1
|
Zhao R, Zhou X, Zhao Z, Liu W, Lv M, Zhang Z, Wang C, Li T, Yang Z, Wan Q, Xu R, Cui Y. Farrerol Alleviates Cerebral Ischemia-Reperfusion Injury by Promoting Neuronal Survival and Reducing Neuroinflammation. Mol Neurobiol 2024; 61:7239-7255. [PMID: 38376762 DOI: 10.1007/s12035-024-04031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Ischemia-reperfusion (I/R) injury is a key influencing factor in the outcome of stroke. Inflammatory response, oxidative stress, and neuronal apoptosis are among the main factors that affect the progression of I/R injury. Farrerol (FAR) is a natural compound that can effectively inhibit the inflammatory response and oxidative stress. However, the role of FAR in cerebral I/R injury remains unknown. In this study, we found that FAR reduced brain injury and neuronal viability after cerebral I/R injury. Meanwhile, administration of FAR also reduced the inflammatory response of microglia after brain injury. Mechanistically, FAR treatment directly reduced neuronal death after oxygen glucose deprivation/re-oxygenation (OGD/R) through enhancing cAMP-response element binding protein (CREB) activation to increase the expression of downstream neurotrophic factors and anti-apoptotic genes. Moreover, FAR decreased the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, inhibited microglia activation, and reduced the production of inflammatory cytokines in microglia after OGD/R treatment or LPS stimulation. The compromised inflammatory response by FAR directly promoted the survival of neurons after OGD/R. In conclusion, FAR exerted a protective effect on cerebral I/R injury by directly decreasing neuronal death through upregulating CREB expression and attenuating neuroinflammation. Therefore, FAR could be a potentially effective drug for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Changxin Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Tianli Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Zixiong Yang
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao, 266071, Shandong, China.
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Li H, Qian J, Wang Y, Wang J, Mi X, Qu L, Song N, Xie J. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation. Ageing Res Rev 2024; 97:102288. [PMID: 38580172 DOI: 10.1016/j.arr.2024.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.
Collapse
Affiliation(s)
- Hui Li
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Junliang Qian
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juan Wang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xiaoqing Mi
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Le Qu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Lu W, Qi G, Yang X, Li D, Chen W, Zeng Q, Jiang Z. Farrerol suppresses osteoclast differentiation and postmenopausal osteoporosis by inhibiting the nuclear factor kappa B signaling pathway. J Pharmacol Sci 2024; 154:113-126. [PMID: 38246725 DOI: 10.1016/j.jphs.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Excessive bone resorption caused by upregulated osteoclast activity is a key factor in osteoporosis pathogenesis. Farrerol is a typical natural flavanone and exhibits various pharmacological actions. However, the role and mechanism of action of farrerol in osteoclast differentiation regulation remain unclear. This study aimed to evaluate the effects and mechanism of farrerol on the inhibition of osteoclastogenesis. Tartrate-resistant acid phosphatase staining, F-actin staining, and the pit formation assay were performed to examine the differentiation and functions of osteoclasts in vitro. The expression of proteins associated with the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways was analyzed by western blotting. Dual X-ray absorptiometry, microcomputed tomography, and histopathological and immunohistochemical analyses were performed to determine the therapeutic effect of farrerol in vivo bone loss prevention. The effects of farrerol on osteoblastic bone formation were assessed using alkaline phosphatase, alizarin red S staining, and calcein-alizarin red S double labeling. Farrerol inhibited osteoclastogenesis and bone resorption in osteoclasts by suppressing nuclear factor kappa B signaling rather than mitogen-activated protein kinase signaling in vitro. Farrerol protected mice against ovariectomy-induced bone loss by inhibiting osteoclast-mediated bone resorption, instead of promoting osteoblast-mediated bone formation in vivo. The findings of the current study revealed that farrerol is a potential therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Orthopedic Surgery, SHANGHAI TCM-INTEGRATED Hospital Shanghai University of TCM, Shanghai, PR China
| | - Guobin Qi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, PR China
| | - Xiuying Yang
- Department of Radiology, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Defang Li
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Weibin Chen
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, PR China.
