1
|
Otálora-Alcaraz A, Reilly T, Oró-Nolla M, Sun MC, Costelloe L, Kearney H, Patra PH, Downer EJ. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 2024; 232:116667. [PMID: 39647604 DOI: 10.1016/j.bcp.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune condition associated with many symptoms including spasticity, pain, limb numbness and weakness. It is characterised by inflammatory demyelination and axonal degeneration of the brain and spinal cord. A range of disease-modifying therapies (DMTs) are available to suppress inflammatory disease activity in MS, however, there is a pressing need for new therapeutic avenues as DMTs have a limited ability to suppress confirmed disability progression. A body of literature indicates that innate immune inflammation is linked to MS progression. The nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome has a well-established function in innate immunity which is closely associated with the pathogenesis of neuroinflammatory conditions. Evidence suggests that the inflammasome may be a therapeutic target in disorders such as MS and at present, inhibitors of the NLRP3 inflammasome are in pre-clinical development. Therefore, this review systematically highlights the pathogenic role of inflammasomes in MS, presenting an overview of research evidence linking inflammasome-related polymorphisms to MS susceptibility, and gathering evidence investigating NLRP3 biomarkers in MS. The role of the NLRP3 inflammasome in murine models of MS is furthermore discussed. Finally, a significant component of this review focuses on evidence that NLRP3 signalling components are novel drug targets in MS. Overall this review defines the role of the inflammasome in MS pathogenesis and identifies inflammasome inhibitor targets that warrant full investigation in MS and related disorders.
Collapse
Affiliation(s)
- Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas Reilly
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Martí Oró-Nolla
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hugh Kearney
- MS Unit, Department of Neurology, St. James's Hospital, Dublin, Ireland; Academic Unit of Neurology, School of Medicine, Trinity College Dublin, Ireland
| | - Pabitra H Patra
- Transpharmation Ltd., London Biosciences Innovation Centre, London, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Yahyazadeh A. The effectiveness of hesperidin on bisphenol A-induced spinal cord toxicity in a diabetic rat model. Toxicon 2024; 243:107724. [PMID: 38649116 DOI: 10.1016/j.toxicon.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The potential health risks of bisphenol A (BS) and diabetes (DI) has sparked public concern due to be ubiquitous worldwide. The purpose of this study was to investigate the detrimental impact of BS (200 mg/kg) on the spinal cord tissue in a rat diabetic model. We also evaluated the antioxidant capacity of hesperidin (HS) (100 mg/kg) on spinal cord in BS-treated diabetic rat. Seventy male Wistar albino rats, weighing 180-230 g and 8 weeks old, were randomly chosen, and assigned into seven groups of 10 rats: Control (KON), BS, DI, BS + DI, HS + BS, HS + DI, HS + BS + DI. At the end of the 14-day experimental period, all samples were examined using stereological, biochemical, and histopathological techniques. Our biochemical findings revealed that the SOD level was significantly lower in the BS, DI, and BS + DI groups compared to the KON group (p < 0.05). Compared to the KON group, there was a significant decrease in the number of motor neurons and an increase in the mean volume of central canals in the BS, DI, and BS + DI groups (p < 0.05). In the HS + BC group than the BS group and in the HS + DI group than the DI group, SOD activity and the number of motor neurons were significantly higher; also, the mean volume of spinal central canal was significantly lower (p < 0.05). The novel findings gathered from the histopathological assessment supported our quantitative results. Our speculation was that the exposure to BS and DI was the main cause of neurological alteration in the spinal cord tissues. The administration of HS had the therapeutic potential to mitigate spinal cord abnormalities resulting from BS and DI. However, HS supplementation did not alleviate spinal cord complications in BS-treated diabetic rats.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
3
|
Mallmann MP, Oliveira MS. Beta-caryophyllene in psychiatric and neurological diseases: Role of blood-brain barrier. VITAMINS AND HORMONES 2024; 126:125-168. [PMID: 39029971 DOI: 10.1016/bs.vh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.
