1
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
2
|
Sampath V, Cho S, Lee BR, Kim NH, Kim IH. Enhancement of protective vaccine-induced antibody titer to swine diseases and growth performance by Amino-Zn, yucca extract, and β-mannanase feed additive in wean-finishing pigs. Front Vet Sci 2023; 10:1095877. [PMID: 37662989 PMCID: PMC10470888 DOI: 10.3389/fvets.2023.1095877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The primary purpose of this research is to determine the effect of Amino-Zn (AZn), Yucca schidigera extract (YE), and β-mannanase enzyme supplementation on growth performance, nutrient digestibility, fecal gas emission, and immune response in pigs. A total of 180 crossbred pigs (6.57 ± 1 kg) were randomly assigned to one of three dietary treatments: CON-corn soybean meal (basal diet); TRT1-CON +1,000 ppm AZn + 0.07% yucca extract (YE) + 0.05% β-mannanase; and TRT2-CON +2,000 ppm AZn + 0.07% YE+ 0.05% β-mannanase for 22 weeks. Each treatment had 12 replicates with 5 pigs per pen. Pigs fed a diet supplemented with AZn, YE, and β-mannanase linearly increased (p < 0.05) BW and average daily gain at weeks 6, 12, 17, and 18. In contrast, the gain-to-feed ratio showed a linear increase (p < 0.05) from weeks 6 to 17 and the overall trial period. Moreover, the inclusion of experimental diets linearly decreased (p > 0.05) noxious gas emissions such as ammonia, hydrogen sulfide, acetic acid, carbon dioxide, and methyl mercaptans. The dietary inclusion of AZn, YE, and β-mannanase significantly increased the serological immune responses to Mycoplasma hyopneumoniae (MH) and foot-and-mouth disease virus (FMDV-O type) at the end of week 6 and porcine circovirus-2 (PCV-2) at week 19. Based on this result, we infer that the combination of AZn, YE, and β-mannanase supplement would serve as a novel in-feed additive to enhance growth performance and act as a boosting agent and immune stimulatory to increase the efficacy of swine vaccinations.
Collapse
Affiliation(s)
- Vetriselvi Sampath
- Department of Animal Resources, Dankook University, Cheonan, Republic of Korea
| | - Sungbo Cho
- Department of Animal Resources, Dankook University, Cheonan, Republic of Korea
| | | | - Nam-Hun Kim
- ZinexBio Corporation, Asan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resources, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Effects of Boswellia species on viral infections with particular attention to SARS-CoV-2. Inflammopharmacology 2022; 30:1541-1553. [PMID: 35882701 PMCID: PMC9321285 DOI: 10.1007/s10787-022-01037-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The emergence of pathogenic viruses is a worldwide frequent cause of diseases and, therefore, the design of treatments for viral infections stands as a significant research topic. Despite many efforts, the production of vaccines is faced with many obstacles and the high rate of viral resistance caused a severe reduction in the efficacy of antiviral drugs. However, the attempt of developing novel natural drugs, as well as the exertion of medicinal plants, may be an applicable solution for the treatment of viral diseases. Boswellia species exhibited a wide range of pharmacological activities in various conditions such as bronchial asthma, rheumatism, and Crohn’s illness. Additionally, pharmacological studies reported the observance of practical antiviral activities from different parts of this substance, especially the oleo-gum-resin. Therefore, this work provided an overview on the antiviral properties of Boswellia species and their potential therapeutic effects in the field of COVID-19 pandemic.
