1
|
Debnath N, Yadav P, Mehta PK, Gupta P, Kumar D, Kumar A, Gautam V, Yadav AK. Designer probiotics: Opening the new horizon in diagnosis and prevention of human diseases. Biotechnol Bioeng 2024; 121:100-117. [PMID: 37881101 DOI: 10.1002/bit.28574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Probiotic microorganisms have been used for therapeutic purposes for over a century, and recent advances in biotechnology and genetic engineering have opened up new possibilities for developing therapeutic approaches using indigenous probiotic microorganisms. Diseases are often related to metabolic and immunological factors, which play a critical role in their onset. With the help of advanced genetic tools, probiotics can be modified to produce or secrete important therapeutic peptides directly into mucosal sites, increasing their effectiveness. One potential approach to enhancing human health is through the use of designer probiotics, which possess immunogenic characteristics. These genetically engineered probiotics hold promise in providing novel therapeutic options. In addition to their immunogenic properties, designer probiotics can also be equipped with sensors and genetic circuits, enabling them to detect a range of diseases with remarkable precision. Such capabilities may significantly advance disease diagnosis and management. Furthermore, designer probiotics have the potential to be used in diagnostic applications, offering a less invasive and more cost-effective alternative to conventional diagnostic techniques. This review offers an overview of the different functional aspects of the designer probiotics and their effectiveness on different diseases and also, we have emphasized their limitations and future implications. A comprehensive understanding of these functional attributes may pave the way for new avenues of prevention and the development of effective therapies for a range of diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen K Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok K Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
2
|
Zelaya H, Arellano-Arriagada L, Fukuyama K, Matsumoto K, Marranzino G, Namai F, Salva S, Alvarez S, Agüero G, Kitazawa H, Villena J. Lacticaseibacillus rhamnosus CRL1505 Peptidoglycan Modulates the Inflammation-Coagulation Response Triggered by Poly(I:C) in the Respiratory Tract. Int J Mol Sci 2023; 24:16907. [PMID: 38069229 PMCID: PMC10707514 DOI: 10.3390/ijms242316907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Kaho Matsumoto
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| | - Gabriela Marranzino
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucuman 4000, Argentina
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Susana Alvarez
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
| | - Graciela Agüero
- Institute of Applied Biochemistry, Tucuman University, Tucuman 4000, Argentina; (H.Z.); (S.A.); (G.A.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (L.A.-A.); (G.M.); (S.S.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (K.F.); (K.M.); (F.N.)
| |
Collapse
|
3
|
Pramanik S, Venkatraman S, Karthik P, Vaidyanathan VK. A systematic review on selection characterization and implementation of probiotics in human health. Food Sci Biotechnol 2023; 32:423-440. [PMID: 36911328 PMCID: PMC9992678 DOI: 10.1007/s10068-022-01210-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 01/12/2023] Open
Abstract
Probiotics are live bacteria found in food that assist the body's defence mechanisms against pathogens by reconciling the gut microbiota. Probiotics are believed to aid with gut health, the immune system, and brain function, among other factors. They've furthermore been shown to help with constipation, high blood pressure, and skin issues. The global probiotics market has been incrementally growing in recent years, as consumers' demand for healthy diets and wellness has continued to increase. This has prompted the food industry to develop new probiotic-containing food products, as well as researchers to explore their specific characteristics and impacts on human health. Although most probiotics are fastidious microorganisms that are nutritionally demanding and sensitive to environmental conditions, they become less viable as they are processed and stored. In this review we studied the current literature on the fundamental idea of probiotic bacteria, their medical benefits, and their selection, characterization, and implementations. Graphical Abstract
Collapse
Affiliation(s)
- Shreyasi Pramanik
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Swethaa Venkatraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| | - Pothiyappan Karthik
- Department of Food Biotechnology, Karpagam Academic of Higher Education, Coimbatore, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India
| |
Collapse
|
4
|
The Mucus Binding Factor Is Not Necessary for Lacticaseibacillus rhamnosus CRL1505 to Exert Its Immunomodulatory Activities in Local and Distal Mucosal Sites. Int J Mol Sci 2022; 23:ijms232214357. [PMID: 36430834 PMCID: PMC9698997 DOI: 10.3390/ijms232214357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Both viable and non-viable orally administered Lacticaseibacillus rhamnosus CRL1505 modulate immunity in local (intestine) and distal (respiratory) mucosal sites. So, intestinal adhesion and colonization are not necessary for this probiotic strain to exert its immunomodulatory effects. In this work, a mucus-binding factor knockout CRL1505 strain (ΔmbfCRL1505) was obtained and the lack of binding ability to both intestinal epithelial cells and mucin was demonstrated in vitro. In addition, two sets of in vivo experiments in 6-week-old Balb/c mice were performed to evaluate ΔmbfCRL1505 immunomodulatory activities. (A) Orally administered ΔmbfCRL1505 prior to intraperitoneal injection of the Toll-like receptor 3 (TLR3) agonist poly(I:C) significantly reduced intraepithelial lymphocytes (CD3+NK1.1+CD8αα+) and pro-inflammatory mediators (TNF-α, IL-6 and IL-15) in the intestinal mucosa. (B) Orally administered ΔmbfCRL1505 prior to nasal stimulation with poly(I:C) significantly decreased the levels of the biochemical markers of lung tissue damage. In addition, reduced recruitment of neutrophils and levels of pro-inflammatory mediators (TNF-α, IL-6 and IL-8) as well as increased IFN-β and IFN-γ in the respiratory mucosa were observed in ΔmbfCRL1505-treated mice when compared to untreated control mice. The immunological changes induced by the ΔmbfCRL1505 strain were not different from those observed for the wild-type CRL1505 strain. Although it is generally accepted that the expression of adhesion factors is necessary for immunobiotics to induce their beneficial effects, it was demonstrated here that the mbf protein is not required for L. rhamnosus CRL1505 to exert its immunomodulatory activities in local and distal mucosal sites. These results are a step forward towards understanding the mechanisms involved in the immunomodulatory capabilities of L. rhamnosus CRL1505.
Collapse
|
5
|
Brahma S, Naik A, Lordan R. Probiotics: A gut response to the COVID-19 pandemic but what does the evidence show? Clin Nutr ESPEN 2022; 51:17-27. [PMID: 36184201 PMCID: PMC9393107 DOI: 10.1016/j.clnesp.2022.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), research has focused on understanding the etiology of coronavirus disease 2019 (COVID-19). Identifying and developing prophylactic and therapeutics strategies to manage the pandemic is still of critical importance. Among potential targets, the role of the gut and lung microbiomes in COVID-19 has been questioned. Consequently, probiotics were touted as potential prophylactics and therapeutics for COVID-19. In this review we highlight the role of the gut and lung microbiome in COVID-19 and potential mechanisms of action of probiotics. We also discuss the progress of ongoing clinical trials for COVID-19 that aim to modulate the microbiome using probiotics in an effort to develop prophylactic and therapeutic strategies. To date, despite the large interest in this area of research, there is promising but limited evidence to suggest that probiotics are an effective prophylactic or treatment strategy for COVID-19. However, the role of the microbiome in pathogenesis and as a potential target for therapeutics of COVID-19 cannot be discounted.
Collapse
Affiliation(s)
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronan Lordan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Effects of different probiotic strains B. lactis, L. rhamnosus and L. reuteri on brain-intestinal axis immunomodulation in an endotoxin-induced inflammation. Mol Neurobiol 2022; 59:5168-5178. [PMID: 35674863 DOI: 10.1007/s12035-022-02906-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
The study evaluated the effects of supplementation with three different probiotic strains Bifidobacterium lactis (LACT GB™), Lactobacillus rhamnosus (RHAM GB™) and Lactobacillus reuteri (REUT GB™) on brain-intestinal immunomodulation in an animal model of LPS-induced inflammation. Fifty mice Balb/C were distributed into five groups: control; lipopolysaccharide (LPS); LPS + B. lactis (LACT GB™); LPS + L. rhamnosus (RHAM GB™); and LPS + L. reuteri (REUT GB™). The animals were supplemented with their respective probiotic microorganisms daily, for 30 days, at a concentration of 1 × 109 CFU/animal/day. After 30 days of supplementation, animals received the inflammatory insult by LPS (15 mg/kg). Behavioral tests, oxidative stress and inflammation were performed, as well as gut and brain histology. In the behavioral test, LPS + B. lactis group was less anxious than the other groups. Serum interleukin IL-1β and IL-6 levels increased in all groups that received the LPS insult, and there was a reduction in inflammation in the supplemented groups when compared to the LPS group in brain and gut. There is a reduction in myeloperoxidase activity and oxidative stress in groups supplemented with probiotics. In intestine histological analysis occurs damage to the tissue integrity in the LPS group, in the other hand, occurs preservation of integrity in the probiotic supplemented animals. In the brain, infiltrates of perivascular inflammatory cells can be seen in the LPS group. The three probiotic studies showed efficient immunomodulating activity and ensured integrity of the intestinal barrier function, even after the severe insult by LPS. These results show the important role of probiotics in the gut-brain axis. Graphical abstract illustratively represents the gut-brain axis and how different probiotic strains influence the immunomodulatory response releasing different pro- and anti-inflammatory cytokines, and their role in the balance of dysbiosis.
