1
|
Lin H, Xu C, Ge J, Wu H, Wang Q. Jolkinolide B attenuates allergic airway inflammation and airway remodeling in asthmatic mice. Allergol Immunopathol (Madr) 2024; 52:91-96. [PMID: 38970271 DOI: 10.15586/aei.v52i4.1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Asthma is a widely prevalent chronic disease that brings great suffering to patients and may result in death if it turns severe. Jolkinolide B (JB) is one diterpenoid component separated from the dried roots of Euphorbia fischeriana Steud (Euphorbiaceae), and has anti--inflammatory, antioxidative, and antitumor properties. However, the detailed regulatory role and associated regulatory mechanism in the progression of asthma remain elusive. In this work, it was demonstrated that the extensive infiltration of bronchial inflammatory cells and the thickening of airway wall were observed in ovalbumin (OVA)-induced mice, but these impacts were reversed by JB (10 mg/kg) treatment, indicating that JB relieved the provocative symptoms in OVA-induced asthma mice. In addition, JB can control OVA-triggered lung function and pulmonary resistance. Moreover, JB attenuated OVA-evoked inflammation by lowering the levels of interleukin (IL)-4, IL-5, and IL-13. Besides, the activated nuclear factor kappa B (NF-κB) and transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGFβ/smad3) pathways in OVA-induced mice are rescued by JB treatment. In conclusion, it was disclosed that JB reduced allergic airway inflammation and airway remodeling in asthmatic mice by modulating the NF-κB and TGFβ/smad3 pathways. This work could offer new opinions on JB for lessening progression of asthma.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Chao Xu
- Department of Pediatric Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jintong Ge
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hua Wu
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Qi Wang
- Department of Thoracic Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China;
| |
Collapse
|
2
|
Zhang YY, Yan Y, Zhang J, Xia CY, Lian WW, Wang WP, He J, Zhang WK, Xu JK. Jolkinolide B: A comprehensive review of its physicochemical properties, analytical methods, synthesis and pharmacological activity. PHYTOCHEMISTRY 2022; 204:113448. [PMID: 36154827 DOI: 10.1016/j.phytochem.2022.113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Jolkinolide B is a typical ent-abietane-type diterpenoid, which is first found in Euphorbia jolkini. It is one of the most important active components in many toxic Euphorbia plants. In recent years, jolkinolide B has garnered increasing attention due to its high potent and multiple pharmacological activities. In order to better understand the research status of jolkinolide B, relevant information about jolkinolide B was collected from scientific databases (SciFinder Scholar, PubMed, ACS website, Elsevier, Web of Science, Google Scholar, Science Direct, and CNKI). There are few studies on chemical synthesis and biosynthesis of jolkinolide B. In addition, researchers on the activities of jolkinolide B are mostly concentrated at the cellular level, and there is a lack of research on the mechanism. In this review, the possible applications of jolkinolide B were systematically illustrated for the first time, from plant sources, physicochemical properties, analytical methods, synthesis and pharmacological activities. Jolkinolide B exhibits extensive pharmacological properties, including anticancer, anti-inflammatory, anti-osteoporosis, and anti-tuberculosis activities. Pharmacological activities of jolkinolide B were mainly focused on anticancer and anti-inflammatory activities, and the mechanism of action may be related with inhibition of JAK/STAT pathway, NF-κB pathway and PI3K/Akt/mTOR pathway. In addition, the extraction methods and analytical methods discussed in this review, will facilitate the development of novel herbal products for better healthcare solutions.