Collapse
|
4
|
Gomaa AA, Mohamed HS, Abd-Ellatief RB, Gomaa MA. Boswellic acids/Boswellia serrata extract as a potential COVID-19 therapeutic agent in the elderly. Inflammopharmacology 2021; 29:1033-1048. [PMID: 34224069 PMCID: PMC8256410 DOI: 10.1007/s10787-021-00841-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
The most severe cases of COVID-19, and the highest rates of death, are among the elderly. There is an urgent need to search for an agent to treat the disease and control its progression. Boswellia serrata is traditionally used to treat chronic inflammatory diseases of the lung. This review aims to highlight currently published research that has shown evidence of potential therapeutic effects of boswellic acids (BA) and B. serrata extract against COVID-19 and associated conditions. We reviewed the published information up to March 2021. Studies were collected through a search of online electronic databases (academic libraries such as PubMed, Scopus, Web of Science, and Egyptian Knowledge Bank). Several recent studies reported that BAs and B. serrata extract are safe agents and have multiple beneficial activities in treating similar symptoms experienced by patients with COVID-19. Because of the low oral bioavailability and improvement of buccal/oral cavity hygiene, traditional use by chewing B. serrata gum may be more beneficial than oral use. It is the cheapest option for a lot of poorer people. The promising effect of B. serrata and BA can be attributed to its antioxidant, anti-inflammatory, immunomodulatory, cardioprotective, anti-platelet aggregation, antibacterial, antifungal, and broad antiviral activity. B. serrata and BA act by multiple mechanisms. The most common mechanism may be through direct interaction with IκB kinases and inhibiting nuclear factor-κB-regulated gene expression. However, the most recent mechanism proposed that BA not only inhibited the formation of classical 5-lipoxygenase products but also produced anti-inflammatory LOX-isoform-selective modulators. In conclusion a small to moderate dose B. serrata extract may be useful in the enhancing adaptive immune response in mild to moderate symptoms of COVID-19. However, large doses of BA may be beneficial in suppressing uncontrolled activation of the innate immune response. More clinical results are required to determine with certainty whether there is sufficient evidence of the benefits against COVID-19.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hamdy S Mohamed
- Department of Internal Medicine, Faculty of Medicine, Sohage University, Sohâg, Egypt
| | | | - Mohamed A Gomaa
- Department of Plastic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Anderluzzi G, Lou G, Su Y, Perrie Y. Scalable Manufacturing Processes for Solid Lipid Nanoparticles. Pharm Nanotechnol 2020; 7:444-459. [PMID: 31840610 DOI: 10.2174/2211738507666190925112942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Solid lipid nanoparticles offer a range of advantages as delivery systems but they are limited by effective manufacturing processes. OBJECTIVE In this study, we outline a high-throughput and scalable manufacturing process for solid lipid nanoparticles. METHODS The solid lipid nanoparticles were formulated from a combination of tristearin and 1,2-Distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjugate-2000 and manufactured using the M-110P Microfluidizer processor (Microfluidics Inc, Westwood, Massachusetts, US). RESULTS The manufacturing process was optimized in terms of the number of process cycles (1 to 5) and operating pressure (20,000 to 30,000 psi). The solid lipid nanoparticles were purified using tangential flow filtration and they were characterized in terms of their size, PDI, Z-potential and protein loading. At-line particle size monitoring was also incorporated within the process. Our results demonstrate that solid lipid nanoparticles can be effectively manufactured using this process at pressures of 20,000 psi with as little as 2 process passes, with purification and removal of non-entrapped protein achieved after 12 diafiltration cycles. Furthermore, the size could be effectively monitored at-line to allow rapid process control monitoring and product validation. CONCLUSION Using this method, protein-loaded solid lipid nanoparticles containing a low (1%) and high (16%) Pegylation were manufactured, purified and monitored for particle size using an at-line system demonstrating a scalable process for the manufacture of these nanoparticles.
