1
|
Gao CH, Pan LX, Tan ZJ, Sun HZ, Sun MX, Wang JJ, Shen X, Su F, Yu RL. Double-network polyphenol chitosan hydrogels with instant aldehyde-β-cyclodextrin-based structure as potential for treating bacterially infected wounds. Int J Biol Macromol 2024; 278:134819. [PMID: 39154672 DOI: 10.1016/j.ijbiomac.2024.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Treatment of multiple bacterial infected wounds by eliminating bacteria and promoting tissue regeneration remains a clinical challenge. Herein, dual-network hydrogels (CS-GA/A-β-CD) with snap-structure were designed to achieve curcumin immobilization, using gallic acid-grafted chitosan (CS-GA) and aldehyde-β-cyclodextrin (A-β-CD) crosslinked. A-β-CD were able to achieve rapid dissolution (≥222.35 mg/mL H2O), and helped CS-GA/A-β-CD achieve rapid gelation (≤66.23 s). By adjusting the ratio of aldehyde groups of A-β-CD, mechanical properties and drug release can be controlled. CS-GA/A-β-CD/Cur exhibited excellent antimicrobial properties against S. aureus, E. coli, and P. aeruginosa. In vivo experiments demonstrated that CS-GA/A-β-CD/Cur achieved acute bacterial infection wound healing after 20th days, proving its great potential for wound dressing.
Collapse
Affiliation(s)
- Chi-Hao Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Li-Xia Pan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhao-Jun Tan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao-Zhi Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Meng-Xiao Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jin-Jun Wang
- Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao Traditional Chinese Medicine Hospital, Qingdao 266033, China
| | - Xin Shen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Feng Su
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High-Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
3
|
Chen Y, Song Y, Wang Z, Lai Y, Yin W, Cai Q, Han M, Cai Y, Xue Y, Chen Z, Li X, Chen J, Li M, Li H, He R. The chemerin-CMKLR1 axis in keratinocytes impairs innate host defense against cutaneous Staphylococcus aureus infection. Cell Mol Immunol 2024; 21:533-545. [PMID: 38532043 PMCID: PMC11143357 DOI: 10.1038/s41423-024-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Song
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhe Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yangfan Lai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Wei Yin
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Qian Cai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Miaomiao Han
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yiheng Cai
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yushan Xue
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Zhengrong Chen
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - Xi Li
- Biology Science Institutes, Chongqing Medical University, Chongqing, 400032, China
| | - Jing Chen
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Faculty of Medical Laboratory Science, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Rui He
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE/NHC), School of Basic Medical Sciences, and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Research Center of Allergy and Diseases, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
4
|
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, Emran TB, Hassan MM. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts. Cytokine 2023; 169:156268. [PMID: 37320965 DOI: 10.1016/j.cyto.2023.156268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cytokines are a protein family comprising interleukins, lymphokines, chemokines, monokines and interferons. They are significant constituents of the immune system, and they act in accordance with specific cytokine inhibiting compounds and receptors for the regulation of immune responses. Cytokine studies have resulted in the establishment of newer therapies which are being utilized for the treatment of several malignant diseases. The advancement of these therapies has occurred from two distinct strategies. The first strategy involves administrating the recombinant and purified cytokines, and the second strategy involves administrating the therapeutics which inhibits harmful effects of endogenous and overexpressed cytokines. Colony stimulating factors and interferons are two exemplary therapeutics of cytokines. An important effect of cytokine receptor antagonist is that they can serve as anti-inflammatory agents by altering the treatments of inflammation disorder, therefore inhibiting the effects of tumour necrosis factor. In this article, we have highlighted the research behind the establishment of cytokines as therapeutics and vaccine adjuvants, their role of immunotolerance, and their limitations.
Collapse
Affiliation(s)
- Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Rifat Sarker
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudul Hassan
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh; Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Queensland 4343, Australia.
| |
Collapse
|
5
|
Gao Y, Cai L, Li D, Li L, Wu Y, Ren W, Song Y, Zhu L, Wu Y, Xu H, Luo C, Wang T, Lei Z, Tao L. Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice. Int J Legal Med 2023:10.1007/s00414-023-03025-x. [PMID: 37246991 DOI: 10.1007/s00414-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Interleukin (IL)-33, an important inflammatory cytokine, is highly expressed in skin wound tissue and serum of humans and mice, and plays an essential role in the process of skin wound healing (SWH) dependent on the IL-33/suppression of tumorigenicity 2 (ST2) pathway. However, whether IL-33 and ST2 themselves, as well as their interaction, can be applied for skin wound age determination in forensic practice remains incompletely characterized. Human skin samples with injured intervals of a few minutes to 24 hours (hs) and mouse skin samples with injured intervals of 1 h to 14 days (ds) were collected. Herein, the results demonstrated that IL-33 and ST2 are increased in the human skin wounds, and that in mice skin wounds, there is an increase over time, with IL-33 expression peaking at 24 hs and 10 ds, and ST2 expression peaking at 12 hs and 7 ds. Notably, the relative quantity of IL-33 and ST2 proteins < 0.35 suggested a wound age of 3 hs; their relative quantity > 1.0 suggested a wound age of 24 hs post-mouse skin wounds. In addition, immunofluorescent staining results showed that IL-33 and ST2 were consistently expressed in the cytoplasm of F4/80-positive macrophages and CD31-positive vascular endothelial cells with or without skin wounds, whereas nuclear localization of IL-33 was absent in α-SMA-positive myofibroblasts with skin wounds. Interestingly, IL-33 administration facilitated the wound area closure by increasing the proliferation of cytokeratin (K) 14 -positive keratinocytes and vimentin-positive fibroblasts. In contrast, treating with its antagonist (i.e., anti-IL-33) or receptor antagonist (e.g., anti-ST2) exacerbated the aforementioned pathological changes. Moreover, treatment with IL-33 combined with anti-IL-33 or anti-ST2 reversed the effect of IL-33 on facilitating skin wound closure, suggesting that IL-33 administration facilitated skin wound closure through the IL-33/ST2 signaling pathway. Collectively, these findings indicate that the detection of IL-33/ST2 might be a reliable biomarker for the determination of skin wound age in forensic practice.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Dongya Li
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215021, Jiangsu, China
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ziguang Lei
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, P Khumalo N, Bayat A. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol 2023; 32:570-587. [PMID: 36562321 PMCID: PMC10947010 DOI: 10.1111/exd.14734] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Raised dermal scars including hypertrophic, and keloid scars as well as scalp-associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill-defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti-inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up-to-date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune-associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti-inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune-modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
Collapse
Affiliation(s)
- Elvis Banboye Kidzeru
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Maribanyana Lebeko
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Present address:
Cape Biologix Technologies (PTY, LTD)Cape TownSouth Africa
| | - Jyoti Rajan Sharma
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
- Present address:
Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
| | - Lucia Nkengazong
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Henry Ademola Adeola
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P Khumalo
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ardeshir Bayat
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
7
|
Zhao Y, Chen Z, Shao W, Yang S, Cui W, Cai Z, Cheng L, Lin R. Black phosphorus-enhanced injectable hydrogel for infected soft tissue healing. APL Bioeng 2023; 7:016103. [PMID: 36644416 PMCID: PMC9838687 DOI: 10.1063/5.0121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
The misuse of antibiotics makes clinical treatment of soft tissue infection a huge challenge in prosthesis replacement. In this study, a black phosphorus (BP)-enhanced antibacterial injectable hydrogel (HAABP) was developed by the dynamic coordinative cross-linking among thiolated hyaluronic acid, silver ion (Ag+), and BP. HAABP has been proven to possess typical porous structures, excellent injectability, and rapid self-healing properties. In addition, the shear modulus was positive correlative to the concentration of BP. In vitro, HAABP maintained good cytocompatibility and showed a highly efficient synergistic inhibitory effect on Staphylococcus aureus through the irradiation of near infrared light and the release of Ag+. In vivo, HAABP not only inhibited the persistent infection but also accelerated the deposition of collagen fibers and angiogenesis by down-regulating the inflammatory factor TNF-α in the infectious wound defect, thereby repairing the natural barrier of tissue. This study developed a BP-enhanced injectable hydrogel that provided a simple and efficient synergistic antibacterial strategy to treat soft tissue infections around prostheses.