Collapse
|
4
|
Najafi Z, Moosavi Z, Baradaran Rahimi V, Hashemitabar G, Askari VR. Evaluation of Anti-Nociceptive, Anti-Inflammatory, and Anti-Fibrotic effects of noscapine against a rat model of Achilles tendinopathy. Int Immunopharmacol 2024; 130:111704. [PMID: 38382264 DOI: 10.1016/j.intimp.2024.111704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
During tendinopathy, prolonged inflammation results in fibrosis and the adherence of tendons to the adjacent tissues, causing discomfort and movement disorders. As a natural compound, noscapine has several anti-inflammatory and anti-fibrotic properties. Therefore, we aimed to investigate the effects of noscapine against a rat model of tendinopathy. We created a surgical rat model of Achilles tendon damage to emulate tendinopathy. Briefly, an incision was made on the Achilles tendon, and it was then sutured using an absorbable surgical thread. Immediately, the injured area was topically treated with the vehicle, noscapine (0.2, 0.6, and 1.8 mg/kg), or dexamethasone (0.1 mg/kg) as a positive control. During the 19-day follow-up period, animals were assessed for weight, behavior, pain, and motor coordination testing. On day 20th, the rats were sacrificed, and the tendon tissue was isolated for macroscopic scoring, microscopic (H&E, Masson's trichrome, Ki67, p53) analyses, and cytokine secretion levels. The levels of macroscopic parameters, including thermal hyperalgesia, mechanical and cold allodynia, deterioration of motor coordination, tendon adhesion score, and microscopic indices, namely histological adhesion, vascular prominence and angiogenesis, and Ki67 and p53 levels, as well as fibrotic and inflammatory biomarkers (IL-6, TNF-α, TGF-β, VEGF) were significantly increased in the vehicle group compared to the sham group (P < 0.05-0.001 for all cases). In contrast, the administration of noscapine (0.2, 0.6, and 1.8 mg/kg) attenuated the pain, fibrosis, and inflammatory indices in a dose-dependent manner compared to the vehicle group (P < 0.05-0.001). Histological research indicated that noscapine 0.6 and 1.8 mg/kg had the most remarkable healing effects. Interestingly, two higher doses of noscapine had impacts similar to those of the positive control group in both clinical and paraclinical assessments. Taken together, our findings suggested that noscapine could be a promising medicine for treating tendinopathies.
Collapse
Affiliation(s)
- Zohreh Najafi
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Hashemitabar
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Dewi IP, Dachriyanus, Aldi Y, Ismail NH, Hefni D, Susanti M, Putra PP, Wahyuni FS. Comprehensive studies of the anti-inflammatory effect of tetraprenyltoluquinone, a quinone from Garcinia cowa Roxb. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117381. [PMID: 37967776 DOI: 10.1016/j.jep.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Garcinia cowa Roxb. is called asam kandis in West Sumatra. This plant contains several quinone compounds, including tetraprenyltoluquinone (TPTQ). The bioactivity of this compound has been tested as an anticancer agent. However, reports regarding its anti-inflammatory effects are still limited, especially against coronavirus disease (Covid-19). AIM OF THE STUDY This study explores the anti-inflammatory effect of TPTQ in silico, in vitro, and in vivo. MATERIALS AND METHODS In silico testing used the Gnina application, opened via Google Colab. The TPTQ structure was docked with the nuclear factor kappa B (NF-ĸB) protein (PDB: 2RAM). In vitro testing began with testing the cytotoxicity of TPTQ against Raw 264.7 cells, using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method. A phagocytic activity test was carried out using the neutral red uptake method, and interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) secretion tests were carried out using the enzyme-linked immunosorbent assay (ELISA) method. In vivo, tests were carried out on mice by determining cluster of differentiation 8+ (CD8+), natural killer cell (NK cell), and IL-6 parameters, using the ELISA method. RESULTS TPTQ has a lower binding energy than the native ligand and occupies the same active site as the native ligand. TPTQ decreased the phagocytosis index and secretion of IL-6 and TNF-α experimentally in vitro. TPTQ showed significant downregulation of CD8+ and slightly decreased NK cells and IL-6 secretion in vivo. CONCLUSION The potent inhibitory effect of TPTQ on the immune response suggests that TPTQ can be developed as an anti-inflammatory agent, especially in the treatment of Covid-19.
