1
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
3
|
Rowntree LC, Audsley J, Allen LF, McQuilten HA, Hagen RR, Chaurasia P, Petersen J, Littler DR, Tan HX, Murdiyarso L, Habel JR, Foo IJH, Zhang W, Ten Berge ERV, Ganesh H, Kaewpreedee P, Lee KWK, Cheng SMS, Kwok JSY, Jayasinghe D, Gras S, Juno JA, Wheatley AK, Kent SJ, Rossjohn J, Cheng AC, Kotsimbos TC, Trubiano JA, Holmes NE, Pang Chan KK, Hui DSC, Peiris M, Poon LLM, Lewin SR, Doherty PC, Thevarajan I, Valkenburg SA, Kedzierska K, Nguyen THO. SARS-CoV-2-specific CD8 + T cells from people with long COVID establish and maintain effector phenotype and key TCR signatures over 2 years. Proc Natl Acad Sci U S A 2024; 121:e2411428121. [PMID: 39284068 PMCID: PMC11441481 DOI: 10.1073/pnas.2411428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 10/02/2024] Open
Abstract
Long COVID occurs in a small but important minority of patients following COVID-19, reducing quality of life and contributing to healthcare burden. Although research into underlying mechanisms is evolving, immunity is understudied. SARS-CoV-2-specific T cell responses are of key importance for viral clearance and COVID-19 recovery. However, in long COVID, the establishment and persistence of SARS-CoV-2-specific T cells are far from clear, especially beyond 12 mo postinfection and postvaccination. We defined ex vivo antigen-specific B cell and T cell responses and their T cell receptors (TCR) repertoires across 2 y postinfection in people with long COVID. Using 13 SARS-CoV-2 peptide-HLA tetramers, spanning 11 HLA allotypes, as well as spike and nucleocapsid probes, we tracked SARS-CoV-2-specific CD8+ and CD4+ T cells and B-cells in individuals from their first SARS-CoV-2 infection through primary vaccination over 24 mo. The frequencies of ORF1a- and nucleocapsid-specific T cells and B cells remained stable over 24 mo. Spike-specific CD8+ and CD4+ T cells and B cells were boosted by SARS-CoV-2 vaccination, indicating immunization, in fully recovered and people with long COVID, altered the immunodominance hierarchy of SARS-CoV-2 T cell epitopes. Meanwhile, influenza-specific CD8+ T cells were stable across 24 mo, suggesting no bystander-activation. Compared to total T cell populations, SARS-CoV-2-specific T cells were enriched for central memory phenotype, although the proportion of central memory T cells decreased following acute illness. Importantly, TCR repertoire composition was maintained throughout long COVID, including postvaccination, to 2 y postinfection. Overall, we defined ex vivo SARS-CoV-2-specific B cells and T cells to understand primary and recall responses, providing key insights into antigen-specific responses in people with long COVID.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ruth R Hagen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dene R Littler
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lydia Murdiyarso
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Isabelle J H Foo
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Elizabeth R V Ten Berge
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanujah Ganesh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Prathanporn Kaewpreedee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kelly W K Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Samuel M S Cheng
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Dhilshan Jayasinghe
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Infection & Immunity Program, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Tom C Kotsimbos
- Department of Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC 3004, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC 3084, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Critical Care, University of Melbourne, Parkville, VIC 3000, Australia
- Data Analytics Research and Evaluation Centre, Austin Health and University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Ken Ka Pang Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Division of Public Health Laboratory Sciences, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sharon R Lewin
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Infectious Disease, Alfred Hospital and Monash University, Melbourne, VIC 3000, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Serdyuk YV, Zornikova KV, Dianov DV, Ivanova NO, Davydova VD, Fefelova EI, Nenasheva TA, Sheetikov SA, Bogolyubova AV. T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1631-1642. [PMID: 39418521 DOI: 10.1134/s0006297924090098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.
Collapse
Affiliation(s)
- Yana V Serdyuk
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ksenia V Zornikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nataliia O Ivanova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Vassa D Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina I Fefelova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Tatiana A Nenasheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
5
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GRS, Singer BD, Morales-Nebreda L. Distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. Nat Immunol 2024; 25:1607-1622. [PMID: 39138384 PMCID: PMC11490290 DOI: 10.1038/s41590-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Collapse
Affiliation(s)
- Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth S Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason M Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Menon T, Illing PT, Chaurasia P, McQuilten HA, Shepherd C, Rowntree LC, Petersen J, Littler DR, Khuu G, Huang Z, Allen LF, Rockman S, Crowe J, Flanagan KL, Wakim LM, Nguyen THO, Mifsud NA, Rossjohn J, Purcell AW, van de Sandt CE, Kedzierska K. CD8 + T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age. Nat Commun 2024; 15:3387. [PMID: 38684663 PMCID: PMC11059233 DOI: 10.1038/s41467-024-47576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.
Collapse
Affiliation(s)
- Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Chloe Shepherd
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grace Khuu
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ziyi Huang
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- CSL Seqirus Ltd, Parkville, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Reperant L, Russell CA, Osterhaus A. Scientific highlights of the 9th ESWI Influenza Conference. ONE HEALTH OUTLOOK 2024; 6:5. [PMID: 38561784 PMCID: PMC10986029 DOI: 10.1186/s42522-024-00099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The European Scientific Working Group on Influenza (ESWI) held the 9th ESWI Influenza Conference in Valencia from 17-20 September 2023. Here we provide a summary of twelve key presentations, covering major topics on influenza virus, respiratory syncytial virus (RSV) and SARS coronavirus 2 (SARS-CoV-2) including: infection processes beyond acute respiratory disease, long COVID, vaccines against influenza and RSV, the implications of the potential extinction of influenza B virus Yamagata lineage, and the threats posed by zoonotic highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
| | - Colin A Russell
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Osterhaus
- Center of Infection Medicine and Zoonosis Research and the University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
8
|
van den Dijssel J, Duurland MC, Konijn VA, Kummer LY, Hagen RR, Kuijper LH, Wieske L, van Dam KP, Stalman EW, Steenhuis M, Geerdes DM, Mok JY, Kragten AH, Menage C, Koets L, Veldhuisen B, Verstegen NJ, van der Schoot CE, van Esch WJ, D'Haens GR, Löwenberg M, Volkers AG, Rispens T, Kuijpers TW, Eftimov F, van Gisbergen KP, van Ham SM, Ten Brinke A, van de Sandt CE. mRNA-1273 vaccinated inflammatory bowel disease patients receiving TNF inhibitors develop broad and robust SARS-CoV-2-specific CD8 + T cell responses. J Autoimmun 2024; 144:103175. [PMID: 38387105 DOI: 10.1016/j.jaut.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mariël C Duurland
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique Al Konijn
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Laura Yl Kummer
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Lisan H Kuijper
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands; Department of Clinical Neurophysiology, St Antonius Hospital, Nieuwegein, Netherlands
| | - Koos Pj van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V., Amsterdam, Netherlands
| | | | - Charlotte Menage
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Koets
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; National Screening Laboratory of Sanquin, Research and Laboratory Services, Amsterdam, Netherlands
| | - Barbera Veldhuisen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Niels Jm Verstegen
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Geert Ram D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas Pjm van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - S Marieke van Ham
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands
| | - Anja Ten Brinke
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands; Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Zhang E, Nguyen THO, Allen LF, Kedzierski L, Rowntree LC, Chang SY, Zhang W, Habel JR, Foo IJ, Menon T, Mitchell J, Leong RW, Bond K, Williamson DA, Kedzierska K, Christensen B. Robust SARS-CoV-2 antibody and T cell immunity following three COVID-19 vaccine doses in inflammatory bowel disease patients receiving anti-TNF or alternative treatments. Gut 2024; 73:712-714. [PMID: 36878683 DOI: 10.1136/gutjnl-2022-329136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Eva Zhang
