1
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Neha A, Shaik A, Chelkapally SC, Kolikapongu RS, Namani SC, Erukulla T, Batchu P, Mendez N, Smith Y, Brown D, Whitley NC, Pech-Cervantes AA, Dykes GS, Owen VR, Kannan G, Miller JE, Siddique A, Terrill TH. Effect of feeding a blackseed meal-sericea lespedeza leaf meal pellet on gastrointestinal nematode and coccidia infection and animal performance in young goats. Vet Parasitol 2024; 331:110253. [PMID: 39032481 DOI: 10.1016/j.vetpar.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Gastrointestinal nematode (GIN) infection poses the most significant obstacle to the sustainable development of small ruminant (sheep and goat) farming globally. Resistance of GINs to synthetic anthelmintic drugs has led to rising interest in exploring alternative methods for parasite control, such as the utilization of bioactive plants with anti-parasitic properties. In this investigation, black seed (Nigella sativa), a shrub high in secondary antioxidant compounds, and sericea lespedeza (Lespedeza cuneata), a perennial legume high in tannins with anti-parasitic properties were combined to determine if two bioactive plants containing different types of secondary compounds can provide a stronger anti-parasitic effect than sericea lespedeza alone. In a 49-day trial, naturally parasitized 6-7-month-old intact male Spanish goats (n = 15/treatment) were fed pelletized feeds encompassing sericea lespedeza leaf meal (SL), a combination of black seed meal (BS) and sericea lespedeza leaf meal (BS-SL - 75 % SL, 25 % BS), or alfalfa (Medicago sativa, control parasitized; CONP), with an additional group of dewormed kids given the alfalfa pellets (Control treated; CONT). Weekly measurements of animal weights and samples of blood and feces were collected to determine the packed cell volume (PCV), GIN fecal egg counts (FEC), and coccidia fecal oocyte counts (FOC), respectively. All animals were processed at the end of the trial (60 total), with adult Haemonchus contortus worms recovered from the abomasum of each goat for counting and sex determination. Carcass weights were recorded after processing. Goats given the SL and BS-SL treatments had lower FEC (P<0.05) than the parasitized alfalfa (CONP) goats. At the end of the study, the SL and BS-SL groups' FOC values were lower (P < 0.05) than the CONT and CONP groups. A rise in PCV values was seen over time for all groups; SL, BS-SL, and CONT animals exhibited higher PCV values (P < 0.05) in comparison to the CONP goats. The parasitized goats fed SL-only pellets showed greater feed intake and animal body weights (P < 0.05) compared to goats fed BS-SL or alfalfa pellets. However, the treatments had no effect on the weight of the goats' carcasses. Although the H. contortus adult worm counts in the CONT goats (alfalfa-dewormed) were lower (P < 0.05) than in the CONP goats (alfalfa-parasitized), they did not differ from the SL or BS-SL animals. This study indicates that sericea lespedeza leaf meal pellet diet, either by itself or in combination with black seed meal, showed promising results as an anthelmintic and may prove to be an effective alternative to exclusive use of conventional deworming drugs. The addition of black seed did not appear to enhance the effectiveness of sericea lespedeza in this study.
Collapse
Affiliation(s)
- A Neha
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - A Shaik
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - S C Chelkapally
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - R S Kolikapongu
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - S C Namani
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - T Erukulla
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - P Batchu
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - N Mendez
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - Y Smith
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - D Brown
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - N C Whitley
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - A A Pech-Cervantes
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
| | - G S Dykes
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - V R Owen
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - G Kannan
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - J E Miller
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - A Siddique
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States
| | - T H Terrill
- Department of Agricultural Sciences, Fort Valley State University, 1005 State University Drive, Fort Valley, GA 31030, United States.
| |
Collapse
|
3
|
Roney M, Dubey A, Nasir MH, Huq AM, Tufail A, Tajuddin SN, Zamri NB, Mohd Aluwi MFF. Computational evaluation of quinones of Nigella sativa L. as potential inhibitor of dengue virus NS5 methyltransferase. J Biomol Struct Dyn 2024; 42:8701-8711. [PMID: 37632317 DOI: 10.1080/07391102.2023.2248262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Aedes aegypti is the primary vector for the transmission of the dengue virus, which causes dengue fever, dengue hemorrhagic illness and dengue shock syndrome. There is now no antiviral medication available to treat DENV, which kills thousands of people each year and infects millions of individuals. A possible target for the creation of fresh and efficient dengue treatments is the DENV-3 NS5 MTase. So, Nigella sativa quinones were examined using in silico methods to find natural anti-DENV compounds. The in silico docking was conducted utilising the Discovery Studio software on the quinones of N. sativa and the active site of the target protein DENV-3 NS5 MTase. In addition, the druggability and pharmacokinetics of the lead compound were assessed. Dithymoquinone was comparable to the reference compound in terms of its ability to bind to the active site of target protein. Dithymoquinone met the requirements for drug likeness and Lipinski's principles, as demonstrated by the ADMET analysis and drug likeness results. The current study indicated that the dithymoquinone from N. sativa had anti-DENV activity, suggesting further drug development and dengue treatment optimisation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Muhammad Hassan Nasir
- Faculty of Medicine, University Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia
| | - Akm Moyeenul Huq
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Department of Pharmacy, School of Medicine, University of Asia Pacific 74/A, Dhaka, Bangladesh
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Saiful Nizam Tajuddin
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Normaiza Binti Zamri
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial SCiences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-Aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
4
|
Alsalahi A, Maarof NN, Alshawsh MA, Aljaberi MA, Qasem MA, Mahuob A, Badroon NA, Mussa EA, Hamat RA, Abdallah AM. Immune stimulatory effect of Nigella sativa in healthy animal models: A systematic review and meta-analysis. Heliyon 2024; 10:e27390. [PMID: 38510007 PMCID: PMC10950595 DOI: 10.1016/j.heliyon.2024.e27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The immune-modulatory effects of black seeds (Nigella sativa seeds, NSS) are well documented, but the overall in vivo impact of this important natural medicinal product on immune system function has yet to be established. Here we systematically reviewed and meta-analyzed the effects of NSS on humoral [serum titers of immunoglobulins including IgG, IgM, anti-Newcastle virus disease (anti-NDV), and sheep red blood cell antigen (anti-SRBC)] and cellular immunity [total white blood cell (WBC) count and percentages of monocytes, lymphocytes, basophils, neutrophils, and eosinophils] in healthy animals. The PubMed, ScienceDirect, Web of Science, and Scopus databases were searched according to predefined eligibility criteria. Meta-analyses were performed to estimate the final effect size using RevMan software. Seventeen animal studies were eligible for analysis. For humoral immunity, the overall pooled effect size (ES) of NSS on serum titers of IgM and anti-NVD antibodies was not significantly different [mean difference (MD) 75.27, 95% CI: -44.76 to 195.30, p = 0.22 (I2 = 89%, p = 0.003), and -0.01, 95% CI: -0.27 to 0.25, p = 0.94 (I2 = 74%, p = 0.02), respectively]. However, NSS significantly increased serum titers of IgG and anti-SRBC antibodies [MD 3.30, 95% CI: 2.27 to 4.32, p = 0.00001 (I2 = 0%, p = 0.97), and 1.15, 95% CI: 0.74 to 1.56, p = 0.00001 (I2 = 0%, p = 0.43), respectively]. For cellular immunity, the ES of NSS on WBCs, monocytes, and lymphocytes were not significantly different [MD 0.29, 95% CI: -0.55 to 1.13, p = 0.50, (I2 = 14%, p = 0.32), - 0.01, 95% CI: -0.45 to 0.44, p = 0.97 (I2 = 0%, p = 0.77), and 4.73, 95% CI: -7.13 to 16.59, p = 0.43, (I2 = 99%, p = 0.00001), respectively]. In conclusion, black seeds enhance humoral immunity in healthy animals but do not affect cellular immunity.
Collapse
Affiliation(s)
- Abdulsamad Alsalahi
- Department of Pharmacology, Faculty of Pharmacy, Sana'a University, Mazbah District, 1247, Sana'a Secretariat, Yemen
| | - Nian N.N. Maarof
- Department of Chemistry, College of Education, University of Sulaimani, 46001 Sulaimani, Kurdistan, Iraq
| | - Mohammed A. Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Musheer A. Aljaberi
- Department of Community Health, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Mousa A. Qasem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abdulaleem Mahuob
- Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Nassrin A. Badroon
- Special Infectious Agent Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebthag A.M. Mussa
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rukman A. Hamat
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Atiyah M. Abdallah
- Department of Biomedical Science, College of Health Science, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
5
|
Cyril AC, Ali NM, Nelliyulla Parambath A, Vazhappilly CG, Jan RK, Karuvantevida N, Aburamadan H, Lozon Y, Radhakrishnan R. Nigella sativa and its chemical constituents: pre-clinical and clinical evidence for their potential anti-SARS-CoV-2 effects. Inflammopharmacology 2024; 32:273-285. [PMID: 37966624 DOI: 10.1007/s10787-023-01385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.