Collapse
Affiliation(s)
- Irene Puspa Dewi
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia; Akademi Farmasi Prayoga, Padang, 25111, Indonesia
| | - Dachriyanus
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Yufri Aldi
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, UiTM Puncak Alam Campus, Selangor, Malaysia
| | - Dira Hefni
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Meri Susanti
- Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | | | | |
Collapse
|
6
|
Rahmanian-Devin P, Askari VR, Sanei-Far Z, Baradaran Rahimi V, Kamali H, Jaafari MR, Golmohammadzadeh S. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod-induced psoriasis-like skin lesions. Biomed Pharmacother 2023; 168:115823. [PMID: 37924792 DOI: 10.1016/j.biopha.2023.115823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by thickening the epidermis with erythema, scaling, and proliferation. Noscapine (NOS) has several anti-inflammatory, anti-angiogenic, and anti-fibrotic effects, but its low solubility and large size results in its lower efficacy in the clinic. In this regard, solid lipid nanoparticles (SLN) encapsulated NOS (SLN-NOS) were fabricated using the well-known response surface method based on the central composite design and modified high-shear homogenization and ultrasound method. As a result, Precirol® was selected as the best lipid base for the SLN formulation based on Hildebrand-Hansen solubility parameters, in which SLN-NOS 1 % had the best zeta potential (-35.74 ± 2.59 mV), average particle size (245.66 ± 17 nm), polydispersity index (PDI, 0.226 ± 0.09), high entrapment efficiency (89.77 %), and ICH-based stability results. After 72 h, the SLN-NOS 1 % released 83.23 % and 58.49 % of the NOS at pH 5.8 and 7.4, respectively. Moreover, Franz diffusion cell's results indicated that the skin levels of NOS for SLN and cream formulations were 46.88 % and 13.5 % of the total amount, respectively. Our pharmacological assessments revealed that treatment with SLN-NOS 1 % significantly attenuated clinical parameters, namely ear thickness, length, and psoriasis area and severity index, compared to the IMQ group. Interestingly, SLN-NOS 1 % reduced the levels of interleukin (IL)-17, tumor necrosis factor-α, and transforming growth factor-β, while elevating IL-10, compared to the IMQ group. Histology studies also showed that topical application of SLN-NOS 1 % significantly decreased parakeratosis, hyperkeratosis, acanthosis, and inflammation compared to the IMQ group. Taken together, SLN-NOS 1 % showed a high potential to attenuate skin inflammation.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Sanei-Far
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Askari VR, Baradaran Rahimi V, Shafiee-Nick R. Low Doses of β-Caryophyllene Reduced Clinical and Paraclinical Parameters of an Autoimmune Animal Model of Multiple Sclerosis: Investigating the Role of CB 2 Receptors in Inflammation by Lymphocytes and Microglial. Brain Sci 2023; 13:1092. [PMID: 37509022 PMCID: PMC10377147 DOI: 10.3390/brainsci13071092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple Sclerosis (MS) is a prevalent inflammatory disease in which the immune system plays an essential role in the damage, inflammation, and demyelination of central nervous system neurons (CNS). The cannabinoid receptor type 2 (CB2) agonists possess anti-inflammatory effects against noxious stimuli and elevate the neuronal survival rate. We attempted to analyze the protective impact of low doses of β-Caryophyllene (BCP) in experimental autoimmune encephalomyelitis (EAE) mice as a chronic MS model. Immunization of female C57BL/6 mice was achieved through two subcutaneous injections into different areas of the hind flank with an emulsion that consisted of myelin Myelin oligodendrocyte glycoprotein (MOG)35-55 (150 µg) and complete Freund's adjuvant (CFA) (400 µg) with an equal volume. Two intraperitoneal (i.p.) injections of pertussis toxin (300 ng) were performed on the animals on day zero (immunizations day) and 48 h (2nd day) after injection of MOG + CFA. The defensive effect of low doses of BCP (2.5 and 5 mg/kg/d) was investigated in the presence and absence of a CB2 receptor antagonist (1 mg/kg, AM630) in the EAE model. We also examined the pro/anti-inflammatory cytokine levels and the polarization of brain microglia and spleen lymphocytes in EAE animals. According to our findings, low doses of BCP offered protective impacts in the EAE mice treatment in a CB2 receptor-dependent way. In addition, according to results, BCP decreased the pathological and clinical defects in EAE mice via modulating adaptive (lymphocytes) and innate (microglia) immune systems from inflammatory phenotypes (M1/Th1/Th17) to anti-inflammatory (M2/Th2/Treg) phenotypes. Additionally, BCP elevated the anti-inflammatory cytokine IL-10 and reduced blood inflammatory cytokines. BCP almost targeted the systemic immune system more than the CNS immune system. Thus, a low dose of BCP can be suggested as a therapeutic effect on MS treatment with potent anti-inflammatory effects and possibly lower toxicity.
