficient therapeutic potency, limited mitochondria delivery efficiency, and the inability to treat invisible metastatic distal cancers. Herein, an active self-mitochondria-targeting heptapeptide cyanine (HCy) immunomodulator (I2HCy-QAP) is reported for near-infrared II (NIR-II) fluorescence imaging-guided photodynamic immunotherapy of primary and distal metastatic cancers. The I2HCy-QAP is designed by introducing a quaternary ammonium salt with a phenethylamine skeleton (QAP) into the iodinated HCy photosensitizer. The I2HCy-QAP can precisely target mitochondria due to the lipophilic cationic QAP unit, present strong NIR-II fluorescence tail emission, and effectively generate singlet oxygen 1O2 under NIR laser irradiation, thereby inducing mitochondria-targeted damages and eliciting strong systemic immunogenic cell death immune responses. The combination of the I2HCy-QAP-mediated photodynamic immunotherapy with anti-programmed death-1 antibody therapy achieves remarkable therapeutic efficacy against both primary and distal metastatic cancers with significant inhibition of lung metastasis in a triple-negative breast cancer model. This work provides a new concept for designing high-performance NIR emissive cyanine immunomodulators for NIR-II fluorescence-guided photodynamic immunotherapy.
Collapse
Affiliation(s)
- Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
38
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Splenic nerve denervation attenuates depression-like behaviors in Chrna7 knock-out mice via the spleen-gut-brain axis. J Affect Disord 2024; 362:114-125. [PMID: 38944290 DOI: 10.1016/j.jad.2024.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in β-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS The underlying mechanisms remain to be fully understood. CONCLUSIONS Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
39
|
Obisesan AO, Abiodun OO, Ayeni FA. Lactic acid bacteria isolated from women' breast milk and infants' faeces have appreciable immunogenic and probiotic potentials against diarrheagenic E. coli strains. BMC Microbiol 2024; 24:350. [PMID: 39289612 PMCID: PMC11406810 DOI: 10.1186/s12866-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Diarrheal diseases remain the leading cause of high mortality among the infants, particularly in the developing countries; Probiotic intervention for diarrhea has been an ongoing novel approach to diarrheal prevention and treatment. This study aims to characterize immunogenic and probiotic properties of lactic acid bacteria (LAB) isolated from human breast milk and neonates' faeces. The LAB isolates from 16 mothers' breast milk and 13 infants' faeces were screened and identified by 16 S rRNA gene partial sequencing. Their antimicrobial activities against 5 strains of diarrheagenic Escherichia coli were tested. Organic acids production was quantified by HPLC, and antibiotic resistance pattern were determined by VITEK®. Autoaggregation, co-aggregation and hydrophobicity properties were assessed by UV spectrophotometry and immunomodulatory effect was determined in mouse model. Ninety-three LAB of five genera were identified. The most abundant species was Lactiplantibacillus plantarum with inhibition zones ranged from 8.0 to 25.0 ± 1 mm. Lacticaseibacillus rhamnosus A012 had 76.8 mg/mL lactic acid, (the highest concentration), was susceptible to all antibiotics tested. L. plantarum A011 and L. rhamnosus A012 were highly resistance to gastrointestinal conditions. L. rhamnosus A012 produced hydrophobicity of 25.01% (n-hexadecane), 15.4% (xylene) and its autoaggregation was 32.52%. L. rhamnosus A012 and L. plantarum A011 exert immunomodulatory effects on the cyclophosphamide-treated mice by upregulating anti-inflammatory cytokine and downregulating proinflammatory cytokines. Lactobacillus sp. demonstrated good probiotic and immunomodulatory properties. Further works are ongoing on the practical use of the strains.
Collapse
Affiliation(s)
- Abiola O Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Nigeria
| | - Oyindamola O Abiodun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Funmilola A Ayeni
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA.
