1
|
Lo WL, Huseby ES. The partitioning of TCR repertoires by thymic selection. J Exp Med 2024; 221:e20230897. [PMID: 39167074 PMCID: PMC11338286 DOI: 10.1084/jem.20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
αβ T cells are critical components of the adaptive immune system; they maintain tissue and immune homeostasis during health, provide sterilizing immunity after pathogen infection, and are capable of eliminating transformed tumor cells. Fundamental to these distinct functions is the ligand specificity of the unique antigen receptor expressed on each mature T cell (TCR), which endows lymphocytes with the ability to behave in a cell-autonomous, disease context-specific manner. Clone-specific behavioral properties are initially established during T cell development when thymocytes use TCR recognition of major histocompatibility complex (MHC) and MHC-like ligands to instruct survival versus death and to differentiate into a plethora of inflammatory and regulatory T cell lineages. Here, we review the ligand specificity of the preselection thymocyte repertoire and argue that developmental stage-specific alterations in TCR signaling control cross-reactivity and foreign versus self-specificity of T cell sublineages.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Koncz B, Balogh GM, Manczinger M. A journey to your self: The vague definition of immune self and its practical implications. Proc Natl Acad Sci U S A 2024; 121:e2309674121. [PMID: 38722806 PMCID: PMC11161755 DOI: 10.1073/pnas.2309674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
The identification of immunogenic peptides has become essential in an increasing number of fields in immunology, ranging from tumor immunotherapy to vaccine development. The nature of the adaptive immune response is shaped by the similarity between foreign and self-protein sequences, a concept extensively applied in numerous studies. Can we precisely define the degree of similarity to self? Furthermore, do we accurately define immune self? In the current work, we aim to unravel the conceptual and mechanistic vagueness hindering the assessment of self-similarity. Accordingly, we demonstrate the remarkably low consistency among commonly employed measures and highlight potential avenues for future research.
Collapse
Affiliation(s)
- Balázs Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| | - Gergő Mihály Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| | - Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| |
Collapse
|
3
|
Jamaleddine H, Rogers D, Perreault G, Postat J, Patel D, Mandl JN, Khadra A. Chronic infection control relies on T cells with lower foreign antigen binding strength generated by N-nucleotide diversity. PLoS Biol 2024; 22:e3002465. [PMID: 38300945 PMCID: PMC10833529 DOI: 10.1371/journal.pbio.3002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
The breadth of pathogens to which T cells can respond is determined by the T cell receptors (TCRs) present in an individual's repertoire. Although more than 90% of the sequence diversity among TCRs is generated by terminal deoxynucleotidyl transferase (TdT)-mediated N-nucleotide addition during V(D)J recombination, the benefit of TdT-altered TCRs remains unclear. Here, we computationally and experimentally investigated whether TCRs with higher N-nucleotide diversity via TdT make distinct contributions to acute or chronic pathogen control specifically through the inclusion of TCRs with lower antigen binding strengths (i.e., lower reactivity to peptide-major histocompatibility complex (pMHC)). When T cells with high pMHC reactivity have a greater propensity to become functionally exhausted than those of low pMHC reactivity, our computational model predicts a shift toward T cells with low pMHC reactivity over time during chronic, but not acute, infections. This TCR-affinity shift is critical, as the elimination of T cells with lower pMHC reactivity in silico substantially increased the time to clear a chronic infection, while acute infection control remained largely unchanged. Corroborating an affinity-centric benefit for TCR diversification via TdT, we found evidence that TdT-deficient TCR repertoires possess fewer T cells with weaker pMHC binding strengths in vivo and showed that TdT-deficient mice infected with a chronic, but not an acute, viral pathogen led to protracted viral clearance. In contrast, in the case of a chronic fungal pathogen where T cells fail to clear the infection, both our computational model and experimental data showed that TdT-diversified TCR repertoires conferred no additional protection to the hosts. Taken together, our in silico and in vivo data suggest that TdT-mediated TCR diversity is of particular benefit for the eventual resolution of prolonged pathogen replication through the inclusion of TCRs with lower foreign antigen binding strengths.
Collapse
Affiliation(s)
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Geneviève Perreault
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Jérémy Postat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Dhanesh Patel
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
| | - Judith N. Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Textor J, Buytenhuijs F, Rogers D, Gauthier ÈM, Sultan S, Wortel IMN, Kalies K, Fähnrich A, Pagel R, Melichar HJ, Westermann J, Mandl JN. Machine learning analysis of the T cell receptor repertoire identifies sequence features of self-reactivity. Cell Syst 2023; 14:1059-1073.e5. [PMID: 38061355 DOI: 10.1016/j.cels.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The T cell receptor (TCR) determines specificity and affinity for both foreign and self-peptides presented by the major histocompatibility complex (MHC). Although the strength of TCR interactions with self-pMHC impacts T cell function, it has been challenging to identify TCR sequence features that predict T cell fate. To discern patterns distinguishing TCRs from naive CD4+ T cells with low versus high self-reactivity, we used data from 42 mice to train a machine learning (ML) algorithm that identifies population-level differences between TCRβ sequence sets. This approach revealed that weakly self-reactive T cell populations were enriched for longer CDR3β regions and acidic amino acids. We tested our ML predictions of self-reactivity using retrogenic mice with fixed TCRβ sequences. Extrapolating our analyses to independent datasets, we predicted high self-reactivity for regulatory T cells and slightly reduced self-reactivity for T cells responding to chronic infections. Our analyses suggest a potential trade-off between TCR repertoire diversity and self-reactivity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Johannes Textor
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands.
| | - Franka Buytenhuijs
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands
| | - Dakota Rogers
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Microbiology, Infectious Diseases, and Immunology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shabaz Sultan
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Inge M N Wortel
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, the Netherlands; Medical BioSciences, Radboudumc, Nijmegen 6525 GA, the Netherlands
| | - Kathrin Kalies
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Anke Fähnrich
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - René Pagel
- Institut für Anatomie, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, Montréal, QC H1T 2M4, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Judith N Mandl
- Department of Physiology, McGill University, Montreal, QC H3G 0B1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 1A3, Canada; McGill Research Centre on Complex Traits, McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
5
|
Forsdyke DR. Aggregation-prone peptides from within a non-self-protein homoaggregate are preferred for MHC association: Historical overview. Scand J Immunol 2023; 98:e13306. [PMID: 38441340 DOI: 10.1111/sji.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 03/07/2024]
Abstract
New technologies assist re-evaluation of hypotheses on generation of immune cell repertoires and distinctions of self from non-self. Findings include positive correlations between peptide propensities to aggregate and their binding to major histocompatibility complex (MHC) proteins. This recalls the hypothesis that foreign proteins may homoaggregate in host cytosols prior to releasing their peptides (p) to form pMHC complexes. Clues to this included aggregation-related phenomena associated with infections (rouleaux formation, pyrexia, certain brain diseases). By virtue of 'promiscuous' gene expression by thymic presenting cells - perhaps adapted from earlier evolving gonadal mechanisms - developing T cells monitor surface pMHC clusterings. This evaluates intracellular concentrations of the corresponding proteins, and hence, following Burnet's two signal principle, degrees of self-reactivity. After positive selection in the thymic cortex for reactivity with 'near-self', high-level pMHC clustering suffices in the medulla for negatively selection. Following Burnet's principle, in the periphery low-level clustering suffices for T cell stimulation and high-level clustering again provokes negative selection (immunological tolerance). For evolving intracellular pathogens, fine-tuned polymorphisms of their host species have limited to 'near-self' some mimicking adaptations. It is proposed that while entire pathogen proteins may have evolved to minimize their aggregability, the greater aggregability of their peptides remains partially hidden within. Two-step proofreading mechanisms in prospective hosts select proteins containing aggregable peptide for the generation of pMHC clusters at the surface of presenting cells. Through mutations, some proteins of pathogens and cancer cells tend to converge towards the host 'near-self' that its T cells have auditioned to address.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Liman N, Park JH. Markers and makers of NKT17 cells. Exp Mol Med 2023; 55:1090-1098. [PMID: 37258582 PMCID: PMC10317953 DOI: 10.1038/s12276-023-01015-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/02/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are thymus-generated innate-like αβ T cells that undergo terminal differentiation in the thymus. Such a developmental pathway differs from that of conventional αβ T cells, which are generated in the thymus but complete their functional maturation in peripheral tissues. Multiple subsets of iNKT cells have been described, among which IL-17-producing iNKT cells are commonly referred to as NKT17 cells. IL-17 is considered a proinflammatory cytokine that can play both protective and pathogenic roles and has been implicated as a key regulatory factor in many disease settings. Akin to other iNKT subsets, NKT17 cells acquire their effector function during thymic development. However, the cellular mechanisms that drive NKT17 subset specification, and how iNKT cells in general acquire their effector function prior to antigen encounter, remain largely unknown. Considering that all iNKT cells express the canonical Vα14-Jα18 TCRα chain and all iNKT subsets display the same ligand specificity, i.e., glycolipid antigens in the context of the nonclassical MHC-I molecule CD1d, the conundrum is explaining how thymic NKT17 cell specification is determined. Mapping of the molecular circuitry of NKT17 cell differentiation, combined with the discovery of markers that identify NKT17 cells, has provided new insights into the developmental pathway of NKT17 cells. The current review aims to highlight recent advances in our understanding of thymic NKT17 cell development and to place these findings in the larger context of iNKT subset specification and differentiation.