Collapse
Affiliation(s)
- Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Najma Mohamed Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Anagha Nelliyulla Parambath
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Haneen Aburamadan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yosra Lozon
- Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Kazemi R, Yazdanpanah E, Esmaeili SA, Yousefi B, Baharlou R, Haghmorad D. Thymoquinone improves experimental autoimmune encephalomyelitis by regulating both pro-inflammatory and anti-inflammatory cytokines. Mol Biol Rep 2024; 51:256. [PMID: 38302802 DOI: 10.1007/s11033-023-09148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Introduction Multiple sclerosis (MS) is an autoimmune condition marked by inflammation and the loss of myelin in the central nervous system (CNS). The aim of this research was to understand how Thymoquinone regulate the molecular and cellular processes involved in controlling experimental autoimmune encephalomyelitis (EAE), which is an animal model often used to study MS. Methods Female C57BL/6 mice were split into different groups receiving different doses (low, medium, and high) of Thymoquinone simultaneously with EAE induction. Clinical scores and other measurements were observed daily throughout the 25-day post immunization. We assessed lymphocyte infiltration and demyelination in the spinal cord through histological staining, analyzed T-cell profiles using ELISA, and quantified the expression levels of transcription factors in the CNS using Real-time PCR. Results Thymoquinone prevented the development of EAE. Histological experiments revealed only a small degree of leukocyte infiltration into the CNS. Thymoquinone resulted in a notable reduction in the generation of IFN-γ, IL-17, and IL-6, while simultaneously increasing the production of IL-4, IL-10, and TGF-β in Th2 and Treg cells. Results from Real-time PCR suggested Treatment with Thymoquinone decreased the expression of T-bet and ROR-γt while increasing the expression of Foxp3 and GATA3. Conclusion These findings showed that Thymoquinone could decrease both disease incidence and severity.
Collapse
Affiliation(s)
- Roya Kazemi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
7
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Kohandel Z, Darrudi M, Naseri K, Samini F, Aschner M, Pourbagher-Shahri AM, Samarghandian S. The Role of Resveratrol in Aging and Senescence: A Focus on Molecular Mechanisms. Curr Mol Med 2024; 24:867-875. [PMID: 37278035 DOI: 10.2174/1566524023666230602162949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Resveratrol (Res), a polyphenol found in red wine, has been shown to decelerate aging, the progressive loss of physiological integrity and cellular senescence, characterized by the inability to progress through the cell cycle. No successful clinical trials have yet to be completed in humans on dose limitations. Yet, the potent anti-aging and anti-senescence efficacy of Res has been documented in several in vivo animal models. In this review, we highlight the molecular mechanisms of Res efficacy in antiaging disorders, such as diabetes, neurodegenerative disorders, eye diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Majid Darrudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariborz Samini
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
9
|
Kow CS, Ramachandram DS, Hasan SS. The effect of Nigella sativa on the risk of mortality in patients with COVID-19: A systematic review and meta-analysis of randomized trials. Phytother Res 2024; 38:3-6. [PMID: 36757063 DOI: 10.1002/ptr.7743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 12/18/2022] [Indexed: 02/10/2023]
Affiliation(s)
- Chia Siang Kow
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Syed Shahzad Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
10
|
Azami S, Forouzanfar F. Potential role of Nigella Sativa and its Constituent (Thymoquinone) in Ischemic Stroke. Curr Mol Med 2024; 24:327-334. [PMID: 37038292 DOI: 10.2174/1566524023666230410101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/12/2023]
Abstract
Ischemic stroke is one of the major causes of global mortality, which puts great demands on health systems and social welfare. Ischemic stroke is a complex pathological process involving a series of mechanisms such as ROS accumulation, Ca2+ overload, inflammation, and apoptosis. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients has led scientists to find new treatments. The use of herbal medicine, as an alternative or complementary therapy, is increasing worldwide. For centuries, our ancestors had known the remedial nature of Nigella sativa (Family Ranunculaceae) and used it in various ways, either as medicine or as food. Nowadays, N. sativa is generally utilized as a therapeutic plant all over the world. Most of the therapeutic properties of this plant are attributed to the presence of thymoquinone which is the major biological component of the essential oil. The present review describes the pharmacotherapeutic potential of N. sativa in ischemic stroke that has been carried out by various researchers. Existing literature highlights the protective effects of N. sativa as well as thymoquinone in ischemia stroke via different mechanisms including anti-oxidative stress, anti-inflammation, anti-apoptosis, neuroprotective, and vascular protective effects. These properties make N. sativa and thymoquinone promising candidates for developing potential agents for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shakiba Azami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Majdalawieh AF, Ahari SH, Yousef SM, Nasrallah GK. Sesamol: A lignan in sesame seeds with potent anti-inflammatory and immunomodulatory properties. Eur J Pharmacol 2023; 960:176163. [PMID: 37925135 DOI: 10.1016/j.ejphar.2023.176163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Inflammation is associated with the development and progression of a plethora of diseases including joint, metabolic, neurological, hepatic, and renal disorders. Sesamol, derived from the seeds of Sesamum indicum L., has received considerable attention due to its well-documented multipotent phytotherapeutic effects, including its anti-inflammatory and immunomodulatory properties. However, to date, no comprehensive review has been established to highlight or summarize the anti-inflammatory and immunomodulatory properties of sesamol. Herein, we aim to address this gap in the literature by presenting a thorough review encapsulating evidence surrounding the range of inflammatory mediators and cytokines shown to be targeted by sesamol in modulating its anti-inflammatory actions against a range of inflammatory disorders. Additionally, evidence highlighting the role that sesamol has in modulating components of adaptive immunity including cellular immune responses and Th1/Th2 balance is underscored. Moreover, the molecular mechanisms and the signaling pathways underlying such effects are also highlighted. Findings indicate that this seemingly potent lignan mediates its anti-inflammatory actions, at least in part, via suppression of various pro-inflammatory cytokines like IL-1β and TNFα, and downregulation of a multitude of signaling pathways including NF-κB and MAPK. In conclusion, we anticipate that sesamol may be employed in future therapeutic regimens to aid in more effective drug development to alleviate immune-related and inflammatory conditions.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Sogand H Ahari
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Sarah M Yousef
- Department of Psychology, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Zheng CY, Zhao JX, Yuan CH, Peng X, Geng M, Ai J, Fan YY, Yue JM. Unprecedented sesterterpenoids, orientanoids A-C: discovery, bioinspired total synthesis and antitumor immunity. Chem Sci 2023; 14:13410-13418. [PMID: 38033907 PMCID: PMC10685275 DOI: 10.1039/d3sc04238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Sesterterpenoids are a very rare class of important natural products. Three new skeletal spiro sesterterpenoids, named orientanoids A-C (1-3), were isolated from Hedyosmum orientale. Their structures were determined by a combination of spectroscopic data, X-ray crystallography, and total synthesis. To obtain adequate materials for biological research, the bioinspired total syntheses of 1-3 were effectively achieved in 7-8 steps in overall yields of 2.3-6.4% from the commercially available santonin without using any protecting groups. In addition, this work also revised the stereochemistry of hedyosumins B (6) and C (10) as 11R-configuration. Tumor-associated macrophages (TAMs) have emerged as important therapeutic targets in cancer therapy. The in-depth biological evaluation revealed that these sesterterpenoids antagonized the protumoral and immunosuppressive functional phenotype of macrophages in vitro. Among them, the most potent and major compound 1 inhibited protumoral M2-like macrophages and activated cytotoxic CD8+ T cells, and consequently inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Chang-Hao Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
13
|
Yu X. Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiol Ther 2023; 12:415-443. [PMID: 37247171 PMCID: PMC10423196 DOI: 10.1007/s40119-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023] Open
Abstract
Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.
Collapse
Affiliation(s)
- Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75235, USA.
| |
Collapse
|
14
|
Shoaib A, Javed S, Wahab S, Azmi L, Tabish M, Sultan MH, Abdelsalam K, Alqahtani SS, Ahmad MF. Cellular, Molecular, Pharmacological, and Nano-Formulation Aspects of Thymoquinone-A Potent Natural Antiviral Agent. Molecules 2023; 28:5435. [PMID: 37513307 PMCID: PMC10383476 DOI: 10.3390/molecules28145435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226007, India
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
15
|
Zebeaman M, Tadesse MG, Bachheti RK, Bachheti A, Gebeyhu R, Chaubey KK. Plants and Plant-Derived Molecules as Natural Immunomodulators. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7711297. [PMID: 37313550 PMCID: PMC10260316 DOI: 10.1155/2023/7711297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023]
Abstract
Background. Nowadays, the immunomodulatory properties of plants have been studied extensively with greater interest due to increasing awareness and combating the severity of immunomodulatory diseases. Scope and Approach. This paper highlights the efficacy of the available literature evidence on natural immunomodulators of plant origin and synthetic ones. In addition, several aspects of plants and their phytoconstituents responsible for immunomodulation have been discussed. Moreover, this review also discusses the mechanism involved in immunomodulation. Key Findings. One hundred fifty medicinal immunomodulatory plants are currently identified to find novel immunomodulatory drugs. Of these plants, the plant family Asteraceae also takes the first rank by offering 18 plant species (12%). Similarly of the plants studied so far, 40% belong to the Asteraceae family. Echinacea purpurea of this family is most known for its immunostimulating activity. The most prominent immune-active bioactive molecules are polyphenols, terpenoids, and alkaloids. Also, eight plant bioactive immunomodulators were checked for clinical trials and found in the market. These are six immunosuppressants, resveratrol, epigallocatechin-3-gallate, quercetin, colchicine, capsaicin, and andrographolide, and two immunostimulants, curcumin and genistein. Nowadays, there are a lot of polyherbal traditional medicinal products sold in the market and claimed to their immunomodulators. However, much work is still needed to find more active immunomodulatory agents. The mechanism by which immunomodulatory medicinal plant exert their effect is through the induction of cytokines and phagocyte cells and the inhibition of iNOS, PGE, and COX-2 synthesis.