| |
Collapse
|
40
|
Chakraborty A, Bandyopadhaya A, Singh VK, Kovacic F, Cha S, Oldham WM, Tzika AA, Rahme LG. The bacterial quorum sensing signal 2'-aminoacetophenone rewires immune cell bioenergetics through the Ppargc1a/Esrra axis to mediate tolerance to infection. eLife 2024; 13:RP97568. [PMID: 39269443 PMCID: PMC11398867 DOI: 10.7554/elife.97568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
How bacterial pathogens exploit host metabolism to promote immune tolerance and persist in infected hosts remains elusive. To achieve this, we show that Pseudomonas aeruginosa (PA), a recalcitrant pathogen, utilizes the quorum sensing (QS) signal 2'-aminoacetophenone (2-AA). Here, we unveil how 2-AA-driven immune tolerization causes distinct metabolic perturbations in murine macrophages' mitochondrial respiration and bioenergetics. We present evidence indicating that these effects stem from decreased pyruvate transport into mitochondria. This reduction is attributed to decreased expression of the mitochondrial pyruvate carrier (Mpc1), which is mediated by diminished expression and nuclear presence of its transcriptional regulator, estrogen-related nuclear receptor alpha (Esrra). Consequently, Esrra exhibits weakened binding to the Mpc1 promoter. This outcome arises from the impaired interaction between Esrra and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a). Ultimately, this cascade results in diminished pyruvate influx into mitochondria and, consequently reduced ATP production in tolerized murine and human macrophages. Exogenously added ATP in infected macrophages restores the transcript levels of Mpc1 and Esrra and enhances cytokine production and intracellular bacterial clearance. Consistent with the in vitro findings, murine infection studies corroborate the 2-AA-mediated long-lasting decrease in ATP and acetyl-CoA and its association with PA persistence, further supporting this QS signaling molecule as the culprit of the host bioenergetic alterations and PA persistence. These findings unveil 2-AA as a modulator of cellular immunometabolism and reveal an unprecedented mechanism of host tolerance to infection involving the Ppargc1a/Esrra axis in its influence on Mpc1/OXPHOS-dependent energy production and PA clearance. These paradigmatic findings pave the way for developing treatments to bolster host resilience to pathogen-induced damage. Given that QS is a common characteristic of prokaryotes, it is likely that 2-AA-like molecules with similar functions may be present in other pathogens.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
| | - Vijay K Singh
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
| | - Filip Kovacic
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Institute of Molecular Enzyme Technology, Heinrich Heine University DüsseldorfJülichGermany
| | - Sujin Cha
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
| | - William M Oldham
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - A Aria Tzika
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
41
|
Strosahl J, Ye K, Pazdro R. Novel insights into the pleiotropic health effects of growth differentiation factor 11 gained from genome-wide association studies in population biobanks. BMC Genomics 2024; 25:837. [PMID: 39237910 PMCID: PMC11378601 DOI: 10.1186/s12864-024-10710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β (TGF-β) superfamily that has gained considerable attention over the last decade for its observed ability to reverse age-related deterioration of multiple tissues, including the heart. Yet as many researchers have struggled to confirm the cardioprotective and anti-aging effects of GDF11, the topic has grown increasingly controversial, and the field has reached an impasse. We postulated that a clearer understanding of GDF11 could be gained by investigating its health effects at the population level. METHODS AND RESULTS We employed a comprehensive strategy to interrogate results from genome-wide association studies in population Biobanks. Interestingly, phenome-wide association studies (PheWAS) of GDF11 tissue-specific cis-eQTLs revealed associations with asthma, immune function, lung function, and thyroid phenotypes. Furthermore, PheWAS of GDF11 genetic variants confirmed these results, revealing similar associations with asthma, immune function, lung function, and thyroid health. To complement these findings, we mined results from transcriptome-wide association studies, which uncovered associations between predicted tissue-specific GDF11 expression and the same health effects identified from PheWAS analyses. CONCLUSIONS In this study, we report novel relationships between GDF11 and disease, namely asthma and hypothyroidism, in contrast to its formerly assumed role as a rejuvenating factor in basic aging and cardiovascular health. We propose that these associations are mediated through the involvement of GDF11 in inflammatory signaling pathways. Taken together, these findings provide new insights into the health effects of GDF11 at the population level and warrant future studies investigating the role of GDF11 in these specific health conditions.
Collapse
Affiliation(s)
- Jessica Strosahl
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, 305 Sanford Drive, Athens, GA, 30602, USA.