Collapse
Affiliation(s)
- Nurcin Liman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
This S, Rogers D, Mallet Gauthier È, Mandl JN, Melichar HJ. What's self got to do with it: Sources of heterogeneity among naive T cells. Semin Immunol 2023; 65:101702. [PMID: 36463711 DOI: 10.1016/j.smim.2022.101702] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Dakota Rogers
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Ève Mallet Gauthier
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada.
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
8
|
Qian H, Beltran AS. Mesoscience in cell biology and cancer research. CANCER INNOVATION 2022; 1:271-284. [PMID: 38089088 PMCID: PMC10686186 DOI: 10.1002/cai2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2024]
Abstract
Mesoscale characteristics and their interdimensional correlation are the focus of contemporary interdisciplinary research. Mesoscience is a discipline that has the potential to radically update the existing knowledge structure, which differs from the conventional unit-scale and system-scale research models, revealing a previously untouchable area for scientific research. Integrative biology research aims to dissect the complex problems of life systems by conducting comprehensive research and integrating various disciplines from all biological levels of the living organism. However, the mesoscientific issues between different research units are neglected and challenging. Mesoscale research in biology requires the integration of research theories and methods from other disciplines (mathematics, physics, engineering, and even visual imaging) to investigate theoretical and frontier questions of biological processes through experiments, computations, and modeling. We reviewed integrative paradigms and methods for the biological mesoscale problems (focusing on oncology research) and prospected the potential of their multiple dimensions and upcoming challenges. We expect to establish an interactive and collaborative theoretical platform for further expanding the depth and width of our understanding on the nature of biology.
Collapse
Affiliation(s)
- Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Adriana Sujey Beltran
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
9
|
Tagliamonte M, Buonaguro L. The impact of antigenic molecular mimicry on anti-cancer T-cell immune response. Front Oncol 2022; 12:1009247. [PMID: 36330482 PMCID: PMC9623278 DOI: 10.3389/fonc.2022.1009247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals are exposed to intracellular pathogens (i.e. viruses and intracellular bacteria) and intestinal microbiota, collectively microorganisms (MOs), which enter the body during the host’s lifetime. Altogether, MOs are a natural source of non-self antigens (MoAs) expressed by host’s cells in the context of the HLA class I molecules, inducing a wide pool of specific memory CD8+ T cell clones. Such MoAs have been shown in selected cases to share sequence and structural homology with cellular self-antigens (molecular mimicry), possibly inducing autoimmune reactions leading to autoimmune diseases (ADs). We have recently shown that a molecular mimicry may be found also to self-antigens presented by cancer cells (i.e. tumor-associated antigens, TAAs). Consequently, memory CD8+ T cell clones specific for the MoAs may turn out to be a natural “anti-cancer vaccination” if a nascent tumor lesion should express TAAs similar or identical to MoAs. We postulate that selecting MoAs with high homology to TAAs would greatly improve the efficacy of cancer vaccines in both preventive and therapeutic settings. Indeed, non-self MoAs are potently immunogenic because not affected by central immune tolerance. Unravelling the impact of the antigenic molecular mimicry between MoAs and TAAs might pave the way for novel anti-cancer immunotherapies with unprecedented efficacy.
Collapse
|
10
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
11
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|
12
|
Forsdyke DR. Positive selection of immune repertoires: a short further history. Scand J Immunol 2022; 95:e13144. [DOI: 10.1111/sji.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Donald R. Forsdyke
- Department of Biomedical and Molecular Sciences Queen's University Kingston Ontario Canada
| |
Collapse
|
13
|
Rogers D, Sood A, Wang H, van Beek JJP, Rademaker TJ, Artusa P, Schneider C, Shen C, Wong DC, Bhagrath A, Lebel MÈ, Condotta SA, Richer MJ, Martins AJ, Tsang JS, Barreiro LB, François P, Langlais D, Melichar HJ, Textor J, Mandl JN. Pre-existing chromatin accessibility and gene expression differences among naive CD4 + T cells influence effector potential. Cell Rep 2021; 37:110064. [PMID: 34852223 DOI: 10.1016/j.celrep.2021.110064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
CD4+ T cells have a remarkable potential to differentiate into diverse effector lineages following activation. Here, we probe the heterogeneity present among naive CD4+ T cells before encountering their cognate antigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin landscape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in T cell receptor (TCR) signaling. Using CD5 expression as a readout of the strength of tonic TCR interactions with self-peptide MHC, and sorting on the ends of this self-reactivity spectrum, we find that pre-existing transcriptional differences among naive CD4+ T cells impact follicular helper T (TFH) cell versus non-TFH effector lineage choice. Moreover, our data implicate TCR signal strength during thymic development in establishing differences in naive CD4+ T cell chromatin landscapes that ultimately shape their effector potential.
Collapse
Affiliation(s)
- Dakota Rogers
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Aditi Sood
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada; Department of Microbiology, Immunology, and Infectious Disease, Université de Montréal, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Jasper J P van Beek
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | - Patricio Artusa
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Caitlin Schneider
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Connie Shen
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Dylan C Wong
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Aanya Bhagrath
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Stephanie A Condotta
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luis B Barreiro
- Department of Medicine, Genetic Section, University of Chicago, Chicago, IL, USA
| | - Paul François
- Department of Physics, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill University Genome Centre, Montreal, QC, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Judith N Mandl
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Koncz B, Balogh GM, Papp BT, Asztalos L, Kemény L, Manczinger M. Self-mediated positive selection of T cells sets an obstacle to the recognition of nonself. Proc Natl Acad Sci U S A 2021; 118:e2100542118. [PMID: 34507984 PMCID: PMC8449404 DOI: 10.1073/pnas.2100542118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive immune recognition is mediated by the binding of peptide-human leukocyte antigen complexes by T cells. Positive selection of T cells in the thymus is a fundamental step in the generation of a responding T cell repertoire: only those T cells survive that recognize human peptides presented on the surface of cortical thymic epithelial cells. We propose that while this step is essential for optimal immune function, the process results in a defective T cell repertoire because it is mediated by self-peptides. To test our hypothesis, we focused on amino acid motifs of peptides in contact with T cell receptors. We found that motifs rarely or not found in the human proteome are unlikely to be recognized by the immune system just like the ones that are not expressed in cortical thymic epithelial cells or not presented on their surface. Peptides carrying such motifs were especially dissimilar to human proteins. Importantly, we present our main findings on two independent T cell activation datasets and directly demonstrate the absence of naïve T cells in the repertoire of healthy individuals. We also show that T cell cross-reactivity is unable to compensate for the absence of positively selected T cells. Additionally, we show that the proposed mechanism could influence the risk for different infectious diseases. In sum, our results suggest a side effect of T cell positive selection, which could explain the nonresponsiveness to many nonself peptides and could improve the understanding of adaptive immune recognition.