Collapse
|
7
|
Mårtensson A, Nordström F, Cervin-Hoberg C, Lindstedt M, Sakellariou C, Cervin A, Greiff L. Nasal administration of a probiotic assemblage in allergic rhinitis: a placebo-controlled crossover experimental study. Clin Exp Allergy 2022; 52:774-783. [PMID: 35075723 PMCID: PMC9314659 DOI: 10.1111/cea.14098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Topical probiotics have been suggested as a treatment option for allergic rhinitis, as they may skew the immune response towards a beneficial type-1 non-allergic profile. So far observations in man have exclusively involved oral intake. The aim of this study was to examine if a topical/nasal administration of a probiotic assemblage (PA) affects quality of life, symptoms, and signs of allergic rhinitis in a nasal allergen challenge (NAC) model. METHODS In a placebo-controlled and crossover design, 24 patients with seasonal allergic rhinitis were subjected to topical/nasal administration with a PA of Lactobacillus rhamnosus SP1, Lactobacillus paracasei 101/37, and Lactococcus lactis L1A for three weeks. The last week of each treatment period was combined with a NAC-series. Efficacy variables were "Mini-Rhinoconjunctivitis Quality of Life Questionnaire" (Mini-RQLQ), "Total Nasal Symptom Score" (TNSS), "Peak Nasal Inspiratory Flow" (PNIF), and "Fractional Exhaled Nitric Oxide" (FeNO). In addition, to assess whether or not the PA produced any pro-inflammatory effect per se, soluble analytes were monitored in nasal lavage fluids. Finally, bacterial cultures, sampled using swabs from the middle nasal meatus, were assessed for presence of the PA by MALDI-TOF analysis. RESULTS Administration of the PA did not produce any nasal symptoms (cf. placebo). An innate response was discerned within the PA-run (cf. baseline), but no change in nasal lavage fluid levels of cytokines/mediators were observed cf. placebo except for IL-17/IL-17A (a minor increase in the PA run). Administration of the PA did neither affect Mini-RQLQ, TNSS, PNIF, nor FeNO. No evidence of persistent colonization was observed. CONCLUSION Topical/nasal administration of a PA comprising Lactobacillus rhamnosus SP1, Lactobacillus paracasei 101/37, Lactococcus lactis L1A, while likely evoking a minor innate immune response yet being safe, does not affect quality of life, symptoms, or signs of allergic rhinitis.
Collapse
Affiliation(s)
- Anders Mårtensson
- Department of ORL, Head and Neck Surgery, Helsingborg Hospital, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Franziska Nordström
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of ORL, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Charlotte Cervin-Hoberg
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of ORL, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | - Anders Cervin
- Department of ORL, Royal Brisbane & Women's Hospital, University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of ORL, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Wang Y, Dong J, Wang J, Chi W, Zhou W, Tian Q, Hong Y, Zhou X, Ye H, Tian X, Hu R, Wong A. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol 2022; 14:2019992. [PMID: 35024089 PMCID: PMC8745366 DOI: 10.1080/20002297.2021.2019992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Probiotic lozenges have been developed to harvest the benefits of probiotics for oral health, but their long-term consumption may encourage the transfer of resistance genes from probiotics to commensals, and eventually to disease-causing bacteria. Aim To screen commercial probiotic lozenges for resistance to antibiotics, characterize the resistance determinants, and examine their transferability in vitro. Results Probiotics of all lozenges were resistant to glycopeptide, sulfonamide, and penicillin antibiotics, while some were resistant to aminoglycosides and cephalosporins. High minimum inhibitory concentrations (MICs) were detected for streptomycin (>128 µg/mL) and chloramphenicol (> 512 µg/mL) for all probiotics but only one was resistant to piperacillin (MIC = 32 µg/mL). PCR analysis detected erythromycin (erm(T), ermB or mefA) and fluoroquinolone (parC or gyr(A)) resistance genes in some lozenges although there were no resistant phenotypes. The dfrD, cat-TC, vatE, aadE, vanX, and aph(3")-III or ant(2")-I genes conferring resistance to trimethoprim, chloramphenicol, quinupristin/dalfopristin, vancomycin, and streptomycin, respectively, were detected in resistant probiotics. The rifampicin resistance gene rpoB was also present. We found no conjugal transfer of streptomycin resistance genes in our co-incubation experiments. Conclusion Our study represents the first antibiotic resistance profiling of probiotics from oral lozenges, thus highlighting the health risk especially in the prevailing threat of drug resistance globally.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Jingya Dong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Qiwen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yue Hong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Hailv Ye
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, University Town, Wenzhou, Zhejiang Province, China
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.,Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Wang H, Wang H, Sun Y, Ren Z, Zhu W, Li A, Cui G. Potential Associations Between Microbiome and COVID-19. Front Med (Lausanne) 2022; 8:785496. [PMID: 35004750 PMCID: PMC8727742 DOI: 10.3389/fmed.2021.785496] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has plunged the world into a major crisis. The disease is characterized by strong infectivity, high morbidity, and high mortality. It is still spreading in some countries. Microbiota and their metabolites affect human physiological health and diseases by participating in host digestion and nutrition, promoting metabolic function, and regulating the immune system. Studies have shown that human microecology is associated with many diseases, including COVID-19. In this research, we first reviewed the microbial characteristics of COVID-19 from the aspects of gut microbiome, lung microbime, and oral microbiome. We found that significant changes take place in both the gut microbiome and airway microbiome in patients with COVID-19 and are characterized by an increase in conditional pathogenic bacteria and a decrease in beneficial bacteria. Then, we summarized the possible microecological mechanisms involved in the progression of COVID-19. Intestinal microecological disorders in individuals may be involved in the occurrence and development of COVID-19 in the host through interaction with ACE2, mitochondria, and the lung-gut axis. In addition, fecal bacteria transplantation (FMT), prebiotics, and probiotics may play a positive role in the treatment of COVID-19 and reduce the fatal consequences of the disease.
Collapse
Affiliation(s)
- Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Zhengzhou, China.,Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Sharma S, Singh A, Sharma S, Kant A, Sevda S, Taherzadeh MJ, Garlapati VK. Functional foods as a formulation ingredients in beverages: technological advancements and constraints. Bioengineered 2021; 12:11055-11075. [PMID: 34783642 PMCID: PMC8810194 DOI: 10.1080/21655979.2021.2005992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
As a consequence of expanded science and technical research, the market perception of consumers has shifted from standard traditional to valuable foods, which are furthermore nutritional as well as healthier in today's world. This food concept, precisely referred to as functional, focuses on including probiotics, which enhance immune system activity, cognitive response, and overall health. This review primarily focuses on functional foods as functional additives in beverages and other food items that can regulate the human immune system and avert any possibility of contracting the infection. Many safety concerns must be resolved during their administration. Functional foods must have an adequate amount of specific probiotic strain(s) during their use and storage, as good viability is needed for optimum functionality of the probiotic. Thus, when developing novel functional food-based formulations, choosing a strain with strong technological properties is crucial. The present review focused on probiotics as an active ingredient in different beverage formulations and the exerting mechanism of action and fate of probiotics in the human body. Moreover, a comprehensive overview of the regulative and safety issues of probiotics-based foods and beverages formulations.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Astha Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Swati Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | | | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
11
|
Shi HY, Zhu X, Li WL, Mak JWY, Wong SH, Zhu ST, Guo SL, Chan FKL, Zhang ST, Ng SC. Modulation of gut microbiota protects against viral respiratory tract infections: a systematic review of animal and clinical studies. Eur J Nutr 2021; 60:4151-4174. [PMID: 33852069 PMCID: PMC8044287 DOI: 10.1007/s00394-021-02519-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Earlier studies suggest that probiotics have protective effects in the prevention of respiratory tract infections (RTIs). Whether such benefits apply to RTIs of viral origin and mechanisms supporting the effect remain unclear. AIM To determine the role of gut microbiota modulation on clinical and laboratory outcomes of viral RTIs. METHODS We conducted a systematic review of articles published in Embase and MEDLINE through 20 April 2020 to identify studies reporting the effect of gut microbiota modulation on viral RTIs in clinical studies and animal models. The incidence of viral RTIs, clinical manifestations, viral load and immunological outcomes was evaluated. RESULTS We included 58 studies (9 randomized controlled trials; 49 animal studies). Six of eight clinical trials consisting of 726 patients showed that probiotics administration was associated with a reduced risk of viral RTIs. Most commonly used probiotics were Lactobacillus followed by Bifidobacterium and Lactococcus. In animal models, treatment with probiotics before viral challenge had beneficial effects against influenza virus infection by improving infection-induced survival (20/22 studies), mitigating symptoms (21/21 studies) and decreasing viral load (23/25 studies). Probiotics and commensal gut microbiota exerted their beneficial effects through strengthening host immunity. CONCLUSION Modulation of gut microbiota represents a promising approach against viral RTIs via host innate and adaptive immunity regulation. Further research should focus on next generation probiotics specific to viral types in prevention and treatment of emerging viral RTIs.