Collapse
Affiliation(s)
- Meseret Zebeaman
- Center of Excellence in Nanotechnology, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, College of Applied Science, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Mesfin Getachew Tadesse
- Center of Excellence in Nanotechnology, P.O. Box 16417, Addis Ababa, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Rakesh Kumar Bachheti
- Center of Excellence in Nanotechnology, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, College of Applied Science, P.O. Box 16417, Addis Ababa, Ethiopia
- Centre of Excellence in Biotechnology and Bioprocess, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Rahel Gebeyhu
- Microbiology Department, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
16
|
Bashir KMI, Kim JW, Kim JK, Chun YS, Choi JS, Ku SK. Efficacy Confirmation Test of Black Cumin (Nigella sativa L.) Seeds Extract Using a High-Fat Diet Mouse Model. Metabolites 2023; 13:metabo13040501. [PMID: 37110159 PMCID: PMC10142846 DOI: 10.3390/metabo13040501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
To deal with the adverse effects associated with the use of currently available treatments for metabolic disorders, such as type 2 diabetes, there is a need to find an alternative drug compound. In the present study, we investigated the therapeutic potential of black cumin (Nigella sativa L.) seeds extract (BCS extract) for type 2 diabetes using a 45% Kcal-fed obese mouse model. The BCS extract at different doses (400–100 mg/kg) showed a dose-dependent improvement tendency in high-fat diet (HFD)-induced obesity, non-alcoholic fatty liver disease (NAFLD), hyperlipidemia, and diabetic nephropathy compared to the metformin (250 mg/kg). In particular, BCS extract at a dose of 200 mg/kg significantly inhibited the HFD-induced metabolic conditions. The oral administration of BCS extract (200 mg/kg) significantly inhibited the oxidative stress through lipid peroxidation, normalized the activity of sugar metabolism-related enzymes and the expression of genes involved in fat metabolism, and inhibited insulin resistance through glucose and fat metabolism by regulating the 5’-AMP-activated protein kinase (AMPK) expression. Furthermore, BCS extract (200 mg/kg) showed renal damage improvement effects compared to the metformin (250 mg/kg). The results clearly show that BCS aqueous extract at an appropriate concentration could help in the treatment of metabolic disorders, and BCS aqueous extract can be used as a functional food for various diabetic complications, such as obesity, diabetes, and NAFLD.
Collapse
|
17
|
Hijazy HHA, Dahran N, Althagafi HA, Alharthi F, Habotta OA, Oyouni AAA, Algahtani M, Theyab A, Al-Amer O, Lokman MS, Alsharif KF, Albrakati A, Amin HK, Dawood SM, Kassab RB, Ellethy RA. Thymoquinone counteracts oxidative and inflammatory machinery in carrageenan-induced murine paw edema model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16597-16611. [PMID: 36184707 DOI: 10.1007/s11356-022-23343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Thymoquinone (TQ) is an active constituent in Nigella sativa (black cumin) and is extensively reported for its distinguished antioxidant and anti-inflammatory bioactivities. Despite the local protective response of acute inflammation, it contributes to the development of various disease conditions such as cell death, organ damage, or carcinogenesis. Hence, in this study, the effects of orally administered TQ (50 mg/kg and 100 mg/kg) for 14 days against edema development, oxidative stress, and inflammation were investigated in paw edema induced by carrageenan in mice. Indomethacin (10 mg/kg) was used as a reference drug. The results revealed that TQ reduced the paw edema volume in a time-dependent manner, attenuated acetic acid-provoked writhing movements, and reduced xylene-triggered ear edema. Hematological findings revealed marked normalization of altered counts of WBCs, and platelets. Furthermore, paw tissue levels of malondialdehyde and nitric oxide showed marked decreases together with increases in nuclear factor erythroid 2-related factor 2, glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase after TQ administration. Additionally, TQ decreased pro-inflammatory mediators, such as interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6, monocyte chemoattractant protein-1, C-reactive protein, myeloperoxidase, and nuclear factor kappa-B in the inflamed paw tissue. Moreover, appreciable decreases were recorded in cyclooxygenase-2 and its product prostaglandin E2 and the immune reaction of tumor necrosis factor-alpha in TQ-treated mice. Histopathological findings further validated the potential antiedematous, anti-inflammatory power of TQ in inflamed tissues. Conclusively, the results encourage the potent application of TQ to subside acute inflammatory events because of its striking antioxidant and anti-inflammatory properties in inflamed paw tissue.
Collapse
Affiliation(s)
- Hayfa Hussin Ali Hijazy
- Department of Family Education, Faculty of Education, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fahad Alharthi
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca, 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Osama Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hatem K Amin
- Biochemistry Department, Faculty of Pharmacy, Galala University, El-Galala City, Egypt
| | - Shauq Mumtaz Dawood
- Department of Biochemistry, College of Science, Osmania University, 500007, Hyderabad, Telangana State, India
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| | - Rania A Ellethy
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
18
|
In silico and In vitro Analysis of Nigella sativa Bioactives Against Chorismate Synthase of Listeria monocytogenes: a Target Protein for Biofilm Inhibition. Appl Biochem Biotechnol 2023; 195:519-533. [PMID: 36098931 DOI: 10.1007/s12010-022-04157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Listeria monocytogenes have the ability to form biofilms, which aid in the contamination of food and the evasion of antimicrobials. Consumption of L. monocytogenes laden food can promote mild to severe infection in humans and cause serious health issues. Therefore, biofilm development by L. monocytogenes is considered to be a major concern for both healthcare and food safety. This study attempted to target chorismate synthase, an essential protein predicted to be involved in the biofilm pathway. Nigella sativa is renowned for its applications in folk medicine; hence, bioactive ingredients reported were used for molecular docking studies. In the absence of a three-dimensional structure of chorismate synthase from L. monocytogenes, a homology model was generated using the Modeller program. A model with the highest DOPE score was chosen and validated. The reliable model was subjected to docking studies with 30 ligands from N. sativa. From this approach, α-longipinene was unveiled as the best hit. Further in vitro studies demonstrated the antibiofilm potential of α-longipinene against L. monocytogenes. Overall, the study reveals lead molecules from N. sativa as promising antibiofilm agents against L. monocytogenes. Hence, extended investigation with lead molecules will provide sustainable strategies to prevent biofilm-mediated problems due to L. monocytogenes.
Collapse
|
19
|
Alkhattabi NA, Hussein SA, Tarbiah NI, Alzahri RY, Khalifa R. Thymoquinone Effect on Monocyte-Derived Macrophages, Cell-Surface Molecule Expression, and Phagocytosis. Nutrients 2022; 14:nu14245240. [PMID: 36558399 PMCID: PMC9783248 DOI: 10.3390/nu14245240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the most important cells in the immune system. They act as links between innate and adaptive immunities. In this study, the aim was to examine thymoquinone effects on the immunological properties of different macrophages. Peripheral blood mononuclear cells were isolated from blood from healthy volunteers by negative selection of monocytes that had been cultured for seven days to differentiate into macrophages. Cells were cultured with or without the presence of thymoquinone (TQ), which was used in two different concentrations (50 μg/mL and 100 μg/mL. Cluster of differentiation 80 (CD80), cluster of differentiation 86 (CD86), and human leukocyte antigen DR isotype (HLA-DR) were measured by flow cytometry, and the secretion of interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α) was measured. Cells were also tested for their E. coli phagocytosis abilities. The data showed that the expression of HLA-DR was significantly higher in cells treated with 100 μL/mL TQ. In addition, IFN-γ concentration increased in the 100 μg/mL TQ-treated cells. The macrophage phagocytosis results showed a significant difference in 50 μg/mL TQ-treated cells compared to the controls. TQ may enhance the immunological properties of macrophages during the early stages of innate immunity by activating phagocytosis ability and by increasing the expression of HLA-DR and the secretion of IFN-γ, which may enhance the antigen-presentation capabilities of macrophages.