Collapse
Affiliation(s)
- Balázs Koncz
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Gergő M Balogh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
| | - Benjamin T Papp
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
- Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Leó Asztalos
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
- Szeged Scientists Academy, 6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary
- Magyar Tudományos Akadémia - Szegedi Tudományegyetem (MTA-SZTE) Dermatological Research Group, Eötvös Loránd Research Network (ELKH), University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) Skin Research Group, 6720 Szeged, Hungary
| | - Máté Manczinger
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary;
- Magyar Tudományos Akadémia - Szegedi Tudományegyetem (MTA-SZTE) Dermatological Research Group, Eötvös Loránd Research Network (ELKH), University of Szeged, 6720 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged (HCEMM-USZ) Skin Research Group, 6720 Szeged, Hungary
- Biological Research Centre, Institute of Biochemistry, Synthetic and Systems Biology Unit, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| |
Collapse
|
15
|
Wong HS, Germain RN. Mesoscale T cell antigen discrimination emerges from intercellular feedback. Trends Immunol 2021; 42:865-875. [PMID: 34493455 DOI: 10.1016/j.it.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Mature T cells must distinguish between foreign and self-antigens to promote host defense while limiting autoimmunity. How such discrimination occurs reproducibly has been explored extensively regarding mechanisms regulating initial T cell activation at short time and length scales. Here, we suggest that T cells encounter a higher-level discriminatory boundary post-activation, empowering or constraining their responses over greater spatiotemporal scales. This boundary emerges from coordinated communication among at least three cell types, forming a control system governed by intercellular circuits, including negative feedback from regulatory T cells (Tregs). We propose that the nonlinearities inherent to this system can amplify subtle baseline imbalances in a single cell type's functional state, altering the threshold for productive T cell responses and autoimmune disease risk.
Collapse
Affiliation(s)
- Harikesh S Wong
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
16
|
Shevyrev D, Tereshchenko V, Kozlov V. Immune Equilibrium Depends on the Interaction Between Recognition and Presentation Landscapes. Front Immunol 2021; 12:706136. [PMID: 34394106 PMCID: PMC8362327 DOI: 10.3389/fimmu.2021.706136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Vladimir Kozlov
- Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
17
|
Wong HS, Park K, Gola A, Baptista AP, Miller CH, Deep D, Lou M, Boyd LF, Rudensky AY, Savage PA, Altan-Bonnet G, Tsang JS, Germain RN. A local regulatory T cell feedback circuit maintains immune homeostasis by pruning self-activated T cells. Cell 2021; 184:3981-3997.e22. [PMID: 34157301 PMCID: PMC8390950 DOI: 10.1016/j.cell.2021.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.
Collapse
Affiliation(s)
- Harikesh S Wong
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | - Kyemyung Park
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA; Biophysics program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Anita Gola
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Antonio P Baptista
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Deeksha Deep
- Howard Hughes Medical Institute, Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meng Lou
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Immunology Program and Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| |
Collapse
|
18
|
This S, Valbon SF, Lebel MÈ, Melichar HJ. Strength and Numbers: The Role of Affinity and Avidity in the 'Quality' of T Cell Tolerance. Cells 2021; 10:1530. [PMID: 34204485 PMCID: PMC8234061 DOI: 10.3390/cells10061530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength of T cell receptor signaling during differentiation influences the 'function' and persistence of anergic and regulatory T cell populations. Here, we review the literature on this subject and discuss the clinical implications of how T cell receptor signal strength influences the 'quality' of anergic and regulatory T cell populations.
Collapse
Affiliation(s)
- Sébastien This
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Stefanie F. Valbon
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marie-Ève Lebel
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
| | - Heather J. Melichar
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; (S.T.); (S.F.V.); (M.-È.L.)
- Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
19
|
Modeling the Dynamics of T-Cell Development in the Thymus. ENTROPY 2021; 23:e23040437. [PMID: 33918050 PMCID: PMC8069328 DOI: 10.3390/e23040437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.
Collapse
|
20
|
Sood A, Lebel MÈ, Dong M, Fournier M, Vobecky SJ, Haddad É, Delisle JS, Mandl JN, Vrisekoop N, Melichar HJ. CD5 levels define functionally heterogeneous populations of naïve human CD4 + T cells. Eur J Immunol 2021; 51:1365-1376. [PMID: 33682083 PMCID: PMC8251777 DOI: 10.1002/eji.202048788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Studies in murine models show that subthreshold TCR interactions with self‐peptide are required for thymic development and peripheral survival of naïve T cells. Recently, differences in the strength of tonic TCR interactions with self‐peptide, as read‐out by cell surface levels of CD5, were associated with distinct effector potentials among sorted populations of T cells in mice. However, whether CD5 can also be used to parse functional heterogeneity among human T cells is less clear. Our study demonstrates that CD5 levels correlate with TCR signal strength in human naïve CD4+ T cells. Further, we describe a relationship between CD5 levels on naïve human CD4+ T cells and binding affinity to foreign peptide, in addition to a predominance of CD5hi T cells in the memory compartment. Differences in gene expression and biases in cytokine production potential between CD5lo and CD5hi naïve human CD4+ T cells are consistent with observations in mice. Together, these data validate the use of CD5 surface levels as a marker of heterogeneity among human naïve CD4+ T cells with important implications for the identification of functionally biased T‐ cell populations that can be exploited to improve the efficacy of adoptive cell therapies.
Collapse
Affiliation(s)
- Aditi Sood
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada
| | - Suzanne J Vobecky
- Service de Chirurgie Cardiaque, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Élie Haddad
- Département de Pédiatrie, Université de Montréal, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Jean-Sébastien Delisle
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Judith N Mandl
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Nienke Vrisekoop
- Department of Respiratory Medicine, Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
22
|
Wang JH. Why the Outcome of Anti-Tumor Immune Responses is Heterogeneous: A Novel Idea in the Context of Immunological Heterogeneity in Cancers. Bioessays 2020; 42:e2000024. [PMID: 32767371 DOI: 10.1002/bies.202000024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/12/2020] [Indexed: 12/12/2022]
Abstract
The question as to why some hosts can eradicate their tumors while others succumb to tumor-progression remains unanswered. Here, a provocative concept is proposed that intrinsic differences in the T cell receptor (TCR) repertoire of individuals may influence the outcome of anti-tumor immunity by affecting the frequency and/or variety of tumor-reactive CD8 and/or CD4 tumor-infiltrating lymphocytes. This idea implicates that the TCR repertoire in a given patient might not provide sufficiently different TCR clones that can recognize tumor antigens, namely, "a hole in the TCR repertoire" might exist. This idea may provide a novel perspective to further dissect the mechanisms underlying heterogeneous anti-tumor immune responses in different hosts. Besides tumor-intrinsic heterogeneity and host microbiome, the various factors that may constantly shape the dynamic TCR repertoire are also discussed. Elucidating mechanistic differences in different individuals' immune systems will allow to better harness immune system to design new personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
23
|
Kuczma MP, Szurek EA, Cebula A, Chassaing B, Jung YJ, Kang SM, Fox JG, Stecher B, Ignatowicz L. Commensal epitopes drive differentiation of colonic T regs. SCIENCE ADVANCES 2020; 6:eaaz3186. [PMID: 32494613 PMCID: PMC7164940 DOI: 10.1126/sciadv.aaz3186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/23/2020] [Indexed: 05/29/2023]
Abstract
The gut microbiome is the largest source of intrinsic non-self-antigens that are continuously sensed by the immune system but typically do not elicit lymphocyte responses. CD4+ T cells are critical to sustain uninterrupted tolerance to microbial antigens and to prevent intestinal inflammation. However, clinical interventions targeting commensal bacteria-specific CD4+ T cells are rare, because only a very limited number of commensal-derived epitopes have been identified. Here, we used a new approach to study epitopes and identify T cell receptors expressed by CD4+Foxp3+ (Treg) cells specific for commensal-derived antigens. Using this approach, we found that antigens from Akkermansia muciniphila reprogram naïve CD4+ T cells to the Treg lineage, expand preexisting microbe specific Tregs, and limit wasting disease in the CD4+ T cell transfer model of colitis. These data suggest that the administration of specific commensal epitopes may help to widen the repertoire of specific Tregs that control intestinal inflammation.
