1
|
Zheng Q, Xu D, Wang Q, Liu L, Liu W, Wang J. Huang-Lian-Jie-Du Decoction ameliorates sepsis through dynamic regulation of immune response and gut microbiota-metabolite axis. Microb Pathog 2024:107246. [PMID: 39708977 DOI: 10.1016/j.micpath.2024.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Sepsis remains a life-threatening condition with high mortality rates despite current therapeutic approaches. While Huang-Lian-Jie-Du Decoction (HLJDD), a traditional Chinese medicine formula, has been historically used to treat inflammatory conditions, its therapeutic potential in sepsis and underlying mechanisms remain unexplored. This study investigated HLJDD's comprehensive effects on sepsis pathophysiology using a rat cecal ligation and puncture (CLP) model. HLJDD significantly improved survival rates and demonstrated sophisticated immunomodulatory effects through temporal regulation of the biphasic immune response characteristic of sepsis. In early sepsis, HLJDD suppressed pro-inflammatory cytokines (IL-1β, IL-6) while maintaining defensive inflammation. During late sepsis, it counteracted immunosuppression by reducing IL-10 levels and CD4+CD25+ T cell populations while protecting CD4+ and CD8+ T cells from apoptosis. Notably, HLJDD demonstrated dynamic regulation of the gut microbiota-metabolite axis. It enhanced beneficial bacterial populations (Firmicutes, Lactobacillus) while suppressing potentially pathogenic species (Bacteroides, Parabacteroides). Metabolomic analysis revealed time-dependent modulation of short-chain fatty acids, with elevated levels at 12 h followed by strategic reduction at 18-30 h, coordinating with changes in SCFA-producing bacteria. This temporal metabolic regulation corresponded with improved intestinal barrier function and balanced immune responses. The study unveils HLJDD's novel mechanism of action through synchronized modulation of immune responses, gut microbiota, and metabolite profiles, presenting a multi-target therapeutic approach that addresses the complex pathophysiology of sepsis. These findings provide a strong foundation for further clinical investigation of HLJDD as an innovative treatment strategy for sepsis.
Collapse
Affiliation(s)
- Qi Zheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Di Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, Shandong, China
| | - Lin Liu
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, Shandong, China
| | - Wenya Liu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China..
| |
Collapse
|
2
|
Li XJ, Shan QY, Wu X, Miao H, Zhao YY. Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis. Cell Mol Life Sci 2024; 81:480. [PMID: 39636415 PMCID: PMC11621299 DOI: 10.1007/s00018-024-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Gut microbiota is a complex and dynamic system that plays critical roles in human health and various disease. Progressive chronic kidney disease (CKD) suggests that patients irreversibly progress to end-stage kidney disease and need renal replacement treatments, including dialysis and transplantation. Ample evidence indicates that local oxidative stress and inflammation play pivotal roles in the pathogenesis and progression of CKD and dysbiosis of gut microbiota. CKD is always accompanied by intestinal inflammation and oxidative stress, which lead to rapid systemic translocation of bacterial-derived uraemic toxins, including indoxyl sulphate, phenyl sulphate and indole-3-acetic acid, and the consequent development and aggravation of renal fibrosis. Although inflammation and oxidative stress have been extensively discussed, there is a paucity of reports on the effects of gut microbiota on renal fibrosis and gut microbiota mediation of oxidative stress and inflammation. This review provides an overview of gut microbiota on inflammation and oxidative stress in renal fibrosis, briefly discusses regulation of the gut flora using microecological preparations and natural products, such as resveratrol, curcumin and emodin as treatments for CKD, and provides a clear pathophysiological rationale for the design of promising therapeutic strategies.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Qi-Yuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Xin Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Hua Miao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| | - Ying-Yong Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
- State Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
3
|
Goel R, Kumar N, Mishra R, Kumar G, Singh N, Bhardwaj S, Puri D. Potential protective effects of Acacia nilotica (L.) against gentamicin - induced nephrotoxicity by suppressing renal redox imbalance, inflammatory stress and caspase-dependent apoptosis in Wistar rats. Drug Chem Toxicol 2024:1-9. [PMID: 39155660 DOI: 10.1080/01480545.2024.2388324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Gentamicin-induced nephrotoxicity limits its therapeutic use as an effective aminoglycoside. Herbal drugs have a distinct place in the world of pharmaceuticals since they are safe, effective, and cost-efficient. Acacia nilotica (L.) has long been recognized for its antihypertensive, antioxidant, anti-inflammatory, and antiplatelet aggregatory benefits in traditional medicine. Still, the protective effect of Acacia nilotica on gentamicin-induced nephrotoxicity is still unknown. Thus, the goal of this research was to examine the protection of ethanolic extract of Acacia nilotica (ANE) against nephrotoxicity triggered by Gentamicin. Thirty-six rats were randomly divided into six groups containing six rats in each group. The distilled water were given in control group. The rats in groups two and three were administered metformin and gentamicin respectively. In groups five and six, rats were administered ANE at doses of 100 and 200 mg/kg. Ten days of daily treatments were given. The urea, creatinine, uric acid, and LDH levels were analyzed on serum, whereas histological evaluation, MDA, GSH, SOD, CAT, TNF-α, IL-6, and caspase-3, were performed on kidney tissue on day 11. The gentamicin-treated group exhibited a significantly elevated MDA, and lower levels of antioxidant enzymes. Kidney function markers, inflammatory markers and caspase-3 expression were significantly elevated in the gentamicin-treated group. ANE significantly restored kidney function biomarkers, upregulated biochemical levels, inhibited TNF-α, caspase-3, cytokine expression, and reduced histological lesions. In conclusion, ANE has the ability to prevent gentamicin-induced nephrotoxicity and reduce nephrotoxic damage. As such, it may represent an effective therapy for patients receiving gentamicin treatment.
Collapse
Affiliation(s)
- Radha Goel
- Department of Pharmacology, Lloyd Institute of Management & Technology, Greater Noida, India
| | - Nitin Kumar
- Department of Pharmacy, Meerut Institute of Technology, Meerut, India
| | - Rosaline Mishra
- Department of Pharmacy, Metro College of Health Sciences and Research, India
| | - Gaurav Kumar
- Department of Pharmacology, Lloyd Institute of Management & Technology, Greater Noida, India
| | - Neelam Singh
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Snigdha Bhardwaj
- Department of Pharmaceutics, KIET School of Pharmacy, Ghaziabad, Delhi-NCR, India
| | - Dinesh Puri
- Department of Pharmaceutics, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Huang L, Wu W, Wang X. Analysis of the microecological mechanism of diabetic kidney disease based on the theory of "gut-kidney axis": A systematic review. Open Life Sci 2024; 19:20220909. [PMID: 39119482 PMCID: PMC11306963 DOI: 10.1515/biol-2022-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.
Collapse
Affiliation(s)
- Lili Huang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan430061, China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiaoqin Wang
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| |
Collapse
|
5
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Choy WH, Adler A, Morgan-Lang C, Gough EK, Hallam SJ, Manges AR, Chew BH, Penniston K, Miller A, Lange D. Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease. Urolithiasis 2024; 52:38. [PMID: 38413462 DOI: 10.1007/s00240-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Intestinal microbiome dysbiosis is a known risk factor for recurrent kidney stone disease (KSD) with prior data suggesting a role for dysfunctional metabolic pathways other than those directly utilizing oxalate. To identify alternative mechanisms, the current study analyzed differences in the metabolic potential of intestinal microbiomes of patients (n = 17) and live-in controls (n = 17) and determined their relevance to increased risk for KSD using shotgun metagenomic sequencing. We found no differences in the abundance of genes associated with known oxalate degradation pathways, supporting the notion that dysfunction in other metabolic pathways plays a role in KSD. Further analysis showed decreased abundance of key enzymes involved in butyrate biosynthesis in patient intestinal microbiomes. Furthermore, de novo construction of microbial genomes showed that the majority of genes significantly enriched in non-stone formers are affiliated with Faecalibacterium prausnitzii, a major butyrate producer. Specifically pertaining to butyrate metabolism, the majority of abundant genes mapped back to F. prausnitzii, Alistipes spp., and Akkermansia muciniphila. No differences were observed in ascorbate or glyoxylate metabolic pathways. Collectively, these data suggest that impaired bacterial-associated butyrate metabolism may be an oxalate-independent mechanism that contributes to an increased risk for recurrent KSD. This indicates that the role of the intestinal microbiome in recurrent KSD is multi-factorial, which is representative of the highly intertwined metabolic nature of this complex environment. Future bacteria-based treatments must not be restricted to targeting only oxalate metabolism.
