1
|
Ovchinnikova LA, Eliseev IE, Dzhelad SS, Simaniv TO, Klimina KM, Ivanova M, Ilina EN, Zakharova MN, Illarioshkin SN, Rubtsov YP, Gabibov AG, Lomakin YA. High heterogeneity of cross-reactive immunoglobulins in multiple sclerosis presumes combining of B-cell epitopes for diagnostics: a case-control study. Front Immunol 2024; 15:1401156. [PMID: 39669579 PMCID: PMC11634884 DOI: 10.3389/fimmu.2024.1401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Background Multiple sclerosis (MS) is a neuroinflammatory disease triggered by a combination of genetic traits and external factors. Autoimmune nature of MS is proven by the identification of pathogenic T cells, but the role of autoantibody-producing B cells is less clear. A comprehensive understanding of the development of neuroinflammation and the identification of targeted autoantigens are crucial for timely diagnosis and appropriate treatment. Methods An expression library of 44-mer overlapping peptides from a panel of putative autoantigenic human proteins was employed for modified Phage ImmunoPrecipitation Sequencing (PhIP-Seq) to identify B cell peptide epitopes from MS patients. Individual peptides extracted by PhIP-Seq were tested by ELISA to characterize their affinity towards IgG from both MS patients and healthy donors (HD). Three candidate auto-peptides were used for isolating autoreactive antigen-specific IgGs from the serum of MS patients. Results Autoantibody screening revealed high heterogeneity of IgG response in MS. The autoantigenic genesis of the PhIP-Seq-identified peptides was further strengthened by clinical ELISA testing of 11 HD and 16 MS donors. Validation experiments on independent cohorts of 22 HD and 28 MS patients confirmed statistically significant elevated titers of IgG specific to spectrin alpha chain (SPTAN1) in the serum of MS patients compared to HD. The levels of anti-SPTAN1 IgG correlated in serum and cerebrospinal fluid (CSF). Isolated autoreactive antigen-specific IgG exhibited increased cross-reactivity to a panel of PhIP-Seq-identified antigenic peptides. Serum IgG from MS patients were reactive to latent membrane protein (LMP1) of Epstein-Barr virus, a potential trigger of MS. Discovered antigenic peptides from SPTAN1, protein-tyrosine kinase 6 (PTK6), periaxin (PRX), and LMP1 were tested as potential biomarker panel for MS diagnostics. We concluded that the combination of particular peptides from SPTAN1, PTK6, PRX and LMP1 could be implemented as a four-peptide biomarker panel for MS diagnosis (area under the curve (AUC) of 0.818 for discriminating between HD and MS). Conclusions This study supports the concept that the specificity of autoreactive IgG in MS is highly heterogeneous. Despite that we suggest that the combination of several B-cell epitopes could be employed as reliable and simple test for MS diagnostics.
Collapse
Affiliation(s)
- Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E. Eliseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
| | - Samir S. Dzhelad
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Elena N. Ilina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Li L, Yuan H, Li Q, Li K, Lin P. Microfluidics, an effective tool for supporting phage display-A review. Anal Chim Acta 2024; 1326:342978. [PMID: 39260910 DOI: 10.1016/j.aca.2024.342978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 09/13/2024]
Abstract
Phage display is a vital tool for the discovery and development of affinity reagents such as antibodies and peptides, which have great potential in imaging, molecular recognition, biosensors, targeted delivery and other clinical applications. However, affinity reagents obtained by phage display are often subjected to a process called biopanning, which is considered time-consuming, labor-intensive and lacks accurate control, limiting the acquisition of high-quality affinity reagents. Over the last two decades, several microfluidic approaches have been designed to simplify the conventional biopanning process and to realize precise control. To better understand the advantages of microfluidics over traditional biopanning and the potential of microfluidics for other molecular screening strategies, we provided an overview of recent applications of microfluidics in phage display. Additionally, the next challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Liang Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Yuan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Qin Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
3
|
Huang Z, Gunarathne SMS, Liu W, Zhou Y, Jiang Y, Li S, Huang J. PhIP-Seq: methods, applications and challenges. FRONTIERS IN BIOINFORMATICS 2024; 4:1424202. [PMID: 39295784 PMCID: PMC11408297 DOI: 10.3389/fbinf.2024.1424202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Phage-immunoprecipitation sequencing (PhIP-Seq) technology is an innovative, high-throughput antibody detection method. It enables comprehensive analysis of individual antibody profiles. This technology shows great potential, particularly in exploring disease mechanisms and immune responses. Currently, PhIP-Seq has been successfully applied in various fields, such as the exploration of biomarkers for autoimmune diseases, vaccine development, and allergen detection. A variety of bioinformatics tools have facilitated the development of this process. However, PhIP-Seq technology still faces many challenges and has room for improvement. Here, we review the methods, applications, and challenges of PhIP-Seq and discuss its future directions in immunological research and clinical applications. With continuous progress and optimization, PhIP-Seq is expected to play an even more important role in future biomedical research, providing new ideas and methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ziru Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuwei Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqing Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
4
|
Sundell GN, Tao SC. Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome. Mol Cell Proteomics 2024; 23:100831. [PMID: 39168282 PMCID: PMC11417174 DOI: 10.1016/j.mcpro.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.