Collapse
Affiliation(s)
- Giulia Anderluzzi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Gustavo Lou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Yang Su
- Microfluidics International Corporation, Westwood, Massachusetts, MA 022090, United States
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| |
Collapse
|
6
|
Upadhaya SD, Kim YM, Shi H, Le Cour Grandmaison J, Blanchard A, Kim IH. Standardized Plant Extract Alleviates the Negative Effects of FMD Vaccination on Animal Performance. Animals (Basel) 2020; 10:ani10030455. [PMID: 32182817 PMCID: PMC7143122 DOI: 10.3390/ani10030455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Foot and Mouth Disease (FMD) is among the viral diseases causing poor growth performance and reduced immune status, leading to heavy economic losses in livestock. The vaccination of animals against FMD may lead to vaccination stress, thereby reducing the growth performance of animals. The growth promoting effects of a plant extract (consisting of capsicum and turmeric oleoresins) against FMD vaccinated growing pigs are evaluated in the present study. It was determined that the supplementation of the plant extract significantly improved performance and increased the antibody titer against FMD antigens. However, the immune parameters measured at days 10, 15, 20 and 25 post-FMD vaccination remained unaffected. Abstract The present study was conducted to assess the efficacy of a plant extract (PE) on growth performance and immune status in foot and mouth disease (FMD)-vaccinated growing pigs. A total of 120 crossed ((Landrace × Yorkshire) × Duroc) growing pigs with an average initial body weight (BW) of 24.66 ± 2.34 kg and an average age of 70 days were randomized into three groups (10 pens; 4 pigs per pen per treatment) as follows: a nonvaccinated negative control group (NV), a FMD vaccinated group (OV), and a third group received a 0.0125% PE supplement after vaccination (PV), in a 6-week trial. The PV group receiving PE supplementation increased (p < 0.05) the BW compared with the OV group, and average daily gain (ADG) during days 1–14, overall and gain-to-feed ratio (G: F) in days 1–14, and dry matter (DM) digestibility at week 6 were higher (p < 0.05) in the PV compared with the OV group. A significant increase (p < 0.05) in haptoglobin concentration was observed in the OV group compared with the NV group at 25 days postvaccination. The inhibition percentage of antibodies against FMD in the sera reached above 50% in the PV group 5 days earlier than in the OV group. The findings suggest that the inclusion of PE in the diet promoted the performance of vaccinated growing pigs.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Choongnam 330-714, Korea; (S.D.U.); (Y.M.K.); (H.S.)
| | - Yong Min Kim
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Choongnam 330-714, Korea; (S.D.U.); (Y.M.K.); (H.S.)
| | - Huan Shi
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Choongnam 330-714, Korea; (S.D.U.); (Y.M.K.); (H.S.)
| | | | - Alexandra Blanchard
- Pancosma, A-One Business Center, La piece 3, CH-1180 Rolle, Switzerland; (J.L.C.G.); (A.B.)
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, No. 29 Anseodong, Cheonan, Choongnam 330-714, Korea; (S.D.U.); (Y.M.K.); (H.S.)
- Correspondence: ; Tel.: +82-41-550-3652; Fax: +82-41-565-2949
| |
Collapse
|
7
|
Isolation, structure elucidation, and immunostimulatory activity of polysaccharide fractions from Boswellia carterii frankincense resin. Int J Biol Macromol 2019; 133:76-85. [PMID: 30981779 DOI: 10.1016/j.ijbiomac.2019.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022]
Abstract
Frankincense has a long history in religious, cultural, and medicinal use. In this study polysaccharides were extracted from frankincense from Boswellia carterii. The polysaccharides were purified by anion exchange chromatography on a DEAE-Sepharose Fast Flow 16/10 FPLC column. Six fractions were obtained and the three most active immunomodulatory fractions were further purified by size exclusion chromatography on a Superdex-200 column. The composition showed the monosaccharides present were predominantly galactose, arabinose, and glucuronic acid along with small amounts of rhamnose and glucose. The monosaccharide composition and glycosyl linkage analysis revealed the polysaccharides belong to the type II arabinogalactans. Fourier-transform infrared spectroscopy and bicinchoninic acid assay showed that the amount of protein in the samples was <1 wt%. One-dimensional 1H NMR were consistent with high molecular weight compounds. The monosaccharides were primarily in the β conformation. The three fractions exhibited an immunostimulatory effect on RAW 264.7 murine macrophage cells. The most active immunostimulatory fraction FA2, stimulated a range of pro-inflammatory mediators including iNOS, NO, TNF-α, and IL-6 in RAW 264.7 cells. The fractions were effective in proliferating primary murine splenocytes. The results indicate that the polysaccharides isolated from frankincense have the potential to be used as an immunological stimulant or nutraceutical.
