1
|
Wang B, Xia Y, Zhou C, Zeng Y, Son HG, Demehri S. CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression. JCI Insight 2025; 10:e180962. [PMID: 39782693 PMCID: PMC11721301 DOI: 10.1172/jci.insight.180962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025] Open
Abstract
CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology and
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Xia
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Can Zhou
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuhan Zeng
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Heehwa G. Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Simmons T, Levy D. Targeting CD4+ T cell Exhaustion to Improve Future Immunotherapy Strategies. Bull Math Biol 2024; 87:10. [PMID: 39623129 DOI: 10.1007/s11538-024-01389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
As of late, reinvigoration of exhausted T cells as a form of immunotherapy against cancer has been a promising strategy. However, inconsistent results highlight the uncertainties in the current understanding of cellular exhaustion and the need for research and better treatment design. In our previous work, we utilized mathematical modeling and analysis to recapitulate and complement the biological understanding of exhaustion in response to growing tumors. The results of this work recognized that the population size of progenitor exhausted CD8+ T cells played a larger factor in tumor control compared to cytotoxic abilities. From this notion, it was theorized that exhaustion in CD4+ T cells, which are known to help coordinate and promote the size of the CD8+ T cell response, would be a significant component of tumor control. To test this theory, this paper expands on the previous mathematical framework by incorporating CD4+ T cells and the exhaustion they face in response to tumoral settings. Analysis of this model supports our theory, indicating that targeting CD4+ T cell exhaustion would have a potentially large impact on tumor burden and should be investigated along with current immunotherapy strategies of exhausted CD8+ T cell reinvigoration. Ultimately, this work narrows the scope of future research, providing a potential target for improved therapeutic efforts.
Collapse
Affiliation(s)
- Tyler Simmons
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| | - Doron Levy
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
3
|
Aljobaily N, Allard D, Perkins B, Raugh A, Galland T, Jing Y, Stephens WZ, Bettini ML, Hale JS, Bettini M. Autoimmune CD4 + T cells fine-tune TCF1 expression to maintain function and survive persistent antigen exposure during diabetes. Immunity 2024; 57:2583-2596.e6. [PMID: 39396521 PMCID: PMC11563894 DOI: 10.1016/j.immuni.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Self-reactive T cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4+ T cells despite chronic stimulation. Examination of T cell priming showed that CD4+ T cells activated in the absence of infectious signals retained TCF1 expression. At later time points and during blockade of new T cell recruitment, most islet-infiltrating autoimmune CD4+ T cells were TCF1+, although expression was reduced on a per T cell basis. The Tcf7 locus was epigenetically modified in circulating autoimmune CD4+ T cells, suggesting a pre-programmed de novo methylation of the locus in early stages of autoimmune CD4+ T cell differentiation. This mirrored the epigenetic profile of recently recruited CD4+CD62L+ T cells in the pancreas. Collectively, these data reveal a unique environment during autoimmune CD4+ T cell priming that allows T cells to fine-tune TCF1 expression and maintain long-term survival and function.
Collapse
Affiliation(s)
- Nouf Aljobaily
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Denise Allard
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryant Perkins
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Arielle Raugh
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tessa Galland
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Jing
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew L Bettini
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - J Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Bettini
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Liao JB, Dai JY, Reichow JL, Lim JB, Hitchcock-Bernhardt KM, Stanton SE, Salazar LG, Gooley TA, Disis ML. Magnitude of antigen-specific T-cell immunity the month after completing vaccination series predicts the development of long-term persistence of antitumor immune response. J Immunother Cancer 2024; 12:e010251. [PMID: 39521614 PMCID: PMC11552009 DOI: 10.1136/jitc-2024-010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND For best efficacy, vaccines must provide long-lasting immunity. To measure longevity, memory from B and T cells are surrogate endpoints for vaccine efficacy. When antibodies are insufficient for protection, the immune response must rely on T cells. The magnitude and differentiation of effective, durable immune responses depend on antigen-specific precursor frequencies. However, development of vaccines that induce durable T-cell responses for cancer treatment has remained elusive. METHODS To address long-lasting immunity, patients with HER2+ (human epidermal growth factor receptor 2) advanced stage cancer received HER2/neu targeted vaccines. Interferon-gamma (IFN-γ) enzyme-linked immunosorbent spot measuring HER2/neu IFN-γ T cells were analyzed from 86 patients from three time points: baseline, 1 month after vaccine series, and long-term follow-up at 1 year, following one in vitro stimulation. The baseline and 1-month post-vaccine series responses were correlated with immunity at long-term follow-up by logistic regression. Immunity was modeled by non-linear functions using generalized additive models. RESULTS Antigen-specific T-cell responses at baseline were associated with a 0.33-log increase in response at long-term follow-up, 95% CI (0.11, 0.54), p=0.003. 63% of patients that had HER2/neu specific T cells at baseline continued to have responses at long-term follow-up. Increased HER2/neu specific T-cell response 1 month after the vaccine series was associated with a 0.47-log increase in T-cell response at long-term follow-up, 95% CI (0.27, 0.67), p=2e-5. 74% of patients that had an increased IFN-γ HER2 response 1 month after vaccines retained immunity long-term. As the 1-month post-vaccination series precursor frequency of HER2+IFN-γ T-cell responses increased, the probability of retaining these responses long-term increased (OR=1.49 for every one natural log increase of precursor frequency, p=0.0002), reaching an OR of 20 for a precursor frequency of 1:3,000 CONCLUSIONS: Patients not destined to achieve long-term immunity can be identified immediately after completing the vaccine series. Log-fold increases in antigen-specific precursor frequencies after vaccinations correlate with increased odds of retaining long-term HER2 immune responses. Further vaccine boosting or immune checkpoint inhibitors or other immune stimulator therapy should be explored in patients that do not develop antigen-specific T-cell responses to improve overall response rates.
Collapse
Affiliation(s)
- John B Liao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - James Y Dai
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica L Reichow
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Jong-Baeck Lim
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Katie M Hitchcock-Bernhardt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | | | - Lupe G Salazar
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
- Medicine/Division of Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Budhu S, Kim K, Yip W, La Rosa S, Jebiwott S, Cai L, Holland A, Thomas J, Preise D, Somma A, Gordon B, Scherz A, Wolchok JD, Erinjeri J, Merghoub T, Coleman JA. Comparative study of immune response to local tumor destruction modalities in a murine breast cancer model. Front Oncol 2024; 14:1405486. [PMID: 38957315 PMCID: PMC11217310 DOI: 10.3389/fonc.2024.1405486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Immunotherapy is revolutionizing the management of multiple cancer types. However, only a subset of patients responds to immunotherapy. One mechanism of resistance is the absence of immune infiltrates within the tumor. In situ vaccine with local means of tumor destruction that can induce immunogenic cell death have been shown to enhance tumor T cell infiltration and increase efficacy of immune checkpoint blockade. Methods Here, we compare three different forms of localize tumor destruction therapies: radiation therapy (RT), vascular targeted photodynamic therapy (VTP) and cryoablation (Cryo), which are known to induce immunogenic cell death, with their ability to induce local and systemic immune responses in a mouse 4T1 breast cancer model. The effects of combining RT, VTP, Cryo with anti-PD1 was also assessed. Results We observed that RT, VTP and Cryo significantly delayed tumor growth and extended overall survival. In addition, they also induced regression of non-treated distant tumors in a bilateral model suggesting a systemic immune response. Flow cytometry showed that VTP and Cryo are associated with a reduction in CD11b+ myeloid cells (granulocytes, monocytes, and macrophages) in tumor and periphery. An increase in CD8+ T cell infiltration into tumors was observed only in the RT group. VTP and Cryo were associated with an increase in CD4+ and CD8+ cells in the periphery. Conclusion These data suggest that cell death induced by VTP and Cryo elicit similar immune responses that differ from local RT.