Collapse
Affiliation(s)
- Michal P. Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta A. Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- INSERM U1016, Team “Mucosal microbiota in chronic inflammatory diseases”, Paris, France
- Université de Paris, Paris, France
| | - Yu-Jin Jung
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
24
|
Is T Cell Negative Selection a Learning Algorithm? Cells 2020; 9:cells9030690. [PMID: 32168897 PMCID: PMC7140671 DOI: 10.3390/cells9030690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/28/2022] Open
Abstract
Our immune system can destroy most cells in our body, an ability that needs to be tightly controlled. To prevent autoimmunity, the thymic medulla exposes developing T cells to normal “self” peptides and prevents any responders from entering the bloodstream. However, a substantial number of self-reactive T cells nevertheless reaches the periphery, implying that T cells do not encounter all self peptides during this negative selection process. It is unclear if T cells can still discriminate foreign peptides from self peptides they haven’t encountered during negative selection. We use an “artificial immune system”—a machine learning model of the T cell repertoire—to investigate how negative selection could alter the recognition of self peptides that are absent from the thymus. Our model reveals a surprising new role for T cell cross-reactivity in this context: moderate T cell cross-reactivity should skew the post-selection repertoire towards peptides that differ systematically from self. Moreover, even some self-like foreign peptides can be distinguished provided that the peptides presented in the thymus are not too similar to each other. Thus, our model predicts that negative selection on a well-chosen subset of self peptides would generate a repertoire that tolerates even “unseen” self peptides better than foreign peptides. This effect would resemble a “generalization” process as it is found in learning systems. We discuss potential experimental approaches to test our theory.
Collapse
|
25
|
Bertoli D, Sottini A, Capra R, Scarpazza C, Bresciani R, Notarangelo LD, Imberti L. Lack of specific T- and B-cell clonal expansions in multiple sclerosis patients with progressive multifocal leukoencephalopathy. Sci Rep 2019; 9:16605. [PMID: 31719595 PMCID: PMC6851145 DOI: 10.1038/s41598-019-53010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare, potentially devastating myelin-degrading disease caused by the JC virus. PML occurs preferentially in patients with compromised immune system, but has been also observed in multiple sclerosis (MS) patients treated with disease-modifying drugs. We characterized T and B cells in 5 MS patients that developed PML, 4 during natalizumab therapy and one after alemtuzumab treatment, and in treated patients who did not develop the disease. Results revealed that: i) thymic and bone marrow output was impaired in 4 out 5 patients at the time of PML development; ii) T-cell repertoire was restricted; iii) clonally expanded T cells were present in all patients. However, common usage or pairings of T-cell receptor beta variable or joining genes, specific clonotypes or obvious “public” T-cell response were not detected at the moment of PML onset. Similarly, common restrictions were not found in the immunoglobulin heavy chain repertoire. The data indicate that no JCV-related specific T- and B-cell expansions were mounted at the time of PML. The current results enhance our understanding of JC virus infection and PML, and should be taken into account when choosing targeted therapies.
Collapse
Affiliation(s)
- Diego Bertoli
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy
| | - Ruggero Capra
- Multiple Sclerosis Center, ASST Spedali Civili, Brescia, Italy
| | - Cristina Scarpazza
- Multiple Sclerosis Center, ASST Spedali Civili, Brescia, Italy.,Department of General Psychology, University of Padova, Padova, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luisa Imberti
- Centro di Ricerca Emato-oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
26
|
Dembic Z. On integrity in immunity during ontogeny or how thymic regulatory T cells work. Scand J Immunol 2019; 90:e12806. [PMID: 31276223 DOI: 10.1111/sji.12806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
The Standard model of T cell recognition asserts that T cell receptor (TCR) specificities are positively and negatively selected during ontogeny in the thymus and that peripheral T cell repertoire has mild self-major histocompatibility complex (MHC) reactivity, known as MHC restriction of foreign antigen. Thus, the TCR must bind both a restrictive molecule (MHC allele) and a peptide reclining in its groove (pMHC ligand) in order to transmit signal into a T cell. The Standard and Cohn's Tritope models suggest contradictory roles for complementarity-determining regions (CDRs) of the TCRs. Here, I discuss both concepts and propose a different solution to ontogenetic mechanism for TCR-MHC-conserved interaction. I suggest that double (CD4+ CD8+ )-positive (DP) developing thymocytes compete with their αβTCRs for binding to self-pMHC on cortical thymic epithelial cells (cTECs) that present a selected set of tissue-restricted antigens. The competition between DPs involves TCR editing and secondary rearrangements, similar to germinal-centre B cell somatic hypermutation. These processes would generate cells with higher TCR affinity for self-pMHC, facilitating sufficiently long binding to cTECs to become thymic T regulatory cells (tTregs). Furthermore, CD4+ Foxp3+ tTregs can be generated by mTECs via Aire-dependent and Aire-independent pathways, and additionally on thymic bone marrow-derived APCs including thymic Aire-expressing B cells. Thymic Tregs differ from the induced peripheral Tregs, which comprise the negative feedback loop to restrain immune responses. The implication of thymocytes' competition for the highest binding to self-pMHC is the co-evolution of species-specific αβTCR V regions with MHC alleles.
Collapse
Affiliation(s)
- Zlatko Dembic
- Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Cebula A, Kuczma M, Szurek E, Pietrzak M, Savage N, Elhefnawy WR, Rempala G, Kraj P, Ignatowicz L. Dormant pathogenic CD4 + T cells are prevalent in the peripheral repertoire of healthy mice. Nat Commun 2019; 10:4882. [PMID: 31653839 PMCID: PMC6814812 DOI: 10.1038/s41467-019-12820-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Thymic central tolerance eliminates most immature T cells with autoreactive T cell receptors (TCR) that recognize self MHC/peptide complexes. Regardless, an unknown number of autoreactive CD4+Foxp3- T cells escape negative selection and in the periphery require continuous suppression by CD4+Foxp3+ regulatory cells (Tregs). Here, we compare immune repertoires of Treg-deficient and Treg-sufficient mice to find Tregs continuously constraining one-third of mature CD4+Foxp3- cells from converting to pathogenic effectors in healthy mice. These dormant pathogenic clones frequently express TCRs activatable by ubiquitous autoantigens presented by class II MHCs on conventional dendritic cells, including self-peptides that select them in the thymus. Our data thus suggest that identification of most potentially autoreactive CD4+ T cells in the peripheral repertoire is critical to harness or redirect these cells for therapeutic advantage.