Collapse
Affiliation(s)
- Hai Yun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Xi Zhu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Lin Li
- Department of Medicine, Division of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joyce W Y Mak
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheng Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Shui Long Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Francis K L Chan
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiota I-Center (MagIC) Limited, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Siew C Ng
- Department of Medicine and Therapeutics, State Key Laboratory for Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Microbiota I-Center (MagIC) Limited, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Correa Deza MA, Rodríguez de Olmos A, Suárez NE, Font de Valdez G, Salva S, Gerez CL. Inorganic polyphosphate from the immunobiotic Lactobacillus rhamnosus CRL1505 prevents inflammatory response in the respiratory tract. Saudi J Biol Sci 2021; 28:5684-5692. [PMID: 34588880 PMCID: PMC8459082 DOI: 10.1016/j.sjbs.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Lactobacillus (L.) rhamnosus CRL1505 accumulates inorganic polyphosphate (polyP) in its cytoplasm in response to environmental stress. The aim of this study was to evaluate the potential effects of polyP from the immunobiotic CRL1505 on an acute respiratory inflammation murine animal model induced by lipopolysaccharide (LPS). First, the presence of polyP granules in the cytoplasm of CRL1505 strain was evidenced by specific staining. Then, it was demonstrated in the intracellular extracts (ICE) of CRL1505 that polyP chain length is greater than 45 phosphate residues. In addition, the functionality of the genes involved in the polyP metabolism (ppk, ppx1 and ppx2) was corroborated by RT-PCR. Finally, the possible effect of the ICE of CRL1505 strain containing polyP and a synthetic polyP was evaluated in vivo using a murine model of acute lung inflammation. It was observed that the level of cytokines pro-inflammatory (IL-17, IL-6, IL-2, IL-4, INF-γ) in serum was normalized in mice treated with ICE, which would indicate that polyP prevents the local inflammatory response in the respiratory tract. The potential application of ICE from L. rhamnosus CRL1505 as a novel bioproduct for the treatment of respiratory diseases is one of the projections of this work.
Collapse
Affiliation(s)
- María A Correa Deza
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Antonieta Rodríguez de Olmos
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Nadia E Suárez
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Font de Valdez
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Susana Salva
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Carla L Gerez
- Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
13
|
Cruz CS, Ricci MF, Vieira AT. Gut Microbiota Modulation as a Potential Target for the Treatment of Lung Infections. Front Pharmacol 2021; 12:724033. [PMID: 34557097 PMCID: PMC8453009 DOI: 10.3389/fphar.2021.724033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal and respiratory systems are colonized by a complex ecosystem of microorganisms called the microbiota. These microorganisms co-evolved over millions of years with the host, creating a symbiotic relationship that is fundamental for promoting host homeostasis by producing bioactive metabolites and antimicrobial molecules, and regulating the immune and inflammatory responses. Imbalance in the abundance, diversity, and function of the gut microbiota (known as dysbiosis) have been shown to increase host susceptibility to infections in the lungs, suggesting crosstalk between these organs. This crosstalk is now referred to as the gut-lung axis. Hence, the use of probiotics, prebiotics, and synbiotics for modulation of gut microbiota has been studied based on their effectiveness in reducing the duration and severity of respiratory tract infections, mainly owing to their effects on preventing pathogen colonization and modulating the immune system. This review discusses the role and responses of probiotics, prebiotics, and synbiotics in the gut-lung axis in the face of lung infections.
Collapse
Affiliation(s)
- Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mayra Fernanda Ricci
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation (LMI), Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals under Investigation for COVID-19 Prevention and Treatment. mSystems 2021; 6:e00122-21. [PMID: 33947804 PMCID: PMC8269209 DOI: 10.1128/msystems.00122-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents may reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products may help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with a greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.IMPORTANCE Sales of dietary supplements and nutraceuticals have increased during the pandemic due to their perceived "immune-boosting" effects. However, little is known about the efficacy of these dietary supplements and nutraceuticals against the novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) or the disease that it causes, CoV disease 2019 (COVID-19). This review provides a critical overview of the potential prophylactic and therapeutic value of various dietary supplements and nutraceuticals from the evidence available to date. These include vitamin C, vitamin D, and zinc, which are often perceived by the public as treating respiratory infections or supporting immune health. Consumers need to be aware of misinformation and false promises surrounding some supplements, which may be subject to limited regulation by authorities. However, considerably more research is required to determine whether dietary supplements and nutraceuticals exhibit prophylactic and therapeutic value against SARS-CoV-2 infection and COVID-19. This review provides perspective on which nutraceuticals and supplements are involved in biological processes that are relevant to recovery from or prevention of COVID-19.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021; 9:683. [PMID: 33810287 PMCID: PMC8067309 DOI: 10.3390/microorganisms9040683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Laboratory of Immunobiotechnology, Tucuman CP4000, Argentina
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China;
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Livestock Immunology Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
16
|
Singh K, Rao A. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutr Res 2021; 87:1-12. [PMID: 33592454 PMCID: PMC7881295 DOI: 10.1016/j.nutres.2020.12.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 caused by SARS-CoV-2 is an ongoing global pandemic. SARS-CoV-2 affects the human respiratory tract's epithelial cells, leading to a proinflammatory cytokine storm and chronic lung inflammation. With numerous patients dying daily, a vaccine and specific antiviral drug regimens are being explored. Probiotics are live microorganisms with proven beneficial effects on human health. While probiotics as nutritional supplements are long practiced in different cuisines across various countries, the emerging scientific evidence supports the antiviral and general immune-strengthening health effects of the probiotics. Here, we present an overview of the experimental studies published in the last 10 years that provide a scientific basis for unexplored probiotics as a preventive approach to respiratory viral infections. Based on collated insights from these experimental data, we identify promising microbial strains that may serve as lead prophylactic and immune-boosting probiotics in COVID-19 management.
Collapse
Affiliation(s)
- Kuljit Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036 India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036 India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India.
| |
Collapse
|
17
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, Sobarzo-Sanchez E, Bungau S. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci 2021; 273:119311. [PMID: 33662428 DOI: 10.1016/j.lfs.2021.119311] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is the most prevalent metabolic disorder characterized by hyperglycemia, hyperlipidemia as well as insulin resistance and is affecting the lives of a huge population across the globe. Genetic mutations, obesity and lack of physical activity constitute the possible factors that can lead to onset and progression of this disorder. However, there is another major factor that can be the root cause of type 2 diabetes mellitus and that is an imbalance in the microorganisms that inhabit the gut. The gut microbiome is a vital component that needs to be given significant attention because any "dysbiosis" in the colonic microorganisms can transform the host from a state of health to a state of disease. This transformation is quite obvious since the gut barrier integrity, host metabolism such as sensitivity to insulin and maintaining blood glucose level are carried out by the tiny organisms inhabiting our intestine. In fact, the normal functioning of the human body is accredited to the microbes, particularly the bacteria, because they generate their metabolites that communicate with host cells and maintain normal physiology. Giving importance to gut health is, therefore, necessary to prevent metabolic diseases that can be maintained by the intake of prebiotics, probiotics, synbiotics along with healthy diet. The tiny microorganisms in the gut that keep our body free of disorders such as type 2 diabetes mellitus need to be in a state of 'eubiosis', else the consequences of disturbance in gut microbes can progress to serious complications in the host.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eduardo Sobarzo-Sanchez
- Instituto de investigacion y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|
18
|
Lordan R, Rando HM, Greene CS. Dietary Supplements and Nutraceuticals Under Investigation for COVID-19 Prevention and Treatment. ARXIV 2021:arXiv:2102.02250v1. [PMID: 33564696 PMCID: PMC7872359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has caused global disruption and a significant loss of life. Existing treatments that can be repurposed as prophylactic and therapeutic agents could reduce the pandemic's devastation. Emerging evidence of potential applications in other therapeutic contexts has led to the investigation of dietary supplements and nutraceuticals for COVID-19. Such products include vitamin C, vitamin D, omega 3 polyunsaturated fatty acids, probiotics, and zinc, all of which are currently under clinical investigation. In this review, we critically appraise the evidence surrounding dietary supplements and nutraceuticals for the prophylaxis and treatment of COVID-19. Overall, further study is required before evidence-based recommendations can be formulated, but nutritional status plays a significant role in patient outcomes, and these products could help alleviate deficiencies. For example, evidence indicates that vitamin D deficiency may be associated with greater incidence of infection and severity of COVID-19, suggesting that vitamin D supplementation may hold prophylactic or therapeutic value. A growing number of scientific organizations are now considering recommending vitamin D supplementation to those at high risk of COVID-19. Because research in vitamin D and other nutraceuticals and supplements is preliminary, here we evaluate the extent to which these nutraceutical and dietary supplements hold potential in the COVID-19 crisis.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | - Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
19
|
Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020; 8:E1907. [PMID: 33266303 PMCID: PMC7760123 DOI: 10.3390/microorganisms8121907] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are known for their biotechnological potential. Moreover, LAB are distinguished by amazing criteria: Adjusting the intestinal environment, inhibiting pathogenic microbes in the gastrointestinal tract, ability to reduce pathogen adhesion activity, improving the balance of the microbiota inside the intestine, capabilities of regulating intestinal mucosal immunity, and maintaining intestinal barrier function. The escalating number of research and studies about beneficial microorganisms and their impact on promoting health has attracted a big interest in the last decades. Since antiquity, various based fermented products of different kinds have been utilized as potential probiotic products. Nevertheless, the current upsurge in consumers' interest in bioalternatives has opened new horizons for the probiotic field in terms of research and development. The present review aims at shedding light on the world of probiotics, a continuous story of astonishing success in various fields, in particular, the biomedical sector and pharmaceutical industry, as well as to display the importance of probiotics and their therapeutic potential in purpose to compete for sturdy pathogens and to struggle against diseases and acute infections. Shadows and future trends of probiotics use are also discussed.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El-Manar, Tunis 1006, Tunisia
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| |
Collapse
|
20
|
The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb Pathog 2020; 148:104452. [PMID: 32818576 PMCID: PMC7431320 DOI: 10.1016/j.micpath.2020.104452] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Respiratory virus infections are among the most prevalent diseases in humans and contribute to morbidity and mortality in all age groups. Moreover, since they can evolve fast and cross the species barrier, some of these viruses, such as influenza A and coronaviruses, have sometimes caused epidemics or pandemics and were associated with more serious clinical diseases and even mortality. The recently identified Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a Public Health Emergency of International concern and has been associated with rapidly progressive pneumonia. To ensure protection against emerging respiratory tract infections, the development of new strategies based on modulating the immune responses is essential. The use of probiotic components has substantially increased due to their effects on immune responses, in particular on those that occur in the upper/lower respiratory tract. Superinduction of inflammatory reaction, known as a cytokine storm, has been correlated directly with viral pneumonia and serious complications of respiratory infections. In this review, probiotics, as potential immunomodulatory agents, have been proposed to improve the host's response to respiratory viral infections. In addition, the effects of probiotics on different aspects of immune responses and their antiviral properties in both pre-clinical and clinical contexts have been described in detail.
