1
|
Walters AA, Ali A, Wang JTW, Al-Jamal KT. Anti-tumor antibody isotype response can be modified with locally administered immunoadjuvants. Drug Deliv Transl Res 2023; 13:2032-2040. [PMID: 36417163 PMCID: PMC10238356 DOI: 10.1007/s13346-022-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
In situ vaccination with immunostimulatory compounds is a demonstrated means to treat tumors preclinically. While these therapeutic effects have been attributed to the actions of T cells or innate immune activation, characterisation of the humoral immune response is seldom performed. This study aims to identify whether the injection of immunoadjuvants, Addavax (Adda) and cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG), intratumorally can influence the antibody response. Specifically, whether intratumoral injection of immunoadjuvants can alter the tumor-specific antibody target, titre and isotype. Following this, the study aimed to investigate whether serum obtained from in situ vaccinated mice could neutralise circulating tumor cells. Serum was obtained from mice bearing B16F10-OVA-Luc-GFP tumors treated with immunoadjuvants. Antibody targets' titre and isotype were assessed by indirect ELISA. The ability of serum to neutralise circulating cancer cells was evaluated in a B16F10 pseudo-metastatic model. It was observed that tumor-bearing mice mount a specific anti-tumor antibody response. Antibody titre and target were unaffected by in situ vaccination with immunoadjuvants; however, a higher amount of IgG2c was produced in mice receiving Adda plus CpG. Serum from in situ vaccinated mice was unable to neutralise circulating B16F10 cells. Thus, this study has demonstrated that anti-tumor antibody isotype may be modified using in situ vaccination; however, this alone is not sufficient to neutralise circulating cancer cells.
Collapse
Affiliation(s)
- Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Abrar Ali
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
2
|
Yao Y, Li J, Qu K, Wang Y, Wang Z, Lu W, Yu Y, Wang L. Immunotherapy for lung cancer combining the oligodeoxynucleotides of TLR9 agonist and TGF-β2 inhibitor. Cancer Immunol Immunother 2022; 72:1103-1120. [PMID: 36326892 DOI: 10.1007/s00262-022-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Tumor immunotherapies have shown promising antitumor effects, especially immune checkpoint inhibitors (ICIs). However, only 12.46% of the patients benefit from the ICIs, the rest of them shows limited effects on ICIs or even accelerates the tumor progression due to the lack of the immune cell infiltration and activation in the tumor microenvironment (TME). In this study, we administrated a combination of Toll-like receptor 9 (TLR9) agonist CpG ODN and Transforming growth factor-β2 (TGF-β2) antisense oligodeoxynucleotide TIO3 to mice intraperitoneally once every other day for a total of four injections, and the first injection was 24 h after LLC cell inoculation. We found that the combination induced the formation of TME toward the enrichment and activation of CD8+ T cells and NK cells, accompanied with a marked decrease of TGF-β2. The combined therapy also effectively inhibited the tumor growth and prolonged the survival of the mice, even protected the tumor-free mice from the tumor re-challenge. Both of CpG ODN and TIO3 are indispensable, because replacing CpG ODN with TLR9 inhibitor CCT ODN showed no antitumor effect, CpG ODN or TIO3 alone did not lead to ideal antitumor results. This effect was possibly initiated by the activation of dendritic cells at the tumor site. This systemic antitumor immunotherapy with a combination of the two oligonucleotides (an immune stimulant and an immunosuppressive cytokine inhibitor) before the tumor formation may provide a novel strategy for clinical prevention of the postoperative tumor recurrence.