Collapse
Affiliation(s)
- Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Reza Shafiee-Nick
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
8
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Baradaran Rahimi V, Rahmanian Devin P, Askari VR. Boswellia serrata inhibits LPS-induced cardiotoxicity in H9c2 cells: Investigating role of anti-inflammatory and antioxidant effects. Toxicon 2023; 229:107132. [PMID: 37086900 DOI: 10.1016/j.toxicon.2023.107132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Sepsis-induced myocardial dysfunction is the main reason for mortality and morbidity. Recent investigations have shown that inflammation and oxidative stress play a central role in lipopolysaccharide (LPS)-induced cardiac injury pathophysiology. Gum-resin extracts of Boswellia serrata have been traditionally used in folk medicine for centuries to treat various chronic inflammatory diseases. The present study aimed to investigate the effects of B. serrata pretreatment on LPS-induced cardiac damage in H9c2 cells. The cells were pretreated with various concentrations of B. serrata (5-45 μg/ml) for 24 h and then stimulated with LPS (10 μg/ml) for another 24 h. Afterward, the levels of cell viability, tumor necrosis factor (TNF)-α, prostaglandin (PGE)-2, interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, nitric oxide (NO) and glutathione (GSH) were determined using enzyme-linked immunosorbent assay (ELISA), real time-PCR or appropriated biochemical methods. Our results demonstrated that LPS treatment caused a remarkable decrease in cell viability and GSH, and on the contrary, it led to a significant increase in the levels of gene and protein expression of inflammatory markers and NO. However, pretreatment of B. serrata (5, 15, and 45 μg/ml) decreased the levels of TNF-α, PGE2, IL-1β, COX-2, iNOS, IL-6, and NO production, while cell viability and GSH levels were increased. Taken together, our results demonstrated that B. serrata might be a potential therapeutic agent against LPS and endotoxemia-induced cardiac injury, through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Pouria Rahmanian Devin
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Vahid Lotfabadi N, Mehrabi S, Heidari‐Bakavoli A, Morovatdar N, Tayyebi M, Baradaran Rahimi V. Evaluation of the effects of isoproterenol on arrhythmia recurrence following catheter ablation in patients with atrioventricular nodal re-entrant tachycardia: A randomized controlled clinical trial. Pharmacol Res Perspect 2023; 11:e01068. [PMID: 36855813 PMCID: PMC9975462 DOI: 10.1002/prp2.1068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
We aimed to determine the effects of isoproterenol on arrhythmia recurrence in atrioventricular nodal re-entrant tachycardia (AVNRT) patients treated with catheter ablation. The present randomized controlled clinical trial was conducted on AVNRT patients candidates for radiofrequency ablation (RFA). The patients were randomly assigned to receive isoproterenol (0.5-4 μg/min) or not (control group) for arrhythmia re-induction after ablation. The results of the electrophysiological (EP) study, the ablation parameters, and the arrhythmia recurrence rate were recorded. We evaluated 206 patients (53 males and 153 females) with a mean (SD) age of 49.87 (15.5) years in two groups of isoproterenol (n = 103) and control (n = 103). No statistically significant difference was observed between the two studied groups in age, gender, EP study, and ablation parameters. The success rate of ablation was 100% in both groups. During ~16.5 months of follow-up, one patient (1%) in the isoproterenol group and four patients (3.8%) in the control group experienced AVNRT recurrence (HR = 0.245; 95% confidence interval [CI], 0.043-1.418; p = .173). Based on the Kaplan-Meier analysis, there was no significant difference in the incidence rate of arrhythmia recurrence during the follow-up period between the two studied groups (p = .129). Additionally, there were no significant differences between the arrhythmia's recurrence according to age, gender, junctional rhythm, type of AVNRT arrhythmia, and DAVN persistence after ablation. Although isoproterenol administration for arrhythmia re-induction after ablation did not alleviate the treatment outcomes and arrhythmia recurrence following RFA in AVNRT patients, further studies with a larger sample size and a longer duration of follow-up are necessary.