Collapse
Affiliation(s)
| | | | | | - Shu Yang
- Department of Orthopaedics, Shanghai Key Laboratory for
Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology
and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic
of China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for
Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology
and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic
of China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for
Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology
and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic
of China
| | - Liang Cheng
- Authors to whom correspondence should be addressed:; ; and
| | - Ruixin Lin
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
8
|
Recombinant Expression of Human IL-33 Protein and Its Effect on Skin Wound Healing in Diabetic Mice. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120734. [PMID: 36550940 PMCID: PMC9774120 DOI: 10.3390/bioengineering9120734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Chronic refractory wounds are one of the complications of diabetes mellitus that require effective therapy. The dermal-wound-healing property of IL-33 in diabetics is little understood. Therefore, this study aimed to express recombinant humanized mature IL-33 (rhmatIL-33) in Escherichia coli BL21 (DE3) and demonstrate its efficacy on dermal wounds in streptozotocin (STZ)-induced diabetic and nondiabetic mice by the dorsal incisional skin wound model. Results revealed that the rhmatIL-33 accelerated the scratch-healing of keratinocytes and fibroblasts at the cellular level. The wounds of diabetic mice (DM) showed more severe ulceration and inflammation than wild-type mice (WT), and the exogenous administration of rhmatIL-33 increased wound healing in both diabetic and wild-type mice. Compared with the up-regulation of endogenous IL-33 mRNA after injury in WT mice, the IL-33 mRNA decreased after injury in DM mice. Exogenous IL-33 administration increased the endogenous IL-33 mRNA in the DM group but decreased the IL-33 mRNA expression level of the WT group, indicating that IL-33 plays a balancing role in wound healing. IL-33 administration also elevated ILC2 cells in the wounds of diabetic and non-diabetic mice and improve the transcript levels of YM1, a marker of M2 macrophages. In conclusion, Hyperglycemia in diabetic mice inhibited the expression of IL-33 in the dermal wound. Exogenous addition of recombinant IL-33 promoted wound healing in diabetic mice by effectively increasing the level of IL-33 in wound tissue, increasing ILC2 cells, and accelerating the transformation of macrophage M1 to M2 phenotype.
Collapse
|
9
|
Wang Z, Li W, Gou L, Zhou Y, Peng G, Zhang J, Liu J, Li R, Ni H, Zhang W, Cao T, Cao Q, Su H, Han YP, Tong N, Fu X, Ilegems E, Lu Y, Berggren PO, Zheng X, Wang C. Biodegradable and Antioxidant DNA Hydrogel as a Cytokine Delivery System for Diabetic Wound Healing. Adv Healthc Mater 2022; 11:e2200782. [PMID: 36101484 DOI: 10.1002/adhm.202200782] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Impaired diabetic wound healing is associated with the persistence of chronic inflammation and excessive oxidative stress, which has become one of the most serious clinical challenges. Wound dressings with anti-inflammatory and reactive oxygen species (ROS)-scavenging properties are desirable for diabetic wound treatment. In this study, a shape-adaptable, biodegradable, biocompatible, antioxidant, and immunomodulatory interleukin-33 (IL-33)-cytogel is developed by encapsulating IL-33 into physically cross-linked DNA hydrogels and used as wound dressings to promote diabetic wound healing. The porous microstructures and biodegradable properties of the IL-33-cytogel ensure the local sustained-release of IL-33 in the wound area, where the sustained-release of IL-33 is maintained for at least 7 days. IL-33-cytogel can induce local accumulation of group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs), as well as M1-to-M2 transition at the wound sites. Additionally, the antioxidant and biocompatible characteristics of DNA hydrogels promote the scavenging of intracellular ROS without affecting cell viability. As a result, local inflammation in the diabetic wound area is resolved upon IL-33-cytogel treatment, which is accompanied by improved granulation tissue regeneration and accelerated wound closure. This study demonstrates a promising strategy in tissue engineering and regenerative medicine by incorporating DNA hydrogels and cytokine immunotherapy for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiayi Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaye Liu
- Department of thyroid and parathyroid surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Hengfan Ni
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanli Zhang
- Core facility of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Cao
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Hong Su
- Department of Dermatology, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, SE-17176, Sweden
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Yi XM, Lian H, Li S. Signaling and functions of interleukin-33 in immune regulation and diseases. CELL INSIGHT 2022; 1:100042. [PMID: 37192860 PMCID: PMC10120307 DOI: 10.1016/j.cellin.2022.100042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 05/18/2023]
Abstract
Interleukin-33 (IL-33) which belongs to the interleukin-1 (IL-1) family is an alarmin cytokine with critical roles in tissue homeostasis, pathogenic infection, inflammation, allergy and type 2 immunity. IL-33 transmits signals through its receptor IL-33R (also called ST2) which is expressed on the surface of T helper 2 (Th2) cells and group 2 innate lymphoid cells (ILC2s), thus inducing transcription of Th2-associated cytokine genes and host defense against pathogens. Moreover, the IL-33/IL-33R axis is also involved in development of multiple types of immune-related diseases. In this review, we focus on current progress on IL-33-trigggered signaling events, the important functions of IL-33/IL-33R axis in health and diseases as well as the promising therapeutic implications of these findings.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huan Lian
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
11
|
Li C, Yu X, Zhang L, Peng Y, Zhang T, Li Y, Luan Y, Yin C. The potential role and regulatory mechanism of IL-33/ST2 axis on T lymphocytes during lipopolysaccharide stimulation or perinatal Listeria infection. Int Immunopharmacol 2022; 108:108742. [DOI: 10.1016/j.intimp.2022.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
|
12
|
Chung EJ, Luo CH, Thio CLP, Chang YJ. Immunomodulatory Role of Staphylococcus aureus in Atopic Dermatitis. Pathogens 2022; 11:pathogens11040422. [PMID: 35456097 PMCID: PMC9025081 DOI: 10.3390/pathogens11040422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a gram-positive bacterium commonly found on humans, and it constitutes the skin microbiota. Presence of S. aureus in healthy individuals usually does not pose any threat, as the human body is equipped with many mechanisms to prevent pathogen invasion and infection. However, colonization of S. aureus has been correlated with many healthcare-associated infections, and has been found in people with atopic diseases. In atopic dermatitis, constant fluctuations due to inflammation of the epidermal and mucosal barriers can cause structural changes and allow foreign antigens and pathogens to bypass the first line of defense of the innate system. As they persist, S. aureus can secrete various virulence factors to enhance their survival by host invasion and evasion mechanisms. In response, epithelial cells can release damage-associated molecular patterns, or alarmins such as TSLP, IL-25, IL-33, and chemokines, to recruit innate and adaptive immune cells to cause inflammation. Until recently, IL-36 had been found to play an important role in modulating atopic dermatitis. Secretion of IL-36 from keratinocytes can activate a Th2 independent pathway to trigger symptoms of allergic reaction resulting in clinical manifestations. This mini review aims to summarize the immunomodulatory roles of S. aureus virulence factors and how they contribute to the pathogenesis of atopic diseases.