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai, PR China.
| |
Collapse
|
4
|
Song J, Zhao Y, Shan X, Luo Y, Hao N, Zhao L. Active ingredients of Chinese medicine with immunomodulatory properties: NF-κB pathway and Parkinson's disease. Brain Res 2024; 1822:148603. [PMID: 37748570 DOI: 10.1016/j.brainres.2023.148603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a complex pathogenesis and no cure. Persistent neuroinflammation plays an important role in the development of PD, and activation of microglia and astrocytes within the central nervous system leads to an inflammatory response and production of pro-inflammatory factors, and activation of NF-κB is key to neuroglial activation in chronic inflammation in PD and a hallmark of the onset of neuroinflammatory disease. Therefore, inhibiting NF-κB activation to prevent further loss of dopaminergic nerves is a more effective means of treating PD. It has been found that an increasing number of active ingredients in Chinese medicines, such as flavonoids, alkaloids, saponins, terpenoids, phenols and phenylpropanoids, have anti-inflammatory properties that can regulate neuroglia cell activation and ameliorate neuroinflammation through the NF-κB pathway, and increase dopamine release or protect dopaminergic neurons for neuroprotection to improve behavioural dysfunction in PD. The active ingredients of traditional Chinese medicine are expected to be good candidates for the treatment of PD, as they provide holistic regulation through multi-targeting and multi-level effects, and are safe, inexpensive and readily available. Therefore, this paper summarises that the active ingredients of some relevant Chinese medicines ameliorate the symptoms of PD and delay the development of PD by inhibiting glial cell-mediated neuroinflammation through the NF-κB pathway, which may provide new ideas for exploring the molecular mechanism of PD pathogenesis and developing new anti-PD drugs.
Collapse
Affiliation(s)
- Jingjing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yang Zhao
- Huiji District People's Hospital, Henan Province, Zhengzhou 450000, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yongyin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
5
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
6
|
Huang B, Hu G, Zong X, Yang S, He D, Gao X, Liu D. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson's disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Int Immunopharmacol 2023; 115:109698. [PMID: 36634417 DOI: 10.1016/j.intimp.2023.109698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Our previous study showed that α-Cyperone inhibited the inflammatory response triggered by activated microglia and protected dopaminergic neuron in in vitro cell model of Parkinson's disease (PD). It is unclear the effect of α-Cyperone in animal models of PD. In this study, our results indicated that α-Cyperone ameliorated motor dysfunction, protected dopaminergic neurons, and inhibited the reduction of dopamine and its metabolites in lipopolysaccharide (LPS)-induced PD rat model. Moreover, α-Cyperone suppressed the activation of microglia and the expression of neuroinflammatory factor (TNF-α, IL-6, IL-1β, iNOS, COX-2 and ROS). Furthermore, the molecular mechanism research revealed that α-Cyperone inhibited neuroinflammation and oxidative stress to exert protective effect in microglia by activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Moreover, α-Cyperone upregulated the expression of antioxidant enzymes (GCLC, GCLM and NQO1) in microglia. In conclusion, our study demonstrates α-Cyperone alleviates dopaminergic neurodegeneration by inhibiting neuroinflammation and oxidative stress in LPS-induced PD rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bingxu Huang
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Guiqiu Hu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaofeng Zong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuo Yang
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Dewei He
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Xiyu Gao
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
7
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
8
|
Wu Y, Qian J, Li K, Li W, Yin W, Jiang H. Farrerol alleviates collagenase-induced tendinopathy by inhibiting ferroptosis in rats. J Cell Mol Med 2022; 26:3483-3494. [PMID: 35582962 PMCID: PMC9189353 DOI: 10.1111/jcmm.17388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Tendinopathy is mainly characterized by local pain, functional limitation and decreased athletic ability, which seriously affects the quality of life of patients and the career of athletes. Farrerol (FA), one of the main active compounds extracted from Rhododendron and plants in the Rhododendron family, has a wide range of pharmacological activities, such as immunomodulatory, anti-inflammatory and antiviral effects. However, the effect of FA on tendinopathy is unclear. Here, we investigated the pharmacological effect and mechanism of FA in tendon injury through collagenase-induced tendinopathy in vivo and RSL3-induced tenocytes injury in vitro. The results showed that FA alleviated the infiltration of inflammatory cells, promoted tenogenesis and improved mechanical properties of the Achilles tendon in rats. In addition, ferroptosis inducer RSL3 inhibits the tenogenesis in vitro and in vivo, which accelerates the progression of tendinopathy. Moreover, FA effectively inhibited iron accumulation and alleviated ferroptosis in the Achilles tendon. Using in vitro experiments, we found that FA antagonized ferroptosis by reducing lipid peroxidation and iron accumulation in tenocytes. Finally, we found that glutathione peroxidase 4 silencing could block the protective effect of FA on ferroptosis of tenocytes. Therefore, the results of this study suggest that FA can relieve collagenase-induced tendinopathy by inhibiting ferroptosis, and reveal that FA may be a potentially effective drug for the treatment of tendinopathy in the future.
