1
|
Basharat M, Hussain Z, Arif D, Miran W. Cysteine-Grafted Cu MOF/ZnO/PANI Nanocomposite for Nonenzymatic Electrochemical Sensing of Dopamine. ACS OMEGA 2024; 9:49545-49556. [PMID: 39713665 PMCID: PMC11656368 DOI: 10.1021/acsomega.4c07452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024]
Abstract
Electrochemical sensing has shown great promise in monitoring neurotransmitter levels, particularly dopamine, essential for diagnosing neurological illnesses like Parkinson's disease. Such techniques are easy, cost-effective, and extremely sensitive. The present investigation discusses the synthesis, characterization, and potential use of a cysteine-grafted Cu MOF/ZnO/PANI nanocomposite deposited on the modified glassy carbon electrode surface for nonenzymatic electrochemical sensing of dopamine. The synthesized nanocomposite was confirmed through X-ray diffraction, Fourier transform infrared, Raman, and scanning electron microscopy characterization techniques. Additionally, electrochemical analysis was conducted using cyclic voltammogram, differential pulse voltammetry, and chronoamperometry. The process was determined to be the diffusion-controlled oxidation of dopamine. Dopamine underwent spontaneous adsorption on the electrode surface through an electrochemically reversible mechanism. Despite various biological interfering factors, the nonenzymatic electrochemical sensor demonstrated a remarkable level of selectivity toward dopamine. Cysteine-grafted Cu MOF/ZnO/PANI produced the lowest dopamine detection limit, at 0.39 μM, and the sensitivity was observed as 122.57 μAmM-1 cm-2. Results have demonstrated that enhanced catalytic and conductive properties of MOFs, combined with nanostructured materials, are the primary factors affecting the sensor's performance.
Collapse
Affiliation(s)
- Mariam Basharat
- School of Chemical and Materials
Engineering (SCME), National University
of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Zakir Hussain
- School of Chemical and Materials
Engineering (SCME), National University
of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Dooa Arif
- School of Chemical and Materials
Engineering (SCME), National University
of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| | - Waheed Miran
- School of Chemical and Materials
Engineering (SCME), National University
of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Khan MQ, Ahmad K, Khan RA. Design and Fabrication of Tryptophan Sensor Using Voltammetric Method. MICROMACHINES 2024; 15:1047. [PMID: 39203698 PMCID: PMC11356631 DOI: 10.3390/mi15081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024]
Abstract
L-tryptophan is an amino acid that significantly impacts metabolic activity in both humans and herbivorous animals. It is also known as a precursor for melatonin and serotonin, and its levels must be regulated in the human body. Therefore, there is a need to develop a cost-effective, simple, sensitive, and selective method for detecting L-tryptophan. Herein, we report the fabrication of an L-tryptophan sensor using a nickel-doped tungsten oxide ceramic-modified electrode. The Ni-WO3 was synthesized using simple strategies and characterized by various advanced techniques such as powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron X-ray spectroscopy. Furthermore, a glassy carbon electrode was modified with the synthesized Ni-WO3 and explored as the L-tryptophan (L-TRP) sensor. Cyclic voltammetry and differential pulse voltammetry were used to investigate the sensing ability of the modified electrode (Ni-WO3/GC). The Ni-WO3/GC exhibited an excellent limit of detection of 0.4 µM with a good dynamic linear range. The Ni-WO3/GC also demonstrated excellent selectivity in the presence of various electroactive molecules. The Ni-WO3/GC also showed decent reproducibility, repeatability, stability, and storage stability. This work proposes the fabrication of novel Ni-WO3/GC for the sensing of L-tryptophan. So far, no report is available on the use of Ni-WO3/GC for the sensing of L-TRP. This is the first report on the use of Ni-WO3/GC for the sensing of L-TRP sensing applications.
Collapse
Affiliation(s)
- Mohd Quasim Khan
- Department of Chemistry, M.M.D.C, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, U.P., India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Sunon P, Ngokpho B, Kaewket K, Wannapaiboon S, Ngamchuea K. Copper(II) phthalocyanine as an electrocatalytic electrode for cathodic detection of urinary tryptophan. Analyst 2024; 149:3041-3051. [PMID: 38625079 DOI: 10.1039/d4an00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, we introduce a novel method for tryptophan detection via a reduction reaction facilitated by its interaction with a copper(II) phthalocyanine (CuPc) electrocatalytic electrode. This method addresses challenges associated with the susceptibility of the oxidation response to interference from various species when measuring tryptophan in bodily fluids. The reduction currents exhibit a linear increase with tryptophan concentrations in two ranges: 0.0013-0.10 mM and 0.10-1.20 mM, with the sensitivities of 14.7 ± 0.5 μA mM-1 and 3.5 ± 0.1 μA mM-1, respectively. The limit of detection (LOD, 3SB/m) is determined to be 0.39 μM. The sensor exhibits excellent reproducibility, with the relative standard deviation of <5%. Application of the sensor to authentic urine samples yields a % recovery of 101 ± 4%.