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Isabelle J Foo
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jeni Mitchell
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rupert W Leong
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katherine Bond
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Victorian Infectious Disease Reference Laboratory (VIDRL), The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A Williamson
- Victorian Infectious Disease Reference Laboratory (VIDRL), The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Infectious Diseases, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Britt Christensen
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
11
|
Silva BJDA, Krogstad PA, Teles RMB, Andrade PR, Rajfer J, Ferrini MG, Yang OO, Bloom BR, Modlin RL. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front Immunol 2023; 14:1284148. [PMID: 38162653 PMCID: PMC10755032 DOI: 10.3389/fimmu.2023.1284148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy. Results Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Bruno J. de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Paul A. Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, United States
| | - Rosane M. B. Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Priscila R. Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Jacob Rajfer
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Monica G. Ferrini
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Health and Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Barry R. Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
12
|
Han Y, Yang Y, Tian Y, Fattah FJ, von Itzstein MS, Hu Y, Zhang M, Kang X, Yang DM, Liu J, Xue Y, Liang C, Raman I, Zhu C, Xiao O, Dowell JE, Homsi J, Rashdan S, Yang S, Gwin ME, Hsiehchen D, Gloria-McCutchen Y, Pan K, Wu F, Gibbons D, Wang X, Yee C, Huang J, Reuben A, Cheng C, Zhang J, Gerber DE, Wang T. pan-MHC and cross-Species Prediction of T Cell Receptor-Antigen Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569599. [PMID: 38105939 PMCID: PMC10723300 DOI: 10.1101/2023.12.01.569599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Profiling the binding of T cell receptors (TCRs) of T cells to antigenic peptides presented by MHC proteins is one of the most important unsolved problems in modern immunology. Experimental methods to probe TCR-antigen interactions are slow, labor-intensive, costly, and yield moderate throughput. To address this problem, we developed pMTnet-omni, an Artificial Intelligence (AI) system based on hybrid protein sequence and structure information, to predict the pairing of TCRs of αβ T cells with peptide-MHC complexes (pMHCs). pMTnet-omni is capable of handling peptides presented by both class I and II pMHCs, and capable of handling both human and mouse TCR-pMHC pairs, through information sharing enabled this hybrid design. pMTnet-omni achieves a high overall Area Under the Curve of Receiver Operator Characteristics (AUROC) of 0.888, which surpasses competing tools by a large margin. We showed that pMTnet-omni can distinguish binding affinity of TCRs with similar sequences. Across a range of datasets from various biological contexts, pMTnet-omni characterized the longitudinal evolution and spatial heterogeneity of TCR-pMHC interactions and their functional impact. We successfully developed a biomarker based on pMTnet-omni for predicting immune-related adverse events of immune checkpoint inhibitor (ICI) treatment in a cohort of 57 ICI-treated patients. pMTnet-omni represents a major advance towards developing a clinically usable AI system for TCR-pMHC pairing prediction that can aid the design and implementation of TCR-based immunotherapeutics.
Collapse
|
13
|
Yu H, Guan F, Miller H, Lei J, Liu C. The role of SARS-CoV-2 nucleocapsid protein in antiviral immunity and vaccine development. Emerg Microbes Infect 2023; 12:e2164219. [PMID: 36583642 PMCID: PMC9980416 DOI: 10.1080/22221751.2022.2164219] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACTThe coronavirus disease 2019 (COVID-19) has caused enormous health risks and global economic disruption. This disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 nucleocapsid protein is a structural protein involved in viral replication and assembly. There is accumulating evidence indicating that the nucleocapsid protein is multi-functional, playing a key role in the pathogenesis of COVID-19 and antiviral immunity against SARS-CoV-2. Here, we summarize its potential application in the prevention of COVID-19, which is based on its role in inflammation, cell death, antiviral innate immunity, and antiviral adaptive immunity.
Collapse
Affiliation(s)
- Haiyun Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Chaohong Liu
| |
Collapse
|
14
|
Chen DG, Xie J, Su Y, Heath JR. T cell receptor sequences are the dominant factor contributing to the phenotype of CD8 + T cells with specificities against immunogenic viral antigens. Cell Rep 2023; 42:113279. [PMID: 37883974 PMCID: PMC10729740 DOI: 10.1016/j.celrep.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/23/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Antigen-specific CD8+ T cells mediate pathogen clearance. T cell phenotype is influenced by T cell receptor (TCR) sequences and environmental signals. Quantitative comparisons of these factors in human disease, while challenging to obtain, can provide foundational insights into basic T cell biology. Here, we investigate the phenotype kinetics of 679 CD8+ T cell clonotypes, each with specificity against one of three immunogenic viral antigens. Data were collected from a longitudinal study of 68 COVID-19 patients with antigens from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV), and influenza. Each antigen is associated with a different type of immune activation during COVID-19. We find TCR sequence to be by far the most important factor in shaping T cell phenotype and persistence for populations specific to any of these antigens. Our work demonstrates the important relationship between TCR sequence and T cell phenotype and persistence and helps explain why T cell phenotype often appears to be determined early in an infection.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
15
|
Zhang W, Clemens EB, Kedzierski L, Chua BY, Mayo M, Lonzi C, Hinchcliff A, Rigas V, Middleton BF, Binks P, Rowntree LC, Allen LF, Tan HX, Petersen J, Chaurasia P, Krammer F, Wheatley AK, Kent SJ, Rossjohn J, Miller A, Lynar S, Nelson J, Nguyen THO, Davies J, Kedzierska K. Broad spectrum SARS-CoV-2-specific immunity in hospitalized First Nations peoples recovering from COVID-19. Immunol Cell Biol 2023; 101:964-974. [PMID: 37725525 PMCID: PMC10872797 DOI: 10.1111/imcb.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Mark Mayo
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Claire Lonzi
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Vanessa Rigas
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | | | - Paula Binks
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD 4810, Australia
| | - Sarah Lynar
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Jane Nelson
- Menzies School of Health Research, Darwin, NT 0811, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT 0811, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
- Center for Influenza Disease and Emergence Response (CIDER), Melbourne, VIC 3000, Australia
| |
Collapse
|
16
|
Hall VG, Nguyen THO, Allen LF, Rowntree LC, Kedzierski L, Chua BY, Lim C, Saunders NR, Klimevski E, Tennakoon GS, Seymour JF, Wadhwa V, Cain N, Vo KL, Nicholson S, Karapanagiotidis T, Williamson DA, Thursky KA, Spelman T, Yong MK, Slavin MA, Kedzierska K, Teh BW. Evolution of Humoral and Cellular Immunity Post-Breakthrough Coronavirus Disease 2019 in Vaccinated Patients With Hematologic Malignancy Receiving Tixagevimab-Cilgavimab. Open Forum Infect Dis 2023; 10:ofad550. [PMID: 38023562 PMCID: PMC10644824 DOI: 10.1093/ofid/ofad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background In-depth immunogenicity studies of tixagevimab-cilgavimab (T-C) are lacking, including following breakthrough coronavirus disease 2019 (COVID-19) in vaccinated patients with hematologic malignancy (HM) receiving T-C as pre-exposure prophylaxis. Methods We performed a prospective, observational cohort study and detailed immunological analyses of 93 patients with HM who received T-C from May 2022, with and without breakthrough infection, during a follow-up period of 6 months and dominant Omicron BA.5 variant. Results In 93 patients who received T-C, there was an increase in Omicron BA.4/5 receptor-binding domain (RBD) immunoglobulin G (IgG) antibody titers that persisted for 6 months and was equivalent to 3-dose-vaccinated uninfected healthy controls at 1 month postinjection. Omicron BA.4/5 neutralizing antibody was lower in patients receiving B-cell-depleting therapy within 12 months despite receipt of T-C. COVID-19 vaccination during T-C treatment did not incrementally improve RBD or neutralizing antibody levels. In 16 patients with predominantly mild breakthrough infection, no change in serum neutralization of Omicron BA.4/5 postinfection was detected. Activation-induced marker assay revealed an increase in CD4+ (but not CD8+) T cells post infection, comparable to previously infected healthy controls. Conclusions Our study provides proof-of-principle for a pre-exposure prophylaxis strategy and highlights the importance of humoral and cellular immunity post-breakthrough COVID-19 in vaccinated patients with HM.