Collapse
Affiliation(s)
- Ya-Yao Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Ping Wang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
3
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
4
|
Li M, Yan Y, He J, Wang YM, Guo YX, Wang ZX, Zhang WK, Zhang HJ, Xu JK. Jolkinolide B alleviates renal fibrosis via anti-inflammation and inhibition of epithelial-mesenchymal transition in unilateral ureteral obstruction mice. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:76-87. [PMID: 34937462 DOI: 10.1080/10286020.2021.2016715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Renal fibrosis is a critical pathological process lead to a progressive loss of renal function. Jolkinolide B (JB) is a natural compound with anti-inflammatory activity from Euphorbia fischeriana Steud. The study evaluated the effect of JB on renal fibrosis in mice with unilateral ureteral obstruction (UUO). The results showed that JB could decrease renal fibrotic area, reduce phosphorylation of NF-κB p65 and the release of TNF-α, IL-6 and IL-1β, restore the expression of vementin, α-SMA and E-cadherin, as well as TGF-β1 and p-smad2/3. In conclusion, JB might reduce renal fibrosis by inhibiting inflammation induced by NF-κB pathway and EMT mediated by TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu-Ming Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ze-Xing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hao-Jun Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
5
|
Dong L, Liu F, Liu D, Kang S, Yang X, Wang J. Jolkinolide B attenuates laryngeal cancer cell growth and induces apoptosis via PTEN/PI3K/Akt signaling pathway. In Vitro Cell Dev Biol Anim 2021; 57:786-794. [PMID: 34697781 DOI: 10.1007/s11626-021-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Jolkinolide B (JB) is a bioactive diterpenoid, isolated from the root of Euphorbia fischeriana Steud, and has been reported to have anti-tumor and anti-inflammation function by regulation of cell migration, invasion, apoptosis, and cell cycle. We aimed to evaluate the effect of JB on laryngeal cancer cells. Human normal larynx epithelial (HBE) cells and cancer cell lines TU212, TU177, and Hep-2 were cultured; MTT assay was used to assess cell proliferation. LY294002 (a PI3K/Akt inhibitor) and IGF-1 (a PI3K/Akt activator) were employed to investigate the expression of PI3K/Akt pathway. Cell migration and invasion activities were detected by scratch wound healing and transwell assay, respectively. Flow cytometry assay was used to assess cell apoptosis. The expression levels of proteins were assessed by immunofluorescence and Western blotting assay. JB inhibited TU212, TU177, and Hep-2 cell viability with an IC50 value of 54.57 ± 0.53 μg/mL, 44.82 ± 0.32 μg/mL, and 49.63 ± 0.47 μg/mL, respectively. Compared with control group, the proliferation, migration, and invasion of cells significantly decreased after JB and LY294002 treatment, while cell apoptosis increased. In IGF-1 group, the results were opposite compared to the JB and LY294002 groups. Western blotting results showed that JB and LY294002 treatment significantly inhibited the levels of Bcl-2, p-PI3K, and p-Akt while the levels of Bax, cleaved caspase-3, and PTEN protein significantly increased. Our study suggested that JB exhibits an inhibition effect on laryngeal cancer cell growth in vitro.
Collapse
Affiliation(s)
- Lei Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Feifei Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Dawei Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Shasha Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China
| | - Xin Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Yantai, 264000, Shandong, China.
| | - Junxia Wang
- Department of Otorhinolaryngology, Yantai Haigang Hospital, No. 100 Xingfu Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
6
|
Li YN, He J, Zhang J, Shi YX, Guo LB, Peng ZC, Yang T, Ding K, Zhang WK, Xu JK. Existing knowledge on Euphorbia fischeriana Steud. (Euphorbiaceae): Traditional uses, clinical applications, phytochemistry, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114095. [PMID: 33819505 DOI: 10.1016/j.jep.2021.114095] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia fischeriana Steud. (Euphorbiaceae) is a perennial herb distributed in grassland, hill slopes or gravel hillside, with average altitude of 100-600 m. The whole grass of E. fischeriana is toxic with roots used as folk medicine to treat Zhushui, dyspepsia, abdominal distension, abdominal pain, cough, as well as external applications such as cure of scabies and tuberculosis of lymph nodes. AIM OF THE REVIEW This systematic review aims to provide a detailed and in-depth summary about the reported advances in traditional uses, clinical applications, phytochemistry, pharmacology and toxicity of E. fischeriana, so as to offer fresh ideas and broader vision and insights for subsequent studies. MATERIALS AND METHODS Various scientific data bases such as CNKI, Elsevier, Google Scholar, Pubmed, Science Direct, SciFinder Scholar and Web of Science were searched to collect information about E. fischeriana. Other relevant literatures were searched in 'Flora of China Editorial Committee', ancient books, Ph.D and Masters' Dissertation to get more data of E. fischeriana. RESULTS A total of 241 chemical constituents have been identified from the roots of E. fischeriana, including diterpenoids, triterpenoids, meroterpenoids, acetophenones, flavonoids, coumarins, steroids, phenolic acids, tannins, etc. Various pharmacological activities have been demonstrated, especially anti-tumor, antibacterial, anti-inflammatory, antiviral and anti-leukemia activities. Moreover, different investigations about clinical uses and toxicology of E. fischeriana indicated that attention should be paid to its usage and dosage. CONCLUSION The researches of E. fischeriana are excellent, but gap still remains. As a poisonous traditional Chinese medicine, there are not enough studies on the toxicity of E. fischeriana. In addition, scholars' research on the pharmacological mechanism of E. fischeriana focuses more on the anti-tumor activity, which can be broadened in the future. Presumably, chemical constituents and biological activities of diterpenoids and trace meroterpenoids in E. fischeriana deserve further research in-depth in the future, in order to provide low toxicity and high efficiency lead compounds. Meanwhile, further studies on other medicinal aspects may lay a foundation for the comprehensive development and utilization of E. fischeriana.