Collapse
Affiliation(s)
- Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-536665958
| | - Sowsan A. Hussein
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nesrin I. Tarbiah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reem Y. Alzahri
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Reham Khalifa
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
20
|
Mohamed A, Azmi AS, Asa SL, Tirumani SH, Mahipal A, Cjakrabarti S, Bajor D, Selfridge JE, Kaseb AO. Thymoquinone Plus Immunotherapy in Extra-Pulmonary Neuroendocrine Carcinoma: Case Series for a Novel Combination. Curr Oncol 2022; 29:9018-9030. [PMID: 36421360 PMCID: PMC9689659 DOI: 10.3390/curroncol29110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neuroendocrine neoplasms (NENs) are a heterogeneous group of cancers that had a significant increase in annual incidence in the last decade. They can be divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Poorly differentiated NECs are aggressive forms of cancers with limited therapeutic options. The first line treatment of metastatic poorly differentiated NECs is similar to small cell lung cancer, with cytotoxic chemotherapy (etoposide plus platinum). Patients who progress have limited therapeutic options and poor overall survival, calling for other novel agents to combat this deadly disease. Therefore, in this article, we summarized the effects of a novel component, Thymoquinone (TQ, C10H12O2), which is the main bioactive component of the black seed (Nigella sativa, Ranunculaceae family), plus immunotherapy in case series of patients with refractory metastatic extra-pulmonary NEC (EP-NEC) and one case of mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN). METHODS We report the effect of TQ plus dual immune checkpoint inhibitors (nivolumab plus ipilimumab) in four patients with poorly differentiated gastrointestinal Ep-NEC and MiNEN who progressed on cytotoxic chemotherapy. RESULTS This is the first case series to report the clinical activity of TQ plus dual immune checkpoint inhibitors (nivolumab plus ipilimumab) in patients with refractory metastatic EP-NEC. The four patients showed benefits with the combined regimen TQ plus dual ICPIs with durable response and exceeded the two years of progression-free survival. None of the four patients experienced significant toxicity, and all of them showed improvement in quality of life. CONCLUSION The reported clinical courses suggest that combined TQ plus ICPIs is a potential promising regimen for refractory EP-NEC and MiNEN that deserves further prospective investigation.
Collapse
Affiliation(s)
- Amr Mohamed
- Division of Hematology and Medical Oncology, Department of Medicine, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Asfar S. Azmi
- Division of Medical Oncology, Department of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Sylvia L. Asa
- Seidman Cancer Center, Department of Pathology, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sree Harsha Tirumani
- Seidman Cancer Center, Department of Radiology, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amit Mahipal
- Division of Hematology and Medical Oncology, Department of Medicine, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sakti Cjakrabarti
- Division of Hematology and Medical Oncology, Department of Medicine, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David Bajor
- Division of Hematology and Medical Oncology, Department of Medicine, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J. Eva Selfridge
- Division of Hematology and Medical Oncology, Department of Medicine, University Hospitals, Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ahmed O. Kaseb
- Division of Gastrointestinal Medical Oncology, Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Kaya Y, Demirci B, Uğurlu Aydın Z, Oybak Dönmez E, Baser KHC, Dönmez AA. Structural similarities of phytochemicals significantly contribute to species delimitation of Nigella and Garidella (Ranunculaceae). JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2147591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yasin Kaya
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | | | - Emel Oybak Dönmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Kemal Hüsnü Can Baser
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, Northern, Cyprus
| | - Ali A. Dönmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Dalli M, Daoudi NE, Abrigach F, Azizi SE, Bnouham M, Kim B, Gseyra N. In vitro α-amylase and hemoglobin glycation inhibitory potential of Nigella sativa essential oil, and molecular docking studies of its principal components. Front Pharmacol 2022; 13:1036129. [PMID: 36339531 PMCID: PMC9631318 DOI: 10.3389/fphar.2022.1036129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Nigella sativa is plant that is endowed with various pharmacological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, antidiabetic, and immunostimulant. This study aims to investigate the antidiabetic activity of the N. sativa essential oil on two key enzymes the α-amylase and hemoglobin glycation. After the extraction procedure, the N. sativa essential oil, were subject to qualitative and semi-quantitative analysis using GC/MS, for the identification of the different bioactive compounds. This was followed by an evaluation of the in vitro inhibition capacity of the α-amylase and the hemoglobin glycation. Finally, a molecular docking study was conducted to determine the bioactive compounds responsible for the antidiabetic activity. The extracted essential oil showed the presence of different bioactive compounds including α-phellandrene (29.6%), β-cymene (23.8%), 4-caranol (9.7%), thymol (7%). The N. sativa essential oil was found to be endowed with an antiradical scavenging activity with an IC50 of (7.81 ± 0.08 mg/ml), and to have a ferric reducing activity with an IC50 value of (7.53 ± 0.11 mg/ml). The IC50 value for the α-amylase inhibitory activity was 0.809 mg/ml, indicating an inhibitory impact of the enzyme. The IC50 value for the N. sativa essential oil’s hemoglobin antiglycation activity was 0.093 mg/ml. For most predominating phytochemicals present in the N. sativa essential oil, molecular docking studies against human pancreatic α-amylase and human hemoglobin enzymes revealed that these compounds can serve as lead molecules to develop new antidiabetic compounds.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
- *Correspondence: Mohammed Dalli, ; Bonglee Kim ,
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farid Abrigach
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Mohammed Dalli, ; Bonglee Kim ,
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| |
Collapse
|
23
|
Hokmabady L, Fani N. In silico elucidation of the interactions of thymoquinone analogues with phosphatase and tensin homolog (PTEN). J Mol Model 2022; 28:321. [DOI: 10.1007/s00894-022-05318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
|
24
|
Golpour-Hamedani S, Hadi A, SafariMalekabadi D, Najafgholizadeh A, Askari G, Pourmasoumi M. The effect of nigella supplementation on blood pressure: A systematic review and dose-response meta-analysis. Crit Rev Food Sci Nutr 2022; 64:943-956. [PMID: 35975622 DOI: 10.1080/10408398.2022.2110566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was performed to assess the effect of nigella supplementation on blood pressure levels among the adult population. A comprehensive search was carried out through PubMed, Scopus, Web of Science, and Cochrane Library by using relevant keywords to find out the randomized clinical trials evaluating the effect of nigella administration on systolic blood pressure (SBP) and diastolic blood pressure (DBP). A random-effect model was applied to achieve the overall effect size. Subgroup analysis and meta-regression were used to explore the source of heterogeneity and the effects of the possible moderators. Of the twenty-two trials that were eligible for the present study, seventeen studies consisting of 1048 participants were included in the meta-analysis. The results indicated that nigella administration could significantly reduce both SBP (-4.58 mmHg; 95%CI: -6.22, -2.94) and DBP (-3.08 mmHg; 95%CI: -4.62, -1.55). Subgroup analysis did not show any superiority between subgroups of variables. Dose-response analysis detected a nonlinear association between dose and duration of administration and change in blood pressure outcomes, highlighting that maximum SBP and DBP reduction was experienced at 2000 mg/day and 8 weeks of nigella administration, respectively. The present study suggests that nigella supplementation can be beneficial for managing blood pressure.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hadi
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Delaram SafariMalekabadi
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Makan Pourmasoumi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
25
|
Black Seed (Nigella sativa): A Favourable Alternative Therapy for Inflammatory and Immune System Disorders. Inflammopharmacology 2022; 30:1623-1643. [PMID: 35972596 DOI: 10.1007/s10787-022-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, various food additives, medicinal plants, and their bioactive components have been utilized in anti-inflammatory and immunomodulatory therapy. Nigella sativa is a key dietary supplement and food additive which has a strong traditional background. It is also one of the most broadly studied seeds in the global pharmaceutical and nutraceutical sector. N. sativa seeds are potential sources of natural metabolite such as phenolic compounds and alkaloids. The anti-inflammatory and immunomodulatory abilities of these seeds, most peculiarly with reference to some inflammatory and immune mediators, are reviewed. N. sativa and its bioactive compounds modulate inflammatory and immunomodulatory mediators including tumor necrosis factor-alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-kB) cyclooxygenase (COX), lipoxygenase (LOX), transforming growth factor beta (TGF-β), interleukins, and immunoglobulin levels. This paper comprehensively describes the biomarkers and signaling pathways underlying the anti-inflammatory and immunomodulatory potential of N. sativa. This review also explains the scientific basis and the pharmacological properties of core bioactive ingredients of N. sativa responsible for these biological activities which indicates that their bioactive components could be possibly regarded as favorable therapy for disorders linked to inflammation and immune-dysregulation.
Collapse
|
26
|
Wei J, Wang B, Chen Y, Wang Q, Ahmed AF, Zhang Y, Kang W. The Immunomodulatory Effects of Active Ingredients From Nigella sativa in RAW264.7 Cells Through NF-κB/MAPK Signaling Pathways. Front Nutr 2022; 9:899797. [PMID: 35711536 PMCID: PMC9194833 DOI: 10.3389/fnut.2022.899797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nigella sativa is a valuable herb for its functional compositions in both food and medication. N. sativa seeds can enhance immunity, anti-inflammation and analgesia and hypoglycemia, but most of the related researches are related to volatile oil and extracts, and the activity and mechanism of compounds is not clear. In this study, Ethyl-α-D-galactopyranoside (EG), Methyl-α-D-glucoside (MG), 3-O-[β-D-xylopyranose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-arabinose]-28-O-[α-L-rhamnose-(1 → 4)-β-D-glucopyranose-L-(1 → 6)-β-D-glucopyranose]-hederagenin (HXRARG) and 3-O-[β-D-xylopyranose-(1 → 3)-α-L-rhamnose-(1 → 2)-α-L-arabinose]-hederagenin (HXRA) were isolated and identified from N. sativa seeds. In addition, four compounds could activate NF-κB pathway by promoting the expression of phosphorylation of P65 and IκBα, promoting the phosphorylation of JNK, Erk and P38 to activate MAPK signaling pathway, enhancing the proliferation and phagocytic activity of RAW264.7 cells, and promoting the release of NO, TNF-α and IL-6 on RAW264.7 cell in vitro. The results showed that N. sativa can be used as dietary supplement to enhance immune.