Collapse
Affiliation(s)
- Anna Cebula
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Edyta Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Maciej Pietrzak
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Natasha Savage
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - Wessam R Elhefnawy
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Grzegorz Rempala
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
28
|
When few survive to tell the tale: thymus and gonad as auditioning organs: historical overview. Theory Biosci 2019; 139:95-104. [PMID: 31628582 DOI: 10.1007/s12064-019-00306-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/05/2019] [Indexed: 12/22/2022]
Abstract
Unlike other organs, the thymus and gonads generate nonuniform cell populations, many members of which perish, and a few survive. While it is recognized that thymic cells are "audited" to optimize an organism's immune repertoire, whether gametogenesis could be orchestrated similarly to favor high-quality gametes is uncertain. Ideally, such quality would be affirmed at early stages before the commitment of extensive parental resources. A case is here made that, along the lines of a previously proposed lymphocyte quality control mechanism, gamete quality can be registered indirectly through detection of incompatibilities between proteins encoded by the grandparental DNA sequences within the parent from which haploid gametes are meiotically derived. This "stress test" is achieved in the same way that thymic screening for potential immunological incompatibilities is achieved-by "promiscuous" expression, under the influence of the AIRE protein, of the products of genes that are not normally specific for that organ. Consistent with this, the Aire gene is expressed in both thymus and gonads, and AIRE deficiency impedes function in both organs. While not excluding the subsequent emergence of hybrid incompatibilities due to the intermixing of genomic sequences from parents (rather than grandparents), many observations, such as the number of proteins that are aberrantly expressed during gametogenesis, can be explained on this basis. Indeed, promiscuous expression could have first evolved in gamete-forming cells where incompatible proteins would be manifest as aberrant protein aggregates that cause apoptosis. This mechanism would later have been co-opted by thymic epithelial cells which display peptides from aggregates to remove potentially autoreactive T cells.
Collapse
|
29
|
Martínez-Riaño A, Bovolenta ER, Boccasavia VL, Ponomarenko J, Abia D, Oeste CL, Fresno M, van Santen HM, Alarcon B. RRAS2 shapes the TCR repertoire by setting the threshold for negative selection. J Exp Med 2019; 216:2427-2447. [PMID: 31324740 PMCID: PMC6781009 DOI: 10.1084/jem.20181959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/29/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
RRAS2 is involved in setting the threshold for negative selection of T cells in the thymus. In its absence, most autoreactive T cells are eliminated, and, consequently, mice become resistant to development of autoimmune diseases in experimental models. Signal strength controls the outcome of αβ T cell selection in the thymus, resulting in death if the affinity of the rearranged TCR is below the threshold for positive selection, or if the affinity of the TCR is above the threshold for negative selection. Here we show that deletion of the GTPase RRAS2 results in exacerbated negative selection and above-normal expression of positive selection markers. Furthermore, Rras2−/− mice are resistant to autoimmunity both in a model of inflammatory bowel disease (IBD) and in a model of myelin oligodendrocyte glycoprotein (MOG)–induced experimental autoimmune encephalomyelitis (EAE). We show that MOG-specific T cells in Rras2−/− mice have reduced affinity for MOG/I-Ab tetramers, suggesting that enhanced negative selection leads to selection of TCRs with lower affinity for the self-MOG peptide. An analysis of the TCR repertoire shows alterations that mostly affect the TCRα variable (TRAV) locus with specific VJ combinations and CDR3α sequences that are absent in Rras2−/− mice, suggesting their involvement in autoimmunity.
Collapse
Affiliation(s)
- Ana Martínez-Riaño
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena R Bovolenta
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Viola L Boccasavia
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - David Abia
- Servicio de Bioinformática, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Clara L Oeste
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hisse M van Santen
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcon
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Vanhee S, Åkerstrand H, Kristiansen TA, Datta S, Montano G, Vergani S, Lang S, Ungerbäck J, Doyle A, Olsson K, Beneventi G, Jensen CT, Bellodi C, Soneji S, Sigvardsson M, Gyllenbäck EJ, Yuan J. Lin28b controls a neonatal to adult switch in B cell positive selection. Sci Immunol 2019; 4:4/39/eaax4453. [DOI: 10.1126/sciimmunol.aax4453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5+immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19−/−adult mice. Thus, the temporally restricted expression ofLin28brelaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.
Collapse
|
31
|
Adaptation by naïve CD4 + T cells to self-antigen-dependent TCR signaling induces functional heterogeneity and tolerance. Proc Natl Acad Sci U S A 2019; 116:15160-15169. [PMID: 31285342 DOI: 10.1073/pnas.1904096116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Naïve CD4+ T cells experience weak T cell receptor (TCR) signals induced by self-peptides presented by MHC II. To investigate how these "basal" TCR signals influence responses to agonist TCR ligand stimulation, we analyzed naïve CD4+ cells expressing varying amounts of CD5, Ly6C, and Nur77-GFP, markers that reflect the strength of basal TCR signaling. Phenotypic analyses indicate that the broadest range of basal TCR signal strength can be visualized by a combination of Nur77-GFP and Ly6C. A range of basal TCR signaling is detectable even in populations that express identical TCRs. Whereas moderate basal TCR signal strength correlates with higher IL-2 secretion at early time points following TCR stimulation, weak basal TCR signaling correlated with higher IL-2 secretion at later time points. We identify a population of Nur77-GFPHI Ly6C- cells that could not be reliably marked by either of CD5, Ly6C, or Nur77-GFP alone. These cells experience the strongest basal TCR signaling, consistently produce less IL-2, and express PD-1 and markers associated with anergy, such as Grail and Cbl-b. We propose that adaptation to the strength of basal TCR signaling drives the phenotypic and functional heterogeneity of naïve CD4+ cells.
Collapse
|
32
|
Liang W, Mao S, Li M, Zhang N, Sun S, Fang H, Zhang J, Gu J, Wang J, Li W. Ablation of core fucosylation attenuates the signal transduction via T cell receptor to suppress the T cell development. Mol Immunol 2019; 112:312-321. [PMID: 31229844 DOI: 10.1016/j.molimm.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022]
Abstract
Precise glycosylation plays a crucial and distinctive role in thymic T cell development. The core fucosylation is dramatically up-regulated at the transition from CD4-CD8- (DN) to CD4+CD8+ (DP) in the thymic development. Ablation of core fucosylation in T cells did reduce the size of the thymus due to a significant loss of CD4+ SP, CD8+ SP and DP thymocytes in core fucosyltransferase (Fut8) knockout (Fut8-/-) mice. T cell receptors (TCRs) are heavily core fucosylated glycoproteins. Loss of core fucosylation of TCR contributed to the reduced phosphorylation of ZAP70 (pZAP70) in Fut8-/- DP cells was observed. Compare to the Fut8+/+OT-II DP thymocytes, pZAP70 was significantly reduced in Fut8-/- OT-II DP thymocytes with OVA323-339 stimulation. Also, the pZAP70 of Fut8+/+OT-I DP thymocytes with OVA257-264 stimulation was remarkably attenuated by treatment of the fucosidase. Upon anti-CD3/CD28 Abs stimulation, the increased apoptosis was found in Fut8-/- thymocytes compared with Fut8+/+ thymocytes. Moreover, the TCRhiCD69hi (post-positive selection thymocytes) was markedly depleted in the Fut8-/- thymus without any stimulation. The expression of CD5 was significantly down-regulated on the DP cells in the Fut8-/- thymus. Our results therefore demonstrate that ablation of core fucosylation results in the abnormal T cell development due to the attenuated signaling via TCR.