Collapse
Affiliation(s)
- Yunpeng Yao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jianhua Li
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yangeng Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Zhe Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenting Lu
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Liying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
4
|
Jie J, Liu G, Feng J, Huo D, Wu Y, Yuan H, Tai G, Ni W. MF59 Promoted the Combination of CpG ODN1826 and MUC1-MBP Vaccine-Induced Antitumor Activity Involved in the Enhancement of DC Maturation by Prolonging the Local Retention Time of Antigen and Down-Regulating of IL-6/STAT3. Int J Mol Sci 2022; 23:ijms231810887. [PMID: 36142800 PMCID: PMC9501507 DOI: 10.3390/ijms231810887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous study found that CpG oligodeoxynucleotides 1826 (CpG 1826), combined with mucin 1 (MUC1)-maltose-binding protein (MBP) (M-M), had certain antitumor activity. However, this combination is less than ideal for tumor suppression (tumors vary in size and vary widely among individuals), with a drawback being that CpG 1826 is unstable. To solve these problems, here, we evaluate MF59/CpG 1826 as a compound adjuvant with M-M vaccine on immune response, tumor suppression and survival. The results showed that MF59 could promote the CpG 1826/M-M vaccine-induced tumor growth inhibition and a Th1-prone cellular immune response, as well as reduce the individual differences of tumor growth and prolonged prophylactic and therapeutic mouse survival. Further research showed that MF59 promotes the maturation of DCs stimulated by CpG1826/M-M, resulting in Th1 polarization. The possible mechanism is speculated to be that MF59 could significantly prolong the retention time of CpG 1826, or the combination of CpG 1826 and M-M, as well as downregulate IL-6/STAT3 involved in MF59 combined CpG 1826-induced dendritic cell maturation. This study clarifies the utility of MF59/CpG 1826 as a vaccine compound adjuvant, laying the theoretical basis for the development of a novel M-M vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weihua Ni
- Correspondence: ; Tel.: +86-0431-8561-5197
| |
Collapse
|
5
|
Sakakibara M, Maeda Y, Nakamura K. Fetal loss due to Th1-skewed Th1/Th2 balance with increase (not decrease) of regulatory T cells in abortion-prone mouse model. J Toxicol Sci 2022; 47:327-336. [PMID: 35908933 DOI: 10.2131/jts.47.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We used an abortion-prone mouse model, generated by mating female CBA/J mice with male DBA/2JJcl mice, to examine the effects of changes in the Th1/Th2 cell ratio and the percentage of regulatory T (Treg) cells on the maintenance of pregnancy. We subcutaneously injected female CBA/J mice once each with 50 μg/mouse of Dermatophagoides farinae (Df) extract and the squalene-based adjuvant (SquA); 10 days later, these mice were mated with male DBA/2JJcl mice. Compared with injection of vehicle or adjuvant, the Df treatment decreased the Th1/Th2 cell ratio and concomitantly increased the percentage of Treg cells in the spleen. In addition, fetal death rates were decreased. We then explored a substance which shifted the Th1/Th2 balance toward Th1 side. We found that 50 μg/mouse of keyhole limpet hemocyanin (KLH) increased the splenic Th1/Th2 cell ratio of nonpregnant female CBA/J mice. We subcutaneously injected female CBA/J mice with KLH and SquA; 10 days later, these mice were mated with male DBA/2JJcl mice. Compared with injection of vehicle or adjuvant, treatment with KLH enhanced the Th1 bias during pregnancy and increased the fetal death rate. The percentage of Treg cells, however, was increased in these KLH-injected pregnant mice contrary to our presumption. All collected data showed strong positive correlation between the Th1/Th2 cell ratio and fetal death rate. The increase in Treg cells independent of effects on the fetal death rate suggests that Treg cells do not necessarily induce maternal tolerance to the fetus but may prevent excessive Th1/Th2 imbalance during pregnancy.
Collapse
Affiliation(s)
| | - Yosuke Maeda
- School of Veterinary Medicine, Kitasato University
| | | |
Collapse
|
6
|
Inglefield J, Catania J, Harris A, Hickey T, Ma Z, Minang J, Baranji K, Spangler T, Look J, Ruiz C, Lu H, Alleva D, Reece JJ, Lacy MJ. Use of protective antigen of Bacillus anthracis as a model recombinant antigen to evaluate toll-like receptors 2, 3, 4, 7 and 9 agonists in mice using established functional antibody assays, antigen-specific antibody assays and cellular assays. Vaccine 2022; 40:5544-5555. [PMID: 35773119 DOI: 10.1016/j.vaccine.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Toll-like receptor (TLR) agonists can act as immune stimulants alone or as part of alum or oil formulations. Humoral and cellular immune responses were utilized to assess quantitative and qualitative immune response enhancement by TLR agonists using recombinant protective antigen (rPA) of B. anthracis as a model antigen. To rPA, combined with aluminum hydroxide (Alhydrogel; Al(OH)3) or squalene (AddaVax™), was added one of 7 TLR agonists: TLR2 agonist Pam3CysSK4 (PamS), TLR3 agonist double stranded polyinosinic:polycytidylic acid (PolyIC), TLR4 agonists Monophosphoryl lipid A (MPLA) or glucopyranosyl lipid A (GLA), TLR7-8 agonists 3M-052 or Resiquimod (Resiq), or TLR9 agonist CPG 7909 (CPG). CD-1 or BALB/c mice received two intraperitoneal or intramuscular immunizations 14 days apart, followed by serum or spleen sampling 14 days later. All TLR agonists except PamS induced high levels of B. anthracis lethal toxin-neutralizing antibodies and immunoglobulin G (IgG) anti-PA. Some responses were >100-fold higher than those without a TLR agonist, and IP delivery (0.5 mL) induced higher TLR-mediated antibody response increases compared to IM delivery (0.05 mL). TLR7-8 and TLR9 agonists induced profound shifts of IgG anti-PA response to IgG2a or IgG2b. Compared to the 14-day immunization schedule, use of a shortened immunization schedule of only 7 days between prime and boost found that TLR9 agonist CPG in a squalene formulation maintained higher interferon-γ-positive cells than TLR4 agonist GLA. Variability in antibody responses was lower in BALB/c mice than CD-1 mice but antibody responses were higher in CD-1 mice. Lower serum 50% effective concentration (EC50) values were found for rPA-agonist formulations and squalene formulations compared to Al(OH)3 formulations. Lower EC50 values also were associated with low frequency detection of linear peptide epitopes. In summary, TLR agonists elicited cellular immune responses and markedly boosted humoral responses.