Collapse
Affiliation(s)
- Jinfeng Wei
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan University, Shenzhen, China
| | - Baoguang Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Yixiao Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Qiuyi Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Adel F. Ahmed
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
- Medicinal and Aromatic Plants Researches Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yan Zhang
- Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Shenzhen Research Institute of Henan University, Shenzhen, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| |
Collapse
|
27
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
28
|
Emamat H, Mousavi SH, Kargar Shouraki J, Hazrati E, Mirghazanfari SM, Samizadeh E, Hosseini M, Hadi V, Hadi S. The effect of Nigella sativa oil on vascular dysfunction assessed by flow-mediated dilation and vascular-related biomarkers in subject with cardiovascular disease risk factors: A randomized controlled trial. Phytother Res 2022; 36:2236-2245. [PMID: 35412685 DOI: 10.1002/ptr.7441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/07/2022]
Abstract
Cardiovascular diseases (CVD) are the leading causes of mortality worldwide. Flow-mediated dilation (FMD) is a marker of vascular function. Beneficial cardiometabolic effects of Nigella sativa (N. sativa) have been observed. We evaluated the effect of N. sativa oil on FMD, plasma nitrite, and nitrate (NOx) as nitric oxide (NO) metabolites, and inflammatory markers in subjects with CVD risk factors. Fifty participants were randomly assigned to either the N. sativa (two capsules of 500 mg N. sativa oil) or the placebo group (two capsules of 500 mg mineral oil), for 2 months. The brachial FMD, plasma NOx, vascular cellular adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) were measured. FMD and plasma NOx levels was significantly increased in the N. sativa group compared to the placebo group (changes: 2.97 ± 2.11% vs. 0.71 ± 3.19%, p < 0.001 for FMD and 4.73 ± 7.25 μmol/L vs. 0.99 ± 5.37 μmol/L, p = 0.036 for plasma NOx). However, there was no significant difference in ICAM-1 and VCAM-1 levels between groups. Therefore, N. sativa oil improves vascular NO and FMD in subjects with cardiovascular risk factors. However, more studies are warranted to confirm the beneficial impacts of the N. sativa oil on vascular inflammation.
Collapse
Affiliation(s)
- Hadi Emamat
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Jalal Kargar Shouraki
- Department of Radiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Sayid Mahdi Mirghazanfari
- Department of Physiology and Iranian Medicine, School of Medicine, AJA University of Medical Sciences
| | - Esmaeil Samizadeh
- Department of Pathology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Nutritionist, Emam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Al-Qubaisi MS, Al-Abboodi AS, Alhassan FH, Hussein-Al-Ali S, Flaifel MH, Eid EE, Alshwyeh HA, Hussein MZ, Alnasser SM, Saeed MI, Rasedee A, Ibrahim WN. Preparation, characterization, in vitro drug release and anti-inflammatory of thymoquinone-loaded chitosan nanocomposite. Saudi Pharm J 2022; 30:347-358. [PMID: 35527823 PMCID: PMC9068746 DOI: 10.1016/j.jsps.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.
Collapse
Affiliation(s)
| | | | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah 21589, Saudi Arabia
| | | | - Moayad Husein Flaifel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Eltayeb E.M. Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohd Zobir Hussein
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Mohammed Ibrahim Saeed
- Faculty of Medical Laboratory Sciences, National Ribat University, Khartoum 11111, Sudan
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
31
|
Ait Eldjoudi D, Ruiz-Fernandez C, González-Rodriguez M, Ait Atmane S, Cordero-Barreal A, Farrag Y, Pino J, Sineiro J, Lago F, Conde-Aranda J, Khettal B, Gualillo O. Analgesic and antiinflammatory effects of Nigella orientalis L. seeds fixed oil: Pharmacological potentials and molecular mechanisms. Phytother Res 2022; 36:1372-1385. [PMID: 35194856 DOI: 10.1002/ptr.7400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Nigella species have been widely used in traditional medicine. The aim of this study was to evaluate the antiinflammatory and analgesic potentials of Nigella orientalis L. seeds fixed oil (NOO). The acetic acid writhing test and the formaldehyde-induced licking paw were performed to assess the analgesic activity of the oil. The antiinflammatory activity was first evaluated in vitro by the erythrocyte membrane stabilization then in vivo by xylene- and carrageenan-induced ear and paw edema, respectively. To further understand the molecular mechanism of action of the Nigella extract, lipopolysaccharide-activated RAW 264.7 macrophages were used. Nitric oxide (NO) production was measured by Griess reaction and cell viability by MTT assay. The gene and protein expression of inflammatory mediators were assessed by RT-PCR and western blot, respectively. NOO exerted a potent analgesic effect in in vivo models of writhing test and induced edema. The analyzed molecular mechanisms revealed a role for NO and prostaglandins as molecules mediating the pharmacological effects of the extract through a mechanism involving nuclear factor-κB and mitogen-activated protein kinases. This study demonstrates, for the first time, that the fixed oil of N. orientalis has strong antinociceptive and antiinflammatory properties and might be a promising agent for the treatment of certain inflammation-related diseases.
Collapse
Affiliation(s)
- Djedjiga Ait Eldjoudi
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria.,SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernandez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María González-Rodriguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Sihem Ait Atmane
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jorge Sineiro
- Department of Chemical Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Javier Conde-Aranda
- IDIS (Instituto de Investigación Sanitaria de Santiago), Grupo de Gastroenterología Molecular y Celular, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Bachra Khettal
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
32
|
Eftekhar SP, Kazemi S, Moghadamnia AA. Effect of thymoquinone on pharmacokinetics of 5-fluorouracil in rats and its effect on human cell line in vitro. Hum Exp Toxicol 2022; 41:9603271221145422. [PMID: 36510676 DOI: 10.1177/09603271221145422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ) is one of the components extracted from Nigella sativa seeds and has antioxidant, anti-inflammatory, and anticancer effects. We evaluated the effect of TQ on 5-fluorouracil (5-FU) pharmacokinetics (PK) in vivo and in vitro on human colorectal cancer cell line. Ten Adult male Wistar rats were assigned to two groups. TQ treated group received intraperitoneal TQ once daily for 14 consecutive days (5 mg/kg). Both groups received intraperitoneal 5-FU (50 mg/kg) on day 15 and blood samples were collected from retro-orbital plexus. The pharmacokinetics parameters were analyzed using high-performance liquid chromatography (HPLC). Moreover, various concentrations of 5-FU, TQ, and combination of 5-FU and TQ were added to the HT-29 cell line and cell viability was measured using 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric assay. The maximum serum concentration (Cmax), area under the curve (AUC), and time of maximum concentration (Tmax) of 5-FU in TQ treated group were significantly increased approximately by 61, 60, and 24% compared to the control group, respectively. The combination of 5-FU with TQ (0.284 mM) showed a greater inhibitory effect on HT-29 cell growth compared to the alone 5-FU (0.027 and 0.055 mM) administration. TQ increases the AUC, Cmax, and Tmax of 5-FU and has a synergistic effect on the PK of 5-FU. Moreover, low concentration of TQ enhances the inhibitory effects of 5-FU on cell growth in colorectal cancer cell line. This synergistic effect might enhance the anticancer effects of low concentration of 5-FU, leading to drug dose reduction and reduced systemic toxicity of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Seyed Parsa Eftekhar
- Department of Pharmacology and Toxicology, School of Medicine, 114456Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, 114456Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, School of Medicine, 114456Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
33
|
Abstract
Due to the lack of prophylactic vaccines and effective treatment strategies against numerous public health conditions, viral infections remain a serious threat to global public health and socioeconomic development. The current ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, against which there is no prophylactic vaccine or licensed antiviral agents, underscores the need to continuously identify novel/effective treatment strategies against these infectious agents. Plants and plant-derived compounds have immensely contributed to the fight against numerous health conditions by providing bioactives that possess potent antimicrobial attributes, including antiviral activities. One such plant that has gathered much interest, due to its multiple medicinal properties, is the Nigella sativa plant, a flowering plant belonging to the family Ranunculacea, which is native to various regions of the world. In this chapter, we discuss the antiviral activities of N. sativa against critical viral pathogens, focusing more on the SARS-CoV-2 virus, the etiologic agent of the current unparalleled coronavirus disease (COVID-19) pandemic.