Collapse
Affiliation(s)
- Ethan Jachen Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115024, Taiwan; (E.J.C.); (C.-H.L.); (C.L.-P.T.)
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chia-Hui Luo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115024, Taiwan; (E.J.C.); (C.-H.L.); (C.L.-P.T.)
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Christina Li-Ping Thio
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115024, Taiwan; (E.J.C.); (C.-H.L.); (C.L.-P.T.)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115024, Taiwan; (E.J.C.); (C.-H.L.); (C.L.-P.T.)
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 406040, Taiwan
- Correspondence:
| |
Collapse
|
13
|
Abstract
Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gaelen K. Dwyer
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Louise M. D'Cruz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
15
|
Li H, Yu X, Shi B, Zhang K, Yuan L, Liu X, Wang P, Lv J, Meng G, Xuan Q, Wu W, Li B, Peng X, Qin X, Liu W, Zhong L, Peng Z. Reduced pannexin 1-IL-33 axis function in donor livers increases risk of MRSA infection in liver transplant recipients. Sci Transl Med 2021; 13:13/606/eaaz6169. [PMID: 34380770 DOI: 10.1126/scitranslmed.aaz6169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/28/2020] [Accepted: 07/12/2021] [Indexed: 12/28/2022]
Abstract
Liver transplantation patients are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) infection, but the molecular mechanism remains unclear. We found that genetic predisposition to low pannexin 1 (PANX1) expression in donor livers was associated with MRSA infection in human liver transplantation recipients. Using Panx1 and Il-33-knockout mice for liver transplantation models with MRSA tail vein injection, we demonstrated that Panx1 deficiency increased MRSA-induced liver injury and animal death. We found that decreased PANX1 expression in the liver led to reduced release of adenosine triphosphate (ATP) from hepatocytes, which further reduced the activation of P2X2, an ATP-activating P2X receptor. Reduced P2X2 function further decreased the NLRP3-mediated release of interleukin-33 (IL-33), reducing hepatic recruitment of macrophages and neutrophils. Administration of mouse IL-33 to Panx1-/- mice significantly (P = 0.011) ameliorated MRSA infection and animal death. Reduced human hepatic IL-33 protein abundance also associated with increased predisposition to MRSA infection. Our findings reveal that genetic predisposition to reduced PANX1 function increases risk for MRSA infection after liver transplantation by decreasing hepatic host innate immune defense, which can be attenuated by IL-33 treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200085, China
| | - Baojie Shi
- Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Kun Zhang
- Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Liyun Yuan
- Bio-Med Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junwei Lv
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guangxun Meng
- Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiankun Xuan
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200085, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200085, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Peng
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 10140, USA
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 10140, USA.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Department of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacy, Wayne State University, Detroit, MI 48201, USA.
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China. .,Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China.,Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
16
|
Ruiz-Castilla M, Dos Santos B, Vizcaíno C, Baena J, Guilabert P, Marin-Corral J, Masclans JR, Roca O, Barret JP. Soluble suppression of tumorigenicity-2 predicts pneumonia in patients with inhalation injury: Results of a pilot study. Burns 2020; 47:906-913. [PMID: 33143991 DOI: 10.1016/j.burns.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Several mechanisms play a role in the development of pneumonia after inhalation injury. Our aim was to analyze whether higher concentrations of inflammatory markers or of biomarkers of epithelial injury are associated with a higher incidence of pneumonia in patients with inhalation injury. MATERIAL AND METHODS Secondary analysis of a single-center prospective observational cohort pilot study, performed over a two-year period (2015-2017) at the Burns Unit of the Plastic and Reconstructive Surgery Department of Vall d'Hebron University Hospital. All patients aged 18 with suspected inhalation injury undergoing admission to the Burns Unit were included. Plasma biomarkers of the lung epithelium (RAGE and SP-D), inflammation markers (IL6, IL8), and IL33, as well as soluble suppression of tumorigenicity-2 (sST2) levels, were measured within the first 24 h of admission. RESULTS Twenty-four patients with inhalation injury were included. Eight (33.3%) developed pneumonia after a median of 7 (4-8) days of hospital stay. Patients with pneumonia presented higher plasma concentrations of sST2 (2853 [2356-3351] ng/mL vs 1352 [865-1839] ng/mL; p < 0.001), IL33 (1.95 [1.31-2.59] pg/mL vs 1.26 [1.07-1.45] pg/mL; p = 0.002) and IL8 (325.7 [221.6-430.0] pg/mL vs 174.1 [95.2-253.0] pg/mL; p = 0.017) on day 1 of inclusion. Plasma sST2 concentration in the first 24 h demonstrated excellent diagnostic accuracy for predicting the occurrence of pneumonia in patients with smoke inhalation (AUROC 0.929 [95%CI 0.818-1.000]). A cutoff point of ≥2825 ng/mL for sST2 had a sensitivity of 75% and a specificity of 100%. The risk ratio of pneumonia in patients with sST2 ≥ 2825 ng/mL was 7.14 ([95% CI 1.56-32.61]; p = 0.016). CONCLUSIONS Plasma sST2 in the first 24 h of admission predicts the occurrence of pneumonia in patients with inhalation injury.
Collapse
Affiliation(s)
- Mireia Ruiz-Castilla
- Plastic and Reconstructive Surgery Department, Hospital Quirónsalud Barcelona, Barcelona, Spain; Plastic and Reconstructive Surgery Department and Burns Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain.
| | - Bruce Dos Santos
- Plastic and Reconstructive Surgery Department and Burns Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Claudia Vizcaíno
- Critical Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Jacinto Baena
- Critical Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Patricia Guilabert
- Anesthesiology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Judith Marin-Corral
- Critical Care Department, Parc de Salut Mar (Hospital del Mar) de Barcelona, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan R Masclans
- Critical Care Department, Parc de Salut Mar (Hospital del Mar) de Barcelona, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Roca
- Critical Care Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain; Ciber Enfermedades Respiratorias (Ciberes), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan P Barret
- Plastic and Reconstructive Surgery Department and Burns Unit, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
17
|
Wang Y, Tatakis DN. Integrative mRNA/miRNA expression analysis in healing human gingiva. J Periodontol 2020; 92:863-874. [PMID: 32857863 DOI: 10.1002/jper.20-0397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are implicated in the epigenetic regulation of complex biological processes. Their possible role in human oral wound healing, a process that differs from cutaneous wound healing by being faster and typically scar-free, has been unexplored. This report presents the miRNA expression profile of experimental human oral wounds and an integrative analysis of mRNA/miRNA expression. METHODS Nine healthy volunteers provided standardized normal and 5-day healing palatal biopsies, used for next generation miRNA and mRNA sequencing analysis, correlation and network analysis, real-time PCR (qPCR) and immunohistochemistry. RESULTS On average, 169 significantly regulated precursor miRNAs were detected, including 21 novel miRNAs, selectively confirmed by PCR. Hsa-miR-223-3p and hsa-miR-124-3p were, respectively, the most up- and downregulated miRNAs in healing gingiva. Hsa-miR-124-3p had the most predicted mRNA target interactions, with angiogenesis-related genes the most enriched. Correlation analysis showed the highest correlation between hsa-miR-181a-3p and SERPINB1; hsa-miR-223-5p and SLC2A3; hsa-miR-1301 and MS4A7. In addition, SERPINB1 mRNA had the most associations with differentially regulated miRNAs. IL33 was the only cytokine significantly correlated with miRNAs (ρ > 0.95). qPCR and immunohistochemistry verified the significant upregulation of SERPINB1 and IL33 in healing gingiva. CONCLUSIONS This study is the first to report on the miRNome of healing human gingiva and to provide an integrative analysis of miRNA/mRNA expression during human oral wound healing; the results offer novel insights into the participating molecular mechanisms and raise the possibility of SERPINB1 and IL-33 as potential wound healing therapeutic targets.