Collapse
Affiliation(s)
- Jon Inglefield
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Jason Catania
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Andrea Harris
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Thomas Hickey
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Zhidong Ma
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Jacob Minang
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Katalin Baranji
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Tarl Spangler
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Jee Look
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Christian Ruiz
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Hang Lu
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - David Alleva
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Joshua J Reece
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA
| | - Michael J Lacy
- Emergent BioSolutions Inc., 300 Professional Drive, Gaithersburg, MD 20879, USA.
| |
Collapse
|
7
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
8
|
Zhu G, Yang YG, Sun T. Engineering Optimal Vaccination Strategies: Effects of Physical Properties of the Delivery System on Functions. Biomater Sci 2022; 10:1408-1422. [PMID: 35137771 DOI: 10.1039/d2bm00011c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With rapid developments in medical science and technology, vaccinations have become the key to solving public health problems. Various diseases can be prevented by vaccinations, which mimic a disease by...
Collapse
Affiliation(s)
- Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Mukherjee N, Julián E, Torrelles JB, Svatek RS. Effects of Mycobacterium bovis Calmette et Guérin (BCG) in oncotherapy: Bladder cancer and beyond. Vaccine 2021; 39:7332-7340. [PMID: 34627626 DOI: 10.1016/j.vaccine.2021.09.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The Mycobacterium bovis Bacillus Calmette et Guérin (BCG) vaccine was generated in 1921 with the efforts of a team of investigators, Albert Calmette and Camille Guérin, dedicated to the determination to develop a vaccine against active tuberculosis (TB) disease. Since then, BCG vaccination is used globally for protection against childhood and disseminated TB; however, its efficacy at protecting against pulmonary TB in adult and aging populations is highly variable. Due to the BCG generated immunity, this vaccine later proved to have an antitumor activity; though the standing mechanisms behind are still unclear. Recent studies indicate that both innate and adaptive cell responses may play an important role in BCG eradication and prevention of bladder cancer. Thus, cells such as natural killer (NK) cells, macrophages, dendritic cells, neutrophils but also MHC-restricted CD4 and CD8 T cells and γδ T cells may play an important role and can be one the main effectors in BCG therapy. Here, we discuss the role of BCG therapy in bladder cancer and other cancers, including current strategies and their impact on the generation and sustainability of protective antitumor immunity against bladder cancer.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of Urology University of Texas Health San Antonio (UTHSA), San Antonio, TX, USA
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Robert S Svatek
- Department of Urology University of Texas Health San Antonio (UTHSA), San Antonio, TX, USA.
| |
Collapse
|
10
|
Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front Immunol 2021; 11:615240. [PMID: 33679703 PMCID: PMC7927599 DOI: 10.3389/fimmu.2020.615240] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Although the discovery and characterization of multiple tumor antigens have sparked the development of many antigen/derived cancer vaccines, many are poorly immunogenic and thus, lack clinical efficacy. Adjuvants are therefore incorporated into vaccine formulations to trigger strong and long-lasting immune responses. Adjuvants have generally been classified into two categories: those that ‘depot’ antigens (e.g. mineral salts such as aluminum hydroxide, emulsions, liposomes) and those that act as immunostimulants (Toll Like Receptor agonists, saponins, cytokines). In addition, several novel technologies using vector-based delivery of antigens have been used. Unfortunately, the immune system declines with age, a phenomenon known as immunosenescence, and this is characterized by functional changes in both innate and adaptive cellular immunity systems as well as in lymph node architecture. While many of the immune functions decline over time, others paradoxically increase. Indeed, aging is known to be associated with a low level of chronic inflammation—inflamm-aging. Given that the median age of cancer diagnosis is 66 years and that immunotherapeutic interventions such as cancer vaccines are currently given in combination with or after other forms of treatments which themselves have immune-modulating potential such as surgery, chemotherapy and radiotherapy, the choice of adjuvants requires careful consideration in order to achieve the maximum immune response in a compromised environment. In addition, more clinical trials need to be performed to carefully assess how less conventional form of immune adjuvants, such as exercise, diet and psychological care which have all be shown to influence immune responses can be incorporated to improve the efficacy of cancer vaccines. In this review, adjuvants will be discussed with respect to the above-mentioned important elements.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015, Paris, France.,Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Sara Mangsbo
- Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Divya Nagarajan
- Department of Immunology, Genetics and Clinical pathology Rudbeck laboratories, Uppsala University, Uppsala, Sweden
| | - Kinana Habra
- The School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Alan Graham Pockley