Collapse
|
34
|
Zaki SM, Waggas DS. Protective Effect of Nigella sativa and Onion Extract against 5-Fluorouracil-Induced Hepatic Toxicity. Nutr Cancer 2021; 74:2657-2670. [PMID: 34963383 DOI: 10.1080/01635581.2021.2019794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aim: The present study intended to compare the antioxidant, anti-lipid peroxidation, and anti-inflammatory potentials of Nigella Sativa (NS) and onion extract on 5-FU-induced liver damage in rats. Material and methods: 48 rats were divided into control, control group of the onion extract, control group of the NS extract, 5-FU-treated, concomitant NS-treated, and concomitant onion extract-treated. Liver sections were processed for histological analysis (light and electron microscopic examination). Liver enzymes (ALT, AST, and ALP), inflammatory markers (TNF-α and IL-1), antioxidant markers (SOD, GSH, and GSH/GSSG ratio), 4-HNE, NF-κB, and Nrf2 were evaluated. Results: The 5-FU-treated group exhibited inflammation, congested hepatic sinusoid, and steatosis. Improvement with few pathological residues was seen in the concomitant extract-treated groups. The 5-FU-treated group showed higher liver enzymes. The enzymes decreased in the concomitantly treated groups. 5-FU induced liver damage through oxidative stress, inflammation, and lipid peroxidation. Concomitantly using NS and onion extracts resulted in a reduction in oxidative stress, lipid peroxidation, and inflammation. Conclusion: NS and onion extracts attenuated 5-FU-induced liver damage via antioxidative, anti-lipid peroxidative, and anti-inflammatory mechanisms. NS's role was exceptional when compared with onion extract.
Collapse
Affiliation(s)
- Sherif Mohamed Zaki
- Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.,Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dania S Waggas
- Department of pharmacology, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Zhou J, Imani S, Shasaltaneh MD, Liu S, Lu T, Fu J. PIK3CA hotspot mutations p. H1047R and p. H1047L sensitize breast cancer cells to thymoquinone treatment by regulating the PI3K/Akt1 pathway. Mol Biol Rep 2021; 49:1799-1816. [PMID: 34816327 DOI: 10.1007/s11033-021-06990-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L. METHODS AND RESULTS Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114-359 and 797-1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells. CONCLUSIONS These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.
Collapse
Affiliation(s)
- Ju Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | | | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Lu
- Research Center for Science, Chengdu Medical College, Chengdu, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
36
|
Rafiqul Islam A, Ferdousi J, Shahinozzaman M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J Biol Sci 2021; 28:6653-6673. [PMID: 34305428 PMCID: PMC8285211 DOI: 10.1016/j.sjbs.2021.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/08/2023] Open
Abstract
Several plants have traditionally been used since antiquity to treat various gastroenteritis and respiratory symptoms similar to COVID-19 outcomes. The common symptoms of COVID-19 include fever or chills, cold, cough, flu, headache, diarrhoea, tiredness/fatigue, sore throat, loss of taste or smell, asthma, shortness of breath, or difficulty breathing, etc. This study aims to find out the plants and plant-derived products which are being used by the COVID-19 infected patients in Bangladesh and how those plants are being used for the management of COVID-19 symptoms. In this study, online and partially in-person survey interviews were carried out among Bangladeshi respondents. We selected Bangladeshi COVID-19 patients who were detected Coronavirus positive (+) by RT-PCR nucleic acid test and later recovered. Furthermore, identified plant species from the surveys were thoroughly investigated for safety and efficacy based on the previous ethnomedicinal usage reports. Based on the published data, they were also reviewed for their significant potentialities as antiviral, anti-inflammatory, and immunomodulatory agents. We explored comprehensive information about a total of 26 plant species, belonging to 23 genera and 17 different botanical families, used in COVID-19 treatment as home remedies by the respondents. Most of the plants and plant-derived products were collected directly from the local marketplace. According to our survey results, greatly top 5 cited plant species measured as per the highest RFC value are Camellia sinensis (1.0) > Allium sativum (0.984) > Azadirachta indica (0.966) > Zingiber officinale (0.966) > Syzygium aromaticum (0.943). Previously published ethnomedicinal usage reports, antiviral, anti-inflammatory, and immunomodulatory activity of the concerned plant species also support our results. Thus, the survey and review analysis simultaneously reveals that these reported plants and plant-derived products might be promising candidates for the treatment of COVID-19. Moreover, this study clarifies the reported plants for their safety during COVID-19 management and thereby supporting them to include in any future pre-clinical and clinical investigation for developing herbal COVID-19 therapeutics.
Collapse
Key Words
- BAL, Bronchoalveolar lavage
- BALF, Bronchoalveolar lavage fluid
- Bangladesh
- CHO-K1, Wild-type Chinese hamster ovary CHO-K1 cells
- CIK, Ctenopharyngodon idellus kidney Cell line
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- CRD, Complex chronic respiratory disease
- CRFK, Crandell-Reese feline kidney cells
- EGCG, Epigallocatechin-3-gallate
- EPO, Eosinophil peroxidase
- Ethnobotany
- FRhk-4cells, Fetal rhesus monkey kidney cells
- H1N1, Hemagglutinin Type 1 and Neuraminidase Type 1
- HEK293T, Human embryonic kidney cells
- HEp-2 cells, Epithelial cells of human larynx carcinoma
- HLAC, Human lymphoid aggregate cultures
- HeLa, Human epithelial cervical carcinoma cell lines
- Huh-7, Human hepatocyte-derived carcinoma cell line
- IBD, Inflammatory bowel disease
- ICU, Intensive care unit
- IFN‐γ, Interferon‐gamma
- IL, Interleukin
- IgE, Immunoglobulin E
- MARC-145 cells, African green monkey kidney cell line
- MCP-1, Monocyte chemoattractant protein-1
- MDCK, Madin-Darby Canine Kidney cell lines
- MEF, Mouse embryonic fibroblast cells
- Medicinal plants
- NF-κB, Nuclear factor-kappaB
- PBMCs, Peripheral Blood Mononuclear Cells
- RT-PCR, Reverse transcription polymerase chain reaction
- SARS, Severe acute respiratory syndrome, MERS, Middle East respiratory syndrome
- TNF-β, Tumor necrosis factor‐beta
- TNF‐α, Tumor necrosis factor‐alpha
- Th, T-helper
- Traditional home remedies
- VERO cell lines, African green monkey kidney cell lines
Collapse
Affiliation(s)
- A.T.M. Rafiqul Islam
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal 8200, Bangladesh
| | - Jannatul Ferdousi
- Department of Botany, Faculty of Bio-Sciences, University of Barishal, Barishal 8200, Bangladesh
| | - Md Shahinozzaman
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
37
|
Ran J, Xu H, Li W. Cardioprotective effects of co-administration of thymoquinone and ischemic postconditioning in diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:892-899. [PMID: 34712418 PMCID: PMC8528251 DOI: 10.22038/ijbms.2021.47670.10981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/09/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Ischemia/reperfusion (I/R) is a leading cause of myocardial infarction (MI) injury, contributing to excess injury to cardiac tissues involved in inflammation, apoptosis, and oxidative stress. The present study was conducted to examine the effects of combined thymoquinone (TQ) with ischemic postconditioning (IPostC) therapy on apoptosis and inflammation due to I/R injury in diabetic rat hearts. MATERIALS AND METHODS A single dose injection of streptozotocin (STZ; 60 mg/kg) was administered to thirty-two Wistar male rats to induce diabetes. Hearts were fixed on a Langendorff setting and exposed to a 30 min regional ischemia subsequently to 60 min reperfusion. IPostC was induced at the onset of reperfusion by 3 cycles of 30 sec R/I. ELISA, Western blotting assay, and TUNEL staining were applied to assess the cardioprotective effect of IPostC and TQ against I/R injury in diabetic and non-diabetic rats. RESULTS Administration of TQ alone in non-diabetic isolated hearts significantly diminished CK-MB, TNF-α, IL-1β, and apoptosis and enhanced p-GSK-3β and Bcl-2 (P<0.05). Following administration of TQ, the cardioprotective effects of IPostC by elevating p-GSK-3β and Bcl-2 and alleviating apoptosis and inflammation were reestablished compared with non-IPostC diabetic hearts. CONCLUSION These results provide substantial evidence that co-administration of TQ plus IPostC can exert cardioprotective effects on diabetic myocardium during I/R damage by attenuating the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Junchuan Ran
- Department of Cardiology, Gansu Gem Flower Hospital, Lanzhou, Gansu, 730060, China
| | - Huanglin Xu
- Department of Cardiology, Xigu People's Hospital,Lanzhou, Gansu, 730060, China
| | - Wenyuan Li
- Department of Cardiology, Gansu Gem Flower Hospital, Lanzhou, Gansu, 730060, China
| |
Collapse
|
38
|
Caliskan UK, Karakus MM. Evaluation of botanicals as potential COVID-19 symptoms terminator. World J Gastroenterol 2021; 27:6551-6571. [PMID: 34754152 PMCID: PMC8554406 DOI: 10.3748/wjg.v27.i39.6551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Information about the coronavirus disease 2019 (COVID-19) pandemic is still evolving since its appearance in December 2019 and has affected the whole world. Particularly, a search for an effective and safe treatment for COVID-19 continues. Botanical mixtures contain secondary metabolites (such as flavonoids, phenolics, alkaloids, essential oils etc.) with many therapeutic effects. In this study, the use of herbal treatments against COVID-19 was evaluated. Medical synthetic drugs focus mainly on respiratory symptoms, however herbal therapy with plant extracts may be useful to relieve overall symptoms of COVID-19 due to the variety of bioactive ingredients. Since COVID-19 is a virus that affects the respiratory tract, the antiviral effects of botanicals/plants against respiratory viruses have been examined through clinical studies. Data about COVID-19 patients revealed that the virus not only affects the respiratory system but different organs including the gastrointestinal (GI) system. As GI symptoms seriously affect quality of life, herbal options that might eliminate these problems were also evaluated. Finally, computer modeling studies of plants and their active compounds on COVID-19 were included. In summary, herbal therapies were identified as potential options for both antiviral effects and control of COVID-19 symptoms. Further data will be needed to enlighten all aspects of COVID-19 pathogenesis, before determining the effects of plants on severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Ufuk Koca Caliskan
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| | - Methiye Mancak Karakus
- Department of Pharmacognosy and Pharmaceutical Botany, Gazi University, Ankara 06500, Turkey
| |
Collapse
|
39
|
Wang S, Zhou L, Attia FAZKK, Tang Q, Wang M, Liu Z, Waterhouse GIN, Liu L, Kang W. Origanum majorana L.: A Nutritional Supplement With Immunomodulatory Effects. Front Nutr 2021; 8:748031. [PMID: 34631774 PMCID: PMC8493290 DOI: 10.3389/fnut.2021.748031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Origanum majorana L. is an aromatic herb that has been grown in several Mediterranean countries since ancient times, but became popular during the Middle Ages as a medicinal plant and seasoning ingredient. O. majorana has many pharmacological effects, but its immunoreactive components and mechanisms are still unclear. In this study, four compounds were isolated and identified from O. majorana by a spectral analysis, including 1H and 13C-NMR. They were 1H-indole-2-carboxylic acid (1), (+)-laricresol (2), (+)-isolaricresol (3), and procumboside B (4, pB), which were isolated for the first time in O. majorana. The immunomodulatory effects of the four compounds were screened, and pB had good immunomodulatory activity on RAW 264.7 cells. The immunomodulatory mechanism of pB was proved, in which pB could increase the secretion of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) and simultaneously upregulate the expression of CD80 and CD86 on the cell surface. These results suggested that the mechanism of pB may be related to the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs)-signaling pathways. O. majorana is rich in nutrients and is commonly used in diets, so it can be used as a nutritional supplement with immunomodulatory effects.