| |
Collapse
|
42
|
Wixler V, Zaytsev IZ, Boergeling Y, Ludwig S. The anti-inflammatory and tolerogenic potential of small spleen peptides. Front Immunol 2024; 15:1449657. [PMID: 39286259 PMCID: PMC11402738 DOI: 10.3389/fimmu.2024.1449657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Maintaining peripheral immune tolerance and preventing harmful autoimmune reactions is a fundamental task of the immune system. However, these essential functions are significantly compromised during autoimmune disorders, creating a major challenge in treating these conditions. In this context, we provide an overview of research on small spleen polypeptides (SSPs) that naturally regulate peripheral immune tolerance. Alongside outlining the observed effects of SSPs, we summarize here the findings on the cellular and molecular mechanisms that underlie their regulatory impact. Specifically, SSPs have demonstrated remarkable effectiveness in halting the progression of developing or established autoimmune disorders like psoriasis or arthritis in animal models. They primarily target dendritic cells (DCs), swiftly prompting the production of extracellular ATP, which is then degraded and sensed by adenosine receptors. This process triggers the mTOR signaling cascade, similar to powerful immune triggers, but instead of a rapid and intense reaction, it leads to a moderate yet significant activation of the mTOR signaling cascade. This induces a tolerogenic state in dendritic cells, ultimately leading to the generation of Foxp3+ immunosuppressor Treg cells. In addition, SSPs may indirectly attenuate the autoimmune response by reducing extracellular ATP synthesis in non-immune cells, such as endothelial cells, when exposed to elevated levels of proinflammatory cytokines. SSPs thus have the potential to contribute to the restoration of peripheral immune tolerance and may offer valuable therapeutic benefits in treating autoimmune diseases.
Collapse
Affiliation(s)
- Viktor Wixler
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, Westfaelische Wilhelms-University, Muenster, Germany
| | - Igor Z Zaytsev
- Institute of Pharmaceutical Technologies, Moscow, Russia
| | - Yvonne Boergeling
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, Westfaelische Wilhelms-University, Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, Westfaelische Wilhelms-University, Muenster, Germany
| |
Collapse
|
43
|
Kim SJ, Park HB, An EK, Ryu D, Zhang W, Pack CG, Kim H, Kwak M, Im W, Ryu JH, Lee PCW, Jin JO. Lipid-coated gold nanorods for photoimmunotherapy of primary breast cancer and the prevention of metastasis. J Control Release 2024; 373:105-116. [PMID: 38992622 DOI: 10.1016/j.jconrel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.
Collapse
Affiliation(s)
- So-Jung Kim
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Hae-Bin Park
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Eun-Koung An
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Dayoung Ryu
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200437, China
| | - Chan-Gi Pack
- Department of Biomedical Engineering, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - HyunCheol Kim
- Department of Chemical and Biomolecular Engineering Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Peter C W Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Department of Microbiology, Brain Korea 21 Project, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
44
|
Zhao Z, Zhou Y, Yao X, Ge S, Sang S, Yang Y, Zhang B, Deng S. Prognostic significance of diffuse increased fluorine-18-fluorodeoxyglucose ( 18F-FDG) uptake within the reticuloendothelial system in lymphoma patients. Quant Imaging Med Surg 2024; 14:6374-6385. [PMID: 39281118 PMCID: PMC11400674 DOI: 10.21037/qims-24-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/26/2024] [Indexed: 09/18/2024]
Abstract
Background As constituents of the reticuloendothelial system, the spleen and bone marrow (BM) have been recognized as integral components of the systemic inflammatory response in cancer contexts, thereby serving as predictive indicators for assessing cancer prognosis. Fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) has attained widespread utilization for staging, assessing treatment response, and prognostication in lymphoma patients. Several investigations have proposed that focal increased 18F-FDG uptake in the BM or spleen may correlate with malignant involvement in lymphoma. However, scant data exist regarding the implications of diffuse BM and splenic uptake. This study aimed to explore the relationships between metabolic parameters of the spleen and BM on 18F-FDG PET/CT and inflammatory markers, and to assess their prognostic value in patients with lymphoma. Methods A retrospective analysis was conducted on 118 patients newly diagnosed with malignant lymphoma, who underwent 18F-FDG PET/CT and exhibited diffuse increased splenic or BM uptake in 18F-FDG PET/CT imaging. The mean standardized uptake value (SUV) of the spleen, BM, and liver was calculated. The association