Collapse
|
8
|
Bertocchi M, Isani G, Medici F, Andreani G, Tubon Usca I, Roncada P, Forni M, Bernardini C. Anti-Inflammatory Activity of Boswellia serrata Extracts: An In Vitro Study on Porcine Aortic Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2504305. [PMID: 30046370 PMCID: PMC6036794 DOI: 10.1155/2018/2504305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
Abstract
This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.
Collapse
Affiliation(s)
- Martina Bertocchi
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Gloria Isani
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Federica Medici
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Giulia Andreani
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Irvin Tubon Usca
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Ozzano Emilia, Bologna 40064, Italy
| |
Collapse
|
9
|
Elahi A, Jairajpuri DS, Khan F. Characterization of Calcined Jade and its immunomodulatory effect on macrophage isolated from Swiss albino mice. J Tradit Complement Med 2017; 7:487-493. [PMID: 29034197 PMCID: PMC5634732 DOI: 10.1016/j.jtcme.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Asif Elahi
- Department of Biochemistry, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Deeba S. Jairajpuri
- Department of Medical Biochemistry, Arabian Gulf University, Manama 26671, Bahrain
| | - Farah Khan
- Department of Biochemistry, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
- Corresponding author. Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India.Department of BiochemistryFaculty of ScienceJamia HamdardHamdard NagarNew Delhi110 062India
| |
Collapse
|
10
|
Iram F, Khan SA, Husain A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Ammon HPT. Boswellic Acids and Their Role in Chronic Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:291-327. [PMID: 27671822 DOI: 10.1007/978-3-319-41334-1_13] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Boswellic acids, which are pentacyclic triterpenes belong to the active pharmacological compounds of the oleogum resin of different Boswellia species. In the resin, more than 12 different boswellic acids have been identified but only KBA and AKBA received significant pharmacological interest. Biological Activity: In an extract of the resin of Boswellia species multiple factors are responsible for the final outcome of a therapeutic effect, be it synergistic or antagonistic. Moreover, the anti-inflammatory actions of BAs are caused by different mechanisms of action. They include inhibition of leukotriene synthesis and to a less extend prostaglandin synthesis. Furthermore inhibition of the complement system at the level of conversion of C3 into C3a and C3b. A major target of BAs is the immune system. Here, BEs as well as BAs including KBA and AKBA, have been shown to decrease production of proinflammatory cytokines including IL-1, IL-2, IL-6, IFN-γ and TNF-α which finally are directed to destroy tissues such as cartilage, insulin producing cells, bronchial, intestinal and other tissues. NFĸB is considered to be the target of AKBA. The complex actions of BEs and BAs in inflamed areas may be completed by some effects that are localized behind the inflammatory process as such tissue destruction. In this case, in vitro- and animal studies have shown that BAs and BEs suppress proteolytic activity of cathepsin G, human leucocyte elastase, formation of oxygen radicals and lysosomal enzymes. PHARMACOKINETICS Whereas KBA is absorbed reaching blood levels being close to in vitro IC50, AKBA which is more active in in vitro studies than KBA, but undergoes much less absorption than KBA. However, absorption of both is increased more than twice when taken together with a high-fat meal.Clinical Studies There are a variety of chronic inflammatory diseases which respond to treatment with extracts from the resin of Boswellia species. Though, the number of cases is small in related clinical studies, their results are convincing and supported by the preclinical data. These studies include rheumatoid arthritis, osteoarthritis, chronic colitis, ulcerative colitis, collagenous colitis, Crohn's disease and bronchial asthma. It can not be expected that there is cure from these diseases but at least improvement of symptoms in about 60-70 % of the cases. Side Effects The number and severity of side effects is extremely low. The most reported complaints are gastrointestinal symptoms. Allergic reactions are rare. And most authors report, that treatment with BEs is well tolerated and the registered side effects in BE- and placebo groups are similar.