Collapse
Affiliation(s)
- Wei Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Shanshan Mao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Nianzhu Zhang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Shijie Sun
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Hui Fang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Jianguo Gu
- Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
33
|
Andrade H, Lin W, Zhang Y. Specificity from nonspecific interaction: regulation of tumor necrosis factor-α activity by DNA. J Biol Chem 2019; 294:6397-6404. [PMID: 30814250 DOI: 10.1074/jbc.ra119.007586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Indexed: 11/06/2022] Open
Abstract
As anionic biopolymers, oligonucleotides can have biological functions independent from their roles as the medium for the storage and flow of genetic information. In this paper, we investigated the interaction between DNA and the pro-inflammatory cytokine tumor necrosis factor-α (TNFα). Although various forms of DNA bind to TNFα with low μm dissociation constants, the interaction stabilizes the trimeric form of TNFα and enhances its cytotoxic effect. Based on this mechanism, a photoswitchable TNFα (TNFα-2-nitroveratryloxycarbonyl) has been designed whose sensitivity to DNA-mediated up-regulation of TNFα activity can be tuned by light irradiation. The mechanism described in this study represents a general model to understand the involvement of nonspecific interactions among biomolecules in regulating their biological functions. Because the interaction is not DNA sequence-specific, the resulting effect should be considered for oligonucleotide-based therapeutics in general.
Collapse
Affiliation(s)
- Helena Andrade
- From the B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Weilin Lin
- From the B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Yixin Zhang
- From the B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
34
|
Abstract
Higher organisms are all born with general immunity as well as with, increasingly, more specific immune systems. All immune mechanisms function with the intent of aiding the body in defense against infection. Internal and external factors alike have varying effects on the immune system, and the immune response is tailored specifically to each one. Accompanying the components of the human innate and adaptive immune systems are the other intermingling systems of the human body. Increasing understanding of the body's immune interactions with other systems has opened new avenues of study, including that of the microbiome. The microbiome has become a highly active area of research over the last 10 to 20 years since the NIH began funding the Human Microbiome Project (HMP), which was established in 2007. Several publications have focused on the characterization, functions, and complex interplay of the microbiome as it relates to the rest of the body. A dysfunction between the microbiome and the host has been linked to various diseases including cancers, metabolic deficiencies, autoimmune disorders, and infectious diseases. Further understanding of the microbiome and its interaction with the host in relation to diseases is needed in order to understand the implications of microbiome dysfunction and the possible use of microbiota in the prevention of disease. In this review, we have summarized information on the immune system, the microbiome, the microbiome's interplay with other systems, and the association of the immune system and the microbiome in diseases such as diabetes and colorectal cancer.
Collapse
Affiliation(s)
| | - Sohail Siraj
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| | - Krishna Patel
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| | - Umesh T. Sankpal
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| | - Stephen Mathew
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX
| | - Riyaz Basha
- Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX
| |
Collapse
|
35
|
Forsdyke DR. Two signal half-century: From negative selection of self-reactivity to positive selection of near-self-reactivity. Scand J Immunol 2018; 89:e12746. [PMID: 30592317 DOI: 10.1111/sji.12746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
Abstract
With the emergence of clonal selection ideas in the 1950s, the development of immune cell repertoires was seen to require the negative selection of self-reacting cells, with surviving cells exhibiting a broad range of specificities. Thus, confronting a universe of not-self-antigens, a potential host organism spread its resources widely. In the 1960s, the two signal hypothesis showed how this might work. However, in the 1970s an affinity/avidity model further proposed that anticipating a pathogen strategy of exploiting "holes" in the repertoire created by negative selection, hosts should also positively select near-self-reacting cells. A microbe mutating an antigen from a form foreign to its host to a form resembling that host should prevail over host defences with respect to that antigen. By mutating a step towards host self, along the path from non-self to self, it should come to dominate the microbe population. By progressive stepwise mutations, such microbes would become better adapted, to the detriment of their hosts. But they would lose this advantage if, as they mutated closer to host self, they encountered progressively stiffer host defences. Thus, as described in the affinity/avidity model, positive selection of lymphocytes for specificities that were very close to, but not quite, anti-self (ie, "anti-near-self") should be an important host adaptation. While positive selection affects both B and T cells, mechanisms are uncertain. Converging evidence from studies of lymphocyte activation, either polyclonally (with lectins as "antigen-analogs") or monoclonally (by specific antigen), supports the original generic affinity/avidity model for countering mutations towards host self.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
36
|
Apavaloaei A, Brochu S, Dong M, Rouette A, Hardy MP, Villafano G, Murata S, Melichar HJ, Perreault C. PSMB11 Orchestrates the Development of CD4 and CD8 Thymocytes via Regulation of Gene Expression in Cortical Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2018; 202:966-978. [PMID: 30567730 DOI: 10.4049/jimmunol.1801288] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
T cell development depends on sequential interactions of thymocytes with cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells. PSMB11 is a catalytic proteasomal subunit present exclusively in cTECs. Because proteasomes regulate transcriptional activity, we asked whether PSMB11 might affect gene expression in cTECs. We report that PSMB11 regulates the expression of 850 cTEC genes that modulate lymphostromal interactions primarily via the WNT signaling pathway. cTECs from Psmb11 -/- mice 1) acquire features of medullary thymic epithelial cells and 2) retain CD8 thymocytes in the thymic cortex, thereby impairing phase 2 of positive selection, 3) perturbing CD8 T cell development, and 4) causing dramatic oxidative stress leading to apoptosis of CD8 thymocytes. Deletion of Psmb11 also causes major oxidative stress in CD4 thymocytes. However, CD4 thymocytes do not undergo apoptosis because, unlike CD8 thymocytes, they upregulate expression of chaperones and inhibitors of apoptosis. We conclude that PSMB11 has pervasive effects on both CD4 and CD8 thymocytes via regulation of gene expression in cTECs.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | - Mengqi Dong
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Alexandre Rouette
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | - Geno Villafano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269; and
| | - Shigeo Murata
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Heather J Melichar
- Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
37
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
38
|
Deshpande NR, Uhrlaub JL, Way SS, Nikolich-Žugich J, Kuhns MS. A disconnect between precursor frequency, expansion potential, and site-specific CD4+ T cell responses in aged mice. PLoS One 2018; 13:e0198354. [PMID: 29864157 PMCID: PMC5986155 DOI: 10.1371/journal.pone.0198354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/17/2018] [Indexed: 11/22/2022] Open
Abstract
T cell recognition of peptides presented within self-major histocompatibility complex (pMHC) molecules is essential for long-lived protective immunity. As mice age the number of naïve CD4+ and CD8+ T cells declines. However, unlike for CD8+ T cells, there are more naïve and memory phenotype CD4+ T cells that bind foreign pMHCII in old mice (18-22 months) than adults (12-15 weeks), suggesting increased promiscuity of pMHCII recognition with aging. Here we asked if CD4+ T cell responses to immunization or infection increase with aging since the magnitude of a CD4+ T cell response to a foreign pMHCII is proportional to the size of the precursor population in adult mice. We observed no difference in the number of pMHCII-specific CD4+ T cells in adult versus old mice for pooled secondary lymphoid organs after immunization, bacterial infection, or viral infection, but we did observe diminished numbers of pMHCII-specific CD4+ T cells in both the draining lymph node and brain of old mice after West Nile virus infection. These data indicate that an increased precursor frequency does not translate into more robust responses upon immunization or infection in old mice.