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.,Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
11
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
12
|
Wang H, Yu W, Li H, Zheng Y, Chen Z, Lin H, Shen Y. N-Acetyl-l-Leucine-Polyethyleneimine-Mediated Delivery of CpG Oligodeoxynucleotides 2006 Inhibits RAW264.7 Cell Osteoclastogenesis. Drug Des Devel Ther 2020; 14:2657-2665. [PMID: 32764870 PMCID: PMC7368329 DOI: 10.2147/dddt.s241826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/03/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION CpG oligodeoxynucleotides (CpG ODN) play important roles in resisting inflammation and bone resorption. However, the inherent instability and rapid degradation hinder their wider application. This study aimed to evaluate whether N-acetyl-L-leucine-modified polyethyleneimine (N-Ac-L-Leu-PEI) could effectively deliver CpG ODN 2006 to RAW264.7 cells and and if it can regulate osteoclastogenesis in vitro. MATERIALS AND METHODS Gel retardation assay was conducted to evaluate whether N- Ac-L-Leu-PEI and CpG ODN could form a stable complex. RAW264.7 cells were divided into four groups of control group, ODN group, phosphorothioate ODN group and N-Ac-L-Leu-PEI/ODN group. Fluorescence assay was conducted to evaluate the transfection rate of ODNs in different groups. Cell viability was determined by MTT assay. Cell apoptosis was determined by live-dead cell staining and flow cytometry assay. Relative expression levels of osteoclastic differentiation factors, including Nfatc, c-fos, receptor activator of nuclear factor κB (RANK), and matrix metalloproteinase 9 (MMP9), were determined by real-time PCR and Western blot. RESULTS N-Ac-L-Leu-PEI and CpG ODN could form a stable complex at a mass ratio of 1:1 (w:w). MTT assay showed that the cell viability of N-Ac-L-Leu-PEI was relatively high even at a mass ratio of 8 μg/mL. The transfection rate of N-Ac-L-Leu-PEI-ODN complex was higher than 90%. The cell proliferation and apoptosis was significantly enhanced in N-Ac-L-Leu-PEI- CpG ODN group when compared to those in phosphorothioate CpG ODN. The expression levels of Nfatc, c-fos, RANK, and MMP9 were significantly decreased in N-Ac-L-Leu-PEI/ODN complex group. DISCUSSION N-Ac-L-Leu-PEI could be a potential gene vehicle for the prevention of periodontitis-mediated bone resorption.
Collapse
Affiliation(s)
- Huining Wang
- Department of Periodontics, Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou325027, Zhejiang Province, People’s Republic of China
| | - Wenwen Yu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021, People’s Republic of China
- Department of Orthodontics, Tianjin Stomatological Hospital, Nankai University, Tianjin300041, People’s Republic of China
| | - Hongyan Li
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
| | - Yi Zheng
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin130061, People’s Republic of China
| | - Zhen Chen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
| | - Hongbing Lin
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
| | - Yuqin Shen
- Department of Periodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin130021,People’s Republic of China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin130061, People’s Republic of China
| |
Collapse
|
13
|
Mycobacteria-Based Vaccines as Immunotherapy for Non-urological Cancers. Cancers (Basel) 2020; 12:cancers12071802. [PMID: 32635668 PMCID: PMC7408281 DOI: 10.3390/cancers12071802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
The arsenal against different types of cancers has increased impressively in the last decade. The detailed knowledge of the tumor microenvironment enables it to be manipulated in order to help the immune system fight against tumor cells by using specific checkpoint inhibitors, cell-based treatments, targeted antibodies, and immune stimulants. In fact, it is widely known that the first immunotherapeutic tools as immune stimulants for cancer treatment were bacteria and still are; specifically, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) continues to be the treatment of choice for preventing cancer recurrence and progression in non-invasive bladder cancer. BCG and also other mycobacteria or their components are currently under study for the immunotherapeutic treatment of different malignancies. This review focuses on the preclinical and clinical assays using mycobacteria to treat non-urological cancers, providing a wide knowledge of the beneficial applications of these microorganisms to manipulate the tumor microenvironment aiming at tumor clearance.
Collapse
|
14
|
Patel BK, Wang C, Lorens B, Levine AD, Steinmetz NF, Shukla S. Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. ACS APPLIED BIO MATERIALS 2020; 3:4179-4187. [PMID: 34368641 DOI: 10.1021/acsabm.0c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer vaccines are promising adjuvant immunotherapies that can stimulate the immune system to recognize tumor-associated antigens and eliminate the residual or recurring disease. The aberrant and restricted expression of highly immunogenic cancer testis antigen NY-ESO-1 in several malignancies, including triple-negative breast cancer, melanoma, myelomas, and ovarian cancer, makes NY-ESO-1 an attractive antigenic target for cancer vaccines. This study describes a NY-ESO-1 vaccine based on a bio-inspired nanomaterial platform technology, specifically a plant virus nanoparticle. The 30 nm icosahedral plant virus cowpea mosaic virus (CPMV) displaying multiple copies of human HLA-A2 restricted peptide antigen NY-ESO-1157-165 exhibited enhanced uptake and activation of antigen-presenting cells and stimulated a potent CD8+ T cell response in transgenic human HLA-A2 expressing mice. CD8+ T cells from immunized mice exhibited antigen-specific proliferation and cancer cell cytotoxicity, highlighting the potential application of a CPMV-NY-ESO-1 vaccine against NY-ESO-1+ malignancies.