Collapse
|
21
|
Lactobacillus casei CRL431 modulates hemostatic activation induced by protein malnourishment and pneumococcal respiratory infection. Appl Microbiol Biotechnol 2020; 104:10669-10683. [PMID: 33079228 DOI: 10.1007/s00253-020-10957-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 10/24/2022]
Abstract
Previously, we demonstrated that Lactobacillus casei CRL431, a well-known immunomodulatory bacterium, beneficially regulates coagulation activation, fibrin formation in lung, and the pro-inflammatory state induced by protein malnourishment and pneumococcal infection. In this study, we deepen in the understanding of the mechanisms involved in the immunoregulatory activity of L. casei CRL431 during a nutritional repletion process by evaluating (a) platelet and endothelial activation, (b) tissue factor (TF) expression, and (c) protease-activated receptor (PAR) activation in an experimental bacterial respiratory infection model in malnourished mice. Our findings demonstrate for the first time that the repletion diet supplemented with L. casei CRL431 was effective to normalize platelet counts in blood, modulate platelet activation and their recruitment into the lung, and regulate local and systemic TF expression and endothelial activation, which were affected by malnourishment. Streptococcus pneumoniae challenge induced local and systemic increase of platelet counts, PARs activation, P-selectin and TF expression, as well as endothelial activation in both well-nourished and malnourished mice. Malnourished animals evidenced the highest alterations of the parameters evaluated while the mice fed with the probiotic bacterium had similar behavior to normal controls but with lower PAR activation in lung. These results demonstrate that supplementation of repletion diet with L. casei CRL431 is effective to modulate alterations induced by malnourishment and pneumococcal infection, restraining coagulation activation, the inflammatory process, and lung damage. These observations contribute to set the basis for the application of probiotic functional foods to modulate the inflammation-hemostasis interactions altered by malnourishment or bacterial respiratory infections. KEY POINTS: • Pneumococcal infection increases pro-coagulant state induced by protein malnourishment. • Repletion with L. casei CRL431 modulates platelet, TF, and endothelial activation. • L. casei CRL431 improves immune-coagulative response in protein malnourishment.
Collapse
|
22
|
Garcia-Castillo V, Tomokiyo M, Raya Tonetti F, Islam MA, Takahashi H, Kitazawa H, Villena J. Alveolar Macrophages Are Key Players in the Modulation of the Respiratory Antiviral Immunity Induced by Orally Administered Lacticaseibacillus rhamnosus CRL1505. Front Immunol 2020; 11:568636. [PMID: 33133080 PMCID: PMC7550464 DOI: 10.3389/fimmu.2020.568636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
The oral administration of Lacticaseibacillus rhamnosus CRL1505 differentially modulates the respiratory innate antiviral immune response triggered by Toll-like receptor 3 (TLR3) activation in infant mice, improving the resistance to Respiratory Syncytial Virus (RSV) infection. In this work, by using macrophages depletion experiments and a detailed study of their production of cytokines and antiviral factors we clearly demonstrated the key role of this immune cell population in the improvement of both viral elimination and the protection against lung tissue damage induced by the CRL1505 strain. Orally administered L. rhamnosus CRL1505 activated alveolar macrophages and enhanced their ability to produce type I interferons (IFNs) and IFN-γ in response to RSV infection. Moreover, an increased expression of IFNAR1, Mx2, OAS1, OAS2, RNAseL, and IFITM3 was observed in alveolar macrophages after the oral treatment with L. rhamnosus CRL1505, which was consistent with the enhanced RSV clearance. The depletion of alveolar macrophages by the time of L. rhamnosus CRL1505 administration abolished the ability of infant mice to produce increased levels of IL-10 in response to RSV infection. However, no improvement in IL-10 production was observed when primary cultures of alveolar macrophages obtained from CRL1505-treated mice were analyzed. Of note, alveolar macrophages from the CRL1505 group had an increased production of IL-6 and IL-27 suggesting that these cells may play an important role in limiting inflammation and protecting lung function during RSV infection, by increasing the maturation and activation of Treg cells and their subsequent production of IL-10. In addition, we provided evidence of the important role of CD4+ cells and IFN-γ in the activation of alveolar macrophages highlighting a putative pathway through which the intestinal and respiratory mucosa are communicated under the influence of L. rhamnosus CRL1505.
Collapse
Affiliation(s)
- Valeria Garcia-Castillo
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Front Physiol 2020; 11:699. [PMID: 32670091 PMCID: PMC7326040 DOI: 10.3389/fphys.2020.00699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Viral respiratory infections are of major importance because of their capacity to cause of a high degree of morbidity and mortality in high-risk populations, and to rapidly spread between countries. Perhaps the best example of this global threat is the infectious disease caused by the new SARS-CoV-2 virus, which has infected more than 4 million people worldwide, causing the death of 287,000 persons according to the WHO's situation report on May 13, 2020. The availability of therapeutic tools that would be used massively to prevent or mitigate the detrimental effects of emerging respiratory viruses on human health is therefore mandatory. In this regard, research from the last decade has reported the impact of the intestinal microbiota on the respiratory immunity. It was conclusively demonstrated how the variations in the intestinal microbiota affect the responses of respiratory epithelial cells and antigen presenting cells against respiratory virus attack. Moreover, the selection of specific microbial strains (immunobiotics) with the ability to modulate immunity in distal mucosal sites made possible the generation of nutritional interventions to strengthen respiratory antiviral defenses. In this article, the most important characteristics of the limited information available regarding the immune response against SARS-CoV-2 virus are revised briefly. In addition, this review summarizes the knowledge on the cellular and molecular mechanisms involved in the improvement of respiratory antiviral defenses by beneficial immunobiotic microorganisms such as Lactobacillus rhamnosus CRL1505. The ability of beneficial microorganisms to enhance type I interferons and antiviral factors in the respiratory tract, stimulate Th1 response and antibodies production, and regulate inflammation and coagulation activation during the course of viral infections reducing tissue damage and preserving lung functionally, clearly indicate the potential of immunobiotics to favorably influence the immune response against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Albarracin L, Garcia-Castillo V, Masumizu Y, Indo Y, Islam MA, Suda Y, Garcia-Cancino A, Aso H, Takahashi H, Kitazawa H, Villena J. Efficient Selection of New Immunobiotic Strains With Antiviral Effects in Local and Distal Mucosal Sites by Using Porcine Intestinal Epitheliocytes. Front Immunol 2020; 11:543. [PMID: 32322251 PMCID: PMC7156603 DOI: 10.3389/fimmu.2020.00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/10/2020] [Indexed: 12/31/2022] Open
Abstract
Previously, we evaluated the effect of the immunobiotic strain Lactobacillus rhamnosus CRL1505 on the transcriptomic response of porcine intestinal epithelial (PIE) cells triggered by the challenge with the Toll-like receptor 3 (TLR-3) agonist poly(I:C) and successfully identified a group of genes that can be used as prospective biomarkers for the screening of new antiviral immunobiotics. In this work, several strains of lactobacilli were evaluated according to their ability to modulate the expression of IFNα, IFNβ, RIG1, TLR3, OAS1, RNASEL, MX2, A20, CXCL5, CCL4, IL-15, SELL, SELE, EPCAM, PTGS2, PTEGES, and PTGER4 in PIE cells after the stimulation with poly(I:C). Comparative analysis of transcripts variations revealed that one of the studied bacteria, Lactobacillus plantarum MPL16, clustered together with the CRL1505 strain, indicating a similar immunomodulatory potential. Two sets of in vivo experiments in Balb/c mice were performed to evaluate L. plantarum MPL16 immunomodulatory activities. Orally administered MPL16 prior intraperitoneal injection of poly(I:C) significantly reduced the levels of the proinflammatory mediators tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-15 in the intestinal mucosa. In addition, orally administered L. plantarum MPL16 prior nasal stimulation with poly(I:C) or respiratory syncytial virus infection significantly decreased the levels of the biochemical markers of lung tissue damage. In addition, reduced levels of the proinflammatory mediators TNF-α, IL-6, and IL-8 were found in MPL16-treated mice. Improved levels of IFN-β and IFN-γ in the respiratory mucosa were observed in mice treated with L. plantarum MPL16 when compared to control mice. The immunological changes induced by L. plantarum MPL16 were not different from those previously reported for the CRL1505 strain in in vitro and in vivo studies. The results of this work confirm that new immunobiotic strains with the ability of stimulating both local and distal antiviral immune responses can be efficiently selected by evaluating the expression of biomarkers in PIE cells.