Collapse
Affiliation(s)
- Wai Ho Choy
- Department of Urologic Sciences, The Stone Centre at VGH, University of British Columbia, Jack Bell Research Centre, Rm. 550-3, 2660 Oak Street, Vancouver, BC, V6J 1G7, Canada
| | - Ava Adler
- Departments of Urology and Immunology, Cleveland Clinic, Cleveland, OH, USA
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Ethan K Gough
- Johns Hopkins Bloomberg School of Public Health US, Baltimore, USA
| | - Steven J Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Disease Control, Vancouver, BC, Canada
| | - Ben H Chew
- Department of Urologic Sciences, The Stone Centre at VGH, University of British Columbia, Jack Bell Research Centre, Rm. 550-3, 2660 Oak Street, Vancouver, BC, V6J 1G7, Canada
| | - Kristina Penniston
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Aaron Miller
- Departments of Urology and Immunology, Cleveland Clinic, Cleveland, OH, USA
| | - Dirk Lange
- Department of Urologic Sciences, The Stone Centre at VGH, University of British Columbia, Jack Bell Research Centre, Rm. 550-3, 2660 Oak Street, Vancouver, BC, V6J 1G7, Canada.
| |
Collapse
|
8
|
Xu J. A review: continuous renal replacement therapy for sepsis-associated acute kidney injury. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2163305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jundong Xu
- Intensive Care Unit, Yinzhou People’s Hospital, Ningbo City, People’s Republic of China
| |
Collapse
|
9
|
Yao T, Li L. The influence of microbiota on ferroptosis in intestinal diseases. Gut Microbes 2023; 15:2263210. [PMID: 37795964 PMCID: PMC10557621 DOI: 10.1080/19490976.2023.2263210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent necrotic cell death, characterized by excessive lipid peroxidation on cellular membranes and compromised cellular antioxidant defenses. Multiple metabolic pathways, including iron and lipid metabolism, as well as antioxidant systems, contribute to the execution of ferroptosis. The gut microbiota exerts regulatory effects on ferroptosis through its microbial composition, biological functions, and metabolites. Notably, most pathogenic bacteria tend to promote ferroptosis, thereby inducing or exacerbating diseases, while most probiotics have been shown to protect against cell death. Given microbiota colonization in the gut, an intimate association is found between intestinal diseases and microbiota. This review consolidates the essential aspects of ferroptotic processes, emphasizing key molecules and delineating the intricate interplay between gut microbiota and ferroptosis. Moreover, this review underscores the potential utility of gut microbiota modulation in regulating ferroptosis for the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, China
| |
Collapse
|
10
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
11
|
Zhao J, Zhao F, Yuan J, Liu H, Wang Y. Gut microbiota metabolites, redox status, and the related regulatory effects of probiotics. Heliyon 2023; 9:e21431. [PMID: 38027795 PMCID: PMC10643359 DOI: 10.1016/j.heliyon.2023.e21431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. It is caused by excess levels of free radicals and leads to the damage of DNA, proteins, and lipids. The crucial role of gut microbiota in regulating oxidative stress has been widely demonstrated. Studies have suggested that the redox regulatory effects of gut microbiota are related to gut microbiota metabolites, including fatty acids, lipopolysaccharides, tryptophan metabolites, trimethylamine-N-oxide and polyphenolic metabolites. In recent years, the potential benefits of probiotics have been gaining increasing scientific interest owing to their ability to modulate gut microbiota and oxidative stress. In this review, we summarise the adverse health effects of oxidative stress and discuss the role of the gut microbiota and its metabolites in redox regulation. Based on the influence of gut microbiota metabolites, the roles of probiotics in preventing oxidative stress are highlighted.
Collapse
Affiliation(s)
| | | | - Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, 266109, Qingdao, China
| |
Collapse
|
12
|
Yang K, Du G, Liu J, Zhao S, Dong W. Gut microbiota and neonatal acute kidney injury biomarkers. Pediatr Nephrol 2023; 38:3529-3547. [PMID: 36997773 DOI: 10.1007/s00467-023-05931-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
One of the most frequent issues in newborns is acute kidney injury (AKI), which can lengthen their hospital stay or potentially raise their chance of dying. The gut-kidney axis establishes a bidirectional interplay between gut microbiota and kidney illness, particularly AKI, and demonstrates the importance of gut microbiota to host health. Since the ability to predict neonatal AKI using blood creatinine and urine output as evaluation parameters is somewhat constrained, a number of interesting biomarkers have been developed. There are few in-depth studies on the relationships between these neonatal AKI indicators and gut microbiota. In order to gain fresh insights into the gut-kidney axis of neonatal AKI, this review is based on the gut-kidney axis and describes relationships between gut microbiota and neonatal AKI biomarkers.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Guoxia Du
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Shuai Zhao
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
13
|
Tang Z, Yu S, Pan Y. The gut microbiome tango in the progression of chronic kidney disease and potential therapeutic strategies. J Transl Med 2023; 21:689. [PMID: 37789439 PMCID: PMC10546717 DOI: 10.1186/s12967-023-04455-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/19/2023] [Indexed: 10/05/2023] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% population worldwide and becomes a huge burden to the world. Recent studies have revealed multifold interactions between CKD and gut microbiome and their pathophysiological implications. The gut microbiome disturbed by CKD results in the imbalanced composition and quantity of gut microbiota and subsequent changes in its metabolites and functions. Studies have shown that both the dysbiotic gut microbiota and its metabolites have negative impacts on the immune system and aggravate diseases in different ways. Herein, we give an overview of the currently known mechanisms of CKD progression and the alterations of the immune system. Particularly, we summarize the effects of uremic toxins on the immune system and review the roles of gut microbiota in promoting the development of different kidney diseases. Finally, we discuss the current sequencing technologies and novel therapies targeting the gut microbiome.
Collapse
Affiliation(s)
- Zijing Tang
- Department of Nephrology, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Pan
- Department of Nephrology, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
15
|
Miller A, Fantone KM, Tucker SL, Gokanapudi N, Goldberg JB, Rada B. Short chain fatty acids reduce the respiratory burst of human neutrophils in response to cystic fibrosis isolates of Staphylococcus aureus. J Cyst Fibros 2023; 22:756-762. [PMID: 37211502 PMCID: PMC10524534 DOI: 10.1016/j.jcf.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Short chain fatty acids (SCFA) are produced by anaerobic bacteria. The most common SCFAs are acetate, propionate and butyrate. SCFAs have been implicated in several inflammatory diseases including cystic fibrosis (CF) where they are present in the airways at millimolar concentrations. Staphylococcus aureus is one of the main respiratory pathogens in CF. Polymorphonuclear neutrophil granulocytes (PMN) represent the most important immune defense the host uses against S. aureus. However, the reason why PMNs are unable to clear S. aureus in CF remains largely unclear. We hypothesized that SCFAs impair effector functions of PMNs in response to S. aureus. To test this, human PMNs were exposed to CF clinical isolates of S. aureus in vitro in the presence or absence of SCFAs and effector functions of PMNs were assessed. Our data show that SCFAs do not affect the viability of PMNs and do not stimulate the release of neutrophil extracellular traps (NET) from human PMNs. Production of reactive oxygen species (ROS), another important antimicrobial function of PMNs, on the other hand, was significantly inhibited by SCFAs in response to the bacterium. SCFAs did not compromise the ability of PMNs to kill CF isolates of S. aureus in vitro. Overall, our results provide new knowledge into the interactions between SCFAs and the immune system, and indicate that SCFAs produced by anaerobic bacteria in the CF lung could interfere with reactive oxidant production of PMNs in response to S. aureus, one of the prominent respiratory pathogens in this disease.