Collapse
Affiliation(s)
- Bindi K Patel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chao Wang
- Department of NanoEngineering, University of California-San Diego, La Jolla, California 92093, United States
| | - Braulio Lorens
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alan D Levine
- Department of Molecular Biology and Microbiology and Medicine, Pediatrics Pathology, and Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
15
|
Zheng Y, Yu W, Li H, Lin H, Chen Z, Chen H, Zhang P, Tian Y, Xu X, Shen Y. CpG oligodeoxynucleotides inhibit the proliferation and osteoclastic differentiation of RAW264.7 cells. RSC Adv 2020; 10:14885-14891. [PMID: 35497169 PMCID: PMC9052049 DOI: 10.1039/c9ra11036d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/31/2020] [Indexed: 01/21/2023] Open
Abstract
Clinical prevention and treatment of periodontitis-induced bone absorption remains a challenge. The anti-infection role of CpG oligodeoxynucleotides (CpG ODNs) is well known; however, their effect on osteoclasts is still unclear. Here, we show that some CpG ODNs can regulate osteoclastogenesis of RAW264.7 cells. The phosphorothioate CpG ODN was efficiently taken up by the cells within 1 h and distributed in the cytoplasm. BW006, YW001, YW002, and FC004 CpG ODNs significantly repressed cell proliferation by targeting several cyclin proteins to arrest the cells in the G2 phase and to further initiate cell apoptosis. Regarding differentiation, we selected six CpG ODNs (FC002, BW006, YW002, YW001, FC004, and MT01) that markedly inhibited the gene expression levels of Nfatc, c-fos, RANK, and MMP9. TRAP staining showed that only YW002, YW001, and FC004 suppressed osteoclast generation and maturation. These three CpG ODNs dramatically declined the protein levels of osteoclastogenic proteins by elevating the ratio of OPG/RANKL and also downregulating the inflammatory factors (TNF-α, IL-1β, IL-6, and IL-17) at different stages. Thus, the selected CpG ODNs may be a potential molecular therapy for the prevention and treatment of periodontitis-mediated bone resorption.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China .,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University Changchun 130061 Jilin China
| | - Wenwen Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 China.,Department of Orthodontics, Tianjin Stomatological Hospital, Nankai University Tianjin 300041 China
| | - Hongyan Li
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China
| | - Hongbing Lin
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China .,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University Changchun 130061 Jilin China
| | - Zhen Chen
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China
| | - Huishan Chen
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China
| | - Peipei Zhang
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China
| | - Yue Tian
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China
| | - Xiaowei Xu
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China
| | - Yuqin Shen
- Department of Periodontics, Hospital of Stomatology, Jilin University 1500 Qinghua Road Changchun 130021 Jilin China .,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University Changchun 130061 Jilin China
| |
Collapse
|
16
|
A self-designed CpG ODN enhanced the anti-melanoma effect of pimozide. Int Immunopharmacol 2020; 83:106397. [PMID: 32220805 DOI: 10.1016/j.intimp.2020.106397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Melanomas represent the deadliest form of skin cancers. Due to the intricacy of tumorigenesis, it is emergent to find effective therapies for melanomas. Researches have proved that pimozide inhibits the growth of melanoma, but the limited curing effect needs to be further improved. Nowadays, tumor immunotherapy has been widely recognized as the sole therapy that can eradicate cancers. Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), TLR9 receptor agonist, can significantly enhance anti-tumor immune responses. This study explored the therapeutic effect of pimozide combined with CpG ODN on melanoma-bearing mice. The results showed that pimozide combined with CpG ODN effectively inhibited the growth of melanoma and prolonged the survival of melanoma-bearing mice, inhibited the expression of MMP2 and p-Stat5, increased the infiltration of CD4+ and CD8+ T cells in tumor, raised the ratios of CD4+, CD8+ T cells and NK cells. These all indicated that the combination treatment improved the anti-tumor effect of pimozide on mice. The anti-tumor mechanism might be attributed to cell apoptosis induction, invasion inhibition, and immune regulation. A more effective combination treatment concerning with pimozide is being under investigation.