Collapse
Affiliation(s)
- Ya-Nan Li
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Ying-Xue Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Lin-Bo Guo
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Zhong-Can Peng
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Ting Yang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Kang Ding
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
7
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
8
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| |
Collapse
|
9
|
Wang K, Yang JC, Jang YJ, Chen GY, Zhang YJ, Dai YH, Zhang DY, Wu YC. 19-(Benzyloxy)-19-oxojolkinolide B (19-BJB), an ent-abietane diterpene diepoxide, inhibits the growth of bladder cancer T24 cells through DNA damage. PLoS One 2021; 16:e0248468. [PMID: 33724994 PMCID: PMC7963099 DOI: 10.1371/journal.pone.0248468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Diterpenoids jolkinolide A and B, were first isolated from Euphorbia fischeriana. In our previous research, 19-(Benzyloxy)-19-oxojolkinolide B (19-BJB), a derivative of jolkinolides, was synthesized as a novel ent -abietane diterpene diepoxide. In this study, 19-BJB showed strong in vitro activity against bladder cancer cell lines. DNA damage which was observed through the interaction of 19-BJB with nucleotide chains and affected DNA repair resulted in the activation of checkpoint kinase 1 (Chk1) and checkpoint kinase 2 (Chk2) in bladder cancer cell lines. In vivo testing in nude mice also proved that 19-BJB revealed a potential inhibitory effect on tumor growth. Additionally, the 3D-QSAR models of jolkinolides were established. Briefly, we proved that 19-BJB could potentially be used as a drug to inhibit the growth of bladder tumor.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, PR China
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yeong-Jiunn Jang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Jing Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, PR China
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yun-Hao Dai
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Yong Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, PR China
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Euphorbia cuneata Represses LPS-induced Acute Lung Injury in Mice via its Antioxidative and Anti-inflammatory Activities. PLANTS 2020; 9:plants9111620. [PMID: 33233453 PMCID: PMC7700453 DOI: 10.3390/plants9111620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Euphorbia cuneata (EC; Euphorbiaceae), which widely grows in Saudi Arabia and Yemen, is used traditionally to treat pain and inflammation. This study aimed to evaluate the protective anti-inflammatory effect of a standardized extract of EC against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanism(s) of this pharmacologic activity. ALI was induced in male Balb/c mice using intraperitoneal injection of LPS. A standardized total methanol extract of EC or dexamethasone was administered 5 days prior to LPS challenge. Bronchoalveolar fluid (BALF) and lung samples were collected for analysis. The results demonstrated the protective anti-inflammatory effect of EC against LPS-induced ALI in mice. Standardized EC contained 2R-naringenin-7-O-β-glucoside (1), kaempferol-7-O-β-glucoside (2), cuneatannin (3), quercetin (4), and 2R-naringenin (5) in concentrations of 6.16, 4.80, 51.05, 13.20, and 50.00 mg/g of extract, respectively. EC showed a protective effect against LPS-induced pulmonary damage. EC reduced lung wet/dry weight (W/D) ratio and total protein content in BALF, indicating attenuation of the pulmonary edema. Total and differential cell counts were decreased in EC-treated animals. Histopathological examination confirmed the protective effect of EC, as indicated by an amelioration of LPS-induced lesions in lung tissue. EC also showed a potent anti-oxidative property as it decreased lipid peroxidation and increased the antioxidants in lung tissue. Finally, the anti-inflammatory activity of EC was obvious through its ability to suppress the activation of nuclear factor-κB (NF-κB), and hence its reduction of the levels of downstream inflammatory mediators. In conclusion, these results demonstrate the protective effects of EC against LPS-induced lung injury in mice, which may be due to its antioxidative and anti-inflammatory activities.