Collapse
Affiliation(s)
- Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Kwanghee Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Wesley Yip
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stephen La Rosa
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sylvia Jebiwott
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Liqun Cai
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
| | - Jasmine Thomas
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Dina Preise
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alex Somma
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Benjamin Gordon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Avigdor Scherz
- Department of Plants and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jedd D. Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Immunology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Joseph Erinjeri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medical Center, New York, NY, United States
- Department of Medicine, Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, United States
| | - Jonathan A. Coleman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
6
|
Guo M, Liu MYR, Brooks DG. Regulation and impact of tumor-specific CD4 + T cells in cancer and immunotherapy. Trends Immunol 2024; 45:303-313. [PMID: 38508931 DOI: 10.1016/j.it.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.
Collapse
Affiliation(s)
- Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Melissa Yi Ran Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Wei L, Zhang Y, Wang R, Liu S, Luo J, Ma Y, Wang H, Liu Y, Chen Y. Heteroantigen-assembled nanovaccine enhances the polyfunctionality of TILs against tumor growth and metastasis. Biomaterials 2023; 302:122297. [PMID: 37666102 DOI: 10.1016/j.biomaterials.2023.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The dysfunction of tumor infiltrating lymphocytes (TILs) directly correlates with out of control of tumor growth and metastasis. New approaches and insightful clarity for rescuing TILs dysfunction are urgently needed. Here, we design two heterogenous antigens based on MHC-I epitope and MHC-II epitope from tumor, and assemble heterogenous antigens by electrostatic interactions and π-π stacking into heteroantigen-assembled nanovaccine (HANV). HANV not only significantly increases the abundance of CD8+ and CD4+ TILs, but also elicits stronger polyfunctionality of CD8+ and CD4+ TILs in vivo. Enhanced polyfunctionality of CD8+ and CD4+ TILs positively correlate to suppression of tumor growth and metastasis in melanoma-bearing mouse models. We also validate that nucleotide-binding oligomerization domain-containing protein 2 (NOD2) dominantly enhances anti-tumor capacity of TILs in a temporal immunoregulation manner. This work presents a new insight in developing HANV as a rational strategy to shape TILs polyfunctionality for tumor growth and metastasis.
Collapse
Affiliation(s)
- Liangnian Wei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Ruixin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Shuai Liu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Yunfei Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming, Yunnan, 650000, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100190, China; Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, 100190, China.
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University; Nanjing 211166, China; Department of Immunology, Key Laboratory of Immunological Environment and Disease, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, Nanjing Medical University; Nanjing 211166, China; Department of Epidemiology, National Vaccine Innovation Platform, Center for Global Health, Nanjing Medical University, Nanjing, China; Department of Central Laboratory, The Affiliated Huai'an N0.1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
8
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
9
|
Centofanti E, Wang C, Iyer S, Krichevsky O, Oyler-Yaniv A, Oyler-Yaniv J. The spread of interferon-γ in melanomas is highly spatially confined, driving nongenetic variability in tumor cells. Proc Natl Acad Sci U S A 2023; 120:e2304190120. [PMID: 37603742 PMCID: PMC10468618 DOI: 10.1073/pnas.2304190120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023] Open
Abstract
Interferon-γ (IFNγ) is a critical antitumor cytokine that has varied effects on different cell types. The global effect of IFNγ in the tumor depends on which cells it acts upon and the spatial extent of its spread. Reported measurements of IFNγ spread vary dramatically in different contexts, ranging from nearest-neighbor signaling to perfusion throughout the entire tumor. Here, we apply theoretical considerations to experiments both in vitro and in vivo to study the spread of IFNγ in melanomas. We observe spatially confined niches of IFNγ signaling in 3-D mouse melanoma cultures and human tumors that generate cellular heterogeneity in gene expression and alter the susceptibility of affected cells to T cell killing. Widespread IFNγ signaling only occurs when niches overlap due to high local densities of IFNγ-producing T cells. We measured length scales of ~30 to 40 μm for IFNγ spread in B16 mouse melanoma cultures and human primary cutaneous melanoma. Our results are consistent with IFNγ spread being governed by a simple diffusion-consumption model and offer insight into how the spatial organization of T cells contributes to intratumor heterogeneity in inflammatory signaling, gene expression, and immune-mediated clearance. Solid tumors are often viewed as collections of diverse cellular "neighborhoods": Our work provides a general explanation for such nongenetic cellular variability due to confinement in the spread of immune mediators.
Collapse
Affiliation(s)
- Edoardo Centofanti
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | - Chad Wang
- The Systems, Synthetic, and Quantitative Biology Graduate Program at Harvard Medical School, Boston, MA02115
| | - Sandhya Iyer
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | - Oleg Krichevsky
- The Department of Physics at Ben Gurion University of the Negev, Beer-Sheva8410501, Israel
| | - Alon Oyler-Yaniv
- The Department of Systems Biology at Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
10
|
Abstract
The theory that cancer-associated fibroblasts (CAFs) are immunosuppressive cells has prevailed throughout the past decade. However, recent high-throughput, high-resolution mesenchyme-directed single-cell studies have harnessed computational advances to functionally characterize cell states, highlighting the existence of immunostimulatory CAFs. Our group and others have uncovered and experimentally substantiated key functions of cancer antigen-presenting CAFs in T cell immunity, both in vitro and in vivo, refuting the conventional assumption that CAFs impede adaptive immune rejection of tumours. In this Perspective, I unify the follicular and non-follicular, non-endothelial stroma of tumours under the 'peripheral adaptive immune mesenchyme' framework and position subsets of CAFs as direct positive regulators of the adaptive immune system. Building on the understanding of cancer antigen presentation by CAFs and the second touch hypothesis, which postulates that full T cell polarization requires interaction with antigen-presenting cells in the non-lymphoid tissue where the antigen resides, I re-design the 'cancer-immunity cycle' to incorporate intratumoural activation of cancer-specific CD4+ T cells. Lastly, a road map to therapeutic harnessing of immunostimulatory CAF states is proposed.
Collapse
Affiliation(s)
- Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.
| |
Collapse
|
11
|
Abstract
The effector potency of chimeric antigen receptor (CAR) T cell therapeutic products is essential to their clinical antitumor responses, and potency monitoring is a critical quality control method for CAR T cell therapy platforms. While many in vitro assays enable high-throughput assessment of CAR T cell cytotoxicity, it has been challenging for these assays to reflect the in vivo therapeutic effect due to their nature as short-term methods that fail to recapitulate the high tumor burden environment. Here, we describe two in vitro co-culture methods to evaluate CAR T cell recursive killing potential at high tumor cell loads. In these assays, long-term cytotoxic function and proliferative capacity of CAR T cells are examined in vitro over 7days. Further, these assays are coupled with profiling CAR T cell expansion, cytokine production and phenotypes. These methods provide a facile approach to assess CAR T cell potency and to elucidate the functional variations across different CAR T cell products.