Collapse
Affiliation(s)
- Victoria G Hall
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chhay Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Natalie R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emily Klimevski
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Gayani S Tennakoon
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - John F Seymour
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Vikas Wadhwa
- Department of Ambulatory Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Natalie Cain
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kim L Vo
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Timothy Spelman
- Department of Biostatistics and Epidemiology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Centre for Population Health, Burnet Institute, Melbourne, Australia
| | - Michelle K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Australia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
17
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Choy C, Chen J, Li J, Gallagher DT, Lu J, Wu D, Zou A, Hemani H, Baptiste BA, Wichmann E, Yang Q, Ciffelo J, Yin R, McKelvy J, Melvin D, Wallace T, Dunn C, Nguyen C, Chia CW, Fan J, Ruffolo J, Zukley L, Shi G, Amano T, An Y, Meirelles O, Wu WW, Chou CK, Shen RF, Willis RA, Ko MSH, Liu YT, De S, Pierce BG, Ferrucci L, Egan J, Mariuzza R, Weng NP. SARS-CoV-2 infection establishes a stable and age-independent CD8 + T cell response against a dominant nucleocapsid epitope using restricted T cell receptors. Nat Commun 2023; 14:6725. [PMID: 37872153 PMCID: PMC10593757 DOI: 10.1038/s41467-023-42430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.
Collapse
Affiliation(s)
- Cecily Choy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joseph Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jiangyuan Li
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - D Travis Gallagher
- National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jian Lu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Ainslee Zou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Humza Hemani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Emily Wichmann
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Qian Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeffrey Ciffelo
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Julia McKelvy
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Denise Melvin
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Tonya Wallace
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Christopher Dunn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cuong Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeannie Ruffolo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Linda Zukley
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | | | | | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology & Population Sciences, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Silver Spring, MD, USA
| | - Richard A Willis
- NIH Tetramer Core Facility at Emory University, Atlanta, GA, USA
| | | | | | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Roy Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| |
Collapse
|
19
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
20
|
Ma Y, Deng C, Zhou Y, Zhang Y, Qiu F, Jiang D, Zheng G, Li J, Shuai J, Zhang Y, Yang J, Su J. Polygenic regression uncovers trait-relevant cellular contexts through pathway activation transformation of single-cell RNA sequencing data. CELL GENOMICS 2023; 3:100383. [PMID: 37719150 PMCID: PMC10504677 DOI: 10.1016/j.xgen.2023.100383] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Advances in single-cell RNA sequencing (scRNA-seq) techniques have accelerated functional interpretation of disease-associated variants discovered from genome-wide association studies (GWASs). However, identification of trait-relevant cell populations is often impeded by inherent technical noise and high sparsity in scRNA-seq data. Here, we developed scPagwas, a computational approach that uncovers trait-relevant cellular context by integrating pathway activation transformation of scRNA-seq data and GWAS summary statistics. scPagwas effectively prioritizes trait-relevant genes, which facilitates identification of trait-relevant cell types/populations with high accuracy in extensive simulated and real datasets. Cellular-level association results identified a novel subpopulation of naive CD8+ T cells related to COVID-19 severity and oligodendrocyte progenitor cell and microglia subsets with critical pathways by which genetic variants influence Alzheimer's disease. Overall, our approach provides new insights for the discovery of trait-relevant cell types and improves the mechanistic understanding of disease variants from a pathway perspective.
Collapse
Affiliation(s)
- Yunlong Ma
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Chunyu Deng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Yijun Zhou
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Yaru Zhang
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Fei Qiu
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dingping Jiang
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Gongwei Zheng
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingjing Li
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianwei Shuai
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310012, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of OphthalmoFlogy & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325101, China
| |
Collapse
|
21
|
Meza L, Zengin Z, Salgia S, Malhotra J, Karczewska E, Dorff T, Tripathi A, Ely J, Kelley E, Mead H, Hsu J, Dizman N, Salgia N, Chawla N, Chehrazi-Raffle A, Muddasani R, Govindarajan A, Rock A, Liu S, Salgia R, Trent J, Altin J, Pal SK. Twelve-Month Follow-up of the Immune Response After COVID-19 Vaccination in Patients with Genitourinary Cancers: A Prospective Cohort Analysis. Oncologist 2023; 28:e748-e755. [PMID: 36971500 PMCID: PMC10485287 DOI: 10.1093/oncolo/oyad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Vaccinations against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have had a transformative impact on morbidity and mortality. However, the long-term impact of vaccination on patients with genitourinary cancers is currently unknown. MATERIALS AND METHODS This study aimed to assess seroconversion rates in patients with genitourinary cancers receiving COVID-19 vaccination. Patients with prostate cancer, renal cell carcinoma, or urothelial cancer who had not been vaccinated for COVID-19 were included. Blood samples were obtained at baseline and after 2, 6, and 12 months of one dose of an FDA-approved COVID-19 vaccine. Antibody titer analysis was performed using the SCoV-2 Detect IgG ELISA assay, and the results were reported as immune status ratio (ISR). A paired t-test was used for comparison of ISR values between timepoints. In addition, T-cell receptor (TCR) sequencing was performed to assess for differences in TCR repertoire 2 months after vaccination. RESULTS Out of 133 patients enrolled, 98 baseline blood samples were collected. At 2-, 6-, and 12-month time points 98, 70, and 50 samples were collected, respectively. Median age was 67 (IQR, 62-75), with the majority of patients diagnosed with prostate (55.1%) or renal cell carcinoma (41.8%). Compared to baseline (0.24 [95% CI, 0.19-0.31]) a significant increase in the geometric mean ISR values was observed at the 2-month timepoint (5.59 [4.76-6.55]) (P < .001). However, at the 6-month timepoint, a significant decrease in the ISR values was observed (4.66 [95% CI, 4.04-5.38]; P < .0001). Notably, at the 12-month timepoint, the addition of a booster dose resulted in an absolute increase in the ISR values compared to those who did not receive a booster dose (P = .04). CONCLUSIONS Only a minority of patients with genitourinary cancers did not ultimately achieve satisfactory seroconversion after receiving commercial COVID-19 vaccination. Cancer type or treatment rendered did not appear to affect the immune response mounted after vaccination.