Collapse
Affiliation(s)
- Gustav N Sundell
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Bourgonje AR, Hörstke NV, Fehringer M, Innocenti G, Vogl T. Systemic antibody responses against gut microbiota flagellins implicate shared and divergent immune reactivity in Crohn's disease and chronic fatigue syndrome. MICROBIOME 2024; 12:141. [PMID: 39075559 DOI: 10.1186/s40168-024-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/12/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Elevated systemic antibody responses against gut microbiota flagellins are observed in both Crohn's disease (CD) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting potential serological biomarkers for diagnosis. However, flagellin-specific antibody repertoires and functional roles in the diseases remain incompletely understood. Bacterial flagellins can be categorized into three types depending on their interaction with toll-like receptor 5 (TLR5): (1) "stimulator" and (2) "silent" flagellins, which bind TLR5 through a conserved N-terminal motif, with only stimulators activating TLR5 (involving a C-terminal domain); (3) "evader" flagellins of pathogens, which entirely circumvent TLR5 activation via mutations in the N-terminal TLR5 binding motif. RESULTS Here, we show that both CD and ME/CFS patients exhibit elevated antibody responses against distinct regions of flagellins compared to healthy individuals. N-terminal binding to Lachnospiraceae flagellins was comparable in both diseases, while C-terminal binding was more prevalent in CD. N-terminal antibody-bound flagellin sequences were similar across CD and ME/CFS, resembling "stimulator" and "silent" flagellins more than evaders. However, C-terminal antibody-bound flagellins showed a higher resemblance to the stimulator than to silent flagellins in CD, which was not observed in ME/CFS. CONCLUSIONS These findings suggest that antibody binding to the N-terminal domain of stimulator and silent flagellins may impact TLR5 activation in both CD and ME/CFS patients. Blocking this interaction could lead commensal bacteria to be recognized as pathogenic evaders, potentially contributing to dysregulation in both diseases. Furthermore, elevated antibody binding to the C-terminal domain of stimulator flagellins in CD may explain pathophysiological differences between the diseases. Overall, these results highlight the diagnostic potential of these antibody responses and lay a foundation for deeper mechanistic studies of flagellin/TLR5 interactions and their impact on innate/adaptive immunity balance.
Collapse
Affiliation(s)
- Arno R Bourgonje
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicolai V Hörstke
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michaela Fehringer
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Gabriel Innocenti
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Lomakin YA, Ovchinnikova LA, Terekhov SS, Dzhelad SS, Yaroshevich I, Mamedov I, Smirnova A, Grigoreva T, Eliseev IE, Filimonova IN, Mokrushina YA, Abrikosova V, Rubtsova MP, Kostin NN, Simonova MA, Bobik TV, Aleshenko NL, Alekhin AI, Boitsov VM, Zhang H, Smirnov IV, Rubtsov YP, Gabibov AG. Two-dimensional high-throughput on-cell screening of immunoglobulins against broad antigen repertoires. Commun Biol 2024; 7:842. [PMID: 38987383 PMCID: PMC11237129 DOI: 10.1038/s42003-024-06500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Identifying high-affinity antibodies in human serum is challenging due to extremely low number of circulating B cells specific to the desired antigens. Delays caused by a lack of information on the immunogenic proteins of viral origin hamper the development of therapeutic antibodies. We propose an efficient approach allowing for enrichment of high-affinity antibodies against pathogen proteins with simultaneous epitope mapping, even in the absence of structural information about the pathogenic immunogens. To screen therapeutic antibodies from blood of recovered donors, only pathogen transcriptome is required to design an antigen polypeptide library, representing pathogen proteins, exposed on the bacteriophage surface. We developed a two-dimensional screening approach enriching lentiviral immunoglobulin libraries from the convalescent or vaccinated donors against bacteriophage library expressing the overlapping set of polypeptides covering the spike protein of SARS-CoV-2. This platform is suitable for pathogen-specific immunoglobulin enrichment and allows high-throughput selection of therapeutic human antibodies.