Collapse
|
12
|
Huang Y, Zheng H, Zhu Y, Hong Y, Zha J, Lin Z, Li Z, Wang C, Fang Z, Yu X, Liu L, Xu B. Loss of CD28 expression associates with severe T-cell exhaustion in acute myeloid leukemia. Front Immunol 2023; 14:1139517. [PMID: 36960073 PMCID: PMC10027902 DOI: 10.3389/fimmu.2023.1139517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Despite accumulated evidence in T-cell exhaustion in acute myeloid leukemia (AML), the immunotherapeutic targeting exhausted T cells such as programmed cell death protein 1 (PD-1) blockade in AML failed to achieve satisfying efficacy. Characteristics of exhausted T cells in AML remained to be explored. Methods Phenotypic analysis of T cells in bone marrow (BM) using flow cytometry combining senescent and exhausted markers was performed in de novo AML patients and healthy donors as well as AML patients with complete remission (CR). Functional analysis of T-cell subsets was also performed in de novo AML patients using flow cytometry. Results T cells experienced a phenotypic shift to terminal differentiation characterized by increased loss of CD28 expression and decrease of naïve T cells. Additionally, lack of CD28 expression could help define a severely exhausted subset from generally exhausted T cells (PD-1+TIGIT+). Moreover, CD28- subsets rather than CD28+ subsets predominantly contributed to the significant accumulation of PD-1+TIGIT+ T cells in AML patients. Further comparison of de novo and CR AML patients showed that T-cell exhaustion status was improved after disease remission, especially in CD28+ subsets. Notably, higher frequency of CD28-TIGIT-CD4+ T cells correlated with the presence of minimal residual disease in AML-CR group. However, the correlation between CD28- exhausted T cells and cytogenetic risk or white blood cell count was not observed, except for that CD28- exhausted CD4+ T cells correlated with lymphocyte counts. Intriguingly, larger amount of CD28-TGITI+CD8+ T cells at diagnosis was associated with poor treatment response and shorter leukemia free survival. Discussion In summary, lack of CD28 expression defined a severely exhausted status from exhausted T cells. Accumulation of CD28- exhausted T cells was linked to occurrence of AML, and correlated to poor clinical outcome. Our data might facilitate the development of combinatory strategies to improve the efficacy of PD-1 blockade in AML.
Collapse
Affiliation(s)
- Yueting Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Huijian Zheng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yuwen Zhu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yan Hong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhijuan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Caiyan Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Xingxing Yu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
- *Correspondence: Bing Xu, ; Long Liu, ; Xingxing Yu,
| | - Long Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
- *Correspondence: Bing Xu, ; Long Liu, ; Xingxing Yu,
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
- *Correspondence: Bing Xu, ; Long Liu, ; Xingxing Yu,
| |
Collapse
|
13
|
Castro A, Kaabinejadian S, Yari H, Hildebrand W, Zanetti M, Carter H. Subcellular location of source proteins improves prediction of neoantigens for immunotherapy. EMBO J 2022; 41:e111071. [PMID: 36314681 PMCID: PMC9753441 DOI: 10.15252/embj.2022111071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/23/2022] Open
Abstract
Antigen presentation via the major histocompatibility complex (MHC) is essential for anti-tumor immunity. However, the rules that determine which tumor-derived peptides will be immunogenic are still incompletely understood. Here, we investigated whether constraints on peptide accessibility to the MHC due to protein subcellular location are associated with peptide immunogenicity potential. Analyzing over 380,000 peptides from studies of MHC presentation and peptide immunogenicity, we find clear spatial biases in both eluted and immunogenic peptides. We find that including parent protein location improves the prediction of peptide immunogenicity in multiple datasets. In human immunotherapy cohorts, the location was associated with a neoantigen vaccination response, and immune checkpoint blockade responders generally had a higher burden of neopeptides from accessible locations. We conclude that protein subcellular location adds important information for optimizing cancer immunotherapies.
Collapse
Affiliation(s)
- Andrea Castro
- Bioinformatics and Systems Biology ProgramUniversity of California San DiegoLa JollaCAUSA
| | - Saghar Kaabinejadian
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
- Pure MHC LLCOklahoma CityOKUSA
| | - Hooman Yari
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - William Hildebrand
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - Maurizio Zanetti
- The Laboratory of Immunology and Department of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Hannah Carter
- Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, Division of Medical GeneticsUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
14
|
Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol 2022; 19:775-790. [PMID: 36216928 PMCID: PMC10984554 DOI: 10.1038/s41571-022-00689-z] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Immunotherapy has been a remarkable clinical advancement in the treatment of cancer. T cells are pivotal to the efficacy of current cancer immunotherapies, including immune-checkpoint inhibitors and adoptive cell therapies. However, cancer is associated with T cell exhaustion, a hypofunctional state characterized by progressive loss of T cell effector functions and self-renewal capacity. The 'un-exhausting' of T cells in the tumour microenvironment is commonly regarded as a key mechanism of action for immune-checkpoint inhibitors, and T cell exhaustion is considered a pathway of resistance for cellular immunotherapies. Several elegant studies have provided important insights into the transcriptional and epigenetic programmes that govern T cell exhaustion. In this Review, we highlight recent discoveries related to the immunobiology of T cell exhaustion that offer a more nuanced perspective beyond this hypofunctional state being entirely undesirable. We review evidence that T cell exhaustion might be as much a reflection as it is the cause of poor tumour control. Furthermore, we hypothesize that, in certain contexts of chronic antigen stimulation, interruption of the exhaustion programme might impair T cell persistence. Therefore, the prioritization of interventions that mitigate the development of T cell exhaustion, including orthogonal cytoreduction therapies and novel cellular engineering strategies, might ultimately confer superior clinical outcomes and the greatest advances in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew Chow
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Karlo Perica
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones. Immunity 2022; 55:1013-1031.e7. [PMID: 35320704 PMCID: PMC9203927 DOI: 10.1016/j.immuni.2022.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Understanding the drivers and markers of clonally expanding HIV-1-infected CD4+ T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion. HIV-1 resided in Th1-polarized, antigen-responding T cells expressing BCL2 and SERPINB9 that may resist cell death. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides another direction for HIV-1 eradication.
Collapse
|
16
|
Li S, Zhuang S, Heit A, Koo SL, Tan AC, Chow IT, Kwok WW, Tan IB, Tan DS, Simoni Y, Newell EW. Bystander CD4 + T cells infiltrate human tumors and are phenotypically distinct. Oncoimmunology 2022; 11:2012961. [PMID: 36524209 PMCID: PMC9746624 DOI: 10.1080/2162402x.2021.2012961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific T cells likely underpin effective immune checkpoint-blockade therapies. Yet, most studies focus on Treg cells and CD8+ tumor-infiltrating lymphocytes (TILs). Here, we study CD4+ TILs in human lung and colorectal cancers and observe that non-Treg CD4+ TILs average more than 70% of total CD4+ TILs in both cancer types. Leveraging high dimensional analyses including mass cytometry, we reveal that CD4+ TILs are phenotypically heterogeneous, within each tumor and across patients. Consistently, we find different subsets of CD4+ TILs showing characteristics of effectors, tissue resident memory (Trm) or exhausted cells (expressing PD-1, CTLA-4 and CD39). In both cancer types, the frequencies of CD39- non-Treg CD4+ TILs strongly correlate with frequencies of CD39- CD8+ TILs, which we and others have previously shown to be enriched for cells specific for cancer-unrelated antigens (bystanders). Ex-vivo, we demonstrate that CD39- CD4+ TILs can be specific for cancer-unrelated antigens, such as HCMV epitopes. Overall, our findings highlight that CD4+ TILs can also recognize cancer-unrelated antigens and suggest measuring CD39 expression as a straightforward way to quantify or isolate bystander CD4+ T cells.