Collapse
|
17
|
Adjuvants as Delivery Systems in Antigen-Specific Immunotherapies. J Pharm Sci 2019; 108:3831-3841. [PMID: 31526814 DOI: 10.1016/j.xphs.2019.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 09/11/2019] [Indexed: 11/24/2022]
Abstract
Combining autoantigens with immune-modulating drugs has emerged as an attractive approach to selectively reinstate tolerance in autoimmune diseases. The disparate properties of autoantigens and small-molecule immunosuppressants commonly used to treat autoimmune diseases can confound efforts to co-deliver these therapies. However, both components may be co-delivered with adjuvants which have been successful in delivering antigens to immune cells. We evaluated several common adjuvants as vehicles to co-deliver a model antigen and immunosuppressant, ovalbumin (OVA) and dexamethasone (DEX), respectively. Formulations were developed, and the release of DEX from adjuvants was investigated. Next, the effect of adjuvant, DEX, and OVA was tested in vitro using a DC line. A MF59-analog (MF59a) formulation was advanced to more sophisticated co-culture studies using OVA-primed bone marrow-derived dendritic cells and splenocytes or T-cells from OT-II mice. Most of these studies indicated MF59a-based antigen-specific immunotherapies could diminish the markers of inflammation associated with OVA recognition. We rationalized MF59a co-delivery of antigen and drug could reduce the risk of side effects typically associated with these drugs and reinstate immune tolerance, thus prompting continued investigation of emulsion adjuvants as delivery vehicles for antigen-specific immunotherapy of autoimmune diseases.
Collapse
|
18
|
Sadati SF, Jamali A, Abdoli A, Abedi-Valugerdi M, Gholami S, Alipour S, Soleymani S, Kheiri MT, Atyabi F. Simultaneous formulation of influenza vaccine and chitosan nanoparticles within CpG oligodesoxi nucleotides leads to dose-sparing and protects against lethal challenge in the mouse model. Pathog Dis 2018; 76:5089974. [PMID: 30184220 DOI: 10.1093/femspd/fty070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
Lack of efficient delivery systems for transporting antigenic molecules to the cytosol of antigen-presenting cells presents a major obstacle for antigen uptake by immune cells. To this end, influenza whole inactivated virus vaccines were formulated with chitosan nanoparticles and CpG oligonucleotide as a biodegradable delivery system and a Th1-specific adjuvant, respectively. Intradermal injections of a single high dose and low dose of formulated candidate vaccines were carried out. Thirty days after injection, cell proliferation assay (MTT), IFN-gamma and IL-4 ELISpot assays were conducted. Sera samples were collected 21 days after immunization to measure IgG1 and IgG2a levels. In addition, the mice challenged with mouse-adopted virus were monitored for weight loss. The results show a significant stimulation of both humoral and cellular immunities; also, weight gain and a decrease in mortality in the mice receiving both dosages of inactivated influenza virus vaccines with CpG and Chitosan coating were observed. Based on the results, it can be concluded that formulation of inactivated influenza virus with CpG and its delivery by chitosan as low-dose can return the same results as with high-dose balanced between cellular and humeral immune responses. This formulation could potentially lead to a significant saving in vaccine production.
Collapse
Affiliation(s)
- Seyed Farid Sadati
- Department of Medical Microbiology, Ondokuz Mayis University Medical School, Samsun, Turkey.,Amasya University Research Laboratory Center, Ipekkoy Campus, Amasya, Turkey
| | - Abbas Jamali
- Influenza Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shima Gholami
- Department of Pharmaceutical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Alipour
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Affiliation(s)
- Xuedan He
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| | - Scott I. Abrams
- Roswell Park Comprehensive Cancer Center; Department of Immunology; Buffalo NY 14263 USA
| | - Jonathan F. Lovell
- University at Buffalo; State University of New York; Buffalo NY 14260 USA
| |
Collapse
|
20
|
Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development. Expert Rev Vaccines 2018; 17:207-215. [PMID: 29372660 DOI: 10.1080/14760584.2018.1434000] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Although much progress has been made in the last decade(s) toward development of effective cancer vaccines, there are still important obstacles to therapeutic successes. New generations of cancer vaccines will benefit from a combination adjuvant approach that targets multiple branches of the immune response. AREAS COVERED Herein we describe how combinatorial adjuvant strategies can help overcome important obstacles to cancer vaccine development, including antigen immunogenicity and tumor immune suppression. Tumor antigens may be both tolerogenic and may utilize active mechanisms to suppress host immunity, including downregulation of MHC molecules to evade recognition and upregulation of immune inhibitory receptors, to subvert an effective immune response. The current cancer vaccine literature was surveyed to identify advancements in the understanding of the biological mechanisms underlying poor antigen immunogenicity and tumor immune evasion, as well as adjuvant strategies designed to overcome them. EXPERT COMMENTARY Poor immunogenicity of tumor antigens and tumor immune evasion mechanisms make the design of cancer vaccines challenging. Growing understanding of the tumor microenvironment and associated immune responses indicate the importance of augmenting not only the effector response, but also overcoming the endogenous regulatory response and tumor evasion mechanisms. Therefore, new vaccines will benefit from multi-adjuvanted approaches that simultaneously stimulate immunity while preventing inhibition.