Collapse
Affiliation(s)
- Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Valeria Garcia-Castillo
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Yuki Masumizu
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuhki Indo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Hisashi Aso
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
25
|
Nasal priming with immunobiotic lactobacilli improves the adaptive immune response against influenza virus. Int Immunopharmacol 2019; 78:106115. [PMID: 31841753 DOI: 10.1016/j.intimp.2019.106115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
The nasal priming with Lactobacillus rhamnosus CRL1505 modulates the respiratory antiviral innate immune response and improves protection against influenza virus (IFV) challenge in mice. However, the potential beneficial effect of the CRL1505 strain on the adaptive immune response triggered by IFV infection or vaccination was not evaluated before. In this work, we demonstrated that nasally administered L. rhamnosus CRL1505 is able to improve both the humoral and cellular adaptive immune responses induced by IFV infection or vaccination. Higher levels of IFV-specific IgA and IgG as well as IFN-γ were found in the serum and the respiratory tract of CRL1505-treated mice after IFV challenge. Lactobacilli treated mice also showed reduced concentrations of IL-17 and improved levels of IL-10 during IFV infection. The differential balance of inflammatory and regulatory cytokines induced by L. rhamnosus CRL1505 contributed to the protection against IFV by favoring an effective effector immune response without inducing inflammatory-mediated lung damage. The optimal immunomodulatory effect of the CRL1505 strain was achieved with viable bacteria. However, non-viable L. rhamnosus CRL1505 was also efficient in improving the adaptive immune responses generated by IFV challenges and therefore, emerged as an interesting alternative for vaccination of immunocompromised hosts. Similar to other immunomodulatory properties of lactobacilli, it was shown here that the adjuvant effect in the context of IFV vaccination was a strain dependent ability, since differences were found when L. rhamnosus CRL1505 and the immunomodulatory strain L. rhamnosus IBL027 were compared. This investigation represents a thorough exploration of the role of immunobiotic lactobacilli in improving humoral and cellular adaptive immune responses against IFV in the context of both infection and vaccination.
Collapse
|
26
|
Laiño J, Villena J, Suvorov A, Zelaya H, Ortiz Moyano R, Salva S, Alvarez S. Nasal immunization with recombinant chimeric pneumococcal protein and cell wall from immunobiotic bacteria improve resistance of infant mice to Streptococcus pneumoniae infection. PLoS One 2018; 13:e0206661. [PMID: 30395582 PMCID: PMC6218053 DOI: 10.1371/journal.pone.0206661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Respiratory tract infections and invasive disease caused by Streptococcus pneumoniae in high-risk groups are a major global health problem. Available human vaccines have reduced immunogenicity and low immunological memory in these populations, as well as high cost as a public health strategy in poor communities. In addition, no single pneumococcal protein antigen has been able to elicit protection comparable to that achieved using protein-polysaccharide conjugate vaccines. In this context, chimeric pneumococcal proteins raise as potential good vaccine candidates because of their simplicity of production and reduced cost. The aim of this work was to study whether the nasal immunization of infant mice with the recombinant chimeric pneumococcal protein (PSFP) was able to improve resistance to S. pneumoniae, and whether the immunomodulatory strain Lactobacillus rhamnosus CRL1505 or its cell wall (CW1505) could be used as effective mucosal adjuvants. Our results showed that the nasal immunization with PSPF improved pneumococcal-specific IgA and IgG levels in broncho-alveolar lavage (BAL), reduced lung bacterial counts, and avoided dissemination of pneumococci into the blood. Of interest, immunization with PSPF elicited cross-protective immunity against different pneumococcal serotypes. It was also observed that the nasal immunization of infant mice with PSPF+CW1505 significantly increased the production of pneumococcal-specific IgA and IgG in BAL, as well as IgM and IgG in serum when compared with PSPF alone. PSPF+CW1505 immunization also improved the reduction of pneumococcal lung colonization and its dissemination in to the bloodstream when compared to PSPF alone. Our results suggest that immunization with PSPF together with the cell wall of the immunomodulatory strain L. rhamnosus CRL1505 as a mucosal adjuvant could be an interesting alternative to improve protection against pneumococcal infection in children.
Collapse
Affiliation(s)
- Jonathan Laiño
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- * E-mail: (JV); (AS); (SA)
| | - Alexander Suvorov
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint-Petersburg, Russia
- Saint-Petersburg State University, Saint-Petersburg, Russia
- * E-mail: (JV); (AS); (SA)
| | - Hortensia Zelaya
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- * E-mail: (JV); (AS); (SA)
| |
Collapse
|
27
|
Martens K, Pugin B, De Boeck I, Spacova I, Steelant B, Seys SF, Lebeer S, Hellings PW. Probiotics for the airways: Potential to improve epithelial and immune homeostasis. Allergy 2018; 73:1954-1963. [PMID: 29869783 DOI: 10.1111/all.13495] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/30/2022]
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefit on the host. The therapeutic effects of probiotics have been mostly studied in the gastrointestinal tract, but recent evidence points toward the potential of these bacteria to prevent and/or treat chronic airway diseases. In this review, possible mechanisms of action of probiotics in the airways are described, with a particular focus on their capacity to modulate the epithelial barrier function and their mode of interaction with the immune system. Indeed, probiotic bacteria, mostly lactobacilli, can promote the expression and regulation of tight junctions and adherence junctions, resulting in the restoration of a defective epithelial barrier. These bacteria interact with the epithelial barrier and immune cells through pattern recognition receptors, such as Toll-like receptors, which upon activation can stimulate or suppress various immune responses. Finally, the clinical potential of probiotics to treat inflammatory diseases of the upper and lower respiratory tract, and the difference between their mode of application (eg, oral or nasal) are discussed here.
Collapse
Affiliation(s)
- K. Martens
- Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - B. Pugin
- Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - I. De Boeck
- Department of Bioscience Engineering University of Antwerp Antwerp Belgium
| | - I. Spacova
- Department of Bioscience Engineering University of Antwerp Antwerp Belgium
| | - B. Steelant
- Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - S. F. Seys
- Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - S. Lebeer
- Department of Bioscience Engineering University of Antwerp Antwerp Belgium
| | - P. W. Hellings
- Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Clinical Division of Otorhinolaryngology, Head and Neck Surgery University Hospitals Leuven Leuven Belgium
- Department of Otorhinolaryngology University Hospitals Ghent Ghent Belgium
- Department of Otorhinolaryngology Academic Medical Center University of Amsterdam Amsterdam the Netherlands
| |
Collapse
|
28
|
Reid G, Kort R, Alvarez S, Bourdet-Sicard R, Benoit V, Cunningham M, Saulnier D, van Hylckama Vlieg J, Verstraelen H, Sybesma W. Expanding the reach of probiotics through social enterprises. Benef Microbes 2018; 9:707-715. [DOI: 10.3920/bm2018.0015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rapid rise in microbiome and probiotic science has led to estimates of product creation and sales exceeding $50 billion within five years. However, many people do not have access to affordable products, and regulatory agencies have stifled progress. The objective of a discussion group at the 2017 meeting of the International Scientific Association for Probiotics and Prebiotics was to identify mechanisms to confer the benefits of probiotics to a larger portion of the world’s population. Three initiatives, built around fermented food, were discussed with different methods of targeting populations that face enormous challenges of malnutrition, infectious disease, poverty and violent conflict. As new candidate probiotic strains emerge, and the market diversifies towards more personalised interventions, manufacturing processes will need to evolve. Information dissemination through scientific channels and social media is projected to provide consumers and healthcare providers with rapid access to clinical results, and to identify the nearest location of sites making new and affordable probiotic food and supplements. This rapid translation of science to individual well-being will not only expand the beneficiaries of probiotics, but also fuel new social enterprises and economic business models.
Collapse
Affiliation(s)
- G. Reid
- Canadian Research and Development Centre for Probiotics, Microbiology & Immunology, and Surgery, University of Western Ontario, Room F3-106, P.O. Box 5777, STN B, London, N6A 4V2 Ontario, Canada
| | - R. Kort
- Yoba for Life foundation, Hunzestraat 133-A, 1079 WB Amsterdam, the Netherlands
- TNO Microbiology and Systems Biology, P.O. Box 360, 3700 AJ Zeist, the Netherlands
- VU University Amsterdam; Micropia, Natura Artis Magistra, Plantage Kerklaan 38-40, 1018 CZ Amsterdam, the Netherlands
| | - S. Alvarez
- Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, Tucuman 4000, Argentina
| | - R. Bourdet-Sicard
- Danone Access, Africa & India, Danone Nutricia Research, Avenue de la Vauve, 91767 Palaiseau, France
| | - V. Benoit
- General Mills, Nutrition and Technology Solutions, 9000 Plymouth Avenue N, Minneapolis, MN 55427, USA
| | - M. Cunningham
- Research and Development, Metagenics (Aust) Pty Ltd., P.O. Box 675, Virginia BC, Queensland 4014, Australia
| | - D.M. Saulnier
- Novozymes A/S, Hillerødgade 42, 2200 Frederiksberg, Denmark
| | | | - H. Verstraelen
- Vulvovaginal Disease Clinic, Dept. of Obstetrics & Gynaecology, Ghent University Hospital 0P4, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - W. Sybesma
- Yoba for Life foundation, Hunzestraat 133-A, 1079 WB Amsterdam, the Netherlands
| |
Collapse
|
29
|
Lactobacillus casei beneficially modulates immuno-coagulative response in an endotoxemia model. Blood Coagul Fibrinolysis 2018; 29:104-110. [PMID: 29210752 DOI: 10.1097/mbc.0000000000000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The current study aims at evaluating the effect of the oral administration of Lactobacillus casei CERELA (CRL) 431 on parameters implicated in inflammation-coagulation interaction using a model of acute inflammation induced by lipopolysaccharide (LPS) in mice. Six-week-old Balb/c mice were treated with L. casei for 5 consecutive days. Then treated and untreated mice received an LPS injection (L. casei + LPS and LPS groups, respectively). Liver and kidney were removed, blood samples were obtained, and hemostatic and inflammatory parameters were evaluated at different times post LPS injection. Preventive L. casei administration induced a significant decrease in proinflammatory TNF-α and IL-6 cytokines by decreasing tissue factor expression in liver and kidney. Moreover, the lower expression of tissue factor in the L. casei + LPS group led to a lower activation of the coagulation system, which was observed by the fast systemic restoration of factors VII and V coagulation factors and antithrombin levels. This study highlights the capacity of L. casei to modulate the hemostatic unbalance in an acute endotoxemia model. Our findings showed the ability of L. casei CRL 431 to regulate the immuno-coagulative response. This fact could be helpful to propose new adjunctive strategies addressed to the restoration of physiological anticoagulant mechanisms in sepsis patients.