Collapse
Affiliation(s)
- Arthur Miller
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Kayla M Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Samantha L Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Naveen Gokanapudi
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Joanna B Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
16
|
Nabizadeh E, Sadeghi J, Rezaee MA, Hamishehkar H, Hasani A, Kafil HS, Sharifi Y, Asnaashari S, Kadkhoda H, Ghotaslou R. The profile of key gut microbiota members and short-chain fatty acids in patients with sepsis. Heliyon 2023; 9:e17880. [PMID: 37539246 PMCID: PMC10395291 DOI: 10.1016/j.heliyon.2023.e17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Sepsis is a complex clinical disorder with heterogeneous etiological factors. Given its high mortality rate, it is considered a global health issue. Recently, the link between gut microbiota and their metabolites, especially short-chain fatty acids, in the pathophysiology of sepsis has been reported. However, there are few findings to confirm this relationship. This study aimed to evaluate some key gut microbiota members, pathogenic bacteria, and short-chain fatty acids in non-ICU patients with sepsis caused by bacteremia compared to a control group. In this case-control study, 45 stool samples from patients with sepsis and 15 healthy persons were collected from October 2021 to August 2022 in Tabriz, Iran. The position of some gut microbiota members and the main short-chain fatty acids concentration were assessed in the two groups by the Q-PCR and the high-performance liquid chromatography system. Faecalibacterium prausnitzii and Bifidobacterium sp. As bacterial with protective features in non-ICU patients with sepsis decreased significantly. Moreover, the concentrations of acetic acid and propionic acid significantly decreased in this group compared to the healthy volunteers. In contrast, the pathogenic bacteria members such as Enterobacteriaceae and Bacteroides sp. Increased significantly in the patients compared to the healthy individuals. The concentration of butyric acid decreased in the patients, but this change was not significant in the two groups. Protective and immune functions of F. prausnitzii and Bifidobacterium sp., as well as acetate and propionate, are evident. In this investigation, this profile was significantly reduced in non-ICU patients with sepsis compared to the control group.
Collapse
Affiliation(s)
- Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences and Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaghoob Sharifi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Babaeenezhad E, Dezfoulian O, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Ahmadvand H. Exogenous glutathione protects against gentamicin-induced acute kidney injury by inhibiting NF-κB pathway, oxidative stress, and apoptosis and regulating PCNA. Drug Chem Toxicol 2023; 46:441-450. [PMID: 35266424 DOI: 10.1080/01480545.2022.2049290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study was designed, for the first time, to examine the possible nephroprotective effects of exogenous glutathione (EGSH) (100 mg/kg, intraperitoneally) on gentamicin-induced acute kidney injury (GM-induced AKI). EGSH reduced renal histopathological changes, inflammatory cell infiltration, and improved renal dysfunction in rats with AKI. EGSH ameliorated GM-induced renal oxidative stress by promoting the renal activities of catalase, glutathione peroxidase, and superoxide dismutase and diminishing renal malondialdehyde and serum nitric oxide levels. Interestingly, EGSH inhibited intrinsic apoptosis by downregulating Bax and caspase-3 and upregulating Bcl2 in the kidney of rats with AKI. EGSH decreased GM-induced inflammatory response as reflected by a remarkable decrease in the protein expressions of NF-κB-p65, IL-6, TNF-α, and iNOS and a considerable diminish in myeloperoxidase activity. Finally, EGSH markedly declined proliferative cell nuclear antigen (PCNA) protein expression in the animals with AKI. In summary, EGSH alleviated AKI in rats intoxicated with GM, partially by inhibiting oxidative stress, NF-κB pathway, and intrinsic apoptosis and regulating PCNA.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Davood Fattahi
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nasri
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolhakim Amini
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
18
|
Matsuura R, Doi K, Rabb H. Acute kidney injury and distant organ dysfunction-network system analysis. Kidney Int 2023; 103:1041-1055. [PMID: 37030663 DOI: 10.1016/j.kint.2023.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Acute kidney injury (AKI) occurs in about half of critically ill patients and associates with high in-hospital mortality, increased long-term mortality post-discharge and subsequent progression to chronic kidney disease. Numerous clinical studies have shown that AKI is often complicated by dysfunction of distant organs, which is a cause of the high mortality associated with AKI. Experimental studies have elucidated many mechanisms of AKI-induced distant organ injury, which include inflammatory cytokines, oxidative stress and immune responses. This review will provide an update on evidence of organ crosstalk and potential therapeutics for AKI-induced organ injuries, and present the new concept of a systemic organ network to balance homeostasis and inflammation that goes beyond kidney-crosstalk with a single distant organ.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, the University of Tokyo Hospital
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, the University of Tokyo Hospital.
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine
| |
Collapse
|
19
|
Zhu W, Wu C, Zhou Z, Zhang G, Luo L, Liu Y, Huang Z, Ai G, Zhao Z, Zhong W, Liu Y, Zeng G. Acetate attenuates hyperoxaluria-induced kidney injury by inhibiting macrophage infiltration via the miR-493-3p/MIF axis. Commun Biol 2023; 6:270. [PMID: 36922584 PMCID: PMC10017675 DOI: 10.1038/s42003-023-04649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that acetate treatment may improve the renal function in hyperoxaluria rat model. However, its underlying mechanisms remain largely unknown. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we find the oral administration of 5% acetate reduced the elevated serum creatinine, urea, and protected against hyperoxaluria-induced renal injury and fibrosis with less infiltrated macrophages in the kidney. Treatment of acetate in renal tubular epithelial cells in vitro decrease the macrophages recruitment which might have reduced the oxalate-induced renal tubular cells injury. Mechanism dissection suggests that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of miR-493-3p by increasing H3K9 and H3K27 acetylation at its promoter region. The miR-493-3p can suppress the expression of macrophage migration inhibitory factor (MIF), thus inhibiting the macrophages recruitment and reduced oxalate-induced renal tubular cells injury. Importantly, results from the in vivo rat model also demonstrate that the effects of acetate against renal injury were weakened after blocking the miR-493-3p by antagomir treatment. Together, these results suggest that acetate treatment ameliorates the hyperoxaluria-induced renal injury via inhibiting macrophages infiltration with change of the miR-493-3p/MIF signals. Acetate could be a new therapeutic approach for the treatment of oxalate nephropathy.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Chengjie Wu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
- Breast Center, Department of General Surgery, Southern Medical University Nanfang Hospital, 510230, Guangzhou, Guangdong, China
| | - Zhen Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital Southeast University, 210009, Nanjing, Jiangsu, China
| | - Lianmin Luo
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yang Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhicong Huang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guoyao Ai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhijian Zhao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Wen Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Sun S, Chen R, Dou X, Dai M, Long J, Wu Y, Lin Y. Immunoregulatory mechanism of acute kidney injury in sepsis: A Narrative Review. Biomed Pharmacother 2023; 159:114202. [PMID: 36621143 DOI: 10.1016/j.biopha.2022.114202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis acute kidney injury (SAKI) is a common complication of sepsis, accounting for 26-50 % of all acute kidney injury (AKI). AKI is an independent risk factor for increased mortality risk in patients with sepsis. The excessive inflammatory cascade reaction in SAKI is one of the main causes of kidney damage. Both the innate immune system and the adaptive immune system are involved in the inflammation process of SAKI. Under the action of endotoxin, neutrophils, monocytes, macrophages, T cells and other complex immune network reactions occur, and a large number of endogenous inflammatory mediators are released, resulting in the amplification and loss of control of the inflammatory response. The study of immune cells in SAKI will help improve the understanding of the immune mechanisms of SAKI, and will lay a foundation for the development of new diagnostic and therapeutic targets. This article reviews the role of known immune mechanisms in the occurrence and development of SAKI, with a view to finding new targets for SAKI treatment.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
21
|
Qi A, Liu Y, Zhai J, Wang Y, Li W, Wang T, Chai Y. RNF20 deletion causes inflammation in model of sepsis through the NLRP3 activation. Immunopharmacol Immunotoxicol 2023:1-10. [PMID: 36650938 DOI: 10.1080/08923973.2023.2170241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aim: Sepsis is an extremely complex, threatening and difficult-to-treat disease, which can occur at any age and under any underlying disease. RNF20 regulate NF-kappaB (NF-κB) signaling pathway and the transcription of inflammatory factors of target genes. Therefore, it is of great significance to study the function of RNF20 in the clinical treatment of sepsis and its underlying mechanisms.Methods: C57BL/6 mice were subjected to cecal ligation and puncture (CLP) surgery. THP-1 cells were induced with Lipopolysaccharide for 4 h.Results: RNF20 gene, mRNA expression and protein expression were reduced in patients with sepsis and mice with sepsis. Based on RNF20 deletion (RNF20-/-) mice, these were found to be increased inflammation reactions in RNF20-/- mice. However, the RNF20 human protein reduced inflammation reactions in mice with sepsis. In vitro model of sepsis, over-expression of RNF20 inhibited inflammation reactions by inducing Vitamin D Receptor (VDR), while down-regulation of RNF20 promoted inflammation reactions through the suppression of VDR. RNF20 protein was interlinked with VDR protein, and VDR protein was also interlinked with NLRP3. Furthermore, VDR promoted NLRP3 ubiquitination and reduced NLRP3 function in vitro model of sepsis.Conclusion: These studies demonstrate that RNF20 suppressed inflammation reactions in models with sepsis through NLRP3 inflammasome and NLRP3 ubiquitination by activating VDR.