Collapse
Affiliation(s)
- Shamin Li
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Summer Zhuang
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Antja Heit
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Si-Lin Koo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - Aaron C. Tan
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - I-Ting Chow
- Agency for Science Technology and Research (A*Star), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - William W. Kwok
- Agency for Science Technology and Research (A*Star), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - Iain Beehuat Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | | | - Yannick Simoni
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA,Université de Paris, Institut Cochin INSERM U1016, Paris, France,CONTACT Yannick Simoni Université de Paris, Institut Cochin INSERM U1016, 22 Rue Mechain, Paris75014, France
| | - Evan W. Newell
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA,Evan W. Newell Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, 1100 Fairview Ave. N., Mail Stop S2-204, Seattle, WA98109, USA
| |
Collapse
|
17
|
Miggelbrink AM, Jackson JD, Lorrey SJ, Srinivasan ES, Waibl-Polania J, Wilkinson DS, Fecci PE. CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clin Cancer Res 2021; 27:5742-5752. [PMID: 34127507 PMCID: PMC8563372 DOI: 10.1158/1078-0432.ccr-21-0206] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
In chronic infections and in cancer, persistent antigen stimulation under suboptimal conditions can lead to the induction of T-cell exhaustion. Exhausted T cells are characterized by an increased expression of inhibitory markers and a progressive and hierarchical loss of function. Although cancer-induced exhaustion in CD8 T cells has been well-characterized and identified as a therapeutic target (i.e., via checkpoint inhibition), in-depth analyses of exhaustion in other immune cell types, including CD4 T cells, is wanting. While perhaps attributable to the contextual discovery of exhaustion amidst chronic viral infection, the lack of thorough inquiry into CD4 T-cell exhaustion is particularly surprising given their important role in orchestrating immune responses through T-helper and direct cytotoxic functions. Current work suggests that CD4 T-cell exhaustion may indeed be prevalent, and as CD4 T cells have been implicated in various disease pathologies, such exhaustion is likely to be clinically relevant. Defining phenotypic exhaustion in the various CD4 T-cell subsets and how it influences immune responses and disease severity will be crucial to understanding collective immune dysfunction in a variety of pathologies. In this review, we will discuss mechanistic and clinical evidence for CD4 T-cell exhaustion in cancer. Further insight into the derivation and manifestation of exhaustive processes in CD4 T cells could reveal novel therapeutic targets to abrogate CD4 T-cell exhaustion in cancer and induce a robust antitumor immune response.
Collapse
Affiliation(s)
- Alexandra M. Miggelbrink
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Joshua D. Jackson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Selena J. Lorrey
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Ethan S. Srinivasan
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Duke University School of Medicine, Durham, North Carolina
| | - Jessica Waibl-Polania
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Daniel S. Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E. Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina.,Corresponding Author: Peter E. Fecci, Department of Neurosurgery, Duke Medical Center, DUMC Box 3050, Durham, NC 27705. Phone: 919–681–1010; E-mail:
| |
Collapse
|
18
|
Abstract
In this essay, we show that 3 distinct approaches to immunological exhaustion coexist and that they only partially overlap, generating potential misunderstandings. Exploring cases ranging from viral infections to cancer, we propose that it is crucial, for experimental and therapeutic purposes, to clarify these approaches and their interconnections so as to make the concept of exhaustion genuinely operational.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | - Maël Lemoine
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Palmer S, Cunniffe N, Donnelly R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production. J R Soc Interface 2021; 18:20200982. [PMID: 33726544 PMCID: PMC8086881 DOI: 10.1098/rsif.2020.0982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we report that COVID-19 hospitalization rates follow an exponential relationship with age, doubling for every 16 years of age or equivalently increasing by 4.5% per year of life (R2 = 0.98). This mirrors the well-studied exponential decline of both thymus volume and T-cell production, which halve every 16 years. COVID-19 can therefore be added to the list of other diseases with this property, including those caused by methicillin-resistant Staphylococcus aureus, MERS-CoV, West Nile virus, Streptococcus pneumoniae and certain cancers, such as chronic myeloid leukaemia and brain cancers. In addition, the incidence of severe disease and mortality due to COVID-19 are both higher in men, consistent with the degree to which thymic involution (and the decrease in T-cell production with age) is more severe in men compared to women. Since these properties are shared with some non-contagious diseases, we hypothesized that the age dependence does not come from social-mixing patterns, i.e. that the probability of hospitalization given infection rises exponentially, doubling every 16 years. A Bayesian analysis of daily hospitalizations, incorporating contact matrices, found that this relationship holds for every age group except for the under 20s. While older adults have fewer contacts than young adults, our analysis suggests that there is an approximate cancellation between the effects of fewer contacts for the elderly and higher infectiousness due to a higher probability of developing severe disease. Our model fitting suggests under 20s have 49-75% additional immune protection beyond that predicted by strong thymus function alone, consistent with increased juvenile cross-immunity from other viruses. We found no evidence for differences between age groups in susceptibility to infection or infectiousness to others (given disease state), i.e. the only important factor in the age dependence of hospitalization rates is the probability of hospitalization given infection. These findings suggest the existence of a T-cell exhaustion threshold, proportional to thymic output and that clonal expansion of peripheral T-cells does not affect disease risk. The strikingly simple inverse relationship between risk and thymic T-cell output adds to the evidence that thymic involution is an important factor in the decline of the immune system with age and may also be an important clue in understanding disease progression, not just for COVID-19 but other diseases as well.
Collapse
Affiliation(s)
- Sam Palmer
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Magen A, Nie J, Ciucci T, Tamoutounour S, Zhao Y, Mehta M, Tran B, McGavern DB, Hannenhalli S, Bosselut R. Single-Cell Profiling Defines Transcriptomic Signatures Specific to Tumor-Reactive versus Virus-Responsive CD4 + T Cells. Cell Rep 2020; 29:3019-3032.e6. [PMID: 31801070 PMCID: PMC6934378 DOI: 10.1016/j.celrep.2019.10.131] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Most current tumor immunotherapy strategies leverage cytotoxic CD8+ T cells. Despite evidence for clinical potential of CD4+ tumor-infiltrating lymphocytes (TILs), their functional diversity limits our ability to harness their activity. Here, we use single-cell mRNA sequencing to analyze the response of tumor-specific CD4+ TILs and draining lymph node (dLN) T cells. Computational approaches to characterize subpopulations identify TIL transcriptomic patterns strikingly distinct from acute and chronic anti-viral responses and dominated by diversity among T-bet-expressing T helper type 1 (Th1)-like cells. In contrast, the dLN response includes T follicular helper (Tfh) cells but lacks Th1 cells. We identify a type I interferon-driven signature in Th1-like TILs and show that it is found in human cancers, in which it is negatively associated with response to checkpoint therapy. Our study provides a proof-of-concept methodology to characterize tumor-specific CD4+ T cell effector programs. Targeting these programs should help improve immunotherapy strategies. CD4+ T cells contribute to immune responses to tumors, but their functional diversity has hampered their utilization in clinical settings. Magen et al. use single-cell RNA sequencing to dissect the heterogeneity of CD4+ T cell responses to tumor antigens and reveal molecular divergences between anti-tumor and anti-viral responses.
Collapse
Affiliation(s)
- Assaf Magen
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Samira Tamoutounour
- Metaorganism Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika Mehta
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bao Tran
- NCI CCR Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Metaorganism Immunology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
22
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
23
|
Hope JL, Stairiker CJ, Bae EA, Otero DC, Bradley LM. Striking a Balance-Cellular and Molecular Drivers of Memory T Cell Development and Responses to Chronic Stimulation. Front Immunol 2019; 10:1595. [PMID: 31379821 PMCID: PMC6650570 DOI: 10.3389/fimmu.2019.01595] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/26/2019] [Indexed: 01/11/2023] Open
Abstract
Effective adaptive immune responses are characterized by stages of development and maturation of T and B cell populations that respond to disturbances in the host homeostasis in cases of both infections and cancer. For the T cell compartment, this begins with recognition of specific peptides by naïve, antigen-inexperienced T cells that results in their activation, proliferation, and differentiation, which generates an effector population that clears the antigen. Loss of stimulation eventually returns the host to a homeostatic state, with a heterogeneous memory T cell population that persists in the absence of antigen and is primed for rapid responses to a repeat antigen exposure. However, in chronic infections and cancers, continued antigen persistence impedes a successful adaptive immune response and the formation of a stereotypical memory population of T cells is compromised. With repeated antigen stimulation, responding T cells proceed down an altered path of differentiation that allows for antigen persistence, but much less is known regarding the heterogeneity of these cells and the extent to which they can become “memory-like,” with a capacity for self-renewal and recall responses that are characteristic of bona fide memory cells. This review focuses on the differentiation of CD4+ and CD8+ T cells in the context of chronic antigen stimulation, highlighting the central observations in both human and mouse studies regarding the differentiation of memory or “memory-like” T cells. The importance of both the cellular and molecular drivers of memory T cell development are emphasized to better understand the consequences of persisting antigen on T cell fates. Integrating what is known and is common across model systems and patients can instruct future studies aimed at further understanding T cell differentiation and development, with the goal of developing novel methods to direct T cells toward the generation of effective memory populations.