Collapse
|
30
|
Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula. Chin J Nat Med 2018; 16:241-251. [DOI: 10.1016/s1875-5364(18)30054-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 01/28/2023]
|
31
|
Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8:908. [PMID: 28579981 PMCID: PMC5437161 DOI: 10.3389/fmicb.2017.00908] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Probiotic bacteria are known to harbor intrinsic and mobile genetic elements that confer resistance to a wide variety of antibiotics. Their high amounts in dietary supplements can establish a reservoir of antibiotic resistant genes in the human gut. These resistant genes can be transferred to pathogens that share the same intestinal habitat thus resulting in serious clinical ramifications. While antibiotic resistance of probiotic bacteria from food, human and animal sources have been well-documented, the resistant profiles of probiotics from dietary supplements have only been recently studied. These products are consumed with increasing regularity due to their health claims that include the improvement of intestinal health and immune response as well as prevention of acute and antibiotic-associated diarrhea and cancer; but, a comprehensive risk assessment on the spread of resistant genes to human health is lacking. Here, we highlight recent reports of antibiotic resistance of probiotic bacteria isolated from dietary supplements, and propose complementary strategies that can shed light on the risks of consuming such products in the context of a global widespread of antibiotic resistance. In concomitant with a broader screening of antibiotic resistance in probiotic supplements is the use of computational simulations, live imaging and functional genomics to harvest knowledge on the evolutionary behavior, adaptations and dynamics of probiotics studied in conditions that best represent the human gut including in the presence of antibiotics. The underlying goal is to enable the health benefits of probiotics to be exploited in a responsible manner and with minimal risk to human health.
Collapse
Affiliation(s)
- Min Zheng
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Ruijia Zhang
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xuechen Tian
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xuan Zhou
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xutong Pan
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Aloysius Wong
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| |
Collapse
|
32
|
Albarracin L, Kobayashi H, Iida H, Sato N, Nochi T, Aso H, Salva S, Alvarez S, Kitazawa H, Villena J. Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli. Front Immunol 2017; 8:57. [PMID: 28210256 PMCID: PMC5288346 DOI: 10.3389/fimmu.2017.00057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/16/2017] [Indexed: 01/14/2023] Open
Abstract
Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host–immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host–immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes (IFN-β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES, and PTGER4), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections.
Collapse
Affiliation(s)
- Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Immunobiotics Research Group, Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisakazu Kobayashi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hikaru Iida
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nana Sato
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Infection Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisashi Aso
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Infection Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Immunobiotics Research Group, Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Immunobiotics Research Group, Tucuman, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Immunobiotics Research Group, Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Zelaya H, Alvarez S, Kitazawa H, Villena J. Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection. Front Immunol 2016; 7:633. [PMID: 28066442 PMCID: PMC5179578 DOI: 10.3389/fimmu.2016.00633] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Influenza virus (IFV) is a major respiratory pathogen of global importance, and the cause of a high degree of morbidity and mortality, especially in high-risk populations such as infants, elderly, and immunocompromised hosts. Given its high capacity to change antigenically, acquired immunity is often not effective to limit IFV infection and therefore vaccination must be constantly redesigned to achieve effective protection. Improvement of respiratory and systemic innate immune mechanisms has been proposed to reduce the incidence and severity of IFV disease. In the last decade, several research works have demonstrated that microbes with the capacity to modulate the mucosal immune system (immunobiotics) are a potential alternative to beneficially modulate the outcome of IFV infection. This review provides an update of the current status on the modulation of respiratory immunity by orally and nasally administered immunobiotics, and their beneficial impact on IFV clearance and inflammatory-mediated lung tissue damage. In particular, we describe the research of our group that investigated the influence of immunobiotics on inflammation–coagulation interactions during IFV infection. Studies have clearly demonstrated that hostile inflammation is accompanied by dysfunctional coagulation in respiratory IFV disease, and our investigations have proved that some immunobiotic strains are able to reduce viral disease severity through their capacity to modulate the immune-coagulative responses in the respiratory tract.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Immunobiotics Research Group, Tucuman, Argentina; Institute of Applied Biochemistry, National University of Tucuman, Tucuman, Argentina
| | - Susana Alvarez
- Immunobiotics Research Group, Tucuman, Argentina; Institute of Applied Biochemistry, National University of Tucuman, Tucuman, Argentina; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Immunobiotics Research Group, Tucuman, Argentina; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
34
|
Villena J, Vizoso-Pinto MG, Kitazawa H. Intestinal Innate Antiviral Immunity and Immunobiotics: Beneficial Effects against Rotavirus Infection. Front Immunol 2016; 7:563. [PMID: 27994593 PMCID: PMC5136547 DOI: 10.3389/fimmu.2016.00563] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022] Open
Abstract
The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens such as rotavirus (RV), which is a leading cause of death due to diarrhea among young children across the globe and a major cause of severe acute intestinal infection in livestock animals. The interactions between intestinal epithelial cells (IECs) and immune cells with RVs have been studied for several years, and now, it is known that the innate immune responses triggered by this virus can have both beneficial and detrimental effects for the host. It was demonstrated that natural RV infection in infants and experimental challenges in mice result in the intestinal activation of pattern recognition receptors (PRRs) such as toll-like receptor 3 (TLR3) and striking secretion of proinflammatory mediators that can lead to increased local tissue damage and immunopathology. Therefore, modulating desregulated intestinal immune responses triggered by PRRs activation are a significant promise for reducing the burden of RV diseases. The ability of immunoregulatory probiotic microorganisms (immunobiotics) to protect against intestinal infections, such as those caused by RVs, is among the oldest effects studied for these important group of beneficial microbes. In this review, we provide an update of the current status on the modulation of intestinal antiviral innate immunity by immunobiotics and their beneficial impact on RV infection. In addition, we describe the research of our group that demonstrated the capacity of immunobiotic strains to beneficially modulated TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis caused by intraepithelial lymphocytes, and improve the resistance to RV infections.
Collapse
Affiliation(s)
- Julio Villena
- Immunobiotics Research Group, Tucuman, Argentina; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Maria Guadalupe Vizoso-Pinto
- Immunobiotics Research Group, Tucuman, Argentina; Faculty of Medicine, INSIBIO (UNT-CONICET), National University of Tucuman, Tucuman, Argentina
| | - Haruki Kitazawa
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina; Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Kobayashi H, Albarracin L, Sato N, Kanmani P, Kober AKMH, Ikeda-Ohtsubo W, Suda Y, Nochi T, Aso H, Makino S, Kano H, Ohkawara S, Saito T, Villena J, Kitazawa H. Modulation of porcine intestinal epitheliocytes immunetranscriptome response by Lactobacillus jensenii TL2937. Benef Microbes 2016; 7:769-782. [PMID: 27824278 DOI: 10.3920/bm2016.0095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE cells). Here, transcriptomic studies using PIE cells were performed considering that this information would be valuable for understanding the mechanisms involved in the protective activity of the immunobiotic strain Lactobacillus jensenii TL2937 against intestinal inflammatory damage in pigs. In addition, those studies would provide criteria for selecting biomarkers for the screening of new immunobiotic strains. We performed microarray analysis to investigate the transcriptomic response of PIE cells to the challenge with heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs) and, the changes induced by L. jensenii TL2937 in that response. The approach allowed us to obtain a global overview of the immune genes involved in the response of PIE cells to heat-stable ETEC PAMPs. We observed that L. jensenii TL2937 differently modulated gene expression in ETEC PAMPs-challenged PIE cells. Microarray and RT-PCR analysis indicated that the most remarkable changes in PIE cells transcriptomic profile after heat-stable ETEC PAMPs challenge were observed in chemokines, adhesion molecules, complement and coagulation cascades factors. In addition, an anti-inflammatory effect triggered by TL2937 strain in PIE cells was clearly demonstrated. The decrease in the expression of chemokines (CCL8, CXCL5, CXCL9, CXCL10, and CXCL11), complement (C1R, C1S, C3, and CFB), and coagulation factors (F3) by L. jensenii TL2937 supports our previous reports on the immunoregulatory effect of this strain. These results provided clues for the better understanding of the mechanism underlying host-immunobiotic interaction in the porcine host. The comprehensive transcriptomic profiles of PIE cells provided by our analyses successfully identified a group of genes, which could be used as prospective biomarkers for the screening and evaluation of new anti-inflammatory immunobiotics for the prevention of inflammatory intestinal disorders in pigs.