Collapse
Affiliation(s)
- Luis Meza
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zeynep Zengin
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sabrina Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ewa Karczewska
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Tanya Dorff
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Abhishek Tripathi
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jennifer Ely
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - Erin Kelley
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - Heather Mead
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - JoAnn Hsu
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Nazli Dizman
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Nicholas Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Neal Chawla
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ramya Muddasani
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ameish Govindarajan
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Adam Rock
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sandy Liu
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jeffrey Trent
- Integrated Cancer Genomics Division, Translational Genomics Institute, Phoenix, AZ, USA
| | - John Altin
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, USA
| | - Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
22
|
Hall VG, Lim C, Saunders NR, Klimevski E, Nguyen THO, Kedzierski L, Seymour JF, Wadhwa V, Thursky KA, Yong MK, Kedzierska K, Slavin MA, Teh BW. Breakthrough COVID-19 is mild in vaccinated patients with hematological malignancy receiving tixagevimab-cilgavimab as pre-exposure prophylaxis. Leuk Lymphoma 2023; 64:1600-1604. [PMID: 37341732 DOI: 10.1080/10428194.2023.2224472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/22/2023]
Affiliation(s)
- V G Hall
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - C Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - N R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - E Klimevski
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - T H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - L Kedzierski
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - J F Seymour
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - V Wadhwa
- Department of Ambulatory Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - K A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - M K Yong
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - M A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - B W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Yue C, Wang P, Tian J, Gao GF, Liu K, Liu WJ. Seeing the T cell Immunity of SARS-CoV-2 and SARS-CoV: Believing the Epitope-Oriented Vaccines. Int J Biol Sci 2023; 19:4052-4060. [PMID: 37705735 PMCID: PMC10496500 DOI: 10.7150/ijbs.80468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 stimulated vigorous research efforts in immunology and vaccinology. In addition to innate immune responses, both virus-specific humoral and cellular immune responses are of importance for viral clearance. T cell epitopes play a central role in T cell-based immune responses. Herein, we summarized the peptide/major histocompatibility complex (pMHC) structures of the SARS-CoV-2-derived T cell epitopes available in the Protein Data Bank (PDB) and proposed the challenge and opportunities for using of T cell epitopes in future vaccine development efforts. A total of 27 SARS-CoV-2 related pMHC structures and five complexes with T cell receptors were retrieved. The peptides are mainly distributed on spike (S), nucleocapsid (N), and ORF1ab proteins. Most peptides are conserved among variants of concerns (VOCs) for SARS-CoV-2, except for several mutated peptides located in the S protein. The structures of human leukocyte antigen (HLA) complexed with seven epitopes derived from SARS-CoV were also retrieved, which showed a potential cross T cell immunity with SARS-CoV-2. Structural studies of antigenic peptides from SARS-CoV-2 and SARS-CoV help to visualize the processes and the mechanisms of cross T cell immunity. T cell epitope-oriented vaccines are potential next-generation vaccines for SARS-CoV-2, which are worthy of further investigation.
Collapse
Affiliation(s)
- Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyan Wang
- Department of Pathogen Biology & Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
24
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
25
|
Jiang N, Malone M, Chizari S. Antigen-specific and cross-reactive T cells in protection and disease. Immunol Rev 2023; 316:120-135. [PMID: 37209375 PMCID: PMC10524458 DOI: 10.1111/imr.13217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
26
|
Yang H, Sun H, Brackenridge S, Zhuang X, Wing PAC, Quastel M, Walters L, Garner L, Wang B, Yao X, Felce SL, Peng Y, Moore S, Peeters BWA, Rei M, Canto Gomes J, Tomas A, Davidson A, Semple MG, Turtle LCW, Openshaw PJM, Baillie JK, Mentzer AJ, Klenerman P, Borrow P, Dong T, McKeating JA, Gillespie GM, McMichael AJ. HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation. Sci Immunol 2023; 8:eabl8881. [PMID: 37390223 DOI: 10.1126/sciimmunol.abl8881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells.
Collapse
Affiliation(s)
- Hongbing Yang
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Hong Sun
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simon Brackenridge
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Max Quastel
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lucy Walters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lee Garner
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shona Moore
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Bas W A Peeters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Margarida Rei
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Oxford, UK
| | - Joao Canto Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Ana Tomas
- Unidada de Investigacao em Patobiologia Molecular, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, EPE Lisbon, Portugal
- Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Malcolm G Semple
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Unit, Alder Hey Children's Hospital, Eaton Road, Liverpool L12 2AP, UK
| | - Lance C W Turtle
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (member of Liverpool Health Partners), Liverpool, UK
| | | | | | - Alexander J Mentzer
- Welcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| |
Collapse
|
27
|
Chaudhary A, Madhavan R, Babji S, Raju R, Syed C, Kumar A, Saravanan P, Sharon Nikitha O, Leander Xavier JV, David Chelladurai JS, Deborah AA, George A, Kang G, Rose W. Characterization of immune responses to two and three doses of the adenoviral vectored vaccine ChAdOx1 nCov-19 and the whole virion inactivated vaccine BBV152 in a mix-and-match study in India. Vaccine 2023:S0264-410X(23)00744-2. [PMID: 37357073 PMCID: PMC10289125 DOI: 10.1016/j.vaccine.2023.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Infections with SARS-CoV-2 variants and declining immunity after primary vaccination, encouraged the use of booster doses. Some countries changed their immunization programmes to boost with vaccines different from the ones in their original schedule, based on results from immunogenicity and effectiveness studies. This study reports immunological analysis of samples collected in a phase 4 randomized trial, where participants who had previously received two primary doses of ChAdOx1 nCov-19 (ChAd) or inactivated BBV152 vaccine were randomized to receive either ChAd or BBV152 booster and further categorized as: Group 1 (two primary doses of ChAd - ChAd booster), Group 2 (two primary doses of ChAd - BBV152 booster), Group 3 (two primary doses of BBV152 - ChAd booster), and Group 4 (two primary doses of BBV152 - BBV152 booster). SARS-CoV-2 specific cellular and humoral responses at day 0 (pre-boost samples 12-36 weeks after the second primary dose), and at day 28 post booster, were measured in a subset of participants (ChAd recipients, n = 37 and BBV152 recipients, n = 36). Additionally, on day180 post-booster humoral responses were assessed for the entire cohort (N = 378). Primary vaccination with 2 doses of BBV152 generated higher memory-B cells (median% 0.41 vs 0.35) and cytokine producing CD8-Tcells (median% 0.09 vs 0.04) while lower anti-spike IgG levels (medianAU/ml: 12,433 vs 27,074) as compared to ChAd. Irrespective of the primary vaccine received, ChAd boosted individuals generated higher memory-B cell frequencies and anti-spike IgG levels as compared to BBV152 booster. The percentage ACE-2 inhibition against Omicron and its sub-variants was higher in Group 3 (median > 60 %) as compared to other groups (median < 25 %). At day180 post booster the hierarchy of the antibody amounts was Group 1 ∼ Group 2 ∼ Group 3 > Group 4. Sustained humoral and robust cellular immune response to SARS-CoV-2 can be obtained with ChAd booster irrespective of the primary vaccination regimen. The trial is registered with ISRTCN (CTRI/2021/08/035648).