between metabolic variables and systemic inflammatory markers was investigated, and the prognostic significance of clinicopathological and PET parameters was assessed using overall survival (OS) and progression-free survival (PFS). Results A statistically significant correlation was found between the spleen-to-liver SUV ratio (SLR) and inflammatory markers such as C-reactive protein (r=0.264, P=0.007) and platelet-to-lymphocyte ratio (r=0.227, P=0.021). No significant correlation was observed between BM-to-liver SUV ratio (BLR) and hematologic parameters, while concordance analysis revealed a fair agreement between BLR and bone marrow biopsy (BMB) (Cohen's Kappa-κ =0.271, P=0.002). In patients with aggressive non-Hodgkin lymphoma, both SLR [P=0.017, HR 2.715, 95% confidence interval (CI): 0.875-8.428] and BLR (P=0.044, HR 0.795, 95% CI: 0.348-1.813) were significantly linked to OS, while SLR (P=0.019, HR 2.223, 95% CI: 1.139-4.342) emerged as a significant prognostic factor for PFS. Conclusions This study highlighted that diffuse increased splenic 18F-FDG uptake in lymphoma patients was closely associated with inflammation, whereas diffuse BM uptake was likely attributable to BM infiltration rather than inflammatory changes. Furthermore, both parameters held promise as prognostic indicators for patients with aggressive lymphoma.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yeye Zhou
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yao
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shushan Ge
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Shibiao Sang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
- Department of Nuclear Medicine, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengming Deng
- Department of Nuclear Medicine, the First Affiliated Hospital of Soochow University, Suzhou, China
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
45
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
46
|
Li L, Li J, Li W, Ma Y, Li S. Spleen derived monocytes regulate pulmonary vascular permeability in Hepatopulmonary syndrome through the OSM-FGF/FGFR1 signaling. Transl Res 2024; 271:93-104. [PMID: 38797433 DOI: 10.1016/j.trsl.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary complication in the advanced stage of liver disease. The occurrence of pulmonary edema in HPS patients is life-threatening. Increased pulmonary vascular permeability is an important mechanism leading to pulmonary edema, and endothelial glycocalyx (EG) is a barrier that maintains stable vascular permeability. However, in HPS, whether the pulmonary vascular EG changes and its regulatory mechanism are still unclear. Spleen derived monocytes are involved in the pathogenesis of HPS. However, whether they regulate the pulmonary vascular permeability in HPS patients or rats and what is the mechanism is still unclear. Healthy volunteers and HPS patients with splenectomy or not were enrolled in this study. We found that the respiration of HPS patients was significantly improved in response to splenectomy, while the EG degradation and pulmonary edema were aggravated. In addition, HPS patients expressed higher levels of oncostatin M (OSM) and fibroblast growth factor (FGF). Subsequently, the co-culture system of monocytes and human umbilical vein endothelial cells (HUVECs) was constructed. It was found that monocytes secreted OSM and activated the FGF/FGFR1 signaling pathway in HUVECs. Then, an HPS rat model was constructed by common bile duct ligation (CBDL) for in vivo verification. HPS rats were intravenously injected with OSM recombinant protein and/or TNF-α into the rats via tail vein 30 min before CBDL. The results showed that the respiration of HPS rats was improved after splenectomy, while the degradation of EG in pulmonary vessels and vascular permeability were increased, and pulmonary edema was aggravated. Moreover, the expression of OSM and FGF was upregulated in HPS rats, while both were downregulated after splenectomy. Intravenous injection of exogenous OSM eliminated the effect of splenectomy on FGF and improved EG degradation. It can be seen that during HPS, spleen-derived monocytes secrete OSM to promote pulmonary vascular EG remodeling by activating the FGF/FGFR1 pathway, thereby maintaining stable vascular permeability, and diminishing pulmonary edema. This study provides a promising therapeutic target for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University.
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Wendeng Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
47
|