Collapse
Affiliation(s)
- Yongfu Wu
- Department of Pharmacy, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Qian
- Department of Orthopaedic Spine SurgeryAffiliated Hengyang HospitalSouthern Medical University (Hengyang Central Hospital)HengyangHunanChina
| | - Kang Li
- Department of OrthopaedicsGeneral Hospital of Southern Theatre CommandGuangzhouGuangdongChina
| | - Wenjun Li
- Department of OrthopaedicsYuebei People's Hospital Affiliated to Shantou University Medical CollegeShaoguanGuangdongChina
| | - Wenhua Yin
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Huaji Jiang
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Zhou L, Yang S, Zou X. Farrerol Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting Macrophages and NLRP3. Front Pharmacol 2022; 13:879232. [PMID: 35496295 PMCID: PMC9043491 DOI: 10.3389/fphar.2022.879232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is associated with high mortality and morbidity, however, it has no curative treatment. Farrerol (FA), an active compound extracted from rhododendron, has antibacterial, anti-inflammatory, and antioxidant activities, but its effect and mechanism of FA in I/R injury remain unclear. Here, we found that FA alleviated myocardial I/R in vivo, and decreased the secretion of myocardial injury factors (CK-MB, LDH, troponin-1, and NT-proBNP) while inhibiting the release of inflammatory factors (IL-1β, IL-6, and TNF-α). FA could also alleviate excessive oxidative stress by elevating the level of antioxidant enzymes and reducing oxidation products; and decreased reduced the expression of apoptosis-associated proteins (cleaved caspase-3, Bax, and Bcl-2). However, inhibiting the autophagic pathway or knocking out the Nrf2 gene did not eliminate the myocardial protective effect of FA, but interestingly, macrophage clearance and Nlrp3 deficiency effectively blocked the myocardial protective effect of FA. In addition, FA suppressed NLRP3 inflammasome activation by interfering with NLRP3 and NEK7. In conclusion, these results support drug-targeted macrophage therapy for myocardial I/R and indicate that FA may be used as an immunomodulator in clinical therapy for myocardial I/R.
Collapse
Affiliation(s)
- Lin Zhou
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Shuhui Yang
- Department of Pathology, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Xiaoming Zou
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaoming Zou,
| |
Collapse
|
11
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
12
|
Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 2021; 54:4101-4123. [PMID: 33884689 DOI: 10.1111/ejn.15242] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD), the most common movement disorder, comprises several pathophysiologic mechanisms including misfolded alpha-synuclein aggregation, inflammation, mitochondrial dysfunction, and synaptic loss. Nuclear Factor-Kappa B (NF-κB), as a key regulator of a myriad of cellular reactions, is shown to be involved in such mechanisms associated with PD, and the changes in NF-κB expression is implicated in PD. Alpha-synuclein accumulation, the characteristic feature of PD pathology, is known to trigger NF-κB activation in neurons, thereby propagating apoptosis through several mechanisms. Furthermore, misfolded alpha-synuclein released from degenerated neurons, activates several signaling pathways in glial cells which culminate in activation of NF-κB and production of pro-inflammatory cytokines, thereby aggravating neurodegenerative processes. On the other hand, NF-κB activation, acting as a double-edged sword, can be necessary for survival of neurons. For instance, NF-κB activation is necessary for competent mitochondrial function and deficiency in c-Rel, one of the NF-κB proteins, is known to propagate DA neuron loss via several mechanisms. Despite the dual role of NF-κB in PD, several agents by selectively modifying the mechanisms and pathways associated with NF-κB, can be effective in attenuating DA neuron loss and PD, as reviewed in this paper.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sabra Rostamkhani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Jian T, Chen J, Ding X, Lv H, Li J, Wu Y, Ren B, Tong B, Zuo Y, Su K, Li W. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways. Food Funct 2020; 11:3516-3526. [PMID: 32253400 DOI: 10.1039/c9fo02921d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease with few successful treatments, and is strongly associated with cigarette smoking (CS). Since the novel coronavirus has spread worldwide seriously, there is growing concern that patients who have chronic respiratory conditions like COPD can easily be infected and are more prone to having severe illness and even mortality because of lung dysfunction. Loquat leaves have long been used as an important material for both pharmaceutical and functional applications in the treatment of lung disease in Asia, especially in China and Japan. Total flavonoids (TF), the main active components derived from loquat leaves, showed remarkable anti-inflammatory and antioxidant activities. However, their protective activity against CS-induced COPD airway inflammation and oxidative stress and its underlying mechanism still remain not well-understood. The present study uses a CS-induced mouse model to estimate the morphological changes in lung tissue. The results demonstrated that TF suppressed the histological changes in the lungs of CS-challenged mice, as evidenced by reduced generation of pro-inflammatory cytokines including interleukin 6 (IL-6), IL-1β, tumor necrosis factor α (TNF-α), nitric oxide (NO), and inducible nitric oxide synthase (iNOS) and diminished the protein expression of transient receptor potential