Collapse
Affiliation(s)
- Anita Chaudhary
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ramya Madhavan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Sudhir Babji
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Reshma Raju
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Chanduni Syed
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Ajith Kumar
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Poornima Saravanan
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | | | | | | | | | - Anna George
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India
| | - Winsley Rose
- Department of Paediatrics, Christian Medical College, Vellore, India.
| |
Collapse
|
28
|
Perdiguero B, Marcos-Villar L, López-Bravo M, Sánchez-Cordón PJ, Zamora C, Valverde JR, Sorzano CÓS, Sin L, Álvarez E, Ramos M, Del Val M, Esteban M, Gómez CE. Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate. Front Immunol 2023; 14:1160065. [PMID: 37404819 PMCID: PMC10316789 DOI: 10.3389/fimmu.2023.1160065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential. Methods In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA). Results In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm. Discussion These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María López-Bravo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ramón Valverde
- Scientific Computing, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Álvarez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
29
|
Adamo S, Gao Y, Sekine T, Mily A, Wu J, Storgärd E, Westergren V, Filén F, Treutiger CJ, Sandberg JK, Sällberg M, Bergman P, Llewellyn-Lacey S, Ljunggren HG, Price DA, Ekström AM, Sette A, Grifoni A, Buggert M. Memory profiles distinguish cross-reactive and virus-specific T cell immunity to mpox. Cell Host Microbe 2023; 31:928-936.e4. [PMID: 37236191 PMCID: PMC10211501 DOI: 10.1016/j.chom.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Mpox represents a persistent health concern with varying disease severity. Reinfections with mpox virus (MPXV) are rare, possibly indicating effective memory responses to MPXV or related poxviruses, notably vaccinia virus (VACV) from smallpox vaccination. We assessed cross-reactive and virus-specific CD4+ and CD8+ T cells in healthy individuals and mpox convalescent donors. Cross-reactive T cells were most frequently observed in healthy donors over 45 years. Notably, long-lived memory CD8+ T cells targeting conserved VACV/MPXV epitopes were identified in older individuals more than four decades after VACV exposure and exhibited stem-like characteristics, defined by T cell factor-1 (TCF-1) expression. In mpox convalescent donors, MPXV-reactive CD4+ and CD8+ T cells were more prevalent than in controls, demonstrating enhanced functionality and skewing toward effector phenotypes, which correlated with milder disease. Collectively, we report robust effector memory MPXV-specific T cell responses in mild mpox and long-lived TCF-1+ VACV/MPXV-specific CD8+ T cells decades after smallpox vaccination.
Collapse
Affiliation(s)
- Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Akhirunnesa Mily
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Jinghua Wu
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Elisabet Storgärd
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Victor Westergren
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Finn Filén
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Carl-Johan Treutiger
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden
| | - Johan K Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Stockholm 14152, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institutet, Stockholm 14152, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm 14152, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4ER, UK
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4ER, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff CF14 4ER, UK
| | - Anna-Mia Ekström
- Department of Infectious Diseases/Venhälsan, Södersjukhuset, Stockholm 11861, Sweden; Department of Global Public Health, Karolinska Institutet, Stockholm 17176, Sweden
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm 14152, Sweden.
| |
Collapse
|
30
|
Zhang W, Kedzierski L, Chua BY, Mayo M, Lonzi C, Rigas V, Middleton BF, McQuilten HA, Rowntree LC, Allen LF, Purcell RA, Tan HX, Petersen J, Chaurasia P, Mordant F, Pogorelyy MV, Minervina AA, Crawford JC, Perkins GB, Zhang E, Gras S, Clemens EB, Juno JA, Audsley J, Khoury DS, Holmes NE, Thevarajan I, Subbarao K, Krammer F, Cheng AC, Davenport MP, Grubor-Bauk B, Coates PT, Christensen B, Thomas PG, Wheatley AK, Kent SJ, Rossjohn J, Chung AW, Boffa J, Miller A, Lynar S, Nelson J, Nguyen THO, Davies J, Kedzierska K. Robust and prototypical immune responses toward COVID-19 vaccine in First Nations peoples are impacted by comorbidities. Nat Immunol 2023; 24:966-978. [PMID: 37248417 PMCID: PMC10232372 DOI: 10.1038/s41590-023-01508-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.
Collapse
Affiliation(s)
- Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Claire Lonzi
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Vanessa Rigas
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bianca F Middleton
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Ruth A Purcell
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Griffith B Perkins
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Eva Zhang
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Macquarie University, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Services, Royal Melbourne Hospital and Doherty Department, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allen C Cheng
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School and School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Monash Infectious Diseases, Monash Health and School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Branka Grubor-Bauk
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - P Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Britt Christensen
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - John Boffa
- Central Australian Aboriginal Congress, Alice Springs, Northern Territory, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, Queensland, Australia
| | - Sarah Lynar
- Menzies School of Health Research, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital and Northern Territory Medical Programme, Darwin, Northern Territory, Australia
| | - Jane Nelson
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| | - Jane Davies
- Menzies School of Health Research, Darwin, Northern Territory, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
- Center for Influenza Disease and Emergence Response, Melbourne, Victoria, Australia.
| |
Collapse
|
31
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Bonam SR, Hu H. Next-Generation Vaccines Against COVID-19 Variants: Beyond the Spike Protein. ZOONOSES (BURLINGTON, MASS.) 2023; 3:10.15212/zoonoses-2023-0003. [PMID: 38031548 PMCID: PMC10686570 DOI: 10.15212/zoonoses-2023-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Vaccines are among the most effective medical countermeasures against infectious diseases. The current Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred the scientific strategies to fight against the disease. Since 2020, a great number of vaccines based on different platforms have been in development in response to the pandemic, among which mRNA, adenoviral vector, and subunit vaccines have been clinically approved for use in humans. These first-generation COVID-19 vaccines largely target the viral spike (S) protein and aim for eliciting potent neutralizing antibodies. With the emergence of SARS-CoV-2 variants, especially the highly transmissible Omicron strains, the S-based vaccine strategies have been faced constant challenges due to strong immune escape by the variants. The coronavirus nucleocapsid (N) is one of the viral proteins that induces strong T-cell immunity and is more conserved across different SARS-CoV-2 variants. Inclusion of N in the development of COVID-19 vaccines has been reported. Here, we briefly reviewed and discussed COVID-19 disease, current S-based vaccine strategies, and focused on the immunobiology of N protein in SARS-CoV-2 host immunity, as well as the next-generation vaccine strategies involving N protein, to combat current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA 77555
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA 77555
| |
Collapse
|
34
|
Koutsakos M, Reynaldi A, Lee WS, Nguyen J, Amarasena T, Taiaroa G, Kinsella P, Liew KC, Tran T, Kent HE, Tan HX, Rowntree LC, Nguyen THO, Thomas PG, Kedzierska K, Petersen J, Rossjohn J, Williamson DA, Khoury D, Davenport MP, Kent SJ, Wheatley AK, Juno JA. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity 2023; 56:879-892.e4. [PMID: 36958334 PMCID: PMC9970913 DOI: 10.1016/j.immuni.2023.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julie Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - George Taiaroa
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul Kinsella
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kwee Chin Liew
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas Tran
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen E Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jan Petersen
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - David Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
35
|
Habel JR, Chua BY, Kedzierski L, Selva KJ, Damelang T, Haycroft ER, Nguyen TH, Koay HF, Nicholson S, McQuilten HA, Jia X, Allen LF, Hensen L, Zhang W, van de Sandt CE, Neil JA, Pragastis K, Lau JS, Jumarang J, Allen EK, Amanant F, Krammer F, Wragg KM, Juno JA, Wheatley AK, Tan HX, Pell G, Walker S, Audsley J, Reynaldi A, Thevarajan I, Denholm JT, Subbarao K, Davenport MP, Hogarth PM, Godfrey DI, Cheng AC, Tong SY, Bond K, Williamson DA, McMahon JH, Thomas PG, Pannaraj PS, James F, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Chung AW, Whitehead CL, Kent SJ, Lappas M, Rowntree LC, Kedzierska K. Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and γδ T cell perturbations. JCI Insight 2023; 8:e167157. [PMID: 37036008 PMCID: PMC10132165 DOI: 10.1172/jci.insight.167157] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 04/11/2023] Open
Abstract
Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.