Ismahil MA, Zhou G, Gao M, Bansal SS, Patel B, Limdi N, Xie M, Antipenko S, Rokosh G, Hamid T, Prabhu SD. Splenic CD169 + Tim4 + Marginal Metallophilic Macrophages Are Essential for Wound Healing After Myocardial Infarction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.09.24311769. [PMID: 39211861 PMCID: PMC11361232 DOI: 10.1101/2024.08.09.24311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fidelity of wound healing after myocardial infarction (MI) is an important determinant of subsequent adverse cardiac remodeling and failure. Macrophages derived from infiltrating Ly6C hi blood monocytes are a key component of this healing response; however, the importance of other macrophage populations is unclear. Here, using a variety of in vivo murine models and orthogonal approaches, including surgical myocardial infarction, splenectomy, parabiosis, cell adoptive transfer, lineage tracing and cell tracking, RNA sequencing, and functional characterization, we establish in mice an essential role for splenic CD169 + Tim4 + marginal metallophilic macrophages (MMMs) in post-MI wound healing. Splenic CD169 + Tim4 + MMMs circulate in blood as Ly6C low cells expressing macrophage markers and help populate CD169 + Tim4 + CCR2 - LYVE1 low macrophages in the naïve heart. After acute MI, splenic MMMs augment phagocytosis, CCR3 and CCR4 expression, and robustly mobilize to the heart, resulting in marked expansion of cardiac CD169 + Tim4 + LyVE1 low macrophages with an immunomodulatory and pro-resolving gene signature. These macrophages are obligatory for apoptotic neutrophil clearance, suppression of inflammation, and induction of a reparative macrophage phenotype in the infarcted heart. Splenic MMMs are both necessary and sufficient for post-MI wound healing, and limit late pathological remodeling. Liver X receptor-α agonist-induced expansion of the splenic marginal zone and MMMs during acute MI alleviates inflammation and improves short- and long-term cardiac remodeling. Finally, humans with acute ST-elevation MI also exhibit expansion of circulating CD169 + Tim4 + macrophages. We conclude that splenic CD169 + Tim4 + MMMs are required for pro-resolving and reparative responses after MI and can be manipulated for therapeutic benefit to limit long-term heart failure. CLINICAL PERSPECTIVE What is new?: We establish for the first time that metallophilic marginal macrophages (MMMs) from the spleen, expressing the markers CD169 and Tim4, circulate in blood and traffic to the heart to help maintain the CD169 + Tim4 + CCR2 - LYVE1 low macrophage population in the heart. After acute myocardial infarction, splenic MMMs augment cardiac trafficking in response to chemotactic signals, resulting in expansion of CD169 + Tim4 + macrophages in the heart that play an essential role in post-MI efferocytosis, wound healing and repair while limiting longer term adverse cardiac remodeling. Analogous to mice, humans also exhibit circulating CD169 + Tim4 + macrophages in the blood that expand after acute ST segment elevation MI. What are the clinical implications?: This study highlights the importance of the cardiosplenic axis in acute MI, and the splenic marginal zone, in determining the course and outcome of post-MI LV remodeling.Pharmacological expansion of splenic marginal zone macrophages alleviated post-MI adverse LV remodeling and inflammation, suggesting that splenic modulation is a potential translational therapeutic approach for limiting post-MI inflammation and improving heart repair.
Collapse
|
48
|
Guenther MC, Borowicz PP, Hirchert MR, Semanchik PL, Simons JL, Fridley J, White-Springer SH, Hammer CJ. Identifying the immunoglobulin G transporter in equine tissues: A look at the neonatal Fc receptor. J Equine Vet Sci 2024; 139:105131. [PMID: 38879095 DOI: 10.1016/j.jevs.2024.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The neonatal Fc receptor (FcRn) is the receptor responsible for bidirectional transport of immunoglobulin G (IgG) across cells, maintenance of IgG levels in serum, and assisting with antigen presentation. Unfortunately, little is known about FcRn in horses. Therefore, the objective of this study was to provide fundamental information regarding the location of FcRn in equine tissues. Tissues were collected from six horses of mixed breed, age, and sex immediately following euthanasia. Sampling locations included the respiratory tract, gastrointestinal tract (GIT), other visceral organs, cornea, and synovial membrane of the stifle and carpal joints. Tissues for histological analysis were fixed, cross sectioned, and stained for FcRn. Areas of interest were captured and analyzed with data represented as relative fluorescence (RF) to indicate FcRn abundance. Tissues for qPCR analysis were placed in RNAlater and relative quantification (RQ) of FcRn transcripts (FCGRT) was calculated using the 2-ΔΔCT method, normalized to the geometric mean of three reference genes (ACTB, GADPH, HPRT1). Data were analyzed using the general linear model procedure of SAS. Abundance of FcRn differed between tissue types by immunofluorescence and qPCR analysis (P < 0.01). Joint synovium and respiratory tract tissues had the highest RF, GIT tissues expressed moderate RF, and other visceral organs had the lowest RF. Conversely, liver and kidney tissues had the highest RQ while the stomach and cornea had the lowest RQ. These data lay the foundation for future studies regarding FcRn and IgG in horses and their roles in disease prevention and treatment.