vanilloid 1 (TRPV1). Moreover, TF also inhibited phosphorylation of IKK, IκB and NFκB and increased p-Akt. Interestingly, TF could inhibit CS-induced oxidative stress in the lungs of COPD mice. TF treatment significantly inhibited the level of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). In addition, TF markedly downregulated TRPV1 and cytochrome P450 2E1 (CYP2E1) and upregulated the expression of SOD-2, while the p-JNK level was observed to be inhibited in COPD mice. Taken together, our findings showed that the protective effect and putative mechanism of the action of TF resulted in the inhibition of inflammation and oxidative stress through the regulation of TRPV1 and the related signal pathway in lung tissues. It suggested that TF derived from loquat leaves could be considered to be an alternative or a new functional material and used for the treatment of CS-induced COPD.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. and Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Kelei Su
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China and Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. and Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Singh S. Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology. ACS Chem Neurosci 2020; 11:2407-2415. [PMID: 32564594 DOI: 10.1021/acschemneuro.0c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a versatile gasotransmitter that contributes in a range of physiological and pathological mechanims depending on its cellular levels. An appropriate concentration of NO is essentially required for cellular physiology; however, its increased level triggers pathological mechanisms like altered cellular redox regulation, functional impairment of mitochondrion, and modifications in cellular proteins and DNA. Its increased levels also exhibit post-translational modifications in protein through S-nitrosylation of their thiol amino acids, which critically affect the cellular physiology. Along with such modifications, NO could also nitrosylate the endoplasmic reticulum (ER)-membrane located sensors of ER stress, which subsequently affect the cellular protein degradation capacity and lead to aggregation of misfolded/unfolded proteins. Since protein aggregation is one of the pathological hallmarks of neurodegenerative disease, NO should be taken into account during development of disease therapies. In this Review, we shed light on the diverse role of NO in both cellular physiology and pathology and discussed its involvement in various pathological events in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarika Singh
- Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
15
|
Du J, Liu D, Zhang X, Zhou A, Su Y, He D, Fu S, Gao F. Menthol protects dopaminergic neurons against inflammation-mediated damage in lipopolysaccharide (LPS)-Evoked model of Parkinson's disease. Int Immunopharmacol 2020; 85:106679. [PMID: 32559722 DOI: 10.1016/j.intimp.2020.106679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
In neurodegenerative diseases, neuronal damage caused by neuroinflammation is very important. Many studies have suggested that the activation of microglia is critical for the neuroinflammatory process. Therefore, inhibiting neuroinflammation is considered to be a hopeful target for curing neurodegenerative diseases. In this study, we aimed to explore whether menthol can protect the dopaminergic neurons by exerting anti-inflammatory effects in vivo or in vitro. The results showed that menthol had an inhibitory effect on impaired dopaminergic neurons and LPS-induced microglial activation. Further, menthol can inhibit the expression of related pro-inflammatory enzymes and pro-inflammatory factors. Both in vitro and in vivo mechanistic studies showed that menthol inhibited the neuroinflammatory response through the MAPK, NF-κB and AKT signaling pathways.
Collapse
Affiliation(s)
- Jian Du
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xinyi Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Ang Zhou
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yingchun Su
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Fei Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
16
|
Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 2020; 4:100060. [PMID: 34589845 PMCID: PMC8474547 DOI: 10.1016/j.bbih.2020.100060] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorders which is characterised neuropathologically by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies (made predominately of α-synuclein) in the surviving neurons. Animal models of PD have improved our understanding of the disease and have played a critical role in the development of neuroprotective agents. Neuroinflammation has been strongly implicated in the pathogenesis of PD, and recent studies have used lipopolysaccharide (LPS), a component of gram-negative bacteria and a potent activator of microglia cells, to mimic the inflammatory events in clinical PD. Modulating the inflammatory response could ameliorate PD associated complications and thus, it is essential to understand the extent to which LPS models reflect human PD. This review will outline the routes of administration of LPS such as stereotaxic, systemic and intranasal, their ability to recapitulate neuropathological markers of PD, and mechanisms of LPS induced toxicity. We will also discuss the ability of the models to replicate motor symptoms and non-motor symptoms of PD such as gastrointestinal dysfunction, olfactory dysfunction, anxiety, depression and cognitive dysfunction.
Collapse
Affiliation(s)
- Isaac Deng
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Frances Corrigan
- School of Health Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|