Collapse
Affiliation(s)
- Anlong Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yongtao Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Wang Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, P.R. China
| | - Tong Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, P.R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
22
|
Sodium acetate ameliorates cisplatin-induced kidney injury in vitro and in vivo. Chem Biol Interact 2023; 369:110258. [PMID: 36372261 DOI: 10.1016/j.cbi.2022.110258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Cisplatin is an effective chemotherapeutic drug against tumors. Studies often report on the improvement of kidney injury by probiotics or short-chain fatty acids (SCFAs); however, the effects of SCFAs on cisplatin-induced kidney injury are rarely studied. The aim of this study is to evaluate the function of sodium acetate on preventing cisplatin-induced kidney injury. Cell viability was detected by MTT assay. SA-β-gal staining was performed to investigate premature senescence. Reactive oxygen species (ROS) production was analyzed by H2DCFDA staining. Propidium iodide (PI) staining was analyzed by cell cycle. Protein expression was determined by Western blot assay. Annexin Ⅴ/PI staining was used to investigate cisplatin-induced apoptosis. Tumor growth and kidney injury were evaluated in C57BL/6 mice. Sodium acetate ameliorated cisplatin-induced premature senescence and ROS production in SV40 MES-13 glomerular cells, NRK-52E renal tubular cells, and NRK-49F renal fibroblast cells. Cisplatin-induced cell cycle arrest was inhibited by sodium acetate in SV40 MES-13 and NRK-49F cells. Sodium acetate alleviated cisplatin-induced apoptosis in vivo and in vitro but not cisplatin-induced fibrosis. Our study demonstrated that sodium acetate inhibited cisplatin-induced premature senescence, cell cycle arrest, and apoptosis by attenuating ROS production. This strategy may be useful in the treatment of cisplatin-induced kidney injury.
Collapse
|
23
|
Olaniyi KS, Areloegbe SE. Acetate: A therapeutic candidate against renal disorder in a rat model of polycystic ovarian syndrome. J Steroid Biochem Mol Biol 2023; 225:106179. [PMID: 36150640 DOI: 10.1016/j.jsbmb.2022.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Various endocrinometabolic diseases, inclusively polycystic ovarian syndrome (PCOS) has been linked with increased risk of renal dysfunction with attendant cardiovascular disease (CVD) in women of reproductive age. Short chain fatty acids (SCFAs) especially acetate have been suggested as an immunometabolic modulator. However, the impact of SCFAs, particularly acetate on renal disorder in PCOS individuals is unknown. The present study therefore hypothesized that acetate would circumvent renal dysfunction in a rat model of PCOS, probably by suppressing NF-κB-dependent mechanism. Eight-week-old female Wistar rats were randomly distributed into four groups (n = 6), which received vehicle, sodium acetate (200 mg/kg), letrozole (1 mg/kg) and letrozole plus sodium acetate, respectively. The administrations were done by oral gavage once daily for a duration of 21 days. Animals with PCOS showed insulin resistance, lipid dysmetabolism, hyperandrogenism, hyperleptinemia and hypoadiponectinemia. Besides, the result also revealed increased renal malondialdehyde, lactate production, inflammatory mediators (NF-κB and TNF-α), urea and creatinine concentration. Immunohistochemical evaluation of renal tissue also demonstrated severe expression of apoptosis and inflammation with BAX/NLRP3 antibodies. However, supplementation with acetate significantly attenuated these anomalies. Collectively, the present results suggest that acetate abolishes renal dysfunction in experimentally induced PCOS animals by attenuating androgen excess, apoptosis, oxidative stress and NF-κB/NLRP3 immunoreactivity.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| |
Collapse
|
24
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Endocrinology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Taian, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| |
Collapse
|
25
|
Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 2022; 19:695-707. [PMID: 36127409 PMCID: PMC11234243 DOI: 10.1038/s41585-022-00647-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 02/08/2023]
Abstract
Kidney stone disease affects ~10% of the global population and the incidence continues to rise owing to the associated global increase in the incidence of medical conditions associated with kidney stone disease including, for example, those comprising the metabolic syndrome. Considering that the intestinal microbiome has a substantial influence on host metabolism, that evidence has suggested that the intestinal microbiome might have a role in maintaining oxalate homeostasis and kidney stone disease is unsurprising. In addition, the discovery that urine is not sterile but, like other sites of the human body, harbours commensal bacterial species that collectively form a urinary microbiome, is an additional factor that might influence the induction of crystal formation and stone growth directly in the kidney. Collectively, the microbiomes of the host could influence kidney stone disease at multiple levels, including intestinal oxalate absorption and direct crystal formation in the kidneys.
Collapse
Affiliation(s)
- Aaron W Miller
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kate Fitzpatrick
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Agudelo
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory Tasian
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Xiang T, Zhao S, Wu Y, Li L, Fu P, Ma L. Novel post-translational modifications in the kidneys for human health and diseases. Life Sci 2022; 311:121188. [DOI: 10.1016/j.lfs.2022.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
27
|
Zuzda K, Grycuk W, Małyszko J, Małyszko J. Kidney and lipids: novel potential therapeutic targets for dyslipidemia in kidney disease? Expert Opin Ther Targets 2022; 26:995-1009. [PMID: 36548906 DOI: 10.1080/14728222.2022.2161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Altered lipid distribution and metabolism may lead to the development and/or progression of chronic kidney disease (CKD). Dyslipidemia is a major risk factor for CKD and increases the risk of cardiovascular events and mortality. Therefore, lipid-lowering treatments may decrease cardiovascular risk and prevent death. AREAS COVERED Key players involved in regulating lipid accumulation in the kidney; contribution of lipids to CKD progression, lipotoxicity, and mitochondrial dysfunction in kidney disease; recent therapeutic approaches for dyslipidemia. EXPERT OPINION The precise mechanisms for regulating lipid metabolism, particularly in kidney disease, are poorly understood. Guidelines for lipid-lowering therapy for CKD are controversial. Several hypolipemic therapies are available, but compared to others, statin therapy is the most common. No clinical trial has evaluated the efficacy of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) in preventing cardiovascular events or improving kidney function among patients with CKD or kidney transplant recipients. Attractive alternatives, such as PCSK9-small interfering RNA (siRNA) molecules or evinacumab are available. Additionally, several promising agents, such as cyclodextrins and the FXR/TGR5 dual agonist, INT-767, can improve renal lipid metabolism disorders and delay CKD progression. Drugs targeting mitochondrial dysfunction could be an option for the treatment of dyslipidemia and lipotoxicity, particularly in renal diseases.
Collapse
Affiliation(s)
- Konrad Zuzda
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Wiktoria Grycuk
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| | - Jacek Małyszko
- 1st Department of Nephrology and Transplantology, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Bialystok, Poland
| |
Collapse
|
28
|
Guo W, Hu Z. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling. Immunopharmacol Immunotoxicol 2022; 45:203-212. [PMID: 36226860 DOI: 10.1080/08923973.2022.2134789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Sepsis is the most common cause of death in intensive care unit. Moreover, sepsis is the leading cause of acute lung injury (ALI). Serine-arginine protein kinase 1 (SRPK1) was demonstrated to promote the development of ALI. However, the potentials of SRPK1 in sepsis-induced ALI are still unknown. This study aimed to investigate the potentials of SRPK1 in sepsis-induced ALI and the underlying mechanisms. METHODS Cecal ligation and puncture (CLP) was performed to establish sepsis-induced ALI model in vivo. Primary human pulmonary microvascular endothelial cells (HPMECs) were exposed to lipopolysaccharide (LPS) to construct sepsis-induced ALI model in vitro. Gene expression was detected using western blot and qRT-PCR. The interaction between forkhead box O3 (FOXO3) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was detected using luciferase and Chromatin immunoprecipitation (ChIP) assay. Cellular functions were CCK-8, colony formation, PI staining, and flow cytometry assay. RESULTS SRPK1 was downregulated in patients with sepsis-induced ALI. Overexpression of SRPK1 suppressed the pyroptosis of HPMECs as well as promoted cell proliferation. Additionally, SRPK1 overexpression alleviated sepsis-induced ALI in vivo. SRPK1 activated phosphatidylinositol3-kinase (PI3K) signaling pathways. Blocking the activation of PI3K degraded the cellular functions of HPMECs. Moreover, FOXO3 transcriptionally inactivated NLRP3 and suppressed its mRNA and protein expression. CONCLUSION Taken together, SRPK1 suppressed sepsis-induced ALI via regulating PI3K/AKT/FOXO3/NLRP3 signaling. SRPK1 may be the potential biomarker for sepsis-induced ALI.