Collapse
Affiliation(s)
- Neha R. Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ, United States of America
| | - Jennifer L. Uhrlaub
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ, United States of America
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
| | - Janko Nikolich-Žugich
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ, United States of America
| | - Michael S. Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, AZ, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ, United States of America
| |
Collapse
|
39
|
Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML, Choi J, Schroeder MA, Salazar V, Egawa T, Lee BC, Abumrad NA, Kim BS, Anderson MS, DiPersio JF, Hsieh CS. Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 2018; 48:923-936.e4. [PMID: 29752065 DOI: 10.1016/j.immuni.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022]
Abstract
The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bone Marrow Transplantation
- CD36 Antigens/genetics
- CD36 Antigens/immunology
- CD36 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Immune Tolerance/immunology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transplantation, Homologous
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W Zhou
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Whitney Purtha
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Matthew L Cooper
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaebok Choi
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark A Schroeder
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanessa Salazar
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byeong-Chel Lee
- University of Pittsburgh Cancer Institute and Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Medicine, Division of Dermatology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - John F DiPersio
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Fontaine M, Vogel I, Van Eycke YR, Galuppo A, Ajouaou Y, Decaestecker C, Kassiotis G, Moser M, Leo O. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J 2018; 37:398-412. [PMID: 29263148 PMCID: PMC5793804 DOI: 10.15252/embj.201796881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 01/22/2023] Open
Abstract
To analyze the potential role of Tregs in controlling the TCR repertoire breadth to a non-self-antigen, a TCRβ transgenic mouse model (EF4.1) expressing a limited, yet polyclonal naïve T-cell repertoire was used. The response of EF4.1 mice to an I-Ab-associated epitope of the F-MuLV envelope protein is dominated by clones expressing a Vα2 gene segment, thus allowing a comprehensive analysis of the TCRα repertoire in a relatively large cohort of mice. Control and Treg-depleted EF4.1 mice were immunized, and the extent of the Vα2-bearing, antigen-specific TCR repertoire was characterized by high-throughput sequencing and spectratyping analysis. In addition to increased clonal expansion and acquisition of effector functions, Treg depletion led to the expression of a more diverse TCR repertoire comprising several private clonotypes rarely observed in control mice or in the pre-immune repertoire. Injection of anti-CD86 antibodies in vivo led to a strong reduction in TCR diversity, suggesting that Tregs may influence TCR repertoire diversity by modulating costimulatory molecule availability. Collectively, these studies illustrate an additional mechanism whereby Tregs control the immune response to non-self-antigens.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- B7-2 Antigen/immunology
- Cells, Cultured
- Friend murine leukemia virus/immunology
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes, Regulatory/immunology
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Martina Fontaine
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Isabel Vogel
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yves-Rémi Van Eycke
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Adrien Galuppo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Yousra Ajouaou
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Laboratories of Image, Signal processing & Acoustics Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, UK
- Department of Medicine Faculty of Medicine, Imperial College London London, UK
| | - Muriel Moser
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
41
|
Nie J, Zhang Y, Li X, Chen M, Liu C, Han W. DNA demethylating agent decitabine broadens the peripheral T cell receptor repertoire. Oncotarget 2018; 7:37882-37892. [PMID: 27191266 PMCID: PMC5122357 DOI: 10.18632/oncotarget.9352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
Purpose Decitabine, a promising epi-immunotherapeutic agent has shown clinical responses in solid tumor patients, while the anti-tumor mechanisms were unclear. We aimed to investigate the immunomodulatory effect of decitabine in peripheral T cells. Experimental design We applied next-generation sequencing to investigate the complementarity-determining region 3 (CDR3) of the TCRβ gene, the diversity of which acts as the prerequisite for the host immune system to recognize the universal foreign antigens. We collected the peripheral blood mononuclear cells (PBMCs) from 4 patients, at baseline and after 2 cycles of low-dose decitabine therapy. Results An increase of the unique productive sequences of the CDR3 of TCRβ was observed in all of the 4 patients after decitabine treatment, which was characterized by a lower abundance of expanded clones and increased TCR diversity compared with before decitabine treatment. Further analysis showed a tendency for CD4 T cells with an increased CD4/CD8 ratio in response to decitabine therapy. In addition, the genome-wide expression alterations confirmed the effects of decitabine on immune reconstitution, and the increase of TCR excision circles (TRECs) was validated. Conclusions The low-dose DNMT inhibitor decitabine broadens the peripheral T cell repertoire, providing a novel role for the epigenetic modifying agent in anti-tumor immune enhancement.
Collapse
Affiliation(s)
- Jing Nie
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Biological Therapy, PLA General Hospital, Beijing, 100853, China
| | - Xiang Li
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Meixia Chen
- Department of Biological Therapy, PLA General Hospital, Beijing, 100853, China
| | - Chuanjie Liu
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China
| | - Weidong Han
- Department of Immunology, Institute of Basic Medical Science, PLA General Hospital, Beijing, 100853, China.,Department of Biological Therapy, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
42
|
Marrack P, Krovi SH, Silberman D, White J, Kushnir E, Nakayama M, Crooks J, Danhorn T, Leach S, Anselment R, Scott-Browne J, Gapin L, Kappler J. The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. eLife 2017; 6:30918. [PMID: 29148973 PMCID: PMC5701794 DOI: 10.7554/elife.30918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Mature T cells bearing αβ T cell receptors react with foreign antigens bound to alleles of major histocompatibility complex proteins (MHC) that they were exposed to during their development in the thymus, a phenomenon known as positive selection. The structural basis for positive selection has long been debated. Here, using mice expressing one of two different T cell receptor β chains and various MHC alleles, we show that positive selection-induced MHC bias of T cell receptors is affected both by the germline encoded elements of the T cell receptor α and β chain and, surprisingly, dramatically affected by the non germ line encoded portions of CDR3 of the T cell receptor α chain. Thus, in addition to determining specificity for antigen, the non germline encoded elements of T cell receptors may help the proteins cope with the extremely polymorphic nature of major histocompatibility complex products within the species.
Collapse
Affiliation(s)
- Philippa Marrack
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Sai Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Daniel Silberman
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Eleanor Kushnir
- Department of Biomedical Research, National Jewish Health, Denver, United States
| | - Maki Nakayama
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States.,Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, United States
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Thomas Danhorn
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Sonia Leach
- Department of Biomedical Research, National Jewish Health, Denver, United States.,Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | - Randy Anselment
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, United States
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| | - John Kappler
- Howard Hughes Medical Institute, Denver, United States.,Department of Biomedical Research, National Jewish Health, Denver, United States.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
43
|
Wang J, He N, Zhang N, Quan D, Zhang S, Zhang C, Yu RT, Atkins AR, Zhu R, Yang C, Cui Y, Liddle C, Downes M, Xiao H, Zheng Y, Auwerx J, Evans RM, Leng Q. NCoR1 restrains thymic negative selection by repressing Bim expression to spare thymocytes undergoing positive selection. Nat Commun 2017; 8:959. [PMID: 29038463 PMCID: PMC5643384 DOI: 10.1038/s41467-017-00931-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Thymocytes must pass both positive and negative selections to become mature T cells. Negative selection purges thymocytes whose T-cell receptors (TCR) exhibit high affinity to self-peptide MHC complexes (self pMHC) to avoid autoimmune diseases, while positive selection ensures the survival and maturation of thymocytes whose TCRs display intermediate affinity to self pMHCs for effective immunity, but whether transcriptional regulation helps conserve positively selected thymocytes from being purged by negative selection remains unclear. Here we show that the specific deletion of nuclear receptor co-repressor 1 (NCoR1) in T cells causes excessive negative selection to reduce mature thymocyte numbers. Mechanistically, NCoR1 protects positively selected thymocytes from negative selection by suppressing Bim expression. Our study demonstrates a critical function of NCoR1 in coordinated positive and negative selections in the thymus.Thymocytes are screened by two processes, termed positive and negative selections, which are permissive only for immature thymocytes with intermediate avidity to the selecting ligands. Here the authors show that the nuclear receptor NCoR1 suppresses Bim1 to inhibit negative selection and promote thymocyte survival.