Collapse
Affiliation(s)
- H P T Ammon
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany. .,, Im Kleeacker 30, 72072, Tuebingen, Germany.
| |
Collapse
|
12
|
The Effects of Frankincense on Oral Squamous Cell Carcinoma Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.6416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
|
14
|
Development of novel plant-based adjuvant formulation against rubella and hepatitis B vaccine antigen. HERBA POLONICA 2016. [DOI: 10.1515/hepo-2016-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Introduction: Numerous metabolites present in the aqueous extract from plants are responsible for inducing adjuvant activity against rubella and hepatitis B vaccine antigen (HBsAg). One of the medicinal plants, Adhatoda vasica has been pointed out with great potential of vaccine adjuvant property.
Objective: The objective of our study is to evaluate the adjuvant potential of aqueous leaves extract of Adhatoda vasica against rubella and hepatitis B vaccine antigen (HBsAg).
Methods: For these studies, our group evaluated the antibody (IgG) titre of HBsAg and rubella vaccine antigen using variable doses (0.625–5 mg) of aqueous leaves extract of Adhatoda vasica and also determined the lymphocyte (splenocyte) proliferation assay (0.625–5 mg; 50 μl) in mice model studies ex vivo (i.e. immunized with HBsAg subcutaneously).
Results: The results showed that aqueous leaves extract showed anti-HBsAg and anti-rubella titre and also enhanced the lymphocyte proliferation assay at higher doses (5 mg) as compared to control.
Conclusion: Aqueous leaves extract of Adhatoda vasica showed adjuvant activity against HBsAg and rubella vaccine antigen.
Collapse
|
15
|
Yang F, Xiao C, Qu J, Wang G. Structural characterization of low molecular weight polysaccharide from Astragalus membranaceus and its immunologic enhancement in recombinant protein vaccine against systemic candidiasis. Carbohydr Polym 2016; 145:48-55. [PMID: 27106150 DOI: 10.1016/j.carbpol.2016.03.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Structure and immunologic enhancement of low molecular weight polysaccharide (LMW-ASP) isolated from the root of Astragalus membranaceus (Fisch) Bge. Were detected in recombinant protein vaccine. Structure analysis of LMW-ASP revealed that LMW-ASP (Mw=5.6kDa) was an acid heteropolysaccharide, which consisted of Glc, Gal, Ara, Xyl and GalA in ratio of 10.0:1.3:1.7:1.0:0.9. Recombinant protein (rP-HSP90C) contained epitope C (LKVIRK) from heat shock protein 90 (HSP90) of Candida albicans was used as a vaccine. The results indicated that LMW-ASP significantly promoted specific antibody titers IgG, IgG1, IgG2b, and IL-2, IL-4, IL-10, IL-12 in sera of mice immunized with rP-HSP90C (p<0.05). It was also found LMW-ASP improved DTH response in HSP90C-injceted mice. More importantly, the mice immunized with rP-HSP90C/LMW-ASP had fewer CFU (colony forming unites) in the kidneys compared to the mice immunized with rP-HSP90C (p<0.05). Therefore, LMW-ASP could be exploited into the novel adjuvant to enhance the efficacy of recombinant protein vaccine.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People's Republic of China
| | - Chunyu Xiao
- School of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People's Republic of China
| | - Jing Qu
- School of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People's Republic of China
| | - Guiyun Wang
- School of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People's Republic of China.