Collapse
Affiliation(s)
- Wei Guo
- Department of Medicine, Soochow University, Shizi Street, Gusu District, Suzhou, Jiangsu 215006, China.,Emergency Department, The first affiliated hospital of JinZhou Medical University, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121000, China
| | - Zhansheng Hu
- Critical Care Medicine Department, The first affiliated hospital of JinZhou Medical University, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121000, China
| |
Collapse
|
29
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
30
|
Cai Y, Huang C, Zhou M, Xu S, Xie Y, Gao S, Yang Y, Deng Z, Zhang L, Shu J, Yan T, Wan CC. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154306. [PMID: 35809376 DOI: 10.1016/j.phymed.2022.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in clinical inpatients, and it continues a high morbidity and mortality rate despite many clinical treatment measures. AKI is triggered by infections, surgery, heavy metal exposure and drug side effects, but current chemical drugs often fall short of expectations for AKI treatment and have toxic side effects. Therefore, finding new interventions and treatments, especially of natural origin, is of remarkable clinical significance and application. The herbal monomer curcumin is a natural phenolic compound extracted from the plant Curcuma longa and showed various biological activities, including AKI. Furthermore, recent studies have shown that curcumin restores renal function by modulating the immune system and the release of inflammatory mediators, scavenging oxygen free radicals, reducing apoptosis and improving mitochondrial dynamics. However, curcumin has a low bioavailability, which limits its clinical application. For this reason, it is essential to investigate the therapeutic effects and molecular mechanisms of curcumin in AKI, as well as to improve its bioavailability for curcumin formulation development and clinical application. PURPOSE This review summarizes the sources, pharmacokinetics, and limitations in the clinical application of curcumin and explores methods to optimize its bioavailability using nanotechnology. In particular, the therapeutic effects and molecular mechanisms of curcumin on AKI are highlighted to provide a theoretical basis for AKI treatment in clinical practices. METHODS This review was specifically searched by means of a search of three databases (Web of Science, PubMed and Science Direct), till December 2021. Search terms were "Curcumin", "Acute kidney injury", "AKI", " Pharmacokinetics", "Mitochondria" and "Nano formulations". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review) RESULTS: Studies have shown that curcumin responded to AKI-induced renal injury and restored renal tubular epithelial cell function by affecting multiple signaling pathways in AKI models induced by factors such as cisplatin, lipopolysaccharide, ischemia/reperfusion, gentamicin and potassium dichromate. Curcumin was able to affect NF-κB signaling pathway and reduce the expression of IL-1β, IL-6, IL-8 and TNF-α, thus preventing renal inflammatory injury. In the prevention of renal tubular oxidative damage, curcumin reduced ROS production by activating the activity of Nrf2, HO-1 and PGC-1α. In addition, curcumin restored mitochondrial homeostasis by upregulating OPA1 and downregulating DRP1 expression, while reducing apoptosis by inhibiting the caspase-3 apoptotic pathway. In addition, due to the low bioavailability and poor absorption of curcumin in vivo, curcumin nanoformulations including nanoparticles, liposomes, and polymeric micelles are formulated to improve the bioavailability. CONCLUSION This review provides new ideas for the use of curcumin in the prevention and treatment of AKI by modulating the molecular targets of several different cellular signaling pathways.
Collapse
Affiliation(s)
- Yi Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chaoming Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyu Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shiqi Xu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yantianyu Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zirong Deng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
31
|
Wang Q, Ma X. Gut microbial sodium butyrate alleviates renal ischemia-reperfusion injury by regulating HES1/PPARα. Mol Immunol 2022; 150:20-28. [PMID: 35930845 DOI: 10.1016/j.molimm.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
This study investigated the effect of gut microbial sodium butyrate (NaB) on renal ischemia-reperfusion injury (IRI) and its mechanism using a rat model of renal IRI and a HK-2 cell model of hypoxia-reoxygenation (HR) injury. The activity of malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase in kidney tissues and HK-2 cells was detected. ELISA was performed to measure the concentrations of TNF-α, IL-1β, and IL-6 in serum and cell culture supernatant. TUNEL staining and flow cytometry were used to assess apoptosis in kidney tissues and HK-2 cells, respectively. UCSC and JASPAR predicted the binding sites between HES1 and PPARα promoter, followed by experimental verification of the binding. NaB pretreatment inhibited oxidative stress, inflammation, and apoptosis following renal IRI in vivo and in vitro. NaB suppressed the expression of HES1 and promoted that of PPARα. Overexpression of HES1 or knockdown of PPARα in HR-treated HK-2 cells inhibited the protective effects of NaB. HES1 repressed the expression of PPARα by binding PPARα promoter. In conclusion, NaB may alleviate renal IRI by promoting the transcription of PPARα via downregulation of HES1.
Collapse
Affiliation(s)
- Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, PR China
| | - Xiaoying Ma
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, PR China; Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, PR China.
| |
Collapse
|
32
|
Luo L, Luo J, Cai Y, Fu M, Li W, Shi L, Liu J, Dong R, Xu X, Tu L, Yang Y. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy. Pharmacol Res 2022; 183:106367. [PMID: 35882293 DOI: 10.1016/j.phrs.2022.106367] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, and few treatment options that prevent the progressive loss of renal function are available. Studies have shown that dietary fiber intake improves kidney diseases and metabolism-related diseases, most likely through short-chain fatty acids (SCFAs). The present study aimed to examine the protective effects of inulin-type fructans (ITFs) on DN through 16 S rRNA gene sequencing, gas chromatographymass spectrometry (GCMS) analysis and fecal microbiota transplantation (FMT). The results showed that ITFs supplementation protected against kidney damage in db/db mice and regulated the composition of the gut microbiota. Antibiotic treatment and FMT experiments further demonstrated a key role of the gut microbiota in mediating the beneficial effects of ITFs. The ITFs treatment-induced changes in the gut microbiota led to an enrichment of SCFA-producing bacteria, especially the genera Akkermansia and Candidatus Saccharimonas, which increased the fecal and serum acetate concentrations. Subsequently, acetate supplementation improved glomerular damage and renal fibrosis by attenuating mitochondrial dysfunction and reducing toxic glucose metabolite levels. In conclusion, ITFs play a renoprotective role by modulating the gut microbiota and increasing acetate production. Furthermore, acetate mediates renal protection by regulating glucose metabolism, decreasing glycotoxic product levels and improving mitochondrial function.
Collapse
Affiliation(s)
- Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yueting Cai
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingrui Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
33
|
Piperlongumin Improves Survival in the Mouse Model of Sepsis: Effect on Coagulation Factors and Lung Inflammation. Inflammation 2022; 45:2513-2528. [PMID: 35831643 PMCID: PMC9281243 DOI: 10.1007/s10753-022-01709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022]
Abstract
Excessive inflammation and coagulation contribute to high morbidity and mortality in sepsis. Many studies have indicated the role of piperlongumine (PL) in anti-inflammation, but its effect on coagulation remains uncertain. Here, we explore whether PL could moderate coagulation indicators and alleviate lung inflammation during sepsis. RAW264.7 cells were induced by lipopolysaccharide (LPS) and treated with PL. Inflammatory and coagulation indicators, cell function and signaling, were evaluated in cells. Cecal ligation and puncture (CLP) mice were treated with PL by gavage. The harvested lungs and plasma were used to assess inflammation and coagulation indicators. As a result, PL increased the survival rate and reduced the concentrations of tissue factor (TF), plasminogen activator inhibitor 1 (PAI-1), thrombin-antithrombin complex (TAT), D-dimer, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in CLP mice, with fibrinogen in reverse. Moreover, the PL alleviated inflammation, fibrin deposition, and lung injury in the lungs of CLP mice. In vitro, PL downregulated the expression of TF, PAI-1, IL-6, TNF-α, and IL-1β in RAW264.7 cells induced by LPS. Furthermore, PL inhibited the phosphorylation of the AKT/mTOR signaling pathway's key proteins and suppressed the nuclear translocation of p-STAT3 in LPS-stimulated RAW264.7 cells. In conclusion, this study suggests that PL may modulate coagulation indicators and improve lung inflammation through AKT/mTOR signaling pathway in sepsis.