Collapse
Affiliation(s)
- Jennifer L Hope
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Christopher J Stairiker
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Eun-Ah Bae
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Dennis C Otero
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Linda M Bradley
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
24
|
Wang D, Starr R, Alizadeh D, Yang X, Forman SJ, Brown CE. In Vitro Tumor Cell Rechallenge For Predictive Evaluation of Chimeric Antigen Receptor T Cell Antitumor Function. J Vis Exp 2019. [PMID: 30882787 DOI: 10.3791/59275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of chimeric antigen receptor (CAR) T cell therapy is rapidly advancing with improvements in CAR design, gene-engineering approaches and manufacturing optimizations. One challenge for these development efforts, however, has been the establishment of in vitro assays that can robustly inform selection of the optimal CAR T cell products for in vivo therapeutic success. Standard in vitro tumor-lysis assays often fail to reflect the true antitumor potential of the CAR T cells due to the relatively short co-culture time and high T cell to tumor ratio. Here, we describe an in vitro co-culture method to evaluate CAR T cell recursive killing potential at high tumor cell loads. In this assay, long-term cytotoxic function and proliferative capacity of CAR T cells is examined in vitro over 7 days with additional tumor targets administered to the co-culture every other day. This assay can be coupled with profiling T cell activation, exhaustion and memory phenotypes. Using this assay, we have successfully distinguished the functional and phenotypic differences between CD4+ and CD8+ CAR T cells against glioblastoma (GBM) cells, reflecting their differential in vivo antitumor activity in orthotopic xenograft models. This method provides a facile approach to assess CAR T cell potency and to elucidate the functional variations across different CAR T cell products.
Collapse
Affiliation(s)
- Dongrui Wang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center; Irell and Manella Graduate School of Biological Sciences, City of Hope Beckman Research Institute and Medical Center;
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center;
| |
Collapse
|
25
|
Abraham TS, Flickinger JC, Waldman SA, Snook AE. TCR Retrogenic Mice as a Model To Map Self-Tolerance Mechanisms to the Cancer Mucosa Antigen GUCY2C. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1301-1310. [PMID: 30642983 PMCID: PMC6363846 DOI: 10.4049/jimmunol.1801206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/13/2018] [Indexed: 01/21/2023]
Abstract
Characterizing self-tolerance mechanisms and their failure is critical to understand immune homeostasis, cancer immunity, and autoimmunity. However, examination of self-tolerance mechanisms has relied primarily on transgenic mice expressing TCRs targeting well-characterized, but nonphysiologic, model Ags, such as OVA and hemagglutinin. Identifying TCRs directed against bona fide self-antigens is made difficult by the extraordinary diversity of TCRs and the low prevalence of Ag-specific clones (<10-100 naive cells per organism), limiting dissection of tolerance mechanisms restricting immunity to self-proteins. In this study, we isolated and characterized TCRs recognizing the intestinal epithelial cell receptor and colorectal cancer Ag GUCY2C to establish a model to study self-antigen-specific tolerance mechanisms. GUCY2C-specific CD4+ effector T cells were isolated from immunized, nontolerant Gucy2c -/- mice. Next-generation sequencing identified GUCY2C-specific TCRs, which were engineered into CD4+ T cells in vitro to confirm TCR recognition of GUCY2C. Further, the generation of "retrogenic" mice by reconstitution with TCR-transduced hematopoietic stem cells resulted in normal CD4+ T cell development, responsiveness to immunization, and GUCY2C-induced tolerance in recipient mice, recapitulating observations in conventional models. This retrogenic model can be employed to define self-tolerance mechanisms restricting T and B cell responses to GUCY2C to optimize colorectal cancer immunotherapy without autoimmunity.
Collapse
Affiliation(s)
- Tara S Abraham
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
26
|
Hudson KE, Wong ASL, Richards AL, Kapp LM, Zimring JC. Alloimmunogenicity of an isolated MHC allele is affected by the context of MHC mismatch in a murine model. Transfusion 2019; 59:744-753. [PMID: 30681727 DOI: 10.1111/trf.15109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Humoral alloimmunization to human leukocyte antigen (HLA) can represent a barrier to solid-organ transplantation, can lead to a refractory state in patients requiring platelet transfusion, and can also contribute to transfusion-related acute lung injury (TRALI). While exposure to HLA-mismatched cells/tissues are generally required for HLA alloimmunization, the effect of the extent of major histocompatibility complex (MHC) mismatch between donor and recipient is poorly understood. STUDY DESIGN AND METHODS A novel mouse was generated that allows the expression of a single MHC Class I alloantigen, Kd . Alloimmune responses to Kd were studied in C57BL/6 mice transfused with splenocytes from different donor mice, allowing the analysis of responses to Kd as an isolated alloantigen, or in the context of additional mismatched MHC molecules. Advanced tools were utilized to study responses to Kd , including T-cell receptor transgenic mice that recognize the immunodominant Kd peptide presented by C57BL/6 mice to CD4+ T cells. RESULTS A single MHC Class I alloantigen mismatch is less immunogenic than when the same alloantigen is encountered in the context of additional mismatched MHC alloantigens. This difference is due, at least in part, to induction of CD4+ helper T cells, as the effect is overcome by increasing either mature CD4+ T-cell help through immunization or by increasing the precursor frequency of naïve CD4+ T cells by adoptive transfer from T-cell receptor transgenic donors. CONCLUSION These findings indicate that the immunogenicity of a single alloantigen can be affected by the context in which it is encountered, demonstrating the potential for cooperative effects between different mismatched MHC alloantigens.