| |
Collapse
|
16
|
Elahi A, Sharma Y, Bashir S, Khan F. Balanced TH1 and TH2 immunopotentiating effects of silicates partly containing nanoparticles present in calcined serpentine. J Immunotoxicol 2015; 13:335-48. [PMID: 26484633 DOI: 10.3109/1547691x.2015.1094152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcined Serpentine (CS) is used in various formulations of alternative systems of medicine as a tonic to vital organs and as an anti-inflammatory agent. The process of calcination or incineration is believed to render non-toxic, gently absorbable, adaptable and digestible properties to the mineral compounds. The present study characterized CS and also evaluated its immunostimulatory potential. CS was characterized by using transmission electron microscopy (TEM), X-ray powder diffraction, atomic absorption spectroscopy and CHNS analysis. The characterized CS was further evaluated for its immunomodulatory potential in Swiss mice. X-Ray diffraction analysis revealed that the CS contained silicates of magnesium, calcium and iron as major minerals. Elemental composition and heavy metal analyses showed a presence of various inorganic elements/heavy metals, albeit at levels well below daily permissive intake values. TEM analysis of the test CS revealed a presence of nano particles with an average size of 10-20 nm (≈ 26% of total material). Oral administration of CS to mice at 50, 75, 100 or 200 μg/kg body weight for 10 days led to enhanced levels of total IgG, IgG1, IgG2a and IgG2b in ovalbumin-immunized mice as well as ex vivo lymphocyte proliferation and levels of TH1 (IL-2, IFNγ) and TH2 (IL-4, IL-10) cytokines produced by their cultured splenocytes. Similarly, CS treatment resulted in enhanced delayed-type hypersensitivity responses in GRBC-primed hosts. CS also activated host peritoneal macrophages, as indicated by increases in phagocytic activity and in TLR-2, CD80 and CD86 expression. The CS did not affect liver, kidney and spleen histology. Taken together, the results indicated that absorbed CS was stimulatory of host cell-mediated immune responses. It is hypothesized for now that the immunomodulatory effect of CS may have been due, in part, to a presence of nanoparticles on the CS; further study is required to validate this viewpoint.
Collapse
Affiliation(s)
- Asif Elahi
- a Department of Biochemistry , Jamia Hamdard (Hamdard University) , Hamdard Nagar , New Delhi , India
| | - Yadhu Sharma
- a Department of Biochemistry , Jamia Hamdard (Hamdard University) , Hamdard Nagar , New Delhi , India
| | - Samina Bashir
- a Department of Biochemistry , Jamia Hamdard (Hamdard University) , Hamdard Nagar , New Delhi , India
| | - Farah Khan
- a Department of Biochemistry , Jamia Hamdard (Hamdard University) , Hamdard Nagar , New Delhi , India
| |
Collapse
|
17
|
Pan YN, Liang XX, Niu LY, Wang YN, Tong X, Hua HM, Zheng J, Meng DY, Liu XQ. Comparative studies of pharmacokinetics and anticoagulatory effect in rats after oral administration of Frankincense and its processed products. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:118-123. [PMID: 26117531 DOI: 10.1016/j.jep.2015.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Frankincense (FRA), Ruxiang, is the resin of Boswellia carterii Birdw and Boswellia bhaw-dajiana Birdw which has been used for centuries as formulas to improve the circulation and to relieve pain against carbuncles. Stir-fried Frankincense (SFF) and vinegar processed Frankincense (VPF) are two major processed Frankincense, and the processing procedures reportedly enhance the curative efficacy or reduce the side effects of FRA. This paper describes the comparisons in plasma pharmacokinetic behaviors of 11-keto-β-boswellic acid (KBA) and 3-acetyl-11-keto-β-boswellic acid (AKBA) in FRA and its processed products, and their effects on coagulation factors and blood clotting tetrachoric, using an acute cold blood-stasis animal model after oral administration of FRA, SFF, and VPF. MATERIALS AND METHODS For pharmacokinetic study, Sprague-Dawley (SD) rats were randomly divided into three groups, including group FRA, group SFF and group VPF. And the plasma samples were analyzed by HPLC. For study of anticoagulatory effect, SD rats were randomly divided into six groups, including control, acute cold blood-stasis model, Fu-fang-dan-shen tablet- (0.75g/kg), FRA-, SFF-, and VPF-treated (2.7g/kg) groups, respectively. The serum contents of thrombin-antithrombin complex (TAT), D-dimer (D-D), and prostacyclin (PGI2) of each group were measured by ELISA. The values of prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time (APTT) and fibrinogen (FIB) were also assessed by hematology analyzer. RESULTS Significantly increased levels of Cmax, AUC, T1/2, and MRT were found in rats treated with the processed products. In addition, decreased levels of D-D and TAT and increased contents of PGI2 were observed in rats given FRA and its processed products, compared with that of the model group. Moreover, VPF improved anticoagulation more than SFF in the animals. CONCLUSIONS The observed improvement of anticoagulation by processed FRA may result from the increased absorption and bioavailability of triterpenoids.