Collapse
Affiliation(s)
- H Kobayashi
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - L Albarracin
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,3 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco145, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | - N Sato
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - P Kanmani
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - A K M H Kober
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,4 Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong, Bangladesh
| | - W Ikeda-Ohtsubo
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Y Suda
- 5 Department of Food, Agriculture and Environment, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai, Miyagi 982-0215 Japan
| | - T Nochi
- 6 Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,7 Infection Immunology Unit, CFAI, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - H Aso
- 2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,6 Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - S Makino
- 8 Food Science Research Labs., Meiji Co., Ltd., 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | - H Kano
- 8 Food Science Research Labs., Meiji Co., Ltd., 540 Naruda, Odawara, Kanagawa 250-0862, Japan
| | - S Ohkawara
- 9 Agricultural and Veterinary Division, Meiji Seika Pharma Co., Ltd., Agricultural and Veterinary Division, Meiji Seika Pharma Co., Ltd., Tokyo, Japan
| | - T Saito
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - J Villena
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,3 Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco145, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | - H Kitazawa
- 1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.,2 Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| |
Collapse
|
36
|
Wang H, Gao K, Wen K, Allen IC, Li G, Zhang W, Kocher J, Yang X, Giri-Rachman E, Li GH, Clark-Deener S, Yuan L. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol 2016; 16:109. [PMID: 27301272 PMCID: PMC4908676 DOI: 10.1186/s12866-016-0727-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background A better understanding of mechanisms underlying dose-effects of probiotics in their applications as treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota (HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV) vaccine. Results Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRV + LGG9X), and 14-doses LGG (AttHRV + LGG14X) (n = 3–4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that is separated from the cluster formed by the AttHRV and AttHRV + LGG9X pigs. The increase in LGG titers concurred with significantly increased ileal HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine reported in our previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups had significantly higher IkBα level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG fed pigs had enhanced IL-6, IL-10, TNF-α, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC. Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in MNC of the AttHRV + LGG9X pigs. Conclusions The relationship between modulation of gut microbiota and regulation of host immunity by different doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0727-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Kan Gao
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Wenming Zhang
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Ernawati Giri-Rachman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: School of Life Science and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Guan-Hong Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
37
|
Mårtensson A, Greiff L, Lamei SS, Lindstedt M, Olofsson TC, Vasquez A, Cervin A. Effects of a honeybee lactic acid bacterial microbiome on human nasal symptoms, commensals, and biomarkers. Int Forum Allergy Rhinol 2016; 6:956-63. [PMID: 27080343 DOI: 10.1002/alr.21762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/05/2016] [Accepted: 02/04/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Lactic acid bacteria (LAB) can restore commensal microbiomes and prevent infections. Arguably, nasal administrations of LAB may therefore be beneficial in chronic rhinosinusitis (CRS). Previous studies have examined effects of topical/nasal LAB in children with secretory otitis media, but little is as yet known about their effects on the human nasal airway. The aim of this pilot study was to examine effects on nasal symptoms and commensal bacteria in healthy subjects of nasal administration of a honeybee LAB microbiome; ie, a mixture of 9 Lactobacillus spp. and 4 Bifidobacterium spp. obtained from the honeybee Apis mellifera. Furthermore, we aimed to assess whether or not the honeybee LAB produced a local inflammatory response. METHODS Twenty-two healthy subjects received a single administration of honeybee LAB in a sham-controlled, double-blinded, and crossover design. Using questionnaires, microbiological methods, and nasal lavages, they were assessed regarding symptoms, changes to commensal bacteria, and inflammatory products in nasal lavage fluids. RESULTS The honeybee LAB did not produce any symptoms or other untoward effects. No changes were observed of commensal bacteria by the honeybee LAB, and no inflammatory response was detected (compared to sham); ie, unaffected nasal lavage fluid levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), monokine induced by interferon-γ (MIG), interleukin-15 (IL-15), epidermal growth factor (EGF), eotaxin, interferon gamma-induced protein-10 (IP-10), and interleukin-1 receptor antagonist (IL-1RA). CONCLUSION A single human nasal administration of a honeybee LAB microbiome is well tolerated. Specifically, it does not affect commensal bacteria and does not produce an inflammatory response.
Collapse
Affiliation(s)
- Anders Mårtensson
- Department of Otorhinolaryngology (ORL), Helsingborg Hospital, Helsingborg, Sweden
| | - Lennart Greiff
- Department of ORL-Head and Neck Surgery, Skåne University Hospital, Lund, Sweden.
| | - Sepideh S Lamei
- Department of Laboratory Medicine, Lund, Section of Medical Microbiology, Lund University, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Tobias C Olofsson
- Department of Laboratory Medicine, Lund, Section of Medical Microbiology, Lund University, Lund, Sweden
| | - Alejandra Vasquez
- Department of Laboratory Medicine, Lund, Section of Medical Microbiology, Lund University, Lund, Sweden
| | - Anders Cervin
- Department of ORL-Head and Neck Surgery, Royal Brisbane and Women's Hospital, School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
38
|
Yang Y, Tang H. Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell Mol Immunol 2016; 13:432-42. [PMID: 27041635 PMCID: PMC4947825 DOI: 10.1038/cmi.2016.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) infects the respiratory tract in humans and causes significant morbidity and mortality worldwide each year. Aggressive inflammation, known as a cytokine storm, is thought to cause most of the damage in the lungs during IAV infection. Dysfunctional coagulation is a common complication in pathogenic influenza, manifested by lung endothelial activation, vascular leak, disseminated intravascular coagulation and pulmonary microembolism. Importantly, emerging evidence shows that an uncontrolled coagulation system, including both the cellular (endothelial cells and platelets) and protein (coagulation factors, anticoagulants and fibrinolysis proteases) components, contributes to the pathogenesis of influenza by augmenting viral replication and immune pathogenesis. In this review, we focus on the underlying mechanisms of the dysfunctional coagulatory response in the pathogenesis of IAV.
Collapse
Affiliation(s)
- Yan Yang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hong Tang
- Division of Viral Pathology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.,Institute Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| |
Collapse
|
39
|
Ishizuka T, Kanmani P, Kobayashi H, Miyazaki A, Soma J, Suda Y, Aso H, Nochi T, Iwabuchi N, Xiao JZ, Saito T, Villena J, Kitazawa H. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling. PLoS One 2016; 11:e0152416. [PMID: 27023883 PMCID: PMC4811565 DOI: 10.1371/journal.pone.0152416] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 12/26/2022] Open
Abstract
In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells) by evaluating the molecular innate immune response to rotavirus (RVs). In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB) strains was studied. The RVs strains OSU (porcine) and UK (bovine) effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities.
Collapse
Affiliation(s)
- Takamasa Ishizuka
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Paulraj Kanmani
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hisakazu Kobayashi
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayako Miyazaki
- Viral Diseases and Epidemiology Research Division, National Institute of Animal Health, NARO, Tsukuba, Japan
| | - Junichi Soma
- Research and Development Section, Institute of Animal Health, JA Zen-noh (National Federation of Agricultural Cooperative Associations), Chiba, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomonori Nochi
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Infection Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Noriyuki Iwabuchi
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Jin-zhong Xiao
- Food Science and Technology Institute, Morinaga Milk Industry Co. Ltd, Zama, Kanagawa, Japan
| | - Tadao Saito
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
- * E-mail: (HK); (JV)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail: (HK); (JV)
| |
Collapse
|
40
|
Solano-Aguilar G, Molokin A, Botelho C, Fiorino AM, Vinyard B, Li R, Chen C, Urban J, Dawson H, Andreyeva I, Haverkamp M, Hibberd PL. Transcriptomic Profile of Whole Blood Cells from Elderly Subjects Fed Probiotic Bacteria Lactobacillus rhamnosus GG ATCC 53103 (LGG) in a Phase I Open Label Study. PLoS One 2016; 11:e0147426. [PMID: 26859761 PMCID: PMC4747532 DOI: 10.1371/journal.pone.0147426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/31/2015] [Indexed: 02/07/2023] Open
Abstract
We examined gene expression of whole blood cells (WBC) from 11 healthy elderly volunteers participating on a Phase I open label study before and after oral treatment with Lactobacillus rhamnosus GG-ATCC 53103 (LGG)) using RNA-sequencing (RNA-Seq). Elderly patients (65–80 yrs) completed a clinical assessment for health status and had blood drawn for cellular RNA extraction at study admission (Baseline), after 28 days of daily LGG treatment (Day 28) and at the end of the study (Day 56) after LGG treatment had been suspended for 28 days. Treatment compliance was verified by measuring LGG-DNA copy levels detected in host fecal samples. Normalized gene expression levels in WBC RNA were analyzed using a paired design built within three analysis platforms (edgeR, DESeq2 and TSPM) commonly used for gene count data analysis. From the 25,990 transcripts detected, 95 differentially expressed genes (DEGs) were detected in common by all analysis platforms with a nominal significant difference in gene expression at Day 28 following LGG treatment (FDR<0.1; 77 decreased and 18 increased). With a more stringent significance threshold (FDR<0.05), only two genes (FCER2 and LY86), were down-regulated more than 1.5 fold and met the criteria for differential expression across two analysis platforms. The remaining 93 genes were only detected at this threshold level with DESeq2 platform. Data analysis for biological interpretation of DEGs with an absolute fold change of 1.5 revealed down-regulation of overlapping genes involved with Cellular movement, Cell to cell signaling interactions, Immune cell trafficking and Inflammatory response. These data provide evidence for LGG-induced transcriptional modulation in healthy elderly volunteers because pre-treatment transcription levels were restored at 28 days after LGG treatment was stopped. To gain insight into the signaling pathways affected in response to LGG treatment, DEG were mapped using biological pathways and genomic data mining packages to indicate significant biological relevance. Trial Registration: ClinicalTrials.gov NCT01274598
Collapse
Affiliation(s)
- Gloria Solano-Aguilar
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- * E-mail:
| | - Aleksey Molokin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Christine Botelho
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anne-Maria Fiorino
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Bryan Vinyard
- Statistics Group, Northeast Area, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Robert Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Celine Chen
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Joseph Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Harry Dawson
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Irina Andreyeva
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Miriam Haverkamp
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Patricia L. Hibberd
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Probiotics and Prebiotics for Prevention of Viral Respiratory Tract Infections. PROBIOTICS, PREBIOTICS, AND SYNBIOTICS 2016. [PMCID: PMC7204878 DOI: 10.1016/b978-0-12-802189-7.00042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
This chapter introduces the importance of viral upper respiratory tract infections and evidence that probiotics, prebiotics, and synbiotics may reduce not only their incidence, but also their duration and severity. It starts by explaining the importance of viral respiratory infections and the common cold including their prevalence, morbidity, mortality, and cost. The mechanisms of action are discussed next. Later, it represents the clinical trials using probiotics and prebiotics for the prevention of viral infection in different age groups. At the end of the chapter, a summary of latest evidences is presented.