Collapse
|
11
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Yan Y, Wang Y, Wang X, Liu D, Wu X, Xu C, Chen C, Li Z. The effects of jolkinolide B on HepG2 cells as revealed by 1H-NMR-based metabolic profiling. Eur J Pharmacol 2019; 842:10-19. [DOI: 10.1016/j.ejphar.2018.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
|
13
|
Structural Diversity and Biological Activities of Diterpenoids Derived from Euphorbia fischeriana Steud. Molecules 2018; 23:molecules23040935. [PMID: 29669996 PMCID: PMC6017929 DOI: 10.3390/molecules23040935] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023] Open
Abstract
Diterpenoids are the focus of natural product drug discovery because of their great structural diversity and pronounced biological activities. Euphorbia fischeriana Steud is a Chinese traditional medicinal herb for curing edema, ascites, and cancer. This plant contains rich diterpenoids. Based on the carbon skeleton and substituents, it can be classified into thirteen subtypes: ent-abietane, daphnane, tigliane, ingenane, ent-atisane, ent-rosane, ent-kaurene, ent-kaurane, secotigliane, lathyrane, ent-pimarene, isopimarene and dimeric. In this paper, we reviewed the chemical structures and biological activities of 90 diterpenoids isolated from this medicinal herb. We hope that this work can serve as a reference for further research of these diterpenoids and lay the foundation for drug discovery.
Collapse
|
14
|
Luo J, Zhan J, You H, Cheng X. MicroRNA‑146a/Toll‑like receptor 4 signaling protects against severe burn‑induced remote acute lung injury in rats via anti‑inflammation. Mol Med Rep 2018; 17:8377-8384. [PMID: 29658581 DOI: 10.3892/mmr.2018.8877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the preventive effects of microRNA (miR)‑146a against severe burn‑induced remote acute lung injury (ALI) in rats and the underlying mechanism. The surface area of the skin was immersed in 100˚C water for 5‑10 sec on the dorsal surface. The expression level of miR‑146a was significantly downregulated in rats with burn‑induced ALI. Downregulation of miR‑146a increased inflammation, and inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression in a model of ALI in vitro via the promotion of the Toll‑like receptor (TLR)4/nuclear factor (NF)‑κB signaling pathway. In addition, the overexpression of miR‑146a reduced inflammation, and iNOS and COX‑2 protein expression in the model of ALI in vitro via the suppression of the TLR4/NF‑κB signaling pathway. A TLR4 inhibitor reduced the function of anti‑miR‑146a on inflammation in the model of ALI. Collectively, the results of the present study demonstrated the preventive effects of miR‑146a against severe burn‑induced remote ALI in rats through the anti‑inflammatory‑regulated TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Jinhua Luo
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianhua Zhan
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haoyuan You
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing Cheng
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Wei CY, Sun HL, Yang ML, Yang CP, Chen LY, Li YC, Lee CY, Kuan YH. Protective effect of wogonin on endotoxin-induced acute lung injury via reduction of p38 MAPK and JNK phosphorylation. ENVIRONMENTAL TOXICOLOGY 2017; 32:397-403. [PMID: 26892447 DOI: 10.1002/tox.22243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Acute lung injury (ALI) is a serious inflammatory disorder which remains the primary cause of incidence and mortality in patients with acute pulmonary inflammation. However, there is still no effective medical strategy available clinically for the improvement of ALI. Wogonin, isolated from roots of Scutellaria baicalensis Georgi, is a common medicinal herb which presents biological and pharmacological effects, including antioxidation, anti-inflammation, and anticancer. Preadministration of wogonin inhibited not only lung edema but also protein leakage into the alveolar space in murine model of lipopolysaccharide (LPS)-induced ALI. Moreover, wogonin not only reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 but also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) induced by LPS. We further found wogonin inhibited the phosphorylation of p38 MAPK and JNK at a concentration lower than ERK. In addition, inhibition of lung edema, protein leakage, expression of iNOS and COX-2, and phosphorylation of p38 MAPK and JNK were all observed in a parallel concentration-dependent manner. These results suggest that wogonin possesses potential protective effect against LPS-induced ALI via downregulation of iNOS and COX-2 expression by blocking phosphorylation of p38 MAPK and JNK. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 397-403, 2017.