Collapse
Affiliation(s)
- Yun Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Soluble Suppression Of Tumorigenicity-2 Predicts Hospital Mortality in Burn Patients: An Observational Prospective Cohort Pilot Study. Shock 2020; 51:194-199. [PMID: 29642231 DOI: 10.1097/shk.0000000000001155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The IL33/ST2 pathway has been implicated in the pathogenesis of different inflammatory diseases. Our aim was to analyze whether plasma levels of biomarkers involved in the IL33/ST2 axis might help to predict mortality in burn patients. METHODS Single-center prospective observational cohort pilot study performed at the Burns Unit of the Plastic and Reconstructive Surgery Department of the Vall d'Hebron University Hospital (Barcelona). All patients aged ≥18 years old with second or third-degree burns requiring admission to the Burns Unit were considered for inclusion. Blood samples were taken to measure levels of interleukins (IL)6, IL8, IL33, and soluble suppression of tumorigenicity-2 (sST2) within 24 h of admission to the Burns Unit and at day 3. Results are expressed as medians and interquartile ranges or as frequencies and percentages. RESULTS Sixty-nine patients (58 [84.1%] male, mean age 52 [35-63] years, total body surface area burned 21% [13%-30%], Abbreviated Burn Severity Index 6 [4-8]) were included. Thirteen (18.8%) finally died in the Burns Unit. Plasma levels of sST2 measured at day 3 after admission demonstrated the best prediction accuracy for survival (area under the receiver-operating curve 0.85 [0.71-0.99]; P < 0.001). The best cutoff point for the area under the receiver-operating curve index was estimated to be 2,561. In the Cox proportional hazards model, after adjusting for potential confounding, a plasma sST2 level ≥2,561 measured at day 3 was significantly associated with mortality (hazard ratio 6.94 [1.73-27.74]; P = 0.006). CONCLUSIONS Plasma sST2 at day 3 predicts hospital mortality in burn patients.
Collapse
|
19
|
Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T, Cifuentes L, Waithe D, Lloyd-Lavery A, Marquette A, Londei M, Ogg G. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med 2019; 11:eaax2945. [PMID: 31645451 DOI: 10.1126/scitranslmed.aax2945] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/15/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
Targeted inhibition of cytokine pathways provides opportunities to understand fundamental biology in vivo in humans. The IL-33 pathway has been implicated in the pathogenesis of atopy through genetic and functional associations. We investigated the role of IL-33 inhibition in a first-in-class phase 2a study of etokimab (ANB020), an IgG1 anti-IL-33 monoclonal antibody, in patients with atopic dermatitis (AD). Twelve adult patients with moderate to severe AD received a single systemic administration of etokimab. Rapid and sustained clinical benefit was observed, with 83% achieving Eczema Area and Severity Index 50 (EASI50), and 33% EASI75, with reduction in peripheral eosinophils at day 29 after administration. We noted significant reduction in skin neutrophil infiltration after etokimab compared with placebo upon skin challenge with house dust mite, reactivity to which has been implicated in the pathogenesis of AD. We showed that etokimab also inhibited neutrophil migration to skin interstitial fluid in vitro. Besides direct effects on neutrophil migration, etokimab revealed additional unexpected CXCR1-dependent effects on IL-8-induced neutrophil migration. These human in vivo findings confirm an IL-33 upstream role in modulating skin inflammatory cascades and define the therapeutic potential for IL-33 inhibition in human diseases, including AD.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Biotechnology UG, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, 80-307 Gdańsk, Poland
| | - Clare S Hardman
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | - Dominic Waithe
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | - Graham Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
- Oxford University Hospitals, Oxford OX3 7LE, UK
| |
Collapse
|
20
|
Helicobacter pylori Induces IL-33 Production and Recruits ST-2 to Lipid Rafts to Exacerbate Inflammation. Cells 2019; 8:cells8101290. [PMID: 31640262 PMCID: PMC6830106 DOI: 10.3390/cells8101290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori colonizes human gastric epithelial cells and contributes to the development of several gastrointestinal disorders. Interleukin (IL)-33 is involved in various immune responses, with reported proinflammatory and anti-inflammatory effects, which may be associated with colitis and colitis-associated cancer. IL-33 induces the inflammatory cascade through its receptor, suppression of tumorigenicity-2 (ST-2). Binding of IL-33 to membrane-bound ST-2 (mST-2) recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates intracellular signaling pathways. However, whether IL-33/ST-2 is triggered by H. pylori infection and whether this interaction occurs in lipid rafts remain unclear. Our study showed that both IL-33 and ST-2 expression levels were significantly elevated in H. pylori-infected cells. Confocal microscopy showed that ST-2 mobilized into the membrane lipid rafts during infection. Depletion of membrane cholesterol dampened H. pylori-induced IL-33 and IL-8 production. Furthermore, in vivo studies revealed IL-33/ST-2 upregulation, and severe leukocyte infiltration was observed in gastric tissues infected with H. pylori. Together, these results demonstrate that ST-2 recruitment into the lipid rafts serves as a platform for IL-33-dependent H. pylori infection, which aggravates inflammation in the stomach.
Collapse
|
21
|
Morais NGD, Costa TBD, Ferreira de Lima LF, Basílio DDS, Morais NNGD, Paiva Cavalcanti MD, Pereira VRA, de Castro CMMB. Impact of neonatal malnutrition on expression TLR-9, NF-kB and cytokines of macrophages infected in vitro with methicillin resistant Staphylococcus aureus. Microb Pathog 2019; 132:254-260. [PMID: 31075429 DOI: 10.1016/j.micpath.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023]
Abstract
Early nutritional aggressions promote epigenetic adjustments that culminate in the loss of phenotype plasticity (with permanent long-term modifications). Maternal diet and inadequate neonatal nutrition can result in fetal programming that presents susceptibility to infections in adult life. Thus, it becomes essential to verify the impacts of neonatal malnutrition (even following nutritional replacement) on the immunological response to methicillin resistant Staphylococcus aureus (MRSA) infections. Male rats were divided into two distinct groups: Nourished and Malnourished. After isolation of mononuclear cells, four systems were established: negative control, positive control and two testing systems, (MSSA and MRSA). Tests were performed to analyze expression of TLR-9, NF-kB, IL-1β, IL-18 and IL-33. For statistical analysis, we used the Student t and ANOVA tests p < 0.05. Even after nutritional replacement, malnutrition in the neonatal period compromised the animals' weight gains p < 0.05. There was a reduction in the expression of the immunological response in the positive control, however deregulation was observed in the gene expression of MRSA-infected macrophages, with a reduction in TLR-9 expression, and overexpression in NF-kB and cytokines p < 0.05. Puppies inflicted with protein-calorie malnutrition were compromised; (long-term) body growth and immune response. In the infectious scenario, immune collapse is reflected in inflammatory response exacerbation with a likely histolytic character. Immune disabling (resulting from gene expression deregulation) causes susceptibility to infections due to ineffective recognition, intense pro-inflammatory mediation, and cell death. It is suggested that neonatal malnutrition can program susceptibility to multiresistant bacterial infections, and generally favors a triggering of more intense confrontations with fatal outcomes.