Collapse
Affiliation(s)
- Ying-Ni Pan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China
| | - Xiao-Xu Liang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China
| | - Li-Ying Niu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China
| | - Yan-Nian Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China
| | - Xin Tong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China
| | - Hui-Ming Hua
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China
| | - Jiang Zheng
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China; Center for Developmental Therapeutics, Seattle Children's Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98102, USA
| | - Dong-Ya Meng
- Clinical Laboratory, Shenyang Military Region General Hospital, No. 83, Wenhua Road, Shenyang, China
| | - Xiao-Qiu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, China.
| |
Collapse
|
18
|
Jain SK, Singh S, Khajuria A, Guru SK, Joshi P, Meena S, Nadkarni JR, Singh A, Bharate SS, Bhushan S, Bharate SB, Vishwakarma RA. Pyrano-isochromanones as IL-6 inhibitors: synthesis, in vitro and in vivo antiarthritic activity. J Med Chem 2014; 57:7085-97. [PMID: 25111439 DOI: 10.1021/jm500901e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bergenin (1), a unique fused C-glycoside isolated from Bergenia species, possesses interesting anti-inflammatory and antipain activities. To study SAR of this scaffold, first-generation derivatives were synthesized and evaluated for inhibition of lymphocyte proliferation and production of pro-inflammatory cytokines. The C-7 substituted derivatives showed inhibition of IL-6 as well as TNF-α production. Bergenin and its most potent IL-6 inhibitor derivatives 4e and 4f were then investigated in a panel of in vitro and in vivo inflammation/arthritis models. These compounds significantly decreased the expression of NF-kB and IKK-β in THP-1 cells. In in vivo study in BALB/c mice, a dose-dependent inhibition of SRBC-induced cytokines, reduction in humoral/cell-mediated immunity, and antibody titer was observed. The CIA study in DBA/1J mice indicated that compounds led to reduction in swelling of paws, cytokine levels, and anticollagen IgG1/IgG2a levels. The significant in vivo immunosuppressive efficacy of pyrano-isochromanones demonstrates the promise of this scaffold for development of next-generation antiarthritic drugs.
Collapse
Affiliation(s)
- Shreyans K Jain
- Natural Products Chemistry Division, Indian Institute of Integrative Medicine (CSIR) , Canal Road, Jammu-180001, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elahi A, Singh M, Ali S, Khan F. Antigen specific immune enhancement of innate and acquired immunity by pearl in ashed form. Int Immunopharmacol 2014; 21:82-93. [DOI: 10.1016/j.intimp.2014.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/24/2014] [Accepted: 04/13/2014] [Indexed: 11/26/2022]
|
20
|
Schaffer M, Schaffer PM, Zidan J, Bar Sela G. Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 2011; 14:588-97. [PMID: 21986478 DOI: 10.1097/mco.0b013e32834bfe94] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Several nutritional compounds are the focus of public attention because of their potential beneficial health effects. Turmeric is a spice that comes from the root Curcuma longa. Extensive research over the past half century and especially in recent years has revealed important functions of curcumin and a timely review of clinical state-of-the-art using curcumin. RECENT FINDINGS In-vitro and in-vivo research has shown various activities, such as anti-inflammatory, antiviral, antifungal, cytokines release, antioxidant, immunomodulatory, enhancing of the apoptotic process, and antiangiogenic properties. Curcumin also have been shown to be a mediator of chemo-resistance and radio-resistance. SUMMARY Various in-vitro and in-vivo and scarce number of clinical studies on curcumin were identified. The various effects and properties of curcumin are summarized in this review, including preclinical and especially clinical studies. This review concentrates on recent knowledge and research with curcumin clinical applications, and clinical studies, focusing on studies published between 2008 and 2011 demonstrating the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Moshe Schaffer
- Institute of Oncology, Ziv Medical Center, Faculty of Medicine, Zefat, Israel.
| | | | | | | |
Collapse
|