Collapse
Affiliation(s)
- Krystalyn E Hudson
- BloodworksNW Research Institute, Seattle, Washington.,Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington
| | | | | | - Linda M Kapp
- BloodworksNW Research Institute, Seattle, Washington
| | - James C Zimring
- BloodworksNW Research Institute, Seattle, Washington.,Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington.,Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
27
|
Kyte JA, Fåne A, Pule M, Gaudernack G. Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination. Oncoimmunology 2019; 8:e1565236. [PMID: 30906659 DOI: 10.1080/2162402x.2019.1565236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Adoptive cell therapy (ACT) with retargeted T cells has produced remarkable clinical responses against cancer, but also serious toxicity. Telomerase is overexpressed in most cancers, but also expressed in some normal cells, raising safety concerns. We hypothesize that ACT with T-helper cell receptors may overcome tumour tolerance, mobilize host immune cells and induce epitope spreading, with limited toxicity. From long term survivors after cancer vaccination, we have isolated telomerase-specific T cell receptors (TCRs) from T-helper cells. Herein, we report the development of transient retargeting of T cells with mRNA-based TCRs. This strategy allows for safer clinical testing and meaningful dose escalation. DP4 is the most common HLA molecule. We cloned two telomerase-specific, DP4-restricted TCRs into the mRNA expression vector pCIpA102, together with the sorter/marker/suicide gene RQR8. Donor T cells were electroporated with mRNA encoding TCR_RQR8. The results showed that both TCR_RQR8 constructs were expressed in >90% of T cells. The transfected T cells specifically recognized the relevant peptide, as well as naturally processed epitopes from a 177aa telomerase protein fragment, and remained functional for six days. A polyfunctional and Th1-like cytokine profile was observed. The TCRs were functional in both CD4+and CD8+recipient T cells, even though DP4-restricted. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired telomerase-specificity and functionality. Preclinical experiments may provide limited information on the efficacy and toxicity of T-helper TCRs, as these mobilize the host immune system. We therefore intend to use the mRNA-based TCRs for a first-in-man trial.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Section for Cancer Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| | - Anne Fåne
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Martin Pule
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Gustav Gaudernack
- Section for Cancer Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Mercier-Letondal P, Marton C, Deschamps M, Ferrand C, Vauchy C, Chenut C, Baguet A, Adotévi O, Borg C, Galaine J, Godet Y. Isolation and Characterization of an HLA-DRB1*04-Restricted HPV16-E7 T Cell Receptor for Cancer Immunotherapy. Hum Gene Ther 2018; 29:1202-1212. [PMID: 30136612 DOI: 10.1089/hum.2018.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection is a causal factor in oropharyngeal and gynecological malignancies, and development of HPV-targeted immunotherapy could be used to treat patients with these cancers. T cell-mediated adoptive immunotherapy targeting E6 and E7, two HPV16 proteins consistently expressed in tumor cells, appears to be both attractive and safe. However, isolation of HPV-specific T cells is difficult owing to the low frequency of these cell precursors in the peripheral blood. In addition, HPV-positive cancer cells often down-regulate major histocompatibility complex (MHC) class I expression ex vivo, limiting the efficacy of MHC class I-restricted approaches. Of particular interest is that both CD4 and CD8 T cells can mediate the responses. Given that CD4 T cells play a critical role in coordinating effective antitumor responses, the generation of a T helper response in patients with HPV16-associated malignancies would unleash the ultimate potential of immunotherapy. In this view, T-cell receptor (TCR) gene transfer could be a relevant strategy to generate HPV16-E7-specific and MHC class II-restricted T cells in sufficient numbers. An HPV16-E7/HLA-DRB1*04 TCR has been isolated from a cancer patient with complete response, and retroviral particles encoding this TCR have been produced. The transgenic TCR is highly expressed in transduced T cells, with a functional inducible caspase-9 suicide gene safety cassette. TCR transgenic T cells are HPV16-E770-89 specific and HLA-DRB1*04 restricted, as determined by interferon (IFN)-γ secretion. CD8 and CD4 T cells are equivalently transduced and secrete interleukin-2 and IFN-γ when cultured with appropriate targets. We also demonstrate that TCR transgenic T cells recognize the endogenously processed and presented HPV16-E770-89 peptide. In conclusion, our data indicate that the production of MHC class II-restricted HPV16-E7-specific T cells is feasible through TCR gene transfer and could be used for immunotherapy.
Collapse
Affiliation(s)
- Patricia Mercier-Letondal
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Chrystel Marton
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Marina Deschamps
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Christophe Ferrand
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Charline Vauchy
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Clément Chenut
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Aurélie Baguet
- 2 EA3181, Université Bourgogne Franche-Comté , F-25000 Besançon, France; and Department of Medical Oncology, F-25000 Besançon, France
| | - Olivier Adotévi
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France .,3 University Hospital of Besançon , Department of Medical Oncology, F-25000 Besançon, France
| | - Christophe Borg
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France .,3 University Hospital of Besançon , Department of Medical Oncology, F-25000 Besançon, France
| | - Jeanne Galaine
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| | - Yann Godet
- 1 Université Bourgogne Franche-Comté , INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Medical Oncology, F-25000 Besançon, France
| |
Collapse
|
29
|
Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, Ostberg JR, Forman SJ, Brown CE. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 2018; 3:99048. [PMID: 29769444 PMCID: PMC6012522 DOI: 10.1172/jci.insight.99048] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/12/2018] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.
Collapse
Affiliation(s)
- Dongrui Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
- Irell and Manella Graduate School of Biological Sciences, City of Hope (COH) Beckman Research Institute and Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Darya Alizadeh
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Alfonso Brito
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Aniee Sarkissian
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Julie R. Ostberg
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| | - Christine E. Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, and
| |
Collapse
|
30
|
Goding SR, Wilson KA, Rosinsky C, Antony PA. PD-L1-Independent Mechanisms Control the Resistance of Melanoma to CD4 + T Cell Adoptive Immunotherapy. THE JOURNAL OF IMMUNOLOGY 2018; 200:3304-3311. [PMID: 29602773 DOI: 10.4049/jimmunol.1701617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Immunotherapy is becoming the standard of care for melanoma. However, resistance to therapy is a major problem. Previously, we showed that tumor-specific, cytotoxic CD4+ T cells from tyrosinase-related protein 1 transgenic mice could overcome secondary resistance to recurring melanoma when anti-programmed cell death 1 ligand (PD-L1) checkpoint blockade was combined with either anti-lymphocyte-activated gene 3 (LAG-3) Abs or depletion of tumor-specific regulatory T (Treg) cells. In this study, we show that PD-L1 expressed by the host, not B16 melanoma, plays a major role in the early stages of exhaustion or primary resistance. We observed durable regression of melanoma in tumor-bearing PD-L1-/-RAG-/- mice with transfer of naive tumor-specific CD4+ T cells. However, exhausted tumor-specific CD4+ T cells, which included tumor-specific Treg cells, failed to maintain durable regression of tumors in PD-L1-/-RAG-/- mice unless tumor-specific Treg cells were eliminated, showing nonredundant pathways of resistance to immunotherapy were present. Translating these findings to a clinically relevant model of cancer immunotherapy, we unexpectedly showed that anti-PD-L1 checkpoint blockade mildly improved immunotherapy with tumor-specific CD4+ T cells and irradiation in wild-type mice. Instead, anti-LAG-3 checkpoint blockade, in combination with tumor-specific CD4+ T cells and irradiation, overcame primary resistance and treated established tumors resulting in fewer recurrences. Because LAG-3 negatively regulates effector T cell function and activates Treg cells, LAG-3 blockade may be more beneficial in overcoming primary resistance in combination immunotherapies using adoptive cellular therapy and irradiation than blockade of PD-L1.
Collapse
Affiliation(s)
- Stephen R Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kyle A Wilson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Carolyn Rosinsky
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and
| | - Paul Andrew Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201; .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201; and.,Tumor Immunology and Immunotherapy Program, University of Maryland Cancer Center, Baltimore, MD 21201
| |
Collapse
|
31
|
Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, Mintoff CP, Dushyanthen S, Mansour M, Pang JMB, Fox SB, Perou CM, Visvader JE, Gray DHD, Loi S, Lindeman GJ. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med 2018; 9:9/393/eaal4922. [PMID: 28592566 DOI: 10.1126/scitranslmed.aal4922] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/31/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors have emerged as a potent new class of anticancer therapy. They have changed the treatment landscape for a range of tumors, particularly those with a high mutational load. To date, however, modest results have been observed in breast cancer, where tumors are rarely hypermutated. Because BRCA1-associated tumors frequently exhibit a triple-negative phenotype with extensive lymphocyte infiltration, we explored their mutational load, immune profile, and response to checkpoint inhibition in a Brca1-deficient tumor model. BRCA1-mutated triple-negative breast cancers (TNBCs) exhibited an increased somatic mutational load and greater numbers of tumor-infiltrating lymphocytes, with increased expression of immunomodulatory genes including PDCD1 (PD-1) and CTLA4, when compared to TNBCs from BRCA1-wild-type patients. Cisplatin treatment combined with dual anti-programmed death-1 and anti-cytotoxic T lymphocyte-associated antigen 4 therapy substantially augmented antitumor immunity in Brca1-deficient mice, resulting in an avid systemic and intratumoral immune response. This response involved enhanced dendritic cell activation, reduced suppressive FOXP3+ regulatory T cells, and concomitant increase in the activation of tumor-infiltrating cytotoxic CD8+ and CD4+ T cells, characterized by the induction of polyfunctional cytokine-producing T cells. Dual (but not single) checkpoint blockade together with cisplatin profoundly attenuated the growth of Brca1-deficient tumors in vivo and improved survival. These findings provide a rationale for clinical studies of combined immune checkpoint blockade in BRCA1-associated TNBC.