Collapse
|
22
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
23
|
Effect of FPZ, a total flavonoids ointment topical application from Pouzolzia zeylanica var. microphylla, on mice skin infections. REVISTA BRASILEIRA DE FARMACOGNOSIA 2018. [DOI: 10.1016/j.bjp.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Peng C, Han J, Ye X, Zhang X. IL-33 Treatment Attenuates the Systemic Inflammation Reaction in Acinetobacter baumannii Pneumonia by Suppressing TLR4/NF-κB Signaling. Inflammation 2018; 41:870-877. [PMID: 29508184 DOI: 10.1007/s10753-018-0741-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin (IL)-33 treatment has been reported to reduce mortality in a rat model of sepsis, and the present study aimed to determine whether this effect of IL-33 is achieved through a reduction in the systemic inflammatory response in Acinetobacter baumannii pneumonia. After induction of pneumonia, rats were treated with normal saline or IL-33, and mortality over 5 days was recorded. Inflammation within lung tissues was evaluated by hematoxylin and eosin staining as well as measurement of the concentrations of IL-8 and tumor necrosis factor alpha (TNF-α) in the bronchoalveolar lavage fluid (BALF) and plasma by enzyme-linked immunosorbent assay. In addition, the expression of Toll-like receptor 4 (TLR4), ST2, and nuclear factor kappa B (NF-κB) in rat lung tissues was assessed by western blotting. The result showed that the mortality rate and systemic inflammation were significantly increased in rats upon infection with A. baumannii, as evidenced by significant increases in the IL-8 and TNF-α levels in BALF and plasma as well as increased NF-κB activity and TLR4 expression in rat lung tissues. Importantly, IL-33 (1 μg/kg) treatment significantly decreased mortality and pulmonary inflammation in A. baumannii-infected rats. Moreover, IL-33 treatment suppressed the elevation of IL-8 and TNF-α levels and inhibited TLR4 expression and NF-κB activation. Overall, these results suggest that IL-33 may decrease the mortality and inhibit the systematic inflammatory response associated with A. baumannii pneumonia by suppressing TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Chunhong Peng
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, 550002, China.
| | - Jin Han
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, 550002, China
| | - Xianwei Ye
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, 550002, China
| | - Xiangyan Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, 550002, China
| |
Collapse
|
25
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
26
|
Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, Kao T, Lee SK, Cai SS, Miller RJ, Marchitto MC, Zhang E, Riggins DP, Plaut RD, Stibitz S, Geha RS, Miller LS. Staphylococcus aureus Epicutaneous Exposure Drives Skin Inflammation via IL-36-Mediated T Cell Responses. Cell Host Microbe 2018; 22:653-666.e5. [PMID: 29120743 DOI: 10.1016/j.chom.2017.10.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/16/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022]
Abstract
Staphylococcus aureus colonization contributes to skin inflammation in diseases such as atopic dermatitis, but the signaling pathways involved are unclear. Herein, epicutaneous S. aureus exposure to mouse skin promoted MyD88-dependent skin inflammation initiated by IL-36, but not IL-1α/β, IL-18, or IL-33. By contrast, an intradermal S. aureus challenge promoted MyD88-dependent host defense initiated by IL-1β rather than IL-36, suggesting that different IL-1 cytokines trigger MyD88 signaling depending on the anatomical depth of S. aureus cutaneous exposure. The bacterial virulence factor PSMα, but not α-toxin or δ-toxin, contributed to the skin inflammation, which was driven by IL-17-producing γδ and CD4+ T cells via direct IL-36R signaling in the T cells. Finally, adoptive transfer of IL-36R-expressing T cells to IL-36R-deficient mice was sufficient for mediating S. aureus-induced skin inflammation. Together, this study defines a previously unknown pathway by which S. aureus epicutaneous exposure promotes skin inflammation involving IL-36R/MyD88-dependent IL-17 T cell responses.
Collapse
Affiliation(s)
- Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alyssa G Ashbaugh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tracy Kao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Steven K Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shuting S Cai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Mark C Marchitto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Emily Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel P Riggins
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | - Roger D Plaut
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Staurengo-Ferrari L, Trevelin SC, Fattori V, Nascimento DC, de Lima KA, Pelayo JS, Figueiredo F, Casagrande R, Fukada SY, Teixeira MM, Cunha TM, Liew FY, Oliveira RD, Louzada-Junior P, Cunha FQ, Alves-Filho JC, Verri WA. Interleukin-33 Receptor (ST2) Deficiency Improves the Outcome of Staphylococcus aureus-Induced Septic Arthritis. Front Immunol 2018; 9:962. [PMID: 29867945 PMCID: PMC5968393 DOI: 10.3389/fimmu.2018.00962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/29/2023] Open
Abstract
The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 μl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (−/−) and interferon-γ (IFN-γ)−/− mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2−/− bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Silvia C Trevelin
- Cardiovascular Division, British Heart Foundation Centre, King's College London, London, United Kingdom.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Fattori
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Daniele C Nascimento
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kalil A de Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jacinta S Pelayo
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Florêncio Figueiredo
- Laboratory of Pathology, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Centre, Londrina State University, Londrina, Brazil
| | - Sandra Y Fukada
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Foo Y Liew
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rene D Oliveira
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
28
|
Helicobacter pylori-induced IL-33 modulates mast cell responses, benefits bacterial growth, and contributes to gastritis. Cell Death Dis 2018; 9:457. [PMID: 29691371 PMCID: PMC5915443 DOI: 10.1038/s41419-018-0493-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Interleukin (IL)-induced inflammatory responses are critical for the pathogenesis of Helicobacter pylori (H. pylori)-induced gastritis. IL-33 represents a recently discovered proinflammatory cytokine involved in inflammatory diseases, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric IL-33 mRNA and protein expression were elevated in gastric mucosa of both patients and mice infected with H. pylori, which is positively correlated with bacterial load and the degree of gastritis. IL-33 production was promoted via extracellular regulated protein kinases (ERK) signaling pathway activation by gastric epithelial cells in a cagA-dependent manner during H. pylori infection, and resulted in increased inflammation and bacteria burden within the gastric mucosa. Gastric epithelial cell-derived IL-33 promoted TNF-α production from mast cells in vitro, and IL-33 increased TNF-α production in vivo. Increased TNF-α inhibited gastric epithelial cell proliferation, conducing to the progress of H. pylori-associated gastritis and bacteria colonization. This study defined a patent regulatory networks involving H. pylori, gastric epithelial cell, IL-33, mast cell, and TNF-α, which jointly play a pathological effect within the gastric circumstances. It may be a valuable strategy to restrain this IL-33-dependent pathway in the treatment of H. pylori-associated gastritis.