Collapse
Affiliation(s)
- Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y. Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Thi H.O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley A. McQuilten
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lilith F. Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jessica A. Neil
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Eastern Health, Box Hill, Victoria, Australia
| | - Jaycee Jumarang
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Fatima Amanant
- Department of Microbiology, and
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kathleen M. Wragg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gabrielle Pell
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Susan Walker
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Irani Thevarajan
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Justin T. Denholm
- Department of Infectious Diseases, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, and Monash Infectious Diseases, Monash Health, Melbourne, Victoria, Australia
| | - Steven Y.C. Tong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Bond
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Health, Monash University, Melbourne, Victoria, Australia
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Departments of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Natasha E. Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Critical Care, University of Melbourne, Parkville, Victoria, Australia
- Data Analytics Research and Evaluation Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Olivia C. Smibert
- Departments of Pediatrics, Molecular Microbiology and Immunology, Keck School of Medicine, UCLA, Los Angeles, California, USA
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, and
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason A. Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, and
- National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Clare L. Whitehead
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
- Pregnancy Research Centre, Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
36
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
37
|
Yang G, Wang J, Sun P, Qin J, Yang X, Chen D, Zhang Y, Zhong N, Wang Z. SARS-CoV-2 epitope-specific T cells: Immunity response feature, TCR repertoire characteristics and cross-reactivity. Front Immunol 2023; 14:1146196. [PMID: 36969254 PMCID: PMC10036809 DOI: 10.3389/fimmu.2023.1146196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.
Collapse
Affiliation(s)
- Gang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ping Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Qin
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaoyun Yang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Daxiang Chen
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Nanshan Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Maghsood F, Ghorbani A, Yadegari H, Golsaz-Shirazi F, Amiri MM, Shokri F. SARS-CoV-2 nucleocapsid: Biological functions and implication for disease diagnosis and vaccine design. Rev Med Virol 2023; 33:e2431. [PMID: 36790816 DOI: 10.1002/rmv.2431] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Nguyen THO, Lim C, Lasica M, Whitechurch A, Tennakoon S, Saunders NR, Allen LF, Rowntree LC, Chua BY, Kedzierski L, Tan H, Wheatley AK, Kent SJ, Karapanagiotidis T, Nicholson S, Williamson DA, Slavin MA, Tam CS, Kedzierska K, Teh BW. Prospective comprehensive profiling of immune responses to COVID-19 vaccination in patients on zanubrutinib therapy. EJHAEM 2023; 4:216-220. [PMID: 36819189 PMCID: PMC9928803 DOI: 10.1002/jha2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.
Collapse
Affiliation(s)
- Thi H. O. Nguyen
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Chhay Lim
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Masa Lasica
- Department of HaematologySt Vincent's HospitalFitzroyVictoriaAustralia
| | - Ashley Whitechurch
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Surekha Tennakoon
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Natalie R. Saunders
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Lilith F. Allen
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Louise C. Rowntree
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Brendon Y. Chua
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Lukasz Kedzierski
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Hyon‐Xhi Tan
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Adam K. Wheatley
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Stephen J. Kent
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVictoriaAustralia
- Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference LaboratoryThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference LaboratoryThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Deborah A. Williamson
- Victorian Infectious Diseases Reference LaboratoryThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Infectious DiseasesUniversity of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Monica A. Slavin
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Constantine S. Tam
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of Haematology, Alfred HospitalMonash UniversityMelbourneVictoriaAustralia
| | - Katherine Kedzierska
- Department of Microbiology and ImmunologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Benjamin W. Teh
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
40
|
Armistead B, Jiang Y, Carlson M, Ford ES, Jani S, Houck J, Wu X, Jing L, Pecor T, Kachikis A, Yeung W, Nguyen T, Coig R, Minkah N, Larsen SE, Coler RN, Koelle DM, Harrington WE. Spike-specific T cells are enriched in breastmilk following SARS-CoV-2 mRNA vaccination. Mucosal Immunol 2023; 16:39-49. [PMID: 36642379 PMCID: PMC9836998 DOI: 10.1016/j.mucimm.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Human breastmilk is rich in T cells; however, their specificity and function are largely unknown. We compared the phenotype, diversity, and antigen specificity of T cells in breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 messenger RNA (mRNA) vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor sequence overlap was limited between blood and breastmilk. Overabundant breastmilk clones were observed in all individuals, were diverse, and contained complementarity-determining regions in three sequences with known epitope specificity, including to SARS-CoV-2 spike. SARS-CoV-2 spike-specific T cell receptors were more frequent in breastmilk compared to blood and expanded in breastmilk following a 3rd mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for passive infant protection.
Collapse
Affiliation(s)
- Blair Armistead
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Yonghou Jiang
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Marc Carlson
- Research Scientific Computing, Enterprise Analytics, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Emily S Ford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Saumya Jani
- Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - John Houck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Xia Wu
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Alisa Kachikis
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Winnie Yeung
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Tina Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Rene Coig
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA; Benaroya Research Institute, Seattle, Washington, USA
| | - Whitney E Harrington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
41
|
Meyer S, Blaas I, Bollineni RC, Delic-Sarac M, Tran TT, Knetter C, Dai KZ, Madssen TS, Vaage JT, Gustavsen A, Yang W, Nissen-Meyer LSH, Douvlataniotis K, Laos M, Nielsen MM, Thiede B, Søraas A, Lund-Johansen F, Rustad EH, Olweus J. Prevalent and immunodominant CD8 T cell epitopes are conserved in SARS-CoV-2 variants. Cell Rep 2023; 42:111995. [PMID: 36656713 PMCID: PMC9826989 DOI: 10.1016/j.celrep.2023.111995] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The emergence of SARS-CoV-2 variants of concern (VOC) is driven by mutations that mediate escape from neutralizing antibodies. There is also evidence that mutations can cause loss of T cell epitopes. However, studies on viral escape from T cell immunity have been hampered by uncertain estimates of epitope prevalence. Here, we map and quantify CD8 T cell responses to SARS-CoV-2-specific minimal epitopes in blood drawn from April to June 2020 from 83 COVID-19 convalescents. Among 37 HLA ligands eluted from five prevalent alleles and an additional 86 predicted binders, we identify 29 epitopes with an immunoprevalence ranging from 3% to 100% among individuals expressing the relevant HLA allele. Mutations in VOC are reported in 10.3% of the epitopes, while 20.6% of the non-immunogenic peptides are mutated in VOC. The nine most prevalent epitopes are conserved in VOC. Thus, comprehensive mapping of epitope prevalence does not provide evidence that mutations in VOC are driven by escape of T cell immunity.