Collapse
Affiliation(s)
- William S Bowen
- a Institute for Cellular Therapeutics and Department of Microbiology and Immunology , University of Louisville , Louisville , KY , USA
| | | | - Lalit Batra
- a Institute for Cellular Therapeutics and Department of Microbiology and Immunology , University of Louisville , Louisville , KY , USA
| | - Hampartsoum Barsoumian
- c Radiation Oncology , University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Haval Shirwan
- a Institute for Cellular Therapeutics and Department of Microbiology and Immunology , University of Louisville , Louisville , KY , USA
| |
Collapse
|
21
|
Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines. Vaccines (Basel) 2016; 4:vaccines4030025. [PMID: 27472370 PMCID: PMC5041019 DOI: 10.3390/vaccines4030025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrantly glycosylated mucin 1 (MUC1) is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different antigenic carrier proteins such as bovine serum albumin or keyhole limpet hemocyanin for conjugation with MUC1 glycopeptide. A variety of adjuvants have been used with MUC1 glycopeptides to improve their immunogenicity. Fully synthetic multicomponent vaccines have been synthesized by incorporating different T helper cell epitopes and Toll-like receptor agonists. Some vaccine formulations utilized liposomes or nanoparticles as vaccine delivery systems. In this review, we discuss the immunological evaluation of different conjugate or synthetic MUC1 glycopeptide vaccines in different tumor or mouse models that have been published since 2012.
Collapse
|
22
|
Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 2016; 28:329-38. [PMID: 27006304 PMCID: PMC4922024 DOI: 10.1093/intimm/dxw015] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence obtained from various clinical trials and animal studies suggested that cancer vaccines need better adjuvants than those that are currently licensed, which include the most commonly used alum and incomplete Freund's adjuvant, because of either a lack of potent anti-tumor immunity or the induction of undesired immunity. Several clinical trials using immunostimulatory adjuvants, particularly agonistic as well as non-agonistic ligands for TLRs, C-type lectin receptors, retinoic acid-inducible gene I-like receptors and stimulator of interferon genes, have revealed their therapeutic potential not only as vaccine adjuvants but also as anti-tumor agents. Recently, combinations of such immunostimulatory or immunomodulatory adjuvants have shown superior efficacy over their singular use, suggesting that seeking optimal combinations of the currently available or well-characterized adjuvants may provide a better chance for the development of novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| |
Collapse
|
23
|
Makinen SR, Zhu Q, Davis HL, Weeratna RD. CpG-mediated augmentation of CD8+ T-cell responses in mice is attenuated by a water-in-oil emulsion (Montanide ISA-51) but enhanced by an oil-in-water emulsion (IDRI SE). Int Immunol 2016; 28:453-61. [PMID: 27055469 DOI: 10.1093/intimm/dxw017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/22/2016] [Indexed: 12/14/2022] Open
Abstract
Adjuvants are a key component in enhancing immunogenicity of vaccines and play a vital role in facilitating the induction of the correct type of immunity required for each vaccine to be optimally efficacious. Several different adjuvants are found in licensed vaccines, and many others are in pre-clinical or clinical testing. Agonists for TLRs are potent activators of the innate immune system and some, such as CpG (TLR9 agonist), are particularly good for promoting cellular immunity because of the induction of Th1 cytokines. Emulsions that have both delivery and adjuvant properties are classified as water-in-oil (W/O) or oil-in-water (O/W) formulations. The W/O emulsion Montanide ISA-51, often combined with CpG, has been widely tested in cancer vaccine clinical trials. Squalene-based O/W emulsions are in licensed influenza vaccines, and T-cell responses have been assessed pre-clinically. No clinical study has compared the two types of emulsions, and the continued use of W/O with CpG in cancer vaccines may be because the lack of single adjuvant controls has masked the interference issue. These findings may have important implications for the development of vaccines where T-cell immunity is considered essential, such as those for cancer and chronic infections. Using particulate (hepatitis B surface antigen) and soluble protein (ovalbumin) antigen, we show in mice that a W/O emulsion (ISA-51) abrogates CpG-mediated augmentation of CD8(+) T-cell responses, whereas a squalene-based O/W emulsion significantly enhanced them.