Collapse
|
34
|
Zou YT, Zhou J, Zhu JH, Wu CY, Shen H, Zhang W, Zhou SS, Xu JD, Mao Q, Zhang YQ, Long F, Li SL. Gut Microbiota Mediates the Protective Effects of Traditional Chinese Medicine Formula Qiong-Yu-Gao against Cisplatin-Induced Acute Kidney Injury. Microbiol Spectr 2022; 10:e0075922. [PMID: 35481834 PMCID: PMC9241845 DOI: 10.1128/spectrum.00759-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
Our previous study found that Qiong-Yu-Gao (QYG), a traditional Chinese medicine formula derived from Rehmanniae Radix, Poria, and Ginseng Radix, has protective effects against cisplatin-induced acute kidney injury (AKI), but the underlying mechanisms remain unknown. In the present study, the potential role of gut microbiota in the nephroprotective effects of QYG was investigated. We found that QYG treatment significantly attenuated cisplatin-induced AKI and gut dysbiosis, altered the levels of bacterial metabolites, with short-chain fatty acids (SCFAs) such as acetic acid and butyric acid increasing and uremic toxins such as indoxyl sulfate and p-cresyl sulfate reducing, and suppressed histone deacetylase expression and activity. Spearman's correlation analysis found that QYG-enriched fecal bacterial genera Akkermansia, Faecalibaculum, Bifidobacterium, and Lachnospiraceae_NK4A136_group were correlated with the altered metabolites, and these metabolites were also correlated with the biomarkers of AKI, as well as the indicators of fibrosis and inflammation. The essential role of gut microbiota was further verified by both the diminished protective effects with antibiotics-induced gut microbiota depletion and the transferable renal protection with fecal microbiota transplantation. All these results suggested that gut microbiota mediates the nephroprotective effects of QYG against cisplatin-induced AKI, potentially via increasing the production of SCFAs, thus suppressing histone deacetylase expression and activity, and reducing the accumulation of uremic toxins, thereby alleviating fibrosis, inflammation, and apoptosis in renal tissue. IMPORTANCE Cisplatin-induced acute kidney injury is the main limiting factor restricting cisplatin's clinical application. Accumulating evidence indicated the important role of gut microbiota in pathogenesis of acute kidney injury. In the present study, we have demonstrated that gut microbiota mediates the protective effects of traditional Chinese medicine formula Qiong-Yu-Gao against cisplatin-induced acute kidney injury. The outputs of this study would provide scientific basis for future clinical applications of QYG as prebiotics to treat cisplatin-induced acute kidney injury, and gut microbiota may be a promising therapeutic target for chemotherapy-induced nephrotoxicity.
Collapse
Affiliation(s)
- Ye-Ting Zou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ye-Qing Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
36
|
Lei J, Xie Y, Sheng J, Song J. Intestinal microbiota dysbiosis in acute kidney injury: novel insights into mechanisms and promising therapeutic strategies. Ren Fail 2022; 44:571-580. [PMID: 35350960 PMCID: PMC8967199 DOI: 10.1080/0886022x.2022.2056054] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the clinical impact of intestinal microbiota–kidney interaction has been emerging. Experimental evidence highlighted a bidirectional evolutionary correlation between intestinal microbiota and kidney diseases. Nonetheless, acute kidney injury (AKI) is still a global public health concern associated with high morbidity, mortality, healthcare costs, and limited efficient therapy. Several studies on the intestinal microbiome have improved the knowledge and treatment of AKI. Therefore, the present review outlines the concept of the gut–kidney axis and data about intestinal microbiota dysbiosis in AKI to improve the understanding of the mechanisms of the intestinal microbiome on the modification of kidney function and response to kidney injury. We also introduced the future directions and research areas, emphasizing the intervention approaches and recent research advances of intestinal microbiota dysbiosis during AKI, thereby providing a new perspective for future clinical trials.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Chou YT, Kan WC, Shiao CC. Acute Kidney Injury and Gut Dysbiosis: A Narrative Review Focus on Pathophysiology and Treatment. Int J Mol Sci 2022; 23:ijms23073658. [PMID: 35409017 PMCID: PMC8999046 DOI: 10.3390/ijms23073658] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) and gut dysbiosis affect each other bidirectionally. AKI induces microbiota alteration in the gastrointestinal (GI) system, while gut dysbiosis also aggravates AKI. The interplay between AKI and gut dysbiosis is not yet well clarified but worthy of further investigation. The current review focuses on the pathophysiology of this bidirectional interplay and AKI treatment in this base. Both macrophages and neutrophils of the innate immunity and the T helper type 17 cell from the adaptive immunity are the critical players of AKI-induced gut dysbiosis. Conversely, dysbiosis-induced overproduction of gut-derived uremic toxins and insufficient generation of short-chain fatty acids are the main factors deteriorating AKI. Many novel treatments are proposed to deter AKI progression by reforming the GI microbiome and breaking this vicious cycle. Data support the benefits of probiotic treatment in AKI patients, while the results of postbiotics are mainly limited to animals. Prebiotics and synbiotics are primarily discussed in chronic kidney disease patients rather than AKI patients. The effect of adsorbent treatment seems promising, but more studies are required before the treatment can be applied to patients. Immune therapy and some repurposed drugs such as allopurinol are prospects of future treatments and are worth more discussion and survey.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
- Correspondence: (W.-C.K.); (C.-C.S.)
| | - Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Camillian Saint Mary’s Hospital Luodong, Yilan 265, Taiwan
- Saint Mary’s Junior College of Medicine, Nursing and Management, Yilan 26647, Taiwan
- Correspondence: (W.-C.K.); (C.-C.S.)
| |
Collapse
|
38
|
Wang L, Deng Z, Sun Y, Zhao Y, Li Y, Yang M, Yuan R, Liu Y, Qian Z, Zhou F, Kang H. The Study on the Regulation of Th Cells by Mesenchymal Stem Cells Through the JAK-STAT Signaling Pathway to Protect Naturally Aged Sepsis Model Rats. Front Immunol 2022; 13:820685. [PMID: 35197984 PMCID: PMC8858840 DOI: 10.3389/fimmu.2022.820685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Sepsis is the leading cause of death among patients, especially elderly patients, in intensive care units worldwide. In this study, we established a sepsis model using naturally aged rats and injected 5×106 umbilical cord-derived MSCs via the tail vein. Each group of rats was analyzed for survival, examined for biochemical parameters, stained for organ histology, and analyzed for the Th cell subpopulation ratio and inflammatory cytokine levels by flow cytometry. Western blotting was performed to detect the activity of the JAK-STAT signaling pathway. We designed the vitro experiments to confirm the regulatory role of MSCs, and verified the possible mechanism using JAK/STAT inhibitors. It was revealed from the experiments that the 72 h survival rate of sepsis rats treated with MSCs was significantly increased, organ damage and inflammatory infiltration were reduced, the levels of organ damage indicators were decreased, the ratios of Th1/Th2 and Th17/Treg in peripheral blood and spleen were significantly decreased, the levels of pro-inflammatory cytokines such as IL-6 were decreased, the levels of anti-inflammatory cytokines such as IL-10 were increased, and the levels of STAT1 and STAT3 phosphorylation were reduced. These results were validated in in vitro experiments. Therefore, this study confirms that MSCs can control the inflammatory response induced by sepsis by regulating Th cells and inflammatory factors, and that this leads to the reduction of tissue damage, protection of organ functions and ultimately the improvement of survival in aged sepsis model rats. Inhibition of the JAK-STAT signaling pathway was surmised that it may be an important mechanism for their action.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rui Yuan
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuyan Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhirong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Feihu Zhou
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongjun Kang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Hongjun Kang,
| |
Collapse
|
39
|
Zhao J, Duan Q, Dong C, Cui J. Cul4a attenuates LPS-induced acute kidney injury via blocking NF-kB signaling pathway in sepsis. J Med Biochem 2022; 41:62-70. [PMID: 35611245 PMCID: PMC9069243 DOI: 10.5937/jomb0-33096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common disease that can develop into end-stage kidney disease. Sepsis is one of the main causes of AKI. Currently, there is no satisfactory way to treat septic AKI. Therefore, we have shown the protective function of Cul4a in septic AKI and its molecular mechanism. Methods The cellular and animal models of septic AKI were established by using lipopolysaccharide (LPS). Western blot (WB) was employed to analyze Cul4a expression. RT-qPCR was employed to test the expression of Cul4a, SOD1, SOD2, GPX1, CAT, IL-6, TNF-a, Bcl-2, IL1b, Bax and KIM-1 mRNA. ELISA was performed to detect the contents of inflammatory factors and LDH. CCK-8 was utilized to detect cell viability. Flow cytometry was utilized to analyze the apoptosis. DHE-ROS kit was used to detect the content of ROS. Results Cul4a was down-regulated in cellular and animal models of septic AKI. Oxidative stress is obviously induced by LPS, as well as apoptosis and inflammation. However, these can be significantly inhibited by up-regulating Cul4a. Moreover, LPS induced the activation of the NF-kB pathway, which could also be inhibited by overexpression of Cul4a. Conclusions Cul4awas found to be a protective factor in septic AKI, which could inhibit LPS-induced oxidative stress, apoptosis and inflammation of HK-2 cells by inhibiting the NF-kB pathway.