Collapse
Affiliation(s)
- Yakov A Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia.
| | - Leyla A Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Samir S Dzhelad
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Igor Yaroshevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Ilgar Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Anastasia Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Tatiana Grigoreva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Igor E Eliseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Ioanna N Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Yuliana A Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Victoria Abrikosova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Nikita N Kostin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Maria A Simonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Tatiana V Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Natalia L Aleshenko
- Federal State Budgetary Scientific Institution «Petrovsky National Research Centre of Surgery» (FSBSI «Petrovsky NRCS»), Moscow, Russia
| | - Alexander I Alekhin
- Federal State Budgetary Scientific Institution «Petrovsky National Research Centre of Surgery» (FSBSI «Petrovsky NRCS»), Moscow, Russia
| | - Vitali M Boitsov
- Saint Petersburg National Research Academic University of the Russian Academy of Sciences, 194021, Saint Petersburg, Russia
| | - Hongkai Zhang
- College of Life Science, Nankai University, Tianjin, People's Republic of China
| | - Ivan V Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Endocrinology Research Centre, Ministry of Health of Russia, 117036, Moscow, Russia
| | - Yuri P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health, Moscow, Russia
| | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia.
- Faculty of Biology and Biotechnology, HSE University, 101000, Moscow, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, 119192, Moscow, Russia.
| |
Collapse
|
7
|
Pluvinage JV, Ngo T, Fouassier C, McDonagh M, Holmes BB, Bartley CM, Kondapavulur S, Hurabielle C, Bodansky A, Pai V, Hinman S, Aslanpour A, Alvarenga BD, Zorn KC, Zamecnik C, McCann A, Asencor AI, Huynh T, Browne W, Tubati A, Haney MS, Douglas VC, Louine M, Cree BA, Hauser SL, Seeley W, Baranzini SE, Wells JA, Spudich S, Farhadian S, Ramachandran PS, Gillum L, Hales CM, Zikherman J, Anderson MS, Yazdany J, Smith B, Nath A, Suh G, Flanagan EP, Green AJ, Green R, Gelfand JM, DeRisi JL, Pleasure SJ, Wilson MR. Transcobalamin receptor antibodies in autoimmune vitamin B12 central deficiency. Sci Transl Med 2024; 16:eadl3758. [PMID: 38924428 PMCID: PMC11520464 DOI: 10.1126/scitranslmed.adl3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Vitamin B12 is critical for hematopoiesis and myelination. Deficiency can cause neurologic deficits including loss of coordination and cognitive decline. However, diagnosis relies on measurement of vitamin B12 in the blood, which may not accurately reflect the concentration in the brain. Using programmable phage display, we identified an autoantibody targeting the transcobalamin receptor (CD320) in a patient with progressive tremor, ataxia, and scanning speech. Anti-CD320 impaired cellular uptake of cobalamin (B12) in vitro by depleting its target from the cell surface. Despite a normal serum concentration, B12 was nearly undetectable in her cerebrospinal fluid (CSF). Immunosuppressive treatment and high-dose systemic B12 supplementation were associated with increased B12 in the CSF and clinical improvement. Optofluidic screening enabled isolation of a patient-derived monoclonal antibody that impaired B12 transport across an in vitro model of the blood-brain barrier (BBB). Autoantibodies targeting the same epitope of CD320 were identified in seven other patients with neurologic deficits of unknown etiology, 6% of healthy controls, and 21.4% of a cohort of patients with neuropsychiatric lupus. In 132 paired serum and CSF samples, detection of anti-CD320 in the blood predicted B12 deficiency in the brain. However, these individuals did not display any hematologic signs of B12 deficiency despite systemic CD320 impairment. Using a genome-wide CRISPR screen, we found that the low-density lipoprotein receptor serves as an alternative B12 uptake pathway in hematopoietic cells. These findings dissect the tissue specificity of B12 transport and elucidate an autoimmune neurologic condition that may be amenable to immunomodulatory treatment and nutritional supplementation.