Collapse
|
29
|
DaSilva-Arnold SC, Thyagarajan A, Seymour LJ, Yi Q, Bradish JR, Al-Hassani M, Zhou H, Perdue NJ, Nemeth V, Krbanjevic A, Serezani APM, Olson MR, Spandau DF, Travers JB, Kaplan MH, Turner MJ. Phenotyping acute and chronic atopic dermatitis-like lesions in Stat6VT mice identifies a role for IL-33 in disease pathogenesis. Arch Dermatol Res 2018; 310:197-207. [PMID: 29368135 PMCID: PMC6198812 DOI: 10.1007/s00403-018-1807-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
The Stat6VT mouse model of atopic dermatitis (AD) is induced by T-cell-specific expression of a constitutively active form of the protein signal transducer and activator of transcription 6 (STAT6). Although AD-like lesions are known to develop in Stat6VT mice, this study was designed to determine if these mice develop acute and chronic phases of disease similar to humans. To address this, AD-like lesions from Stat6VT mice were harvested at two different timepoints relative to their onset. Lesions harvested within 1 week after development were defined as acute lesions, and those present for 1 month or more were defined as chronic lesions. Acute and chronic AD-like lesions from Stat6VT mice exhibited histologic findings and cytokine expression patterns similar to acute and chronic AD lesions in humans. Further analysis revealed increased levels of interleukin (IL)-33 transcripts in AD-like lesions compared to Stat6VT nonlesional and wild-type skin controls. Immunofluorescence also revealed increased numbers of IL-33+ keratinocytes in Stat6VT lesional skin and localized IL-33+ keratinocytes to a keratin 5+ subset. Furthermore, AD-like disease was more severe in IL-33-deficient Stat6VT mice compared to IL-33-sufficient Stat6VT mice. These studies suggest that Stat6VT mice can serve as a model of acute and chronic AD and that IL-33 may attenuate inflammation in this system.
Collapse
Affiliation(s)
- Sonia C DaSilva-Arnold
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anita Thyagarajan
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Leroy J Seymour
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qiaofang Yi
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joshua R Bradish
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mohammed Al-Hassani
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nikolajs J Perdue
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Val Nemeth
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Aleksandar Krbanjevic
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ana P M Serezani
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew R Olson
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jeffrey B Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
30
|
Wilgus TA. Alerting the body to tissue injury: The role of alarmins and DAMPs in cutaneous wound healing. CURRENT PATHOBIOLOGY REPORTS 2018; 6:55-60. [PMID: 29862143 DOI: 10.1007/s40139-018-0162-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose of review Tissue injury stimulates an inflammatory response that is mediated in part by alarmins. Alarmins are a group of endogenous molecules that trigger inflammation in response to damage. This class of molecules is becoming increasingly recognized for their ability to influence wound healing. This article will provide an overview of alarmins and outline the latest findings on these mediators in cutaneous wound healing. Recent findings In addition to stimulating inflammatory cells, recent evidence suggests that alarmins can act on other cells in the skin to affect wound closure and the extent of scar tissue production. This review will focus on HMGB-1 and IL-33, two alarmins that have received recent attention in the wound healing field. Summary Because a properly regulated inflammatory response is critical for optimal healing, further research must be done to fully understand the role of alarmins in the wound repair process.
Collapse
|
31
|
Novel protective mechanism for interleukin-33 at the mucosal barrier during influenza-associated bacterial superinfection. Mucosal Immunol 2018; 11:199-208. [PMID: 28401938 PMCID: PMC5638662 DOI: 10.1038/mi.2017.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
Abstract
Influenza A is a highly contagious respiratory virus that causes seasonal epidemics and occasional worldwide pandemics. The primary cause of influenza-related mortality is bacterial superinfection. There are numerous mechanisms by which preceding influenza infection attenuates host defense, allowing for increased susceptibility to bacterial pneumonia. Herein, we demonstrate that influenza inhibits Staphylococcus aureus-induced production of interleukin-33 (IL-33). Restoration of IL-33 during influenza A and methicillin-resistant S. aureus superinfection enhanced bacterial clearance and improved mortality. Innate lymphoid Type 2 cells and alternatively activated macrophages are not required for IL-33-mediated protection during superinfection. We show that IL-33 treatment resulted in neutrophil recruitment to the lung, associated with improved bacterial clearance. These findings identify a novel role for IL-33 in antibacterial host defense at the mucosal barrier.
Collapse
|
32
|
Li C, Chen K, Kang H, Yan Y, Liu K, Guo C, Qi J, Yang K, Wang F, Guo L, He C, Deng L. Double-stranded RNA released from damaged articular chondrocytes promotes cartilage degeneration via Toll-like receptor 3-interleukin-33 pathway. Cell Death Dis 2017; 8:e3165. [PMID: 29095435 PMCID: PMC5775407 DOI: 10.1038/cddis.2017.534] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs), including Toll-like receptor 3 (TLR3), are involved in arthritic responses; however, whether interleukin-33 (IL-33) is involved in TLR3-mediated cartilage degeneration is unknown. Here, we found that IL-33 was abundantly increased in chondrocytes of osteoarthritis, especially the chondrocytes of weight-bearing cartilage. Furthermore, double-stranded RNA (dsRNA) released from damaged articular chondrocytes induced by mechanical stretching upregulated IL-33 expression to a greater degree than IL-1β and tumor necrosis factor-α. dsRNA induced IL-33 expression via the TLR3-p38 mitogen-activated protein kinase-nuclear factor-κB (NF-κB) pathway. In addition, formation of the p65 and peroxisome proliferator-activated receptor-γ transcriptional complex was required for dsRNA-induced IL-33 expression. IL-33, in turn, acted on chondrocytes to induce matrix metalloproteinase-1/13 and inhibit type II collagen expression. These findings reveal that dsRNA released from damaged articular chondrocytes promotes cartilage degeneration via the TLR3-IL-33 pathway.
Collapse
Affiliation(s)
- Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China.,Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Hui Kang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Yufei Yan
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China.,Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Kewei Liu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Changjun Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Jin Qi
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Chuan He
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China.,Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| |
Collapse
|
33
|
Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, Martin EL, Zhu N, Woodward EL, Elias MS, Scott J, Reynolds NJ, Paul WE, Fowler DH, Amarnath S. PD-1 regulates KLRG1 + group 2 innate lymphoid cells. J Exp Med 2017; 214:1663-1678. [PMID: 28490441 PMCID: PMC5461001 DOI: 10.1084/jem.20161653] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 11/04/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC-2s) regulate immune responses to pathogens and maintain tissue homeostasis in response to cytokines. Positive regulation of ILC-2s through ICOS has been recently elucidated. We demonstrate here that PD-1 is an important negative regulator of KLRG1+ ILC-2 function in both mice and humans. Increase in KLRG1+ ILC-2 cell numbers was attributed to an intrinsic defect in PD-1 signaling, which resulted in enhanced STAT5 activation. During Nippostrongylus brasiliensis infection, a significant expansion of KLRG1+ ILC-2 subsets occurred in Pdcd1-/- mice and, upon adoptive transfer, Pdcd1-/- KLRG1+ ILC-2s significantly reduced worm burden. Furthermore, blocking PD-1 with an antibody increased KLRG1+ ILC-2 cell number and reduced disease burden. Therefore, PD-1 is required for maintaining the number, and hence function, of KLRG1+ ILC-2s.
Collapse
Affiliation(s)
- Samuel Taylor
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuefeng Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Grace Mallett
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Chaido Stathopoulou
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Tania C Felizardo
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ming-An Sun
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Evelyn L Martin
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Nathaniel Zhu
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Emma L Woodward
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Martina S Elias
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| | - Nick J Reynolds
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK.,Department of Dermatology, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, England, UK
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel H Fowler
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shoba Amarnath
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU, England, UK
| |
Collapse
|
34
|
Oshio T, Komine M, Tsuda H, Tominaga SI, Saito H, Nakae S, Ohtsuki M. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. J Dermatol Sci 2017; 85:106-114. [DOI: 10.1016/j.jdermsci.2016.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
|
35
|
Abstract
Interleukin-33 (IL-33) - a member of the IL-1 family - was originally described as an inducer of type 2 immune responses, activating T helper 2 (TH2) cells and mast cells. Now, evidence is accumulating that IL-33 also potently stimulates group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, TH1 cells, CD8+ T cells and natural killer (NK) cells. This pleiotropic nature is reflected in the role of IL-33 in tissue and metabolic homeostasis, infection, inflammation, cancer and diseases of the central nervous system. In this Review, we highlight the molecular and cellular characteristics of IL-33, together with its major role in health and disease and the potential therapeutic implications of these findings in humans.