Collapse
Affiliation(s)
- Emma Nolan
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Savas
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Antonia N Policheni
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Phillip K Darcy
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Immunotherapy Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - François Vaillant
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Sathana Dushyanthen
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Mariam Mansour
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen B Fox
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jane E Visvader
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel H D Gray
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Molecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Stem Cells and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. .,Parkville Integrated Familial Cancer Centre, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Liu L, Chang YJ, Xu LP, Zhang XH, Wang Y, Liu KY, Huang XJ. T cell exhaustion characterized by compromised MHC class I and II restricted cytotoxic activity associates with acute B lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation. Clin Immunol 2018; 190:32-40. [PMID: 29477343 DOI: 10.1016/j.clim.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/28/2017] [Accepted: 02/22/2018] [Indexed: 01/01/2023]
Abstract
Acute B lymphoblastic leukemia (B-ALL) relapse contributes predominantly to the mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanism of B-ALL relapse after allo-HSCT remains unknown. The eradication of leukemia after allo-HSCT largely relies on graft-versus-leukemia (GVL) effects mediated by donor T cells. T cell exhaustion, characterized by the increased expression of inhibitory receptors and impaired function, may suppress GVL effects. In this study, we evaluated whether T cell exhaustion was involved in B-ALL relapse after allo-HSCT. The results showed that CD4+ and CD8+ T cells exhibited increased coexpression of PD-1 and Tim-3, and compromised proliferative capacity, cytokine production and cytotoxic potentials in relapsed patients. Additionally, T cells at the tumor site were more easily exhausted than T cells in the peripheral blood. Moreover, the reversal of T cell exhaustion might correlate with effective anti-leukemic responses after reinduction. These results suggested that T cell exhaustion was associated with B-ALL relapse after allo-HSCT as well as its treatment outcome.
Collapse
Affiliation(s)
- Long Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; Collaborative Innovation Center of Hematology, Peking University, China.
| |
Collapse
|
33
|
Modeling tumor immunity of mouse glioblastoma by exhausted CD8 + T cells. Sci Rep 2018; 8:208. [PMID: 29317703 PMCID: PMC5760520 DOI: 10.1038/s41598-017-18540-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
T cell exhaustion occurs during chronic infection and cancers. Programmed cell death protein-1 (PD-1) is a major inhibitory checkpoint receptor involved in T cell exhaustion. Blocking antibodies (Abs) against PD-1 or its ligand, PD-L1, have been shown to reverse T cell exhaustion during chronic infection and cancers, leading to improved control of persistent antigen. However, modeling tumor-specific T cell responses in mouse has been difficult due to the lack of reagents to detect and phenotype tumor-specific immune responses. We developed a novel mouse glioma model expressing a viral epitope derived from lymphocytic choriomeningitis virus (LCMV), which allowed monitoring of tumor-specific CD8 T-cell responses. These CD8 T cells express high levels of PD-1 and are unable to reject tumors, but this can be reversed by anti-PD-1 treatment. These results suggest the efficacy of PD-1 blockade as a treatment for glioblastoma, an aggressive tumor that results in a uniformly lethal outcome. Importantly, this new syngeneic tumor model may also provide further opportunities to characterize anti-tumor T cell exhaustion and develop novel cancer immunotherapies.
Collapse
|
34
|
Bailey SR, Nelson MH, Majchrzak K, Bowers JS, Wyatt MM, Smith AS, Neal LR, Shirai K, Carpenito C, June CH, Zilliox MJ, Paulos CM. Human CD26 high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nat Commun 2017; 8:1961. [PMID: 29213079 PMCID: PMC5719008 DOI: 10.1038/s41467-017-01867-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/20/2017] [Indexed: 01/25/2023] Open
Abstract
CD8+ T lymphocytes mediate potent immune responses against tumor, but the role of human CD4+ T cell subsets in cancer immunotherapy remains ill-defined. Herein, we exhibit that CD26 identifies three T helper subsets with distinct immunological properties in both healthy individuals and cancer patients. Although CD26neg T cells possess a regulatory phenotype, CD26int T cells are mainly naive and CD26high T cells appear terminally differentiated and exhausted. Paradoxically, CD26high T cells persist in and regress multiple solid tumors following adoptive cell transfer. Further analysis revealed that CD26high cells have a rich chemokine receptor profile (including CCR2 and CCR5), profound cytotoxicity (Granzyme B and CD107A), resistance to apoptosis (c-KIT and Bcl2), and enhanced stemness (β-catenin and Lef1). These properties license CD26high T cells with a natural capacity to traffic to, regress and survive in solid tumors. Collectively, these findings identify CD4+ T cell subsets with properties critical for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Stefanie R Bailey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Aptevo Therapeutics, Seattle, WA, 98121, USA
| | - Kinga Majchrzak
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, 02-787, Poland
| | - Jacob S Bowers
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Megan M Wyatt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aubrey S Smith
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lillian R Neal
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Keisuke Shirai
- Hematology/Oncology Division, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, 02714, USA
| | - Carmine Carpenito
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Cancer Center, Philadelphia, PA, 19104, USA
- Eli Lilly and Company, New York, NY, 10016, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Cancer Center, Philadelphia, PA, 19104, USA
| | - Michael J Zilliox
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
35
|
Phetsouphanh C, Pillai S, Zaunders JJ. Editorial: Cytotoxic CD4+ T Cells in Viral Infections. Front Immunol 2017; 8:1729. [PMID: 29255471 PMCID: PMC5723143 DOI: 10.3389/fimmu.2017.01729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shiv Pillai
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - John J Zaunders
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia.,St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
36
|
Bakhru P, Zhu ML, Wang HH, Hong LK, Khan I, Mouchess M, Gulati AS, Starmer J, Hou Y, Sailer D, Lee S, Zhao F, Kirkwood JM, Moschos S, Fong L, Anderson MS, Su MA. Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity. JCI Insight 2017; 2:93265. [PMID: 28931755 PMCID: PMC5621898 DOI: 10.1172/jci.insight.93265] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Blockade of immune checkpoint proteins (e.g., CTLA-4, PD-1) improves overall survival in advanced melanoma; however, therapeutic benefit is limited to only a subset of patients. Because checkpoint blockade acts by "removing the brakes" on effector T cells, the efficacy of checkpoint blockade may be constrained by the limited pool of melanoma-reactive T cells in the periphery. In the thymus, autoimmune regulator (Aire) promotes deletion of T cells reactive against self-antigens that are also expressed by tumors. Thus, while protecting against autoimmunity, Aire also limits the generation of melanoma-reactive T cells. Here, we show that Aire deficiency in mice expands the pool of CD4+ T cells capable of melanoma cell eradication and has additive effects with anti-CTLA-4 antibody in slowing melanoma tumor growth and increasing survival. Moreover, pharmacologic blockade of central T cell tolerance and peripheral checkpoint blockade in combination enhanced antimelanoma immunity in a synergistic manner. In melanoma patients treated with anti-CTLA-4 antibody, clinical response to therapy was associated with a human Aire polymorphism. Together, these findings suggest that Aire-mediated central tolerance constrains the efficacy of peripheral checkpoint inhibition and point to simultaneous blockade of Aire and checkpoint inhibitors as a novel strategy to enhance antimelanoma immunity.