Collapse
Affiliation(s)
- Pachanuporn Sunon
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
- Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Busarakham Ngokpho
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| | - Keerakit Kaewket
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
4
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
5
|
Selvam S, Park Y, Yim J. Design and Testing of Autonomous Chargeable and Wearable Sweat/Ionic Liquid-Based Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201890. [PMID: 35810477 PMCID: PMC9443445 DOI: 10.1002/advs.202201890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Indexed: 06/03/2023]
Abstract
This work demonstrates ionic liquid electrolyte-inscribed sweat-based dual electrolyte functioning supercapacitors capable of self-charging through sweat electrolyte function under a non-enzymatic route. The supercapacitor electrodes are fabricated from TREN (tris(2-aminoethyl)amine), poly-3,4-ethylenedioxythiophene, and a graphene oxide mixture with copper-mediated chelate, and this polymer-GO-metal chelate film can produce excellent energy harvest/storage performance from a sweat and ionic liquid integrated electrolyte system. The fabricated device is specifically designed to reduce deterioration using a typical planar structure. In the presence of sweat with ionic liquid, the dual electrolyte mode supercapacitor exhibits a maximum areal capacitance of 3600 mF cm-2 , and the energy density is 450 mWhcm-2 , which is more than 100 times greater than that from previously reported supercapacitors. The supercapacitors were fabricated/attached directly to textile fabrics as well as ITO-PET (Indium tin oxide (ITO)-polyethylene terephthalate (PET) film to study their performance on the human body during exercise. The self-charging performance with respect to sweat wetting time for the sweat@ionic liquid dual electrolyte showed that the supercapacitor performed well on both fabric and film. These devices exhibited good response for pH effect and biocompatibility, and as such present a promising multi-functional energy system as a stable power source for next-generation wearable smart electronics.
Collapse
Affiliation(s)
- Samayanan Selvam
- Division of Advanced Materials EngineeringKongju National UniversityBudaedong 275, Seobuk‐guCheonan‐siChungnam31080South Korea
| | - Young‐Kwon Park
- School of Environmental EngineeringUniversity of SeoulSeoul02504Korea
| | - Jin‐Heong Yim
- Division of Advanced Materials EngineeringKongju National UniversityBudaedong 275, Seobuk‐guCheonan‐siChungnam31080South Korea
| |
Collapse
|
6
|
Revisiting Some Recently Developed Conducting Polymer@Metal Oxide Nanostructures for Electrochemical Sensing of Vital Biomolecules: A Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00209-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Amruth K, Abhirami K, Sankar S, Ramesan M. Synthesis, characterization, dielectric properties and gas sensing application of polythiophene/chitosan nanocomposites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Dinu A, Apetrei C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int J Mol Sci 2022; 23:1218. [PMID: 35163145 PMCID: PMC8835779 DOI: 10.3390/ijms23031218] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the studies on developing sensors and biosensors-with an obvious interdisciplinary character-have drawn the attention of many researchers specializing in various fundamental, but also complex domains such as chemistry, biochemistry, physics, biophysics, biology, bio-pharma-medicine, and bioengineering. Along these lines, the present paper is structured into three parts, and is aimed at synthesizing the most relevant studies on the construction and functioning of versatile devices, of electrochemical sensors and biosensors, respectively. The first part presents examples of the most representative scientific research focusing on the role and the importance of the phenylalanine, tyrosine, and tryptophan amino acids, selected depending on their chemical structure and their impact on the central nervous system. The second part is dedicated to presenting and exemplifying conductor polymers and molecularly imprinted polymers used as sensitive materials in achieving electrochemical sensors and biosensors. The last part of the review analyzes the sensors and biosensors developed so far to detect amino acids with the aid of conductor polymers and molecularly imprinted polymers from the point of view of the performances obtained, with emphasis on the detection methods, on the electrochemical reactions that take place upon detection, and on the electroanalytical performances. The present study was carried out with a view to highlighting, for the benefit of specialists in medicine and pharmacy, the possibility of achieving and purchasing efficient devices that might be used in the quality control of medicines, as well as in studying and monitoring diseases associated with these amino acids.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galati, RO-800008 Galati, Romania;
| |
Collapse
|
9
|
AL-Refai HH, Ganash AA, Hussein MA. Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Khan ZA, Hong PJS, Lee CH, Hong Y. Recent Advances in Electrochemical and Optical Sensors for Detecting Tryptophan and Melatonin. Int J Nanomedicine 2021; 16:6861-6888. [PMID: 34675512 PMCID: PMC8521600 DOI: 10.2147/ijn.s325099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophan and melatonin are pleiotropic molecules, each capable of influencing several cellular, biochemical, and physiological responses. Therefore, sensitive detection of tryptophan and melatonin in pharmaceutical and human samples is crucial for human well-being. Mass spectrometry, high-performance liquid chromatography, and capillary electrophoresis are common methods for both tryptophan and melatonin analysis; however, these methods require copious amounts of time, money, and manpower. Novel electrochemical and optical detection tools have been subjects of intensive research due to their ability to offer a better signal-to-noise ratio, high specificity, ultra-sensitivity, and wide dynamic range. Recently, researchers have designed sensitive and selective electrochemical and optical platforms by using new surface modifications, microfabrication techniques, and the decoration of diverse nanomaterials with unique properties for the detection of tryptophan and melatonin. However, there is a scarcity of review articles addressing the recent developments in the electrochemical and optical detection of tryptophan and melatonin. Here, we provide a critical and objective review of high-sensitivity tryptophan and melatonin sensors that have been developed over the past six years (2015 onwards). We review the principles, performance, and limitations of these sensors. We also address critical aspects of sensitivity and selectivity, limit and range of detection, fabrication process and time, durability, and biocompatibility. Finally, we discuss challenges related to tryptophan and melatonin detection and present future outlooks.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
| | - Paul Jung-Soo Hong
- Department of Chemistry, Newton South High School, Newton, MA, 02459, USA
| | - Christina Hayoung Lee
- Department of Biology, College of Arts and Sciences, Vanderbilt University, Nashville, TN, 37212, USA
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeong-nam, 50834, Korea
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| |
Collapse
|
11
|
AL-Refai HH, Ganash AA, Hussein MA. Polythiophene-based MWCNTCOOH@RGO nanocomposites as a modified glassy carbon electrode for the electrochemical detection of Hg(II) ions. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01864-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|