Collapse
|
36
|
Cialfi S, Le Pera L, De Blasio C, Mariano G, Palermo R, Zonfrilli A, Uccelletti D, Palleschi C, Biolcati G, Barbieri L, Screpanti I, Talora C. The loss of ATP2C1 impairs the DNA damage response and induces altered skin homeostasis: Consequences for epidermal biology in Hailey-Hailey disease. Sci Rep 2016; 6:31567. [PMID: 27528123 PMCID: PMC4985699 DOI: 10.1038/srep31567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/26/2016] [Indexed: 01/18/2023] Open
Abstract
Mutation of the Golgi Ca(2+)-ATPase ATP2C1 is associated with deregulated calcium homeostasis and altered skin function. ATP2C1 mutations have been identified as having a causative role in Hailey-Hailey disease, an autosomal-dominant skin disorder. Here, we identified ATP2C1 as a crucial regulator of epidermal homeostasis through the regulation of oxidative stress. Upon ATP2C1 inactivation, oxidative stress and Notch1 activation were increased in cultured human keratinocytes. Using RNA-seq experiments, we found that the DNA damage response (DDR) was consistently down-regulated in keratinocytes derived from the lesions of patients with Hailey-Hailey disease. Although oxidative stress activates the DDR, ATP2C1 inactivation down-regulates DDR gene expression. We showed that the DDR response was a major target of oxidative stress-induced Notch1 activation. Here, we show that this activation is functionally important because early Notch1 activation in keratinocytes induces keratinocyte differentiation and represses the DDR. These results indicate that an ATP2C1/NOTCH1 axis might be critical for keratinocyte function and cutaneous homeostasis, suggesting a plausible model for the pathological features of Hailey-Hailey disease.
Collapse
Affiliation(s)
- Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Le Pera
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Carlo De Blasio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Germano Mariano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Azzurra Zonfrilli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome, Rome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology “C. Darwin”; Sapienza University of Rome, Rome, Italy
| | | | - Luca Barbieri
- Porphyria Center, San Gallicano Institute IRCCS, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Italy
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
IL-33-Dependent Group 2 Innate Lymphoid Cells Promote Cutaneous Wound Healing. J Invest Dermatol 2016; 136:487-496. [PMID: 26802241 PMCID: PMC4731037 DOI: 10.1038/jid.2015.406] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Breaches in the skin barrier initiate an inflammatory immune response that is critical for successful wound healing. Innate lymphoid cells (ILCs) are a recently identified population of immune cells that reside at epithelial barrier surfaces such as the skin, lung and gut and promote pro-inflammatory or epithelial repair functions following exposure to allergens, pathogens or chemical irritants. However, the potential role of ILCs in regulating cutaneous wound healing remains undefined. Here, we demonstrate that cutaneous injury promotes an IL-33-dependent group 2 ILC (ILC2) response and that abrogation of this response impairs re-epithelialization and efficient wound closure. Additionally, we provide evidence suggesting that an analogous ILC2 response is operational in acute wounds of human skin. Together, these results indicate that IL-33-responsive ILC2s are an important link between the cutaneous epithelium and the immune system, acting to promote the restoration of skin integrity following injury.
Collapse
|
38
|
Hardman C, Ogg G. Interleukin-33, friend and foe in type-2 immune responses. Curr Opin Immunol 2016; 42:16-24. [PMID: 27254379 DOI: 10.1016/j.coi.2016.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
IL-33 is the most recent addition to the IL-1 cytokine family, identified in 2005 as the ligand of T1/ST2 and inducer of type-2 immune responses. IL-33 has been implicated in a wide range of disease settings, in anti-inflammatory responses and homeostasis, and thus signalling must be strictly regulated. Altered gene expression, post-translational modification, decoy receptor, and receptor signalling are all modulatory mechanisms used to control the IL-33 pathway. Understanding both the genetic and post-translational factors influencing IL-33 activity will be critical for provision of safe effective treatment of type-2 disorders.
Collapse
Affiliation(s)
- Clare Hardman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Graham Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
39
|
Shan J, Oshima T, Wu L, Fukui H, Watari J, Miwa H. Interferon γ-Induced Nuclear Interleukin-33 Potentiates the Release of Esophageal Epithelial Derived Cytokines. PLoS One 2016; 11:e0151701. [PMID: 26986625 PMCID: PMC4795790 DOI: 10.1371/journal.pone.0151701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Esophageal epithelial cells are an initiating cell type in esophageal inflammation, playing an essential role in the pathogenesis of gastroesophageal reflux disease (GERD). A new tissue-derived cytokine, interleukin-33 (IL-33), has been shown to be upregulated in esophageal epithelial cell nuclei in GERD, taking part in mucosal inflammation. Here, inflammatory cytokines secreted by esophageal epithelial cells, and their regulation by IL-33, were investigated. Methods In an in vitro stratified squamous epithelial model, IL-33 expression was examined using quantitative RT-PCR, western blot, ELISA, and immunofluorescence. Epithelial cell secreted inflammatory cytokines were examined using multiplex flow immunoassay. IL-33 was knocked down with small interfering RNA (siRNA) in normal human esophageal epithelial cells (HEECs). Pharmacological inhibitors and signal transducers and activators of transcription 1 (STAT1) siRNA were used to explore the signaling pathways. Results Interferon (IFN)γ treatment upregulated nuclear IL-33 in HEECs. Furthermore, HEECs can produce various inflammatory cytokines, such as IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), regulated on activation normal T-cell expressed and presumably secreted (RANTES), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in response to IFNγ. Nuclear, but not exogenous IL-33, amplified IFN induction of these cytokines. P38 mitogen-activated protein kinase (MAPK) and janus protein tyrosine kinases (JAK)/STAT1 were the common signaling pathways of IFNγ-mediated induction of IL-33 and other cytokines. Conclusions Esophageal epithelial cells can actively participate in GERD pathogenesis through the production of various cytokines, and epithelial-derived IL-33 might play a central role in the production of these cytokines.
Collapse
Affiliation(s)
- Jing Shan
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- * E-mail:
| | - Liping Wu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
40
|
Potential Therapeutic Aspects of Alarmin Cytokine Interleukin 33 or Its Inhibitors in Various Diseases. Clin Ther 2016; 38:1000-1016.e1. [PMID: 26992663 DOI: 10.1016/j.clinthera.2016.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this review was to examine the comprehensively accumulated data regarding potential therapeutic aspects of exogenous administration of interleukin 33 (IL-33) or its antagonists in allergic, cancerous, infectious, and inflammatory diseases. METHODS A selected review was undertaken of publications that examined the protective and exacerbating effects of IL-33 or its inhibitors in different diseases. Mechanisms of action are summarized to examine the putative role of IL-33 in various diseases. FINDINGS IL-33 promoted antibacterial, antiviral, anti-inflammatory, and vaccine adjuvant functions. However, in TH2-biased respiratory, allergic, parasitic, and inflammatory conditions, IL-33 exhibited disease-sensitizing effects. The alarmin cytokine IL-33 induced protective effects in diseases via recruitment of regulatory T cells; antiviral CD8(+) cells, natural killer cells, γδ T cells, and nuocytes; antibacterial and antifungal neutrophils or macrophages; vaccine-associated B/T cells; and inhibition of nuclear factor-κB-mediated gene transcription. In contrast, IL-33 exacerbated the disease process by increasing TH2 cytokines, IgE and eosinophilic immune responses, and inhibition of leukocyte recruitment in various diseases. IMPLICATIONS The protective or exacerbated aspects of use of IL-33 or its inhibitors are dependent on the type of infection or inflammatory condition, duration of disease (acute or chronic), organ involved, cytokine microenvironment, dose or kinetics of IL-33, and genetic predisposition. The alarmin cytokine IL-33 acts at cellular, molecular, and transcriptional levels to mediate pluripotent functions in various diseases and has potential therapeutic value to mitigate the disease process.