Collapse
Affiliation(s)
- Senye Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Li Zhou
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Fatma Al-Zahra K K Attia
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China.,Department of Ornamental, Medicinal and Aromatic Plants, Faculty of Agriculture, Assiut University, Asyut, Egypt
| | - Qi Tang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Mengke Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Zhenhua Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Geoffrey I N Waterhouse
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China.,School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Lijun Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| |
Collapse
|
40
|
Prawiro SR, Kusuma MT, Amiruddin R, Sukmawati IN, Kusnaningrum Y, Nadarajah JDS, Anam K, Raras TYM, Winarsih S. GENERATING RESPONSES IMMUNE IN CELLULAR AND HUMORAL TREATMENT WITH EPITOPE SPIKE, EPITOPE ENVELOPE PROTEIN, AND EPITOPE MEMBRANE PROTEIN SARS-COV-2, HONEY, SAUSSUREA LAPPA, AND NIGELLA SATIVA. Afr J Infect Dis 2021; 15:23-30. [PMID: 34595383 PMCID: PMC8457347 DOI: 10.21010/ajidv15i2s.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Covid-19 has become pandemic in the World, including Indonesia. Our last study showed that HSF could serve as an immunomodulator. Using the exact search, we found that the most immuno-dominant SARS-COV2 epitope, namely A spike protein epitope, B envelope protein epitope, and C membrane protein epitope, we concise to be HF Materials and Methods: We used to post only control design study and mice as an animal model. The research divided mice into four groups, and the first group as control received PBS as a placebo. The second, three, and last four groups gave HF, HSN, and HFHSN (combine HF and HSN). All of the regiment enters the mouth with a special sonde to reach the gastrointestinal organ. We gave HF every week three times and HSN once a day. After administration regiments for a long three weeks, we sacrificed the mice. We evaluated cellular immune responses that are Th-2, Th-17, and NK cells. We check for humoral immune response, TGF-β,IL-17A, IL-4, IgG,IL-4, β-defensin, and s-IgA. Results: Highest profile cellular immunity HF, HSN, and HFHSN were NK cell, Th-2 and Th-17, and the last NK cell, respectively. After that which in humoral immunity, the domination response IgG and IL-4 were HF. But HSN and HFHSN dominated for s-IgA and β-defensin production. By using the study Bio-Informatica, we found HF. Conclusion: If the results of this study are continued to the clinical trial level, it is necessary to recommend additional markers such as CTL (s-IgA and β-defensin in lung tissue)and CPE assay.
Collapse
Affiliation(s)
- Sumarno Reto Prawiro
- Department of Clinical Microbiology, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| | - Meike Tiya Kusuma
- Magister Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| | - Reyhan Amiruddin
- Magister Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| | - Irma Nur Sukmawati
- Clinical Microbiologist Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| | - Yuyun Kusnaningrum
- Clinical Microbiologist Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| | | | - Khoirul Anam
- Doctoral Degree Program, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| | | | - Sri Winarsih
- Department of Clinical Microbiology, Faculty of Medicine, University Brawijaya Malang Java Indonesia
| |
Collapse
|
41
|
Zielińska M, Dereń K, Polak-Szczybyło E, Stępień AE. The Role of Bioactive Compounds of Nigella sativa in Rheumatoid Arthritis Therapy-Current Reports. Nutrients 2021; 13:3369. [PMID: 34684370 PMCID: PMC8539759 DOI: 10.3390/nu13103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Black cumin (Nigella sativa, NS) is included in the Ranunculaceae family and is classified as a medicinal plant due to very high levels of various bioactive compounds. They determine its therapeutic effects, including anti-inflammatory, anti-allergic, anti-cancer, hypoglycemic, antioxidant, hypotensive, hypolipidemic, and immunomodulating properties. The results of scientific studies indicate a supporting role of black cumin in the treatment of autoimmune diseases, including rheumatoid arthritis, due to the health-promoting properties of its bioactive ingredients. The aim of the current article is to analyze the results of scientific publications on the role of bioactive ingredients contained in black cumin in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | - Ewelina Polak-Szczybyło
- Department of Dietetics, Institute of Health Sciences, College for Medical Sciences, University of Rzeszow, al/Mjr. W. Kopisto 2a, 35-310 Rzeszow, Poland; (M.Z.); (K.D.); (A.E.S.)
| | | |
Collapse
|
42
|
Koshak AE, Koshak EA, Mobeireek AF, Badawi MA, Wali SO, Malibary HM, Atwah AF, Alhamdan MM, Almalki RA, Madani TA. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complement Ther Med 2021; 61:102769. [PMID: 34407441 PMCID: PMC8364675 DOI: 10.1016/j.ctim.2021.102769] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Effective treatment for Coronavirus Disease-2019 (COVID-19) is under intensive research. Nigella sativa oil (NSO) is a herbal medicine with antiviral and immunomodulatory activities, and has been recommended for the treatment of COVID-19. This study aimed to evaluate the efficacy of NSO treatment in patients with COVID-19. METHODS All adult patients with mild COVID-19 symptoms presented to King Abdulaziz University Hospital, Jeddah, Saudi Arabia, were recruited for an open label randomized clinical trial (RCT). They were randomly divided into control or treatment groups, with the latter receiving 500 mg NSO (MARNYS® Cuminmar) twice daily for 10 days. Symptoms were daily monitored via telecommunication. The primary outcome focused on the percentage of patients who recovered (symptom-free for 3 days) within 14-days. The trial was registered at clinicaltrials.gov (NCT04401202). RESULTS A total of 173 patients were enrolled for RCT. The average age was 36(±11) years, and 53 % of patients were males. The control and NSO groups included 87 and 86 patients respectively. The percentage of recovered patients in NSO group (54[62 %]) was significantly higher than that in the control group (31[36 %]; p = 0.001). The mean duration to recovery was also shorter for patients receiving NSO (10.7 ± 3.2 days) compared with the control group (12.3 ± 2.8 days); p = 0.001. CONCLUSIONS NSO supplementation was associated with faster recovery of symptoms than usual care alone for patients with mild COVID-19 infection. These potential therapeutic benefits require further exploration with placebo-controlled, double-blinded studies.