Collapse
Affiliation(s)
- John V. Pluvinage
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Thomas Ngo
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Camille Fouassier
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Maura McDonagh
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Brandon B. Holmes
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Christopher M. Bartley
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA 94158, USA
| | - Sravani Kondapavulur
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
| | - Charlotte Hurabielle
- Department of Medicine, Division of Rheumatology, UCSF, San Francisco, CA, 94158, USA
| | - Aaron Bodansky
- Department of Pediatrics, Division of Critical Care, UCSF, San Francisco, CA 94158, USA
| | - Vincent Pai
- Bruker Cellular Analysis, Emeryville, CA, 94608, USA
| | - Sam Hinman
- Bruker Cellular Analysis, Emeryville, CA, 94608, USA
| | - Ava Aslanpour
- Bruker Cellular Analysis, Emeryville, CA, 94608, USA
| | - Bonny D. Alvarenga
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Kelsey C. Zorn
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Colin Zamecnik
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | | | - Andoni I. Asencor
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Trung Huynh
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Weston Browne
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Asritha Tubati
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Michael S. Haney
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Vanja C. Douglas
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Martineau Louine
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Bruce A.C. Cree
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Stephen L. Hauser
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - William Seeley
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Sergio E. Baranzini
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94158, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shelli Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520, USA
| | - Prashanth S. Ramachandran
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | | | | | - Julie Zikherman
- Department of Medicine, Division of Rheumatology, UCSF, San Francisco, CA, 94158, USA
| | - Mark S. Anderson
- Diabetes Center, UCSF, San Francisco, CA 94143, USA
- Department of Medicine, Division of Endocrinology, UCSF, San Francisco, CA 94158, USA
| | - Jinoos Yazdany
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
| | - Bryan Smith
- Division of Neuroimmunology and Neurovirology, National Institute of Neurologic Disorders and Stroke, Bethesda, MD 20824, USA
| | - Avindra Nath
- Division of Neuroimmunology and Neurovirology, National Institute of Neurologic Disorders and Stroke, Bethesda, MD 20824, USA
| | - Gina Suh
- Department of Medicine, Division of Infectious Disease, Mayo Clinic, Rochester, MN 55905, USA
| | - Eoin P. Flanagan
- Department of Neurology and Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ari J. Green
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95616, USA
| | - Jeffrey M. Gelfand
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Joseph L. DeRisi
- Bruker Cellular Analysis, Emeryville, CA, 94608, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
| | - Samuel J. Pleasure
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Michael R. Wilson
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Andreu-Sánchez S, Ripoll-Cladellas A, Culinscaia A, Bulut O, Bourgonje AR, Netea MG, Lansdorp P, Aubert G, Bonder MJ, Franke L, Vogl T, van der Wijst MG, Melé M, Van Baarle D, Fu J, Zhernakova A. Antibody signatures against viruses and microbiome reflect past and chronic exposures and associate with aging and inflammation. iScience 2024; 27:109981. [PMID: 38868191 PMCID: PMC11167443 DOI: 10.1016/j.isci.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Anna Culinscaia
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboudumc, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Monique G.P. van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Catalonia, Spain
| | - Debbie Van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
9
|
van der Woude D, Toes REM. Immune response to post-translationally modified proteins in rheumatoid arthritis: what makes it special? Ann Rheum Dis 2024; 83:838-846. [PMID: 38378236 DOI: 10.1136/ard-2023-224103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Rheumatoid arthritis (RA) exhibits common characteristics with numerous other autoimmune diseases, including the presence of susceptibility genes and the presence of disease-specific autoantibodies. Anti-citrullinated protein antibodies (ACPA) are the hallmarking autoantibodies in RA and the anti-citrullinated protein immune response has been implicated in disease pathogenesis. Insight into the immunological pathways leading to anti-citrullinated protein immunity will not only aid understanding of RA pathogenesis, but may also contribute to elucidation of similar mechanisms in other autoantibody-positive autoimmune diseases. Similarly, lessons learnt in other human autoimmune diseases might be relevant to understand potential drivers of RA. In this review, we will summarise several novel insights into the biology of the anti-citrullinated protein response and their clinical associations that have been obtained in recent years. These insights include the identification of glycans in the variable domain of ACPA, the realisation that ACPA are polyreactive towards other post-translational modifications on proteins, as well as new awareness of the contributing role of mucosal sites to the development of the ACPA response. These findings will be mirrored to emerging concepts obtained in other human (autoimmune) disease characterised by disease-specific autoantibodies. Together with an updated understanding of genetic and environmental risk factors and fresh perspectives on how the microbiome could contribute to antibody formation, these advancements coalesce to a progressively clearer picture of the B cell reaction to modified antigens in the progression of RA.