Collapse
Affiliation(s)
- Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Isaac Blaas
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Trung T. Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Knetter
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - John T. Vaage
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | - Karolos Douvlataniotis
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Arne Søraas
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway,ImmunoLingo Convergence Center, University of Oslo, 0372 Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0379 Oslo, Norway,Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway,Corresponding author
| |
Collapse
|
42
|
von Borstel A, Nguyen TH, Rowntree LC, Ashhurst TM, Allen LF, Howson LJ, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Cheng AC, Kent SJ, Rossjohn J, Kedzierska K, Davey MS. Circulating effector γδ T cell populations are associated with acute coronavirus disease 19 in unvaccinated individuals. Immunol Cell Biol 2023; 101:321-332. [PMID: 36698330 DOI: 10.1111/imcb.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe coronavirus disease 2019 (COVID-19) in a small proportion of infected individuals. The immune system plays an important role in the defense against SARS-CoV-2, but our understanding of the cellular immune parameters that contribute to severe COVID-19 disease is incomplete. Here, we show that populations of effector γδ T cells are associated with COVID-19 in unvaccinated patients with acute disease. We found that circulating CD27neg CD45RA+ CX3CR1+ Vδ1effector cells expressing Granzymes (Gzms) were enriched in COVID-19 patients with acute disease. Moreover, higher frequencies of GzmB+ Vδ2+ T cells were observed in acute COVID-19 patients. SARS-CoV-2 infection did not alter the γδ T cell receptor repertoire of either Vδ1+ or Vδ2+ subsets. Our work demonstrates an association between effector populations of γδ T cells and acute COVID-19 in unvaccinated individuals.
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Critical Care, University of Melbourne, Parkville, VIC, Australia.,Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC, Australia.,Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
43
|
Vyasamneni R, Kohler V, Karki B, Mahimkar G, Esaulova E, McGee J, Kallin D, Sheen JH, Harjanto D, Kirsch M, Poran A, Dong J, Srinivasan L, Gaynor RB, Bushway ME, Srouji JR. A universal MHCII technology platform to characterize antigen-specific CD4 + T cells. CELL REPORTS METHODS 2023; 3:100388. [PMID: 36814840 PMCID: PMC9939426 DOI: 10.1016/j.crmeth.2022.100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
CD4+ T cells are critical to the immune system and perform multiple functions; therefore, their identification and characterization are crucial to better understanding the immune system in both health and disease states. However, current methods rarely preserve their ex vivo phenotype, thus limiting our understanding of their in vivo functions. Here we introduce a flexible, rapid, and robust platform for ex vivo CD4+ T cell identification. By combining MHCII allele purification, allele-independent peptide loading, and multiplexed flow cytometry technologies, we can enable high-throughput personalized CD4+ T cell identification, immunophenotyping, and sorting. Using this platform in combination with single-cell sorting and multimodal analyses, we identified and characterized antigen-specific CD4+ T cells relevant to COVID-19 and cancer neoantigen immunotherapy. Overall, our platform can be used to detect and characterize CD4+ T cells across multiple diseases, with potential to guide CD4+ T cell epitope design for any disease-specific immunization strategy.
Collapse
Affiliation(s)
| | | | - Binisha Karki
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Gauri Mahimkar
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Jonathan McGee
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Daniel Kallin
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Dewi Harjanto
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Miles Kirsch
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Asaf Poran
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | - Jesse Dong
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | - John R. Srouji
- BioNTech US, Inc., 40 Erie Street, Cambridge, MA 02139, USA
| |
Collapse
|
44
|
Clonal diversity predicts persistence of SARS-CoV-2 epitope-specific T-cell response. Commun Biol 2022; 5:1351. [PMID: 36494499 PMCID: PMC9734123 DOI: 10.1038/s42003-022-04250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
T cells play a pivotal role in reducing disease severity during SARS-CoV-2 infection and formation of long-term immune memory. We studied 50 COVID-19 convalescent patients and found that T cell response was induced more frequently and persisted longer than circulating antibodies. We identified 756 clonotypes specific to nine CD8+ T cell epitopes. Some epitopes were recognized by highly similar public clonotypes. Receptors for other epitopes were extremely diverse, suggesting alternative modes of recognition. We tracked persistence of epitope-specific response and individual clonotypes for a median of eight months after infection. The number of recognized epitopes per patient and quantity of epitope-specific clonotypes decreased over time, but the studied epitopes were characterized by uneven decline in the number of specific T cells. Epitopes with more clonally diverse TCR repertoires induced more pronounced and durable responses. In contrast, the abundance of specific clonotypes in peripheral circulation had no influence on their persistence.
Collapse
|
45
|
Phetsouphanh C, Khoo WH, Jackson K, Klemm V, Howe A, Aggarwal A, Akerman A, Milogiannakis V, Stella AO, Rouet R, Schofield P, Faulks ML, Law H, Danwilai T, Starr M, Munier CML, Christ D, Singh M, Croucher PI, Brilot-Turville F, Turville S, Phan TG, Dore GJ, Darley D, Cunningham P, Matthews GV, Kelleher AD, Zaunders JJ. High titre neutralizing antibodies in response to SARS-CoV-2 infection require RBD-specific CD4 T cells that include proliferative memory cells. Front Immunol 2022; 13:1032911. [PMID: 36544780 PMCID: PMC9762180 DOI: 10.3389/fimmu.2022.1032911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background Long-term immunity to SARS-CoV-2 infection, including neutralizing antibodies and T cell-mediated immunity, is required in a very large majority of the population in order to reduce ongoing disease burden. Methods We have investigated the association between memory CD4 and CD8 T cells and levels of neutralizing antibodies in convalescent COVID-19 subjects. Findings Higher titres of convalescent neutralizing antibodies were associated with significantly higher levels of RBD-specific CD4 T cells, including specific memory cells that proliferated vigorously in vitro. Conversely, up to half of convalescent individuals had low neutralizing antibody titres together with a lack of receptor binding domain (RBD)-specific memory CD4 T cells. These low antibody subjects had other, non-RBD, spike-specific CD4 T cells, but with more of an inhibitory Foxp3+ and CTLA-4+ cell phenotype, in contrast to the effector T-bet+, cytotoxic granzymes+ and perforin+ cells seen in RBD-specific memory CD4 T cells from high antibody subjects. Single cell transcriptomics of antigen-specific CD4+ T cells from high antibody subjects similarly revealed heterogenous RBD-specific CD4+ T cells that comprised central memory, transitional memory and Tregs, as well as cytotoxic clusters containing diverse TCR repertoires, in individuals with high antibody levels. However, vaccination of low antibody convalescent individuals led to a slight but significant improvement in RBD-specific memory CD4 T cells and increased neutralizing antibody titres. Interpretation Our results suggest that targeting CD4 T cell epitopes proximal to and within the RBD-region should be prioritized in booster vaccines.