Collapse
Affiliation(s)
- Cheng-Yu Wei
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Neurology, Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Exercise and Health Promotion, College of Education, Chinese Culture University, Taipei, Taiwan, Republic of China
| | - Hai-Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Ching-Ping Yang
- Department of Biotechology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Shen L, Zhang SQ, Liu L, Sun Y, Wu YX, Xie LP, Liu JC. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells. Med Sci Monit 2017; 23:223-237. [PMID: 28087861 PMCID: PMC5256368 DOI: 10.12659/msm.902704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.
Collapse
Affiliation(s)
- Lei Shen
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland).,Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Shan-Qiang Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Lei Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Yu Sun
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Yu-Xuan Wu
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Li-Ping Xie
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| | - Ji-Cheng Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang, China (mainland)
| |
Collapse
|
17
|
Zhang J, He J, Wang XX, Shi YX, Zhang N, Ma BZ, Zhang WK, Xu JK. Ent-abietane diterpenoids and their probable biogenetic precursors from the roots of Euphorbia fischeriana. RSC Adv 2017. [DOI: 10.1039/c7ra11982h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Five new ent-abietane diterpenoid fischeriabietanes A–E (1–5), along with nine known analogues (6–14), were isolated from the roots of Euphorbia fischeriana and their biosynthetic relationships were discussed.
Collapse
Affiliation(s)
- Jia Zhang
- School of Life Sciences & School of Chinese Medicine Sciences
- Beijing University of Chinese Medicine
- Beijing 100029
- China
- Institute of Clinical Medical Sciences
| | - Jun He
- Department of Pharmacy
- China-Japan Friendship Hospital
- Beijing 100029
- China
| | - Xiao-Xue Wang
- Department of Pharmacy
- China-Japan Friendship Hospital
- Beijing 100029
- China
| | - Ying-Xue Shi
- School of Life Sciences & School of Chinese Medicine Sciences
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Nuan Zhang
- School of Life Sciences & School of Chinese Medicine Sciences
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Bing-Zhi Ma
- Department of Pharmacy
- China-Japan Friendship Hospital
- Beijing 100029
- China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences
- China-Japan Friendship Hospital
- Beijing 100029
- China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| |
Collapse
|
18
|
Li J, Hua Y, Ji P, Yao W, Zhao H, Zhong L, Wei Y. Effects of volatile oils of Angelica sinensis on an acute inflammation rat model. PHARMACEUTICAL BIOLOGY 2016; 54:1881-1890. [PMID: 26853745 DOI: 10.3109/13880209.2015.1133660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Context Despite several pharmacological studies of volatile oils of Angelica sinensis (Oliv.) Diels (Umbelliferae) (VOAS), its anti-inflammatory mechanism remains unknown. Objective The study investigates the effects of VOAS on the lipopolysaccharide (LPS)-induced acute inflammation rat model and analyzes its possible anti-inflammatory mechanisms. Materials and methods Fourty rats were randomly divided into the control, model, VOAS and dexamethasone (Dex) groups. The VOAS and Dex groups were given VOAS (0.176 mL/kg) and Dex (40 μg/kg), respectively. Rats in all groups except the control group were intraperitoneally injected with LPS (100 μg/kg), their exterior behaviour and liver pathological changes were observed, and the level of white blood cell (WBC), the number of neutrophils (NE)%, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), alkaline phosphatase (ALP), tumour necrosis factor (TNF-α), interleukin (IL)-1β, IL-6, IL-10, histamine (HIS), 5-hydroxytryptamine (5-HT), nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) were detected. Results Compared with the model group, VOAS and Dex significantly accelerated the recovery of the exterior behaviour, the liver pathological changes of rats, and increased the level of IL-10, but decreased the level of WBC, NE%, GOT, GPT, ALP, TNF-α, IL-1β, IL-6, HIS, 5-HT, NO, PGE2, iNOS and COX-2 (p < 0.05). Conclusion VOAS exhibits anti-inflammatory and liver protection effects by inhibiting the secretion of the pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), the inflammatory mediators (HIS, 5-HT, PGE2 and NO), the inflammation-related enzymes (iNOS and COX-2), as well as promoting the production of the anti-inflammatory cytokines IL-10.