Collapse
Affiliation(s)
| | - René E M Toes
- Rheumatology, Leids Universitair Medisch Centrum, Leiden, The Netherlands
| |
Collapse
|
10
|
Verma S, Dufort MJ, Olsen TM, Kimmel S, Labuda JC, Scharffenberger S, McGuire AT, Harrison OJ. Antigen-level resolution of commensal-specific B cell responses can be enabled by phage display screening coupled with B cell tetramers. Immunity 2024; 57:1428-1441.e8. [PMID: 38723638 PMCID: PMC11168869 DOI: 10.1016/j.immuni.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.
Collapse
Affiliation(s)
- Sheenam Verma
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Samantha Kimmel
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jasmine C Labuda
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Sam Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Liebhoff AM, Venkataraman T, Morgenlander WR, Na M, Kula T, Waugh K, Morrison C, Rewers M, Longman R, Round J, Elledge S, Ruczinski I, Langmead B, Larman HB. Efficient encoding of large antigenic spaces by epitope prioritization with Dolphyn. Nat Commun 2024; 15:1577. [PMID: 38383452 PMCID: PMC10881494 DOI: 10.1038/s41467-024-45601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.
Collapse
Affiliation(s)
- Anna-Maria Liebhoff
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Thiagarajan Venkataraman
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - William R Morgenlander
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Miso Na
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Tomasz Kula
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Charles Morrison
- Behavioral, Clinical and Epidemiologic Sciences, FHI 360, Durham, NC, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Randy Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - June Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stephen Elledge
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ben Langmead
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - H Benjamin Larman
- Institute of Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Chong AY, Brenner N, Jimenez-Kaufmann A, Cortes A, Hill M, Littlejohns TJ, Gilchrist JJ, Fairfax BP, Knight JC, Hodel F, Fellay J, McVean G, Moreno-Estrada A, Waterboer T, Hill AVS, Mentzer AJ. A common NFKB1 variant detected through antibody analysis in UK Biobank predicts risk of infection and allergy. Am J Hum Genet 2024; 111:295-308. [PMID: 38232728 PMCID: PMC10870136 DOI: 10.1016/j.ajhg.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.
Collapse
Affiliation(s)
- Amanda Y Chong
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Nicole Brenner
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andres Jimenez-Kaufmann
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Adrian Cortes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Michael Hill
- MRC-Population Health Research Unit, University of Oxford, Oxford, UK
| | | | - James J Gilchrist
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Julian C Knight
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Flavia Hodel
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Andres Moreno-Estrada
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adrian V S Hill
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; The Jenner Institute, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Bourgonje AR, Andreu-Sánchez S, Vogl T, Hu S, Vich Vila A, Gacesa R, Leviatan S, Kurilshikov A, Klompus S, Kalka IN, van Dullemen HM, Weinberger A, Visschedijk MC, Festen EAM, Faber KN, Wijmenga C, Dijkstra G, Segal E, Fu J, Zhernakova A, Weersma RK. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures. Immunity 2023; 56:1393-1409.e6. [PMID: 37164015 DOI: 10.1016/j.immuni.2023.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris N Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hendrik M van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|