Collapse
Affiliation(s)
| | - Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Vera Klemm
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Annett Howe
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Megan L. Faulks
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hannah Law
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Thidarat Danwilai
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Mitchell Starr
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - C. Mee Ling Munier
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | | | - Fabienne Brilot-Turville
- Brain and Mind Centre, Children’s Hospital at Westmead, University of Sydney, Sydney, NSW, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Turville
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, NSW, Australia,St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Gregory J. Dore
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - David Darley
- Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Philip Cunningham
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
| | - Gail V. Matthews
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales (UNSW), Sydney, NSW, Australia,Department of Immunology, St Vincent's Hospital, Sydney, NSW, Australia
| | - John J. Zaunders
- NSW State Reference Laboratory for HIV, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia,*Correspondence: John J. Zaunders,
| |
Collapse
|
46
|
Fujii SI, Yamasaki S, Iyoda T, Shimizu K. Association of cellular immunity with severity of COVID-19 from the perspective of antigen-specific memory T cell responses and cross-reactivity. Inflamm Regen 2022; 42:50. [PMCID: PMC9706959 DOI: 10.1186/s41232-022-00239-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
AbstractCoronaviruses regularly cause outbreaks of zoonotic diseases characterized by severe pneumonia. The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the global pandemic disease COVID-19 that began at the end of 2019 and spread rapidly owing to its infectious nature and rapidly progressing pneumonia. Although the infectivity of SARS-CoV-2 is high, indicated by the worldwide spread of the disease in a very short period, many individuals displayed only subclinical infection, and some of them transmitted the disease to individuals who then developed a severe symptomatic infection. Furthermore, there are differences in the severity of infection across countries, which can be attributed to factors such as the emergence of viral mutations in a short period of time as well as to the immune responses to viral factors. Anti-viral immunity generally consists of neutralizing antibodies that block viral infection and cytotoxic CD8+ T cells that eliminate the virus-infected cells. There is compelling evidence for the role of neutralizing antibodies in protective immunity in SARS-CoV-2 infection. However, the role of CD4+ and CD8+ T cells after the viral entry is complex and warrants a comprehensive discussion. Here, we discuss the protection afforded by cellular immunity against initial infection and development of severe disease. The initial failure of cellular immunity to control the infection worsens the clinical outcomes and functional profiles that inflict tissue damage without effectively eliminating viral reservoirs, while robust T cell responses are associated with mild outcomes. We also discuss persistent long-lasting memory T cell-mediated protection after infection or vaccination, which is rather complicated as it may involve SARS-CoV-2-specific cytotoxic T lymphocytes or cross-reactivity with previously infected seasonal coronaviruses, which are largely related to HLA genotypes. In addition, cross-reactivity with mutant strains is also discussed. Lastly, we discuss appropriate measures to be taken against the disease for immunocompromised patients. In conclusion, we provide evidence and discuss the causal relationship between natural infection- or vaccine-mediated memory T cell immunity and severity of COVID-19. This review is expected to provide a basis to develop strategies for the next generation of T cell-focused vaccines and aid in ending the current pandemic.
Collapse
|
47
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
48
|
Huisman W, de Gier M, Hageman L, Shomuradova AS, Leboux DA, Amsen D, Falkenburg JF, Jedema I. Amino acids at position 5 in the peptide/MHC binding region of a public virus-specific TCR are completely inter-changeable without loss of function. Eur J Immunol 2022; 52:1819-1828. [PMID: 36189878 PMCID: PMC9828479 DOI: 10.1002/eji.202249975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Anti-viral T-cell responses are usually directed against a limited set of antigens, but often contain many T cells expressing different T-cell receptors (TCRs). Identical TCRs found within virus-specific T-cell populations in different individuals are known as public TCRs, but also TCRs highly-similar to these public TCRs, with only minor variations in amino acids on specific positions in the Complementary Determining Regions (CDRs), are frequently found. However, the degree of freedom at these positions was not clear. In this study, we used the HLA-A*02:01-restricted EBV-LMP2FLY -specific public TCR as model and modified the highly-variable position 5 of the CDR3β sequence with all 20 amino acids. Our results demonstrate that amino acids at this particular position in the CDR3β region of this TCR are completely inter-changeable, without loss of TCR function. We show that the inability to find certain variants in individuals is explained by their lower recombination probability rather than by steric hindrance.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of HematologyLeiden University Medical CenterThe Netherlands,Department of HematopoiesisSanquin Research and Landsteiner Laboratory for Blood Cell ResearchAmsterdamThe Netherlands
| | - Melanie de Gier
- Department of HematologyLeiden University Medical CenterThe Netherlands
| | - Lois Hageman
- Department of HematologyLeiden University Medical CenterThe Netherlands
| | - Alina S. Shomuradova
- Laboratory for Transplantation ImmunologyNational Research Center for HematologyMoscowRussia
| | | | - Derk Amsen
- Department of HematopoiesisSanquin Research and Landsteiner Laboratory for Blood Cell ResearchAmsterdamThe Netherlands
| | | | - Inge Jedema
- Department of HematologyLeiden University Medical CenterThe Netherlands
| |
Collapse
|
49
|
van den Dijssel J, Hagen RR, de Jongh R, Steenhuis M, Rispens T, Geerdes DM, Mok JY, Kragten AHM, Duurland MC, Verstegen NJM, van Ham SM, van Esch WJE, van Gisbergen KPJM, Hombrink P, ten Brinke A, van de Sandt CE. Parallel detection of SARS-CoV-2 epitopes reveals dynamic immunodominance profiles of CD8 + T memory cells in convalescent COVID-19 donors. Clin Transl Immunology 2022; 11:e1423. [PMID: 36254196 PMCID: PMC9568370 DOI: 10.1002/cti2.1423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Ruth R Hagen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Rivka de Jongh
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Maurice Steenhuis
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Theo Rispens
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V.AmsterdamThe Netherlands
| | | | - Mariël C Duurland
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - S Marieke van Ham
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas PJM van Gisbergen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Pleun Hombrink
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Anja ten Brinke
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Carolien E van de Sandt
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
50
|
Armistead B, Jiang Y, Carlson M, Ford ES, Jani S, Houck J, Wu X, Jing L, Pecor T, Kachikis A, Yeung W, Nguyen T, Minkah N, Larsen SE, Coler RN, Koelle DM, Harrington WE. Spike-specific T cells are enriched in breastmilk following SARS-CoV-2 mRNA vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.12.03.21267036. [PMID: 36203549 PMCID: PMC9536058 DOI: 10.1101/2021.12.03.21267036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human breastmilk is rich in T cells; however, their specificity and function are largely unknown. We compared the phenotype, diversity, and antigen specificity of T cells in the breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 mRNA vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor (TCR) sequence overlap was limited between blood and breastmilk. Overabundan t breastmilk clones were observed in all individuals, were diverse, and contained CDR3 sequences with known epitope specificity including to SARS-CoV-2 Spike. Spike-specific TCRs were more frequent in breastmilk compared to blood and expanded in breastmilk following a third mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for infant passive protection. One-Sentence Summary The breastmilk T cell repertoire is distinct and enriched for SARS-CoV-2 Spike-specificity after maternal mRNA vaccination.
Collapse
Affiliation(s)
- Blair Armistead
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Yonghou Jiang
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Marc Carlson
- Research Scientific Computing, Enterprise Analytics, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Emily S Ford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Medicine, University of Washington; Seattle, WA, USA
| | - Saumya Jani
- Department of Medicine, University of Washington; Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA, USA
| | - John Houck
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Xia Wu
- Department of Medicine, University of Washington; Seattle, WA, USA
| | - Lichen Jing
- Department of Medicine, University of Washington; Seattle, WA, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Alisa Kachikis
- Department of Obstetrics & Gynecology, University of Washington; Seattle, WA, USA
| | - Winnie Yeung
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Tina Nguyen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
- Department of Pediatrics, University of Washington; Seattle, WA, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
| | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
- Department of Pediatrics, University of Washington; Seattle, WA, USA
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; Seattle, WA, USA
- Department of Medicine, University of Washington; Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
- Benaroya Research Institute; Seattle, WA, USA
| | - Whitney E Harrington
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute; Seattle, WA, USA
- Department of Global Health, University of Washington; Seattle, WA, USA
- Department of Pediatrics, University of Washington; Seattle, WA, USA
| |
Collapse
|