Collapse
Affiliation(s)
- M C Guenther
- Department of Animal Sciences, North Dakota State University, PO Box 6050, NDSU Dept 7630 58108-6050, Fargo, ND, USA
| | - P P Borowicz
- Department of Animal Sciences, North Dakota State University, PO Box 6050, NDSU Dept 7630 58108-6050, Fargo, ND, USA
| | - M R Hirchert
- Department of Animal Sciences, North Dakota State University, PO Box 6050, NDSU Dept 7630 58108-6050, Fargo, ND, USA
| | - P L Semanchik
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, Room 249D Kleberg, 2471 TAMU, 77843-2471, College Station, TX, USA
| | - J L Simons
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, Room 249D Kleberg, 2471 TAMU, 77843-2471, College Station, TX, USA
| | - J Fridley
- Department of Large Animal Clinical Sciences, Texas A&M University, Veterinary Large Animal Hospital, 500 Raymond Stotzer Parkway, 4475 TAMU, College Station, TX 77843, USA
| | - S H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, Room 249D Kleberg, 2471 TAMU, 77843-2471, College Station, TX, USA; Department of Kinesiology and Sport Management, Texas A&M University, Room 309 Gilchrist, 2929 Research Parkway 77843-4243, College Station, TX, USA
| | - C J Hammer
- Department of Animal Sciences, North Dakota State University, PO Box 6050, NDSU Dept 7630 58108-6050, Fargo, ND, USA.
| |
Collapse
|
49
|
Shane DX, Konovalova DM, Rajendran H, Yuan SY, Ma Y. Glucocorticoids impair T lymphopoiesis after myocardial infarction. Am J Physiol Heart Circ Physiol 2024; 327:H533-H544. [PMID: 38995212 PMCID: PMC11442026 DOI: 10.1152/ajpheart.00195.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
The thymus, where T lymphocytes develop and mature, is sensitive to insults such as tissue ischemia or injury. The insults can cause thymic atrophy and compromise T-cell development, potentially impairing adaptive immunity. The objective of this study was to investigate whether myocardial infarction (MI) induces thymic injury to impair T lymphopoiesis and to uncover the underlying mechanisms. When compared with sham controls, MI mice at day 7 post-MI exhibited smaller thymus, lower cellularity, as well as less thymocytes at different developmental stages, indicative of T-lymphopoiesis impairment following MI. Accordingly, the spleen of MI mice has less T cells and recent thymic emigrants (RTEs), implying that the thymus of MI mice releases fewer mature thymocytes than sham controls. Interestingly, the secretory function of splenic T cells was not affected by MI. Further experiments showed that the reduction of thymocytes in MI mice was due to increased thymocyte apoptosis. Removal of adrenal glands by adrenalectomy (ADX) prevented MI-induced thymic injury and dysfunction, whereas corticosterone supplementation in ADX + MI mice reinduced thymic injury and dysfunction, indicating that glucocorticoids mediate thymic damage triggered by MI. Eosinophils play essential roles in thymic regeneration postirradiation, and eosinophil-deficient mice exhibit impaired thymic recovery after sublethal irradiation. Interestingly, the thymus was fully regenerated in both wild-type and eosinophil-deficient mice at day 14 post-MI, suggesting that eosinophils are not critical for thymus regeneration post-MI. In conclusion, our study demonstrates that MI-induced glucocorticoids trigger thymocyte apoptosis and impair T lymphopoiesis, resulting in less mature thymocyte release to the spleen.NEW & NOTEWORTHY The thymus is essential for maintaining whole body T-cell output. Thymic injury can adversely affect T lymphopoiesis and T-cell immune response. This study demonstrates that MI induces thymocyte apoptosis and compromises T lymphopoiesis, resulting in fewer releases of mature thymocytes to the spleen. This process is mediated by glucocorticoids secreted by adrenal glands. Therefore, targeting glucocorticoids represents a novel approach to attenuate post-MI thymic injury.
Collapse
Affiliation(s)
- Danielle X Shane
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Daria M Konovalova
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Harishkumar Rajendran
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, United States
| |
Collapse
|
50
|
Wang Z, Shi H, Silveira PA, Mithieux SM, Wong WC, Liu L, Pham NTH, Hawkett BS, Wang Y, Weiss AS. Tropoelastin modulates systemic and local tissue responses to enhance wound healing. Acta Biomater 2024; 184:54-67. [PMID: 38871204 DOI: 10.1016/j.actbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Huaikai Shi
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Asbestos and Dust Disease Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Pablo A Silveira
- Dendritic Cell Group, ANZAC Research Institute, Concord Hospital, Sydney, NSW 2139, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Wai Cheng Wong
- Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia
| | - Nguyen T H Pham
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Brian S Hawkett
- Key Centre for Polymers and Colloids, School of Chemistry, the University of Sydney, NSW 2006, Australia
| | - Yiwei Wang
- Burns Research and Reconstructive Surgery, Anzac Research Institute, NSW 2139, Australia; Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Anthony S Weiss
- School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia; Charles Perkins Centre, the University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, the University of Sydney, NSW 2006, Australia.
| |
Collapse
|