Collapse
|
41
|
Ruiz-Castilla M, Roca O, Masclans JR, Barret JP. Recent Advances in Biomarkers in Severe Burns. Shock 2016; 45:117-25. [DOI: 10.1097/shk.0000000000000497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Esser-von Bieren J, Volpe B, Sutherland DB, Bürgi J, Verbeek JS, Marsland BJ, Urban JF, Harris NL. Immune antibodies and helminth products drive CXCR2-dependent macrophage-myofibroblast crosstalk to promote intestinal repair. PLoS Pathog 2015; 11:e1004778. [PMID: 25806513 PMCID: PMC4373753 DOI: 10.1371/journal.ppat.1004778] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing. To complete their lifecycles, helminth parasites have to migrate through tissues such as the skin, lung, liver and intestine. This migration causes severe tissue damage, resulting in the need for rapid repair to restore the integrity and function of damaged tissues. Protective type 2 immune responses against helminths can repair acute lung damage, but they can also promote liver fibrosis. However, how protective immune mechanisms might contribute to wound healing during enteric nematode infection has remained unclear. Here we show that during a protective antibody response, where helminth larvae are trapped in the intestinal mucosa, macrophages and myofibroblasts secrete chemokines, which promote the repair of helminth-caused lesions. Chemokine secretion by macrophages was triggered by antibodies and helminth products, whilst myofibroblasts produced chemokines directly in response to innate recognition of helminth products. The same chemokines that instructed intestinal repair in mice were also secreted by human macrophages, when co-cultured with immune serum and helminths. Finally, human myofibroblasts closed in vitro scratch wounds more rapidly, when stimulated with the chemokine secretions of helminth-antibody activated human macrophages. Thus, our findings reveal a novel mechanism, by which a protective antibody response can promote the repair of intestinal injury during helminth infection.
Collapse
Affiliation(s)
- Julia Esser-von Bieren
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Center of Allergy and Environment (ZAUM), member of the German Center for Lung Research (DZL), Technische Universität and Helmholtz Center Munich, Munich, Germany
| | - Beatrice Volpe
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Duncan B. Sutherland
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| | - Jérôme Bürgi
- Laboratory of Cell and Membrane Biology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin J. Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Joseph F. Urban
- Diet, Genomics, & Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Nicola L. Harris
- Laboratory of Intestinal Immunology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
43
|
Lott JM, Sumpter TL, Turnquist HR. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol 2015; 97:1037-48. [DOI: 10.1189/jlb.3ri1214-595r] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
|
44
|
Crucial and diverse role of the interleukin-33/ST2 axis in infectious diseases. Infect Immun 2015; 83:1738-48. [PMID: 25712928 DOI: 10.1128/iai.02908-14] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Interleukin-33 (IL-33) has now emerged as a cytokine with diverse and pleiotropic functions in various infectious and inflammatory diseases. IL-33 is expressed by epithelial cells, endothelial cells, fibroblasts, and hepatocytes. The target cells of IL-33 are Th2 cells, basophils, dendritic cells, mast cells, macrophages, NKT cells, and nuocytes, newly discovered natural helper cells/innate lymphoid cells bearing the ST2 receptor. IL-33 has dual functions, both as a traditional cytokine and as a nuclear factor that regulates gene transcription. IL-33 functions as an "alarmin" released following cell death, as a biomarker, and as a vaccine adjuvant, with proinflammatory and protective effects during various infections. The exacerbated or protective role of the IL-33/ST2 axis during different infections is dependent upon the organ involved, type of infectious agent, whether the infection is acute or chronic, the invasiveness of the infectious agent, the host immune compartment, and cellular and cytokine microenvironments. In this review, we focus on recent advances in the understanding of the role of the IL-33/ST2 axis in various viral, bacterial, fungal, helminth, and protozoal infectious diseases gained from animal models and studies in human patients. The functional role of IL-33 and ST2 during experimentally induced infections has been summarized by accumulating the data for IL-33- and ST2-deficient mice or for mice exogenously administered IL-33. In summary, exploring the crucial and diverse roles of the IL-33/ST2 axis during infections may help in the development of therapeutic interventions for a wide range of infectious diseases.
Collapse
|
45
|
Li C, Li H, Jiang Z, Zhang T, Wang Y, Li Z, Wu Y, Ji S, Xiao S, Ryffel B, Radek KA, Xia Z, Lai Y. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathog 2014; 10:e1003918. [PMID: 24586149 PMCID: PMC3930573 DOI: 10.1371/journal.ppat.1003918] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/22/2013] [Indexed: 01/09/2023] Open
Abstract
Interleukin-33 (IL-33) is associated with multiple diseases, including asthma, rheumatoid arthritis, tissue injuries and infections. Although IL-33 has been indicated to be involved in Staphylococcus aureus (S. aureus) wound infection, little is known about how IL-33 is regulated as a mechanism to increase host defense against skin bacterial infections. To explore the underlying intricate mechanism we first evaluated the expression of IL-33 in skin from S. aureus-infected human patients. Compared to normal controls, IL-33 was abundantly increased in skin of S. aureus-infected patients. We next developed a S. aureus cutaneous infection mouse model and found that IL-33 was significantly increased in dermal macrophages of infected mouse skin. The expression of IL-33 by macrophages was induced by staphylococcal peptidoglycan (PGN) and lipoteichoic acid (LTA) via activation of toll-like receptor 2(TLR2)-mitogen-activated protein kinase (MAPK)-AKT-signal transducer and activator of transcription 3(STAT3) signaling pathway as PGN and LTA failed to induce IL-33 in Tlr2-deficient peritoneal macrophages, and MAPK,AKT, STAT3 inhibitors significantly decreased PGN- or LTA-induced IL-33. IL-33, in turn, acted on macrophages to induce microbicidal nitric oxygen (NO) release. This induction was dependent on inducible nitric oxide synthase (iNOS) activation, as treatment of macrophages with an inhibitor of iNOS, aminoguanidine, significantly decreased IL-33-induced NO release. Moreover, aminoguanidine significantly blocked the capacity of IL-33 to inhibit the growth of S. aureus, and IL-33 silencing in macrophages significantly increased the survival of S. aureus in macrophages. Furthermore, the administration of IL-33-neutralizing antibody into mouse skin decreased iNOS production but increased the survival of S. aureus in skin. These findings reveal that IL-33 can promote antimicrobial capacity of dermal macrophages, thus enhancing antimicrobial defense against skin bacterial infections.
Collapse
Affiliation(s)
- Changwei Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongquan Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ziwei Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Tian Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yue Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhiheng Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yelin Wu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shizhao Ji
- Burn Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shichu Xiao
- Burn Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | - Katherine A. Radek
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois, United States of America
| | - Zhaofan Xia
- Burn Institute of Chinese PLA and Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (ZX); (YL)
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- * E-mail: (ZX); (YL)
| |
Collapse
|