Collapse
Affiliation(s)
- Jianrong Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Nanhai He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Na Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, the Academy of Integrative Medicine, Fudan University, Shanghai, 200011 China
| | - Dexian Quan
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shuo Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Caroline Zhang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Annette R. Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Ruihong Zhu
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Chunhui Yang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ying Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Christopher Liddle
- Storr Liver Centre, Westmead Millennium Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006 Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Ye Zheng
- Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne, CH-1015 Switzerland
| | - Ronald M. Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037 USA
| | - Qibin Leng
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Immune Regulation, Institut Pasteur of Shanghai, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
44
|
Chen X, Poncette L, Blankenstein T. Human TCR-MHC coevolution after divergence from mice includes increased nontemplate-encoded CDR3 diversity. J Exp Med 2017; 214:3417-3433. [PMID: 28835417 PMCID: PMC5679170 DOI: 10.1084/jem.20161784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Chen et al. demonstrate that human MHC selects a larger human TCR repertoire than mouse MHC. They show how humans optimized TCR diversity and suggest that CDR3 length adjusts for different V segment–MHC affinity. For thymic selection and responses to pathogens, T cells interact through their αβ T cell receptor (TCR) with peptide–major histocompatibility complex (MHC) molecules on antigen-presenting cells. How the diverse TCRs interact with a multitude of MHC molecules is unresolved. It is also unclear how humans generate larger TCR repertoires than mice do. We compared the TCR repertoire of CD4 T cells selected from a single mouse or human MHC class II (MHC II) in mice containing the human TCR gene loci. Human MHC II yielded greater thymic output and a more diverse TCR repertoire. The complementarity determining region 3 (CDR3) length adjusted for different inherent V-segment affinities to MHC II. Humans evolved with greater nontemplate-encoded CDR3 diversity than did mice. Our data, which demonstrate human TCR–MHC coevolution after divergence from rodents, explain the greater T cell diversity in humans and suggest a mechanism for ensuring that any V–J gene combination can be selected by a single MHC II.
Collapse
Affiliation(s)
- Xiaojing Chen
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Charité Campus Buch, Institute of Immunology, Berlin, Germany
| | - Lucia Poncette
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany .,Charité Campus Buch, Institute of Immunology, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
45
|
Bettini ML, Chou PC, Guy CS, Lee T, Vignali KM, Vignali DAA. Cutting Edge: CD3 ITAM Diversity Is Required for Optimal TCR Signaling and Thymocyte Development. THE JOURNAL OF IMMUNOLOGY 2017; 199:1555-1560. [PMID: 28733484 DOI: 10.4049/jimmunol.1700069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
For the αβ or γδTCR chains to integrate extracellular stimuli into the appropriate intracellular cellular response, they must use the 10 ITAMs found within the CD3 subunits (CD3γε, CD3δε, and ζζ) of the TCR signaling complex. However, it remains unclear whether each specific ITAM sequence of the individual subunit (γεδζ) is required for thymocyte development or whether any particular CD3 ITAM motif is sufficient. In this article, we show that mice utilizing a single ITAM sequence (γ, ε, δ, ζa, ζb, or ζc) at each of the 10 ITAM locations exhibit a substantial reduction in thymic cellularity and limited CD4-CD8- (double-negative) to CD4+CD8+ (double-positive) maturation because of low TCR expression and signaling. Together, the data suggest that ITAM sequence diversity is required for optimal TCR signal transduction and subsequent T cell maturation.
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; .,Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Po-Chein Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Thomas Lee
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Kate M Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and.,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232
| |
Collapse
|
46
|
Abstract
This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.
Collapse
Affiliation(s)
- Arup K Chakraborty
- Institute for Medical Engineering and Science, Departments of Chemical Engineering, Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; .,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139
| |
Collapse
|
47
|
Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, Rodenbrock A, Laverdure JP, Côté C, Mader S, Lemieux S, Thibault P, Perreault C. MHC class I-associated peptides derive from selective regions of the human genome. J Clin Invest 2016; 126:4690-4701. [PMID: 27841757 DOI: 10.1172/jci88590] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.
Collapse
|
48
|
Singh NJ. Self-reactivity as the necessary cost of maintaining a diverse memory T-cell repertoire. Pathog Dis 2016; 74:ftw092. [PMID: 27620200 DOI: 10.1093/femspd/ftw092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2016] [Indexed: 12/30/2022] Open
Abstract
The adaptive immune system is expected to protect the host from infectious agents and malignancies, while avoiding robust activation against self-peptides. However, T cells are notoriously inept at protection whenever the pathogen or tumor is persistent in the body for longer periods of time. While this has been thought of as an adaptation to limit the immunopathology from continued effector T-cell responses, it is also likely an extension of the T cell's intrinsic mechanisms which evolved to tolerate self-peptides. Here we deliberate on how the need to tolerate self-peptides might stem from a paradoxical requirement-the utility of such molecules in maintaining a diverse repertoire of pathogen-specific memory T cells in the body. Understanding the mechanisms underlying this intriguing nexus, therefore, has the potential to reveal therapeutic strategies not only for improving immune responses to chronic infections and tumors but also the long-term efficacy of vaccines aimed at cellular immune responses.
Collapse
Affiliation(s)
- Nevil J Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
49
|
Sood A, Dong M, Melichar HJ. Preparation and Applications of Organotypic Thymic Slice Cultures. J Vis Exp 2016. [PMID: 27585240 DOI: 10.3791/54355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thymic selection proceeds in a unique and highly organized thymic microenvironment resulting in the generation of a functional, self-tolerant T cell repertoire. In vitro models to study T lineage commitment and development have provided valuable insights into this process. However, these systems lack the complete three-dimensional thymic milieu necessary for T cell development and, therefore, are incomplete approximations of in vivo thymic selection. Some of the challenges related to modeling T cell development can be overcome by using in situ models that provide an intact thymic microenvironment that fully supports thymic selection of developing T cells. Thymic slice organotypic cultures complement existing in situ techniques. Thymic slices preserve the integrity of the thymic cortical and medullary regions and provide a platform to study development of overlaid thymocytes of a defined developmental stage or of endogenous T cells within a mature thymic microenvironment. Given the ability to generate ~20 slices per mouse, thymic slices present a unique advantage in terms of scalability for high throughput experiments. Further, the relative ease in generating thymic slices and potential to overlay different thymic subsets or other cell populations from diverse genetic backgrounds enhances the versatility of this method. Here we describe a protocol for the preparation of thymic slices, isolation and overlay of thymocytes, and dissociation of thymic slices for flow cytometric analysis. This system can also be adapted to study non-conventional T cell development as well as visualize thymocyte migration, thymocyte-stromal cell interactions, and TCR signals associated with thymic selection by two-photon microscopy.
Collapse
Affiliation(s)
- Aditi Sood
- Centre de Recherche, Hôpital Maisonneuve-Rosemont; Department of Microbiology, Infectiology and Immunology, Université de Montréal
| | - Mengqi Dong
- Centre de Recherche, Hôpital Maisonneuve-Rosemont; Department of Microbiology, Infectiology and Immunology, Université de Montréal
| | - Heather J Melichar
- Centre de Recherche, Hôpital Maisonneuve-Rosemont; Department of Medicine, Université de Montréal;
| |
Collapse
|
50
|
Stadinski BD, Shekhar K, Gómez-Touriño I, Jung J, Sasaki K, Sewell AK, Peakman M, Chakraborty AK, Huseby ES. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol 2016; 17:946-55. [PMID: 27348411 PMCID: PMC4955740 DOI: 10.1038/ni.3491] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
Abstract
Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3β robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the β-chain variable region (Vβ) family present in the TCR or the length of the CDR3β. An index based on these findings distinguished Vβ2(+), Vβ6(+) and Vβ8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.
Collapse
Affiliation(s)
- Brian D. Stadinski
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Karthik Shekhar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jonathan Jung
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Katsuhiro Sasaki
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Mark Peakman
- Department of Immunobiology, King's College London, London, UK
| | - Arup K. Chakraborty
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139., USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School Worcester, MA 01605, USA
| |
Collapse
|