Collapse
Affiliation(s)
- Jing Zhao
- Yantaishan Hospital, Department of Critical Care Medicine, Yantai, China
| | - Qiuxia Duan
- The Third People's Hospital of Qingdao, Department of Critical Care Medicine, Qingdao, China
| | - Cuihong Dong
- Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Jing Cui
- The Third People's Hospital of Qingdao, Department of Emergency, Qingdao, China
| |
Collapse
|
40
|
Mankowski RT, Laitano O, Darden D, Kelly L, Munley J, Loftus TJ, Mohr AM, Efron PA, Thomas RM. Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets. Shock 2022; 57:15-23. [PMID: 34726875 PMCID: PMC9373856 DOI: 10.1097/shk.0000000000001843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ABSTRACT Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The skeletal muscle system is among the host organ systems compromised by sepsis. The resulting neuromuscular dysfunction and impaired regenerative capacity defines sepsis-induced myopathy and manifests as atrophy, loss of strength, and hindered regeneration after injury. These outcomes delay recovery from critical illness and confer increased vulnerability to morbidity and mortality. The mechanisms underlying sepsis-induced myopathy, including the potential contribution of peripheral organs, remain largely unexplored. The gut microbiome is an immunological and homeostatic entity that interacts with and controls end-organ function, including the skeletal muscle system. Sepsis induces alterations in the gut microbiota composition, which is globally termed a state of "dysbiosis" for the host compared to baseline microbiota composition. In this review, we critically evaluate existing evidence and potential mechanisms linking sepsis-induced myopathy with gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Robert T. Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL
| | - Orlando Laitano
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Dijoia Darden
- Department of Surgery, University of Florida, Gainesville, FL
| | - Lauren Kelly
- Department of Surgery, University of Florida, Gainesville, FL
| | - Jennifer Munley
- Department of Surgery, University of Florida, Gainesville, FL
| | - Tyler J. Loftus
- Department of Surgery, University of Florida, Gainesville, FL
| | - Alicia M. Mohr
- Department of Surgery, University of Florida, Gainesville, FL
| | - Philip A. Efron
- Department of Surgery, University of Florida, Gainesville, FL
| | - Ryan M. Thomas
- Department of Surgery, University of Florida, Gainesville, FL
- Department of Molecular Genetics and Microbiology; University of Florida College of Medicine; Gainesville, FL
- Section of General Surgery, North Florida/South Georgia Veterans Health System; Gainesville, FL
| |
Collapse
|
41
|
Jujube polysaccharides mitigated anemia in rats with chronic kidney disease: Regulation of short chain fatty acids release and erythropoietin production. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
42
|
Cao C, Yao Y, Zeng R. Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Front Physiol 2021; 12:729084. [PMID: 34616308 PMCID: PMC8488268 DOI: 10.3389/fphys.2021.729084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Acute kidney injury (AKI) remains a major global public health concern due to its high morbidity and mortality. The progression from AKI to chronic kidney disease (CKD) makes it a scientific problem to be solved. However, it is with lack of effective treatments. Summary: Both innate and adaptive immune systems participate in the inflammatory process during AKI, and excessive or dysregulated immune responses play a pathogenic role in renal fibrosis, which is an important hallmark of CKD. Studies on the pathogenesis of AKI and CKD have clarified that renal injury induces the production of various chemokines by renal parenchyma cells or resident immune cells, which recruits multiple-subtype lymphocytes in circulation. Some infiltrated lymphocytes exacerbate injury by proinflammatory cytokine production, cytotoxicity, and interaction with renal resident cells, which constructs the inflammatory environment and induces further injury, even death of renal parenchyma cells. Others promote tissue repair by producing protective cytokines. In this review, we outline the diversity of these lymphocytes and their mechanisms to regulate the whole pathogenic stages of AKI and CKD; discuss the chronological responses and the plasticity of lymphocytes related to AKI and CKD progression; and introduce the potential therapies targeting lymphocytes of AKI and CKD, including the interventions of chemokines, cytokines, and lymphocyte frequency regulation in vivo, adaptive transfer of ex-expanded lymphocytes, and the treatments of gut microbiota or metabolite regulations based on gut-kidney axis. Key Message: In the process of AKI and CKD, T helper (Th) cells, innate, and innate-like lymphocytes exert mainly pathogenic roles, while double-negative T (DNT) cells and regulatory T cells (Tregs) are confirmed to be protective. Understanding the mechanisms by which lymphocytes mediate renal injury and renal fibrosis is necessary to promote the development of specific therapeutic strategies to protect from AKI and prevent the progression of CKD.
Collapse
Affiliation(s)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Sarawi W, Attia SM, Alasmari AF, Alqarni SA, Alfradan AS, Bakheet SA, Al-Harbi MM. Role of ITK signaling in acute kidney injury in mice: Amelioration of acute kidney injury associated clinical parameters and attenuation of inflammatory transcription factor signaling in CD4+ T cells by ITK inhibition. Int Immunopharmacol 2021; 99:108028. [PMID: 34365077 DOI: 10.1016/j.intimp.2021.108028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is a world-wide health problem and linked with increased risk of morbidity/mortality in hospitalized patients and its incidence has been on the rise in the last few decades. AKI is characterized by renal tubular injury which results from interactions between bacterial products and host immune responses which manifests as a rapid deterioration in renal function. Immune system dysfunction induced by sepsis plays a crucial role in AKI through activation of multiple immune cells of both innate and adaptive origin. These cells release pro-inflammatory cytokines such as IL-6, IL-17A, IFN-γ, and reactive oxygen metabolites. Adaptive immune cells, especially T cells also participate in the amplification of renal inflammation through release of pro-inflammatory cytokines such as IL-17A, IFN-γ, TNF-α, and IL-10. Non-receptor protein tyrosine kinases such as ITK play crucial role in T cell through modulation of key downstream molecules such as PLCγ, STAT3, NFkB, NFATc1, and p-38MAPK. However, it has not been explored in CD4+ T cells during AKI. Therefore, this study investigated the effect of ITK inhibitor on AKI linked clinical parameters (serum BUN, creatinine and renal histopathology), downstream signaling molecules in CD4+ T cells (PLCγ, STAT3, NFkB, and NFATc1), Th1/Th2/Treg cell markers (IL-17A, TNF-α, and IL-10), and neutrophil-mediated oxidative inflammation (MPO/carbonyl/nitrotyrosine formation) in mice. Our data exhibit elevated p-ITK levels in CD4+ T cells which is associated with renal dysfunction and elevated Th1/Th17/neutrophilic responses. Blockade of ITK signaling resulted in ameliorated of AKI associated biochemical; parameters through downregulation in transcription signaling in CD4+ T cells and Th1/Th17 immune responses. Therefore, this report suggests that ITK inhibition could be an effective strategy to halt renal dysfunction associated with AKI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alfradan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Kobayashi T, Iwata Y, Nakade Y, Wada T. Significance of the Gut Microbiota in Acute Kidney Injury. Toxins (Basel) 2021; 13:369. [PMID: 34067285 PMCID: PMC8224769 DOI: 10.3390/toxins13060369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies have revealed that the gut microbiota plays a crucial role in maintaining a healthy, as well as diseased condition. Various organs and systems, including the kidney, are affected by the gut microbiota. While the impacts of the gut microbiota have been reported mainly on chronic kidney disease, acute kidney injury (AKI) is also affected by the intestinal environment. In this review, we discussed the pathogenesis of AKI, highlighting the relation to the gut microbiota. Since there is no established treatment for AKI, new treatments for AKI are highly desired. Some kinds of gut bacteria and their metabolites reportedly have protective effects against AKI. Current studies provide new insights into the role of the gut microbiota in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Taku Kobayashi
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (Y.N.); (T.W.)