Collapse
Affiliation(s)
- Pearl Bakhru
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meng-Lei Zhu
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hsing-Hui Wang
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lee K. Hong
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Imran Khan
- Diabetes Center, UCSF, San Francisco, California, USA
| | | | - Ajay S. Gulati
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease
- Department of Pathology and Laboratory Medicine, School of Medicine, and
| | - Joshua Starmer
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yafei Hou
- Division of Hematology/Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | - David Sailer
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra Lee
- Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Melanoma Committee, ECOG-ACRIN Cancer Research Group, and
| | - Fengmin Zhao
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John M. Kirkwood
- Melanoma Committee, ECOG-ACRIN Cancer Research Group, and
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Stergios Moschos
- Melanoma Committee, ECOG-ACRIN Cancer Research Group, and
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, and
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Maureen A. Su
- Department of Pediatrics and Microbiology/Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Nashat MA, Luchins KR, Lepherd ML, Riedel ER, Izdebska JN, Lipman NS. Characterization of Demodex musculi Infestation, Associated Comorbidities, and Topographic Distribution in a Mouse Strain with Defective Adaptive Immunity. Comp Med 2017; 67:315-329. [PMID: 28830578 PMCID: PMC5557203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 06/07/2023]
Abstract
A colony of B6.Cg-Rag1tm1Mom Tyrp1B-w Tg(Tcra,Tcrb)9Rest (TRP1/TCR) mice presented with ocular lesions and ulcerative dermatitis. Histopathology, skin scrapes, and fur plucks confirmed the presence of Demodex spp. in all clinically affected and subclinical TRP1/TCR mice examined (n = 48). Pasteurella pneumotropica and Corynebacterium bovis, both opportunistic pathogens, were cultured from the ocular lesions and skin, respectively, and bacteria were observed microscopically in abscesses at various anatomic locations (including retroorbital sites, tympanic bullae, lymph nodes, and reproductive organs) as well as the affected epidermis. The mites were identified as Demodex musculi using the skin fragment digestion technique. Topographic analysis of the skin revealed mites in almost all areas of densely haired skin, indicating a generalized demodecosis. The percentage of infested follicles in 8- to 10-wk-old mice ranged from 0% to 21%, and the number of mites per millimeter of skin ranged from 0 to 3.7. The head, interscapular region, and middorsum had the highest proportions of infested follicles, ranging from 2.3% to 21.1% (median, 4.9%), 2.0% to 16.6% (8.1%), and 0% to 17% (7.6%), respectively. The pinnae and tail skin had few or no mites, with the proportion of follicles infested ranging from 0% to 3.3% (0%) and 0% to 1.4% (0%), respectively. The number of mites per millimeter was strongly correlated with the percentage of infested follicles. After administration of amoxicillin-impregnated feed (0.12%), suppurative infections were eliminated, and the incidence of ulcerative dermatitis was dramatically reduced. We hypothesize that the Rag1-null component of the genotype makes TRP1/TCR mice susceptible to various opportunistic infestations and infections, including Demodex mites, P. pneumotropica, and C. bovis. Therefore, Rag1-null mice may serve as a useful model to study human and canine demodecosis. D. musculi should be ruled out as a contributing factor in immunocompromised mouse strains with dermatologic manifestations.
Collapse
Affiliation(s)
- Melissa A Nashat
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA
| | - Kerith R Luchins
- Animal Resources Center, The University of Chicago, Chicago, Illinois, USA
| | - Michelle L Lepherd
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA; Gribbles Veterinary, Christchurch, New Zealand
| | - Elyn R Riedel
- Epidemiology and Biostatistics Department, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joanna N Izdebska
- Department of Invertebrate Zoology and Parasitology, University of Gdansk, Gdansk, Poland
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
38
|
Kyte JA, Gaudernack G, Faane A, Lislerud K, Inderberg EM, Brunsvig P, Aamdal S, Kvalheim G, Wälchli S, Pule M. T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncoimmunology 2016; 5:e1249090. [PMID: 28123886 DOI: 10.1080/2162402x.2016.1249090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/28/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
We herein report retargeting of T-helper (Th) cells against the universal cancer antigen telomerase for use in adoptive cell therapy. The redirected Th cells may counter tumor tolerance, transform the inflammatory milieu, and induce epitope spreading and cancer senescence. We have previously conducted a series of trials evaluating vaccination with telomerase peptides. From long-term survivors, we isolated >100 CD4+ Th-cell clones recognizing telomerase epitopes. The clones were characterized with regard to HLA restriction, functional avidity, fine specificity, proliferative capacity, cytokine profile, and recognition of naturally processed epitopes. DP4 is the most prevalent HLA molecule worldwide. Two DP4-restricted T-cell clones with different functional avidity, C13 and D71, were selected for molecular T-cell receptor (TCR) cloning. Both clones showed a high proliferative capacity, recognition of naturally processed telomerase epitopes, and a polyfunctional and Th1-weighted cytokine profile. TCR C13 and D71 were cloned into the retroviral vector MP71 together with the compact and GMP-applicable marker/suicide gene RQR8. Both TCRs were expressed well in recipient T cells after PBMC transduction. The transduced T cells co-expressed RQR8 and acquired the desired telomerase specificity, with a polyfunctional response including production of TNFa, IFNγ, and CD107a. Interestingly, the DP4-restricted TCRs were expressed and functional both in CD4+ and CD8+ T cells. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired hTERT-specificity and functionality. We hypothesize that adoptive therapy with Th cells may offer a powerful novel approach for overcoming tumor tolerance and synergize with other forms of immunotherapy.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department for Cell Therapy, Oslo University Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital, Oslo, Norway; Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Gustav Gaudernack
- Department for Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Faane
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | - Kari Lislerud
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | | | - Paal Brunsvig
- Clinical Trial Unit, Department of Oncology, Oslo University Hospital , Oslo, Norway
| | - Steinar Aamdal
- Faculty of Medicine, University of Oslo, Oslo, Norway; Clinical Trial Unit, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Department for Cell Therapy, Oslo University Hospital , Oslo, Norway
| | - Sébastien Wälchli
- Department for Cell Therapy, Oslo University Hospital, Oslo, Norway; Department for Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| | - Martin Pule
- Department of Haematology, UCL Cancer Institute, University College London , London, UK
| |
Collapse
|
39
|
Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity. Proc Natl Acad Sci U S A 2016; 113:6248-53. [PMID: 27185917 DOI: 10.1073/pnas.1604765113] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Expression of the transcription factor Helios by Tregs ensures stable expression of a suppressive and anergic phenotype in the face of intense inflammatory responses, whereas Helios-deficient Tregs display diminished lineage stability, reduced FoxP3 expression, and production of proinflammatory cytokines. Here we report that selective Helios deficiency within CD4 Tregs leads to enhanced antitumor immunity through induction of an unstable phenotype and conversion of intratumoral Tregs into T effector cells within the tumor microenvironment. Induction of an unstable Treg phenotype is associated with enhanced production of proinflammatory cytokines by tumor-infiltrating but not systemic Tregs and significantly delayed tumor growth. Ab-dependent engagement of Treg surface receptors that result in Helios down-regulation also promotes conversion of intratumoral but not systemic Tregs into T effector cells and leads to enhanced antitumor immunity. These findings suggest that selective instability and conversion of intratumoral CD4 Tregs through genetic or Ab-based targeting of Helios may represent an effective approach to immunotherapy.
Collapse
|