Collapse
Affiliation(s)
- Neda Vahid Lotfabadi
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeed Mehrabi
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Alireza Heidari‐Bakavoli
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Negar Morovatdar
- Clinical Research Development Unit, Faculty of MedicineImam Reza Hospital, Mashhad University of Medical SciencesMashhadIran
| | - Mohammad Tayyebi
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Rakhshandeh H, Baradaran Rahimi V, Dehghan-Naieri B, Rahmanian-Devin P, Jebalbarezy A, Hasanpour M, Iranshahi M, Askari VR. Peritoneal lavage with Glycyrrhiza glabra is effective in preventing peritoneal adhesion in a rat model. Inflammopharmacology 2023; 31:899-914. [PMID: 36862226 DOI: 10.1007/s10787-023-01139-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Intraperitoneal adhesion formation is a significant problem following surgeries, resulting in substantial clinical and economic consequences. Glycyrrhiza glabra has several pharmacological properties consisting of anti-inflammatory, anti-microbial, anti-oxidant, anti-cancer, and immunomodulatory activities. AIM Therefore, we aimed to investigate the impacts of G. glabra on the development of post-operative abdominal adhesion in a rat model. METHODS Male Wistar rats weighing 200-250 g were divided into six groups (n = 8): Group 1: normal group (non-surgical), and the surgical groups including Group 2: control group received the vehicle, Group 3: G. glabra 0.5% w/v, Group 4: G. glabra 1% w/v, Group 5: G. glabra 2% w/v, and Group 6: dexamethasone, 0.4% w/v. The intra-abdominal adhesion was performed utilizing soft sterilized sandpaper on one side of the cecum, and the peritoneum was slightly washed with 2 ml of the extract or vehicle. In addition, macroscopic examination of adhesion scoring and the levels of inflammatory mediators [interferon (IFN)-γ, prostaglandin E2 (PGE2)], fibrosis markers [interleukin (IL)-4, transforming growth factor (TGF)-ꞵ], and oxidative factors [malondialdehyde (MDA), nitric oxide metabolites (NO), and reduced glutathione (GSH)] were evaluated. In vitro toxicities were also done on mouse fibroblast L929 and NIH/3T3 cell lines. RESULTS We found higher levels of adhesion (P < 0.001), IFN-γ(P < 0.001), PGE2(P < 0.001), IL-4(P < 0.001), TGF-β(P < 0.001), MDA(P < 0.001), and NO(P < 0.001), and lower levels of GSH(P < 0.001) in the control group. In contrast, G. glabra concentration dependent and dexamethasone alleviated the levels of adhesion (P < 0.05), inflammatory mediators (P < 0.001-0.05), fibrosis (P < 0.001-0.05), and oxidative (P < 0.001-0.05) factors, while propagating the anti-oxidant marker (P < 0.001-0.05) in comparison to the control group. Results also showed that the extract did not significantly reduce cell viability up to 300 µg/ml (P > 0.05). CONCLUSION G. glabra could concentration-dependently mitigate peritoneal adhesion formation through its anti-inflammatory, anti-fibrosis, and anti-oxidant properties. However, further clinical investigations are required to approve that G. glabra may be a promising candidate against post-surgical adhesive complications.
Collapse
Affiliation(s)
- Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Dehghan-Naieri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Yahyazadeh R, Baradaran Rahimi V, Mohajeri SA, Iranshahy M, Yahyazadeh A, Hasanpour M, Iranshahi M, Askari VR. Oral Administration Evaluation of the Hydro-Ethanolic Extract of Ginger (Rhizome of Zingiber officinale) against Postoperative-Induced Peritoneal Adhesion: Investigating the Role of