Collapse
Affiliation(s)
- Shawn R Makinen
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| | - Qin Zhu
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| | - Heather L Davis
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| | - Risini D Weeratna
- Pfizer Vaccine Immunotherapeutics, Ottawa Laboratories, 340 Terry Fox Drive, Suite 200, Ottawa, Ontario K2K 3A2, Canada
| |
Collapse
|
24
|
InCVAX--a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett 2015; 359:169-77. [PMID: 25633839 DOI: 10.1016/j.canlet.2015.01.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/31/2022]
Abstract
A novel, promising potential cancer vaccine strategy was proposed to use a two-injection procedure for solid tumors to prompt the immune system to identify and systemically eliminate primary and metastatic cancers. The two-injection procedure consists of local photothermal application on a selected tumor intended to liberate whole cell tumor antigens, followed by a local injection of an immunoadjuvant that consists of a semi-synthetic functionalized glucosamine polymer, N-dihydro-galacto-chitosan (GC), which is intended to activate antigen presenting cells and facilitate an increased uptake of tumor antigens. This strategy is thus proposed as an in situ autologous cancer vaccine (inCVAX) that may activate antigen presenting cells and expose them to tumor antigens in situ, with the intention of inducing a systemic tumor specific T-cell response. Here, the development of inCVAX for the treatment of metastatic cancers in the past decades is systematically reviewed. The antitumor immune responses of local photothermal treatment and immunological stimulation with GC are also discussed. This treatment approach is also commonly referred to as laser immunotherapy (LIT).
Collapse
|
25
|
Pedroza-Roldán C, Aceves-Sánchez MDJ, Zaveri A, Charles-Niño C, Elizondo-Quiroga DE, Hernández-Gutiérrez R, Allen K, Visweswariah SS, Flores-Valdez MA. The adenylyl cyclase Rv2212 modifies the proteome and infectivity of Mycobacterium bovis BCG. Folia Microbiol (Praha) 2014; 60:21-31. [PMID: 25038956 DOI: 10.1007/s12223-014-0335-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
Abstract
All organisms have the capacity to sense and respond to environmental changes. These signals often involve the use of second messengers such as cyclic adenosine monophosphate (cAMP). This second messenger is widely distributed among organisms and coordinates gene expression related with pathogenesis, virulence, and environmental adaptation. Genomic analysis in Mycobacterium tuberculosis has identified 16 adenylyl cyclases (AC) and one phosphodiesterase, which produce and degrade cAMP, respectively. To date, ten AC have been biochemically characterized and only one (Rv0386) has been found to be important during murine infection with M. tuberculosis. Here, we investigated the impact of hsp60-driven Rv2212 gene expression in Mycobacterium bovis Bacillus Calmette-Guerin (BCG) during growth in vitro, and during macrophage and mice infection. We found that hsp60-driven expression of Rv2212 resulted in an increased capacity of replication in murine macrophages but an attenuated phenotype in lungs and spleen when administered intravenously in mice. Furthermore, this strain displayed an altered proteome mainly affecting proteins associated with stress conditions (bfrB, groEL-2, DnaK) that could contribute to the attenuated phenotype observed in mice.
Collapse
Affiliation(s)
- César Pedroza-Roldán
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mount A, Koernig S, Silva A, Drane D, Maraskovsky E, Morelli AB. Combination of adjuvants: the future of vaccine design. Expert Rev Vaccines 2014; 12:733-46. [PMID: 23885819 DOI: 10.1586/14760584.2013.811185] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is thought that the development of vaccines for the treatment of infectious diseases and cancer is likely to be achieved in the coming decades. This is partially due to a better understanding of the regulatory networks connecting innate with adaptive immune responses. The innate immune response is triggered by the recognition of conserved pathogen-associated molecular patterns by germ line-coded pattern recognition receptors. Several families of pattern recognition receptors have been characterized, including Toll-like receptors and nucleotide-binding domain receptors. The identification of their ligands has driven the development of novel adjuvants many of which have been tested in vaccine clinical trials. Here, the authors review recent preclinical data and clinical trial results supporting the view that combinations of adjuvants are the way forward in vaccine design. Multiadjuvanted vaccines can stimulate the broad and robust protective immune responses required to fight chronic infectious diseases and cancer.
Collapse
Affiliation(s)
- Adele Mount
- CSL Research, Bio21 Institute, 30 Flemington Road, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013; 19:1597-608. [PMID: 24309663 DOI: 10.1038/nm.3409] [Citation(s) in RCA: 957] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 09/27/2013] [Indexed: 02/08/2023]
Abstract
Vaccines containing novel adjuvant formulations are increasingly reaching advanced development and licensing stages, providing new tools to fill previously unmet clinical needs. However, many adjuvants fail during product development owing to factors such as manufacturability, stability, lack of effectiveness, unacceptable levels of tolerability or safety concerns. This Review outlines the potential benefits of adjuvants in current and future vaccines and describes the importance of formulation and mechanisms of action of adjuvants. Moreover, we emphasize safety considerations and other crucial aspects in the clinical development of effective adjuvants that will help facilitate effective next-generation vaccines against devastating infectious diseases.
Collapse
Affiliation(s)
- Steven G Reed
- Infectious Disease Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
28
|
Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013; 2013:387023. [PMID: 23533454 PMCID: PMC3603646 DOI: 10.1155/2013/387023] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/22/2012] [Accepted: 12/26/2012] [Indexed: 01/17/2023]
Abstract
With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development.
Collapse
|