Collapse
Affiliation(s)
- Abdulrahman E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University 80260, Jeddah, 21589, Saudi Arabia.
| | - Emad A Koshak
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah F Mobeireek
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mazen A Badawi
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Siraj O Wali
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Husam M Malibary
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali F Atwah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Meshari M Alhamdan
- University Medical Services Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem A Almalki
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq A Madani
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Majdalawieh AF, Yousef SM, Abu-Yousef IA. Thymoquinone, a major constituent in Nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis. Eur J Pharmacol 2021; 909:174420. [PMID: 34391767 DOI: 10.1016/j.ejphar.2021.174420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a widespread and progressive chronic arterial disease that remains the leading cause of mortality and morbidity worldwide. It is generally accepted that atherosclerosis is a multifactorial disease characterized by dyslipidemia and inflammation in the vessel walls. Nonpharmacological interventions to treat chronic diseases like atherosclerosis have gained considerable attention in recent years. Thymoquinone (TQ), the major bioactive constituent of Nigella sativa seeds, presents one such example of a natural therapeutic agent that has captured the attention of many researchers due to its wide array of medicinal properties, including its potent anti-atherosclerotic effects. Various in vitro and in vivo studies support the potential of TQ in ameliorating hyperlipidemia, hypercholesterolemia, oxidative stress, and inflammation, all of which are key hallmarks of atherosclerosis. However, to date, no review has been conducted to substantiate the role of TQ in preventing and/or treating atherosclerosis. This comprehensive review aims to examine recent in vitro and in vivo experimental findings reported on the potential anti-atherosclerotic effects of TQ. The roles of TQ in combatting hyperlipidemia, oxidative stress, and inflammation in atherosclerosis are highlighted. We also shed light on the role of TQ in preventing foam cell formation by decreasing low-density lipoprotein (LDL) availability and oxidation. Moreover, recent findings on the protective role of TQ on early markers of atherosclerosis, including homocysteinemia and endothelial dysfunction, are also underscored. Experimental evidence suggests that TQ can potentially be employed as a natural therapeutic agent with minimal side effects against the development and/or progression of atherosclerosis and its associated complications.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Sarah M Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
44
|
Mohamed AE, El-Magd MA, El-Said KS, El-Sharnouby M, Tousson EM, Salama AF. Potential therapeutic effect of thymoquinone and/or bee pollen on fluvastatin-induced hepatitis in rats. Sci Rep 2021; 11:15688. [PMID: 34344946 PMCID: PMC8333355 DOI: 10.1038/s41598-021-95342-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
Hepatitis is one of earlier, but serious, signs of liver damage. High doses of statins for a long time can induce hepatitis. This study aimed to evaluate and compare the therapeutic potential of thymoquinone (TQ) and bee pollen (BP) on fluvastatin (F)-induced hepatitis in rats. Rats were randomly divided into: group 1 (G1, control), G2 (F, hepatitis), G3 (F + TQ), G4 (F + BP), and G5 (F + TQ + BP). Single treatment with TQ or BP relieved fluvastatin-induced hepatitis, with best effect for the combined therapy. TQ and/or BP treatment significantly (1) reduced serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase, and total bilirubin, (2) decreased malondialdehyde levels and increased level of reduced glutathione, and activities of glutathione peroxidase and catalase in the liver, (3) improved liver histology with mild deposition of type I collagen, (4) increased mRNA levels of transforming growth factor beta 1, nuclear factor Kappa B, and cyclooxygenase 1 and 2, and (5) decreased tumor necrosis factor alpha and upregulated interleukin 10 protein in the liver. These data clearly highlight the ability of TQ and BP combined therapy to cause better ameliorative effects on fluvastatin-induced hepatitis than individual treatment by each alone.
Collapse
Affiliation(s)
- Amro E Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt.
| | - Karim S El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed El-Sharnouby
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ehab M Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afrah F Salama
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
45
|
Chemical Composition Analysis Using HPLC-UV/GC-MS and Inhibitory Activity of Different Nigella sativa Fractions on Pancreatic α-Amylase and Intestinal Glucose Absorption. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9979419. [PMID: 34258287 PMCID: PMC8257330 DOI: 10.1155/2021/9979419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022]
Abstract
Nigella sativa (NS) is a well-known plant for its various benefits and multiuse in traditional medicine. This study is aimed at investigating the chemical composition of the different NS fractions by using GC-MS for the esterified fatty acids or HPLC-UV for organic fraction and at evaluating the inhibitory effect on pancreatic α-amylase (in vitro, in vivo) and intestinal glucose absorption. Among all the investigated fractions, it was shown that they are rich with different molecules of great interest. The n-hexane fraction was characterized by the presence of linoleic acid (44.65%), palmitic acid (16.32%), stearic acid (14.60%), and thymoquinone (8.7%), while among the identified peaks in EtOH fraction we found catechin (89.03 mg/100 g DW), rutin (6.46 mg/100 g DW), and kaempferol (0.032 mg/100 g DW). The MeOH fraction was distinguished with the presence of gallic acid (19.91 mg/100 g DW), catechin (13.79 mg/100 g DW), and rutin (21.07 mg/100 g DW). Finally, the aqueous fraction was marked by the existence of different molecules; among them, we mention salicylic acid (32.26 mg/100 g DW), rutin (21.46 mg/100 g DW), and vanillic acid (3.81 mg/100 g DW). Concerning the inhibitory effect on pancreatic α-amylase, it was found that in the in vitro study, the best IC50 registered were those of EtOH (0.25 mg/ml), MeOH (0.10 mg/ml), aqueous (0.031 mg/ml), and n-hexane fraction (0.76 mg/ml), while in the in vivo study an important inhibition of α-amylase in normal and diabetic rats was observed. Finally, the percentage of intestinal glucose absorption was evaluated for all tested extracts and it was ranging from 24.82 to 60.12%. The results of the present study showed that the NS seed fractions exert an interesting inhibitory effect of α-amylase and intestinal glucose absorption activity which could be associated with the existent bioactive compounds. Indeed, these compounds can be used as antidiabetic agents because of their nontoxic effect and high efficacy.
Collapse
|
46
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
47
|
Allemailem KS, Alnuqaydan AM, Almatroudi A, Alrumaihi F, Aljaghwani A, Khalilullah H, Younus H, Khan A, Khan MA. Safety and Therapeutic Efficacy of Thymoquinone-Loaded Liposomes against Drug-Sensitive and Drug-Resistant Acinetobacter baumannii. Pharmaceutics 2021; 13:pharmaceutics13050677. [PMID: 34066874 PMCID: PMC8151670 DOI: 10.3390/pharmaceutics13050677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
In the present study, we investigated the activity of free thymoquinone (TQ) or liposomal thymoquinone (Lip-TQ) in comparison to standard antibiotic amoxicillin (AMX) against the drug-sensitive and drug-resistant Acinetobacter baumannii. A liposomal formulation of TQ was prepared and characterized and its toxicity was evaluated by analyzing the hematological, liver and kidney function parameters. TQ was effective against both drug-sensitive and drug-resistant A. baumannii as shown by the findings of drug susceptibility testing and time kill kinetics. Moreover, the therapeutic efficacy of TQ or Lip-TQ against A. baumannii was assessed by the survival rate and the bacterial load in the lung tissues of treated mice. The mice infected with drug-sensitive A. baumannii exhibited a 90% survival rate on day 30 post treatment with Lip-TQ at a dose of 10 mg/kg, whereas the mice treated with AMX (10 mg/kg) had a 100% survival rate. On the other hand, the mice infected with drug-resistant A. baumannii had a 70% survival rate in the group treated with Lip-TQ, whereas AMX was ineffective against drug-resistant A. baumannii and all the mice died within day 30 after the treatment. Moreover, Lip-TQ treatment effectively reduced the bacterial load in the lung tissues of the mice infected with the drug-sensitive and drug-resistant A. baumannii. Moreover, the blood of the mice treated with Lip-TQ had reduced levels of inflammation markers, leukocytes and neutrophils. The results of the present study suggest that Lip-TQ may prove to be an effective therapeutic formulation in the treatment of the drug-sensitive or drug-resistant A. baumannii infection as well.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Masood A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: ; Tel.: +966-507059437; Fax: +966-63801628
| |
Collapse
|
48
|
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1819-1833. [PMID: 33976534 PMCID: PMC8106451 DOI: 10.2147/dddt.s308863] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rajiv Tikamdas
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
49
|
Kulyar MFEA, Li R, Mehmood K, Waqas M, Li K, Li J. Potential influence of Nagella sativa (Black cumin) in reinforcing immune system: A hope to decelerate the COVID-19 pandemic. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153277. [PMID: 32773257 PMCID: PMC7347483 DOI: 10.1016/j.phymed.2020.153277] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/14/2020] [Accepted: 07/02/2020] [Indexed: 05/10/2023]
Abstract
The world is witnessing a difficult time. The race of developing a new coronavirus (COVID-19) vaccine is becoming more urgent. Many preliminary studies on the pathophysiology of COVID-19 patients have provided some clues to treat this pandemic. However, no suitable treatment has found yet. Various symptoms of patients infected with COVID-19 indicated the importance of immune regulation in the human body. Severe cases admitted to the intensive care unit showed high level of pro-inflammatory cytokines which enhanced the disease severity. Acute Respiratory Distress Syndrome (ARDS) in COVID-19 patients is another critical factor of disease severity and mortality. So, Immune modulation is the only way of regulating immune system. Nigella sativa has been used for medicinal purposes for centuries. The components of this plant are known for its intense immune-regulatory, anti-inflammatory, and antioxidant benefits in obstructive respiratory disorders. A molecular docking study also gave evidences that N. sativa decelerates COVID-19 and might give the same or better results than the FDA approved drugs. The aim of this review was to investigate the possible immune-regulatory effects of N. sativa on COVID-19 pandemic. Our review found N. sativa's Thymoquinone, Nigellidine, and α-hederin can be a potential influencer in reinforcing the immune response on molecular grounds.
Collapse
Affiliation(s)
| | - Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur-63100, Pakistan
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
50
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|