Collapse
|
42
|
Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res 2015; 64:589-602. [PMID: 26072063 DOI: 10.1007/s00011-015-0837-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To evaluate the effect of the nasal administration of live and heat-killed Lactobacillus rhamnosus CRL1505 (Lr1505) on immune-coagulative response during influenza virus (IFV) infection to improve survival and reduce lung injury. METHODS Six-week-old BALB/c mice were treated with live or heat-killed Lr1505 by the nasal route during two consecutive days. Treated and untreated control mice were then nasally challenged with IFV. RESULTS Both viable and non-viable Lr1505 protected infected mice by reducing pulmonary injury and lung viral loads trough several mechanisms: (a) Inflammatory cytokines were efficiently regulated allowing higher clearance of virus and reduction of inflammatory lung tissue damage, associated to higher levels of the regulatory cytokine IL-10. (b) The antiviral immune response was enhanced with improved levels of type I interferons, CD4(+)IFN-γ(+) lymphocytes, and lung CD11c(+)CD11b(low)CD103(+) and CD11c(+)CD11b(high)CD103(-) dendritic cells. (c) The procoagulant state was reversed mainly by down-regulating tissue factor expression and restoring thrombomodulin levels in lung. The capacity of Lr1505 to improve the outcome of IFV infection would be related to its ability to beneficially modulate lung TLR3-triggered immune response. CONCLUSIONS Our work is the first to demonstrate the ability of an immunobiotic strain to beneficially modulate inflammation-coagulation interactions during IFV infection. Interestingly, non-viable L. rhamnosus CRL1505 was as effective as the viable strain to beneficially modulate respiratory antiviral immune response.
Collapse
|
43
|
Griet M, Zelaya H, Mateos MV, Salva S, Juarez GE, de Valdez GF, Villena J, Salvador GA, Rodriguez AV. Soluble factors from Lactobacillus reuteri CRL1098 have anti-inflammatory effects in acute lung injury induced by lipopolysaccharide in mice. PLoS One 2014; 9:e110027. [PMID: 25329163 PMCID: PMC4201513 DOI: 10.1371/journal.pone.0110027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that Lactobacillus reuteri CRL1098 soluble factors were able to reduce TNF-α production by human peripheral blood mononuclear cells. The aims of this study were to determine whether L. reuteri CRL1098 soluble factors were able to modulate in vitro the inflammatory response triggered by LPS in murine macrophages, to gain insight into the molecular mechanisms involved in the immunoregulatory effect, and to evaluate in vivo its capacity to exert anti-inflammatory actions in acute lung injury induced by LPS in mice. In vitro assays demonstrated that L. reuteri CRL1098 soluble factors significantly reduced the production of pro-inflammatory mediators (NO, COX-2, and Hsp70) and pro-inflammatory cytokines (TNF-α, and IL-6) caused by the stimulation of macrophages with LPS. NF-kB and PI3K inhibition by L. reuteri CRL1098 soluble factors contributed to these inhibitory effects. Inhibition of PI3K/Akt pathway and the diminished expression of CD14 could be involved in the immunoregulatory effect. In addition, our in vivo data proved that the LPS-induced secretion of the pro-inflammatory cytokines, inflammatory cells recruitment to the airways and inflammatory lung tissue damage were reduced in L. reuteri CRL1098 soluble factors treated mice, providing a new way to reduce excessive pulmonary inflammation.
Collapse
Affiliation(s)
- Milagros Griet
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Hortensia Zelaya
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Melina Valeria Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Bahía Blanca, Buenos Aires, Argentina
| | - Susana Salva
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Guillermo Esteban Juarez
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Font de Valdez
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Julio Villena
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | | | - Ana Virginia Rodriguez
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
44
|
Zelaya H, Villena J, Lopez AG, Alvarez S, Agüero G. Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobioticLactobacillus rhamnosusCRL1505: Role of Toll-like receptor 2. Microbiol Immunol 2014; 58:416-26. [DOI: 10.1111/1348-0421.12163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Hortensia Zelaya
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
| | - Julio Villena
- Immunobiotics Research Group; Tucuman
- Laboratory of Immunobiotechnology; Reference Centre for Lactobacilli (CERELA-CONICET); Tucuman Argentina
| | - Andres Gramajo Lopez
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
| | - Susana Alvarez
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
- Laboratory of Immunobiotechnology; Reference Centre for Lactobacilli (CERELA-CONICET); Tucuman Argentina
| | - Graciela Agüero
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
| |
Collapse
|
45
|
Kitazawa H, Villena J. Modulation of Respiratory TLR3-Anti-Viral Response by Probiotic Microorganisms: Lessons Learned from Lactobacillus rhamnosus CRL1505. Front Immunol 2014; 5:201. [PMID: 24860569 PMCID: PMC4026741 DOI: 10.3389/fimmu.2014.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/23/2014] [Indexed: 01/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants and young children. Host immune response is implicated in both protective and immunopathological mechanisms during RSV infection. Activation of Toll-like receptor (TLR)-3 in innate immune cells by RSV can induce airway inflammation, protective immune response, and pulmonary immunopathology. A clear understanding of RSV–host interaction is important for the development of novel and effective therapeutic strategies. Several studies have centered on whether probiotic microorganisms with the capacity to stimulate the immune system (immunobiotics) might sufficiently stimulate the common mucosal immune system to improve defenses in the respiratory tract. In this regard, it was demonstrated that some orally administered immunobiotics do have the ability to stimulate respiratory immunity and increase resistance to viral infections. Moreover, during the last decade scientists have significantly advanced in the knowledge of the cellular and molecular mechanisms involved in the protective effect of immunobiotics in the respiratory tract. This review examines the most recent advances dealing with the use of immunobiotic bacteria to improve resistance against viral respiratory infections. More specifically, the article discuss the mechanisms involved in the capacity of the immunobiotic strain Lactobacillus rhamnosus CRL1505 to modulate the TLR3-mediated immune response in the respiratory tract and to increase the resistance to RSV infection. In addition, we review the role of interferon (IFN)-γ and interleukin (IL)-10 in the immunoregulatory effect of the CRL1505 strain that has been successfully used for reducing incidence and morbidity of viral airways infections in children.
Collapse
Affiliation(s)
- Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Department of Science of Food Function and Health, Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Julio Villena
- Immunobiotics Research Group , Tucuman , Argentina ; Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET) , Tucuman , Argentina
| |
Collapse
|
46
|
Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:4745-67. [PMID: 24859749 PMCID: PMC4053917 DOI: 10.3390/ijerph110504745] [Citation(s) in RCA: 493] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Probiotics are defined as live microorganisms, which when administered in adequate amounts, confer a health benefit on the host. Health benefits have mainly been demonstrated for specific probiotic strains of the following genera: Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Pediococcus, Leuconostoc, Bacillus, Escherichia coli. The human microbiota is getting a lot of attention today and research has already demonstrated that alteration of this microbiota may have far-reaching consequences. One of the possible routes for correcting dysbiosis is by consuming probiotics. The credibility of specific health claims of probiotics and their safety must be established through science-based clinical studies. This overview summarizes the most commonly used probiotic microorganisms and their demonstrated health claims. As probiotic properties have been shown to be strain specific, accurate identification of particular strains is also very important. On the other hand, it is also demonstrated that the use of various probiotics for immunocompromised patients or patients with a leaky gut has also yielded infections, sepsis, fungemia, bacteraemia. Although the vast majority of probiotics that are used today are generally regarded as safe and beneficial for healthy individuals, caution in selecting and monitoring of probiotics for patients is needed and complete consideration of risk-benefit ratio before prescribing is recommended.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia.
| |
Collapse
|