Collapse
Affiliation(s)
- Jian Li
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| | - Yongli Hua
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| | - Peng Ji
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| | - Wanling Yao
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| | - Haifu Zhao
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| | - Lijia Zhong
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| | - Yanming Wei
- a College of Veterinary Medicine, Gansu Agricultural University , Lanzhou , Gansu Province , People's Republic of China
| |
Collapse
|
19
|
Lee JW, Park JW, Shin NR, Park SY, Kwon OK, Park HA, Lim Y, Ryu HW, Yuk HJ, Kim JH, Oh SR, Ahn KS. Picrasma quassiodes (D. Don) Benn. attenuates lipopolysaccharide (LPS)-induced acute lung injury. Int J Mol Med 2016; 38:834-44. [PMID: 27431288 DOI: 10.3892/ijmm.2016.2669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
Picrasma quassiodes (D.Don) Benn. (PQ) is a medicinal herb belonging to the family Simaroubaceae and is used as a traditional herbal remedy for various diseases. In this study, we evaluated the effects of PQ on airway inflammation using a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and LPS-stimulated raw 264.7 cells. ALI was induced in C57BL/6 mice by the intranasal administration of LPS, and PQ was administered orally 3 days prior to exposure to LPS. Treatment with PQ significantly attenuated the infiltration of inflammatory cells in the bronchoalveolar lavage fluid (BALF). PQ also decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BALF. In addition, PQ inhibited airway inflammation by reducing the expression of inducible nitric oxide synthase (iNOS) and by increasing the expression of heme oxygenase-1 (HO-1) in the lungs. Furthermore, we demonstrated that PQ blocked the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the lungs of mice with LPS-induced ALI. In the LPS-stimulated RAW 264.7 cells, PQ inhibited the release of pro-inflammatory cytokines and increased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1). Treatment with PQ decreased the translocation of nuclear factor (NF)-κB to the nucleus, and increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of HO-1. PQ also inhibited the activation of p38 in the LPS-stimulated RAW 264.7 cells. Taken together, our findings demonstrate that PQ exerts anti-inflammatory effects against LPS-induced ALI, and that these effects are associated with the modulation of iNOS, HO-1, NF-κB and MAPK signaling. Therefore, we suggest that PQ has therapeutic potential for use in the treatment of ALI.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Na-Rae Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| |
Collapse
|
20
|
Xu X, Liu N, Zhang YX, Cao J, Wu D, Peng Q, Wang HB, Sun WC. The Protective Effects of HJB-1, a Derivative of 17-Hydroxy-Jolkinolide B, on LPS-Induced Acute Distress Respiratory Syndrome Mice. Molecules 2016; 21:77. [PMID: 26760995 PMCID: PMC6273719 DOI: 10.3390/molecules21010077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 01/11/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS),which is inflammatory disorder of the lung, which is caused by pneumonia, aspiration of gastric contents, trauma and sepsis, results in widespread lung inflammation and increased pulmonary vascular permeability. Its pathogenesis is complicated and the mortality is high. Thus, there is a tremendous need for new therapies. We have reported that HJB-1, a 17-hydroxy-jolkinolide B derivative, exhibited strong anti-inflammatory effects in vitro. In this study, we investigated its impacts on LPS-induced ARDS mice. We found that HJB-1 significantly alleviated LPS-induced pulmonary histological alterations, inflammatory cells infiltration, lung edema, as well as the generation of inflammatory cytokines TNF-α, IL-1β and IL-6 in BALF. In addition, HJB-1 markedly suppressed LPS-induced IκB-α degradation, nuclear accumulation of NF-κB p65 subunit and MAPK phosphorylation. These results suggested that HJB-1 improved LPS-induced ARDS by suppressing LPS-induced NF-κB and MAPK activation.
Collapse
Affiliation(s)
- Xiaohan Xu
- Central Laboratory, The Second Clinical Hospital, Jilin University, Changchun 130041, China.
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Ning Liu
- Central Laboratory, The Second Clinical Hospital, Jilin University, Changchun 130041, China.
| | - Yu-Xin Zhang
- Key Laboratory of Molecular Enzymology & Engineering, Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China.
| | - Jinjin Cao
- Central Laboratory, The Second Clinical Hospital, Jilin University, Changchun 130041, China.
| | - Donglin Wu
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China.
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Hong-Bing Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wan-Chun Sun
- Central Laboratory, The Second Clinical Hospital, Jilin University, Changchun 130041, China.
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|