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (Y.N.); (T.W.)
- Division of Infection Control, Kanazawa University Hospital, Kanazawa 920-1192, Japan
| | - Yusuke Nakade
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (Y.N.); (T.W.)
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa 920-1192, Japan; (T.K.); (Y.N.); (T.W.)
| |
Collapse
|
45
|
Liu Y, Li YJ, Loh YW, Singer J, Zhu W, Macia L, Mackay CR, Wang W, Chadban SJ, Wu H. Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition. Front Cell Dev Biol 2021; 9:648639. [PMID: 33898439 PMCID: PMC8060457 DOI: 10.3389/fcell.2021.648639] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Short-chain fatty acids (SCFA) derived from gut microbial fermentation of fiber have been shown to exert anti-inflammatory and immune-modulatory properties in acute kidney injury (AKI). However the direct mechanistic link between SCFAs, diet and the gut microbiome is yet to be established. Using the murine model of folic-acid nephropathy (FAN), we examined the effect of dietary fiber on development of AKI (day 2) and subsequent chronic kidney disease (CKD) (day 28). FAN was induced in wild-type and knockout mice lacking G protein–coupled receptors GPR41, GPR43, or GPR109A. Mice were randomized to high-fiber or normal-chow diets, or SCFAs in drinking water. We used 16S rRNA sequencing to assess the gut microbiome and 1H-NMR spectroscopy for metabolic profiles. Mice fed high-fiber were partially protected against development of AKI and subsequent CKD, exhibiting better kidney function throughout, less tubular injury at day 2 and less interstitial fibrosis and chronic inflammation at day 28 vs controls. Fiber modified the gut microbiome and alleviated dysbiosis induced by AKI, promoting expansion of SCFA-producing bacteria Bifidobacterium and Prevotella, which increased fecal and serum SCFA concentrations. SCFA treatment achieved similar protection, but not in the absence of GPR41 or GPR109A. Histone deacetylase activity (HDAC) was inhibited in kidneys of high-fiber fed mice. We conclude that dietary manipulation of the gut microbiome protects against AKI and subsequent CKD, mediated by HDAC inhibition and activation of GPR41 and GPR109A by SCFAs. This study highlights the potential of the gut microbiome as a modifiable target in the prevention of AKI.
Collapse
Affiliation(s)
- Yunzi Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Yan J Li
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Yik W Loh
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Julian Singer
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Weiping Zhu
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Laurence Macia
- Nutritional Immuno-metabolism Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Weiming Wang
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Steven J Chadban
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Huiling Wu
- Kidney Node Laboratory, The Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
46
|
Noel S, Mohammad F, White J, Lee K, Gharaie S, Rabb H. Gut Microbiota-Immune System Interactions during Acute Kidney Injury. KIDNEY360 2021; 2:528-531. [PMID: 35369013 PMCID: PMC8785987 DOI: 10.34067/kid.0006792020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/13/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Sanjeev Noel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fuad Mohammad
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Kyungho Lee
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sepideh Gharaie
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
47
|
Jo SK. Kidney-Gut Crosstalk in AKI. KIDNEY360 2021; 2:886-889. [PMID: 35373056 PMCID: PMC8791352 DOI: 10.34067/kid.0007722020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
|
48
|
Stavropoulou E, Kantartzi K, Tsigalou C, Konstantinidis T, Romanidou G, Voidarou C, Bezirtzoglou E. Focus on the Gut-Kidney Axis in Health and Disease. Front Med (Lausanne) 2021; 7:620102. [PMID: 33553216 PMCID: PMC7859267 DOI: 10.3389/fmed.2020.620102] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
The recent new developments in technology with culture-independent techniques including genome sequencing methodologies shed light on the identification of microbiota bacterial species and their role in health and disease. Microbiome is actually reported as an important predictive tool for evaluating characteristic shifts in case of disease. Our present review states the development of different renal diseases and pathologies linked to the intestinal dysbiosis, which impacts on host homeostasis. The gastrointestinal-kidney dialogue provides intriguing features in the pathogenesis of several renal diseases. Without any doubt, investigation of this interconnection consists one of the most cutting-edge areas of research with potential implications on our health.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Konstantia Kantartzi
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | - Eugenia Bezirtzoglou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
49
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Alqahtani F, Alanazi WA, Mahmood HM, Alsanea S, Attia SM. Bruton's tyrosine kinase inhibition attenuates oxidative stress in systemic immune cells and renal compartment during sepsis-induced acute kidney injury in mice. Int Immunopharmacol 2021; 90:107123. [PMID: 33168411 DOI: 10.1016/j.intimp.2020.107123] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Sepsis is a life-threatening condition which affects multiple organs including the kidney. Sepsis-induced acute kidney injury (AKI) is a major health burden throughout the globe. Pathogenesis of sepsis-induced AKI is complex; however, it involves both innate and adaptive immune cells such as B cells, T cells, dendritic cells (DCs), macrophages, and neutrophils. Bruton's tyrosine kinase (BTK) is reportedly involved in inflammatory and oxidative signaling in different immune cells, however its contribution with respect to sepsis-induced AKI has not been delineated. This study attempted to investigate the role of BTK and its inhibition on oxidizing enzymes NADPH oxidase (NOX-2) and inducible nitric oxide synthase (iNOS) in DCs, neutrophils, and B cells during AKI. Our data reveal that BTK is activated in DCs, neutrophils, and B cells which causes an increase in AKI associated biochemical markers such as serum creatinine/blood urea nitrogen, renal myeloperoxidase activity, and histopathological disturbances in renal tubular structures. Activation of BTK causes upregulation of NOX-2/iNOS/nitrotyrosine in these immune cells and kidney. Treatment with BTK inhibitor, Ibrutinib causes attenuation in AKI associated dysfunction in biochemical parameters (serum creatinine/blood urea nitrogen, renal myeloperoxidase activity) and oxidative stress in immune cells and kidney (iNOS/NOX2/lipid peroxides/nitrotyrosine/protein carbonyls). In summary, the current investigation reveals a compelling role of BTK signaling in sepsis-induced AKI which is evident from amelioration of AKI associated renal dysfunction after its inhibition.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Watanabe IKM, Andrade-Silva M, Foresto-Neto O, Felizardo RJF, Matheus MAC, Silva RC, Cenedeze MA, Honda TSB, Perandini LAB, Volpini RA, Pacheco-Silva A, Câmara NOS. Gut Microbiota and Intestinal Epithelial Myd88 Signaling Are Crucial for Renal Injury in UUO Mice. Front Immunol 2020; 11:578623. [PMID: 33414781 PMCID: PMC7783078 DOI: 10.3389/fimmu.2020.578623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 01/12/2023] Open
Abstract
Increasing evidence shows the essential participation of gut microbiota in human health and diseases by shaping local and systemic immunity. Despite an accumulating body of studies showing that chronic kidney disease (CKD) is closely associated with disturbances in the composition of gut microbiota, it remains unclear the importance of gut microbiota in the onset and development of CKD. For the purpose of untangling the role of gut microbiota in CKD, gut microbiota was depleted with a pool of broad-spectrum antibiotics in mice submitted to unilateral ureteral obstruction (UUO). Depletion of gut microbiota significantly decreased levels of proinflammatory cytokines and fibrosis markers, attenuating renal injury. Additionally, to study whether the pathogenic role of gut microbiota is dependent of microbial-host crosstalk, we generated mice lacking Myd88 (myeloid differentiation primary response gene 8) expression in intestinal epithelial cells (IECs) and performed UUO. The absence of Myd88 in IECs prevented a bacterial burden in mesenteric lymph nodes as observed in WT mice after UUO and led to lower expression of proinflammatory cytokines and chemokines, reducing deposition of type I collagen and, ultimately, attenuating renal damage. Therefore, our results suggest that the presence of gut microbiota is crucial for the development of CKD and may be dependent of Myd88 signaling in IECs, which appears to be essential to maturation of immune cells intimately involved in aggravation of inflammatory scenarios.
Collapse
Affiliation(s)
- Ingrid Kazue Mizuno Watanabe
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Reinaldo Correa Silva
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Marcos Antônio Cenedeze
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alvaro Pacheco-Silva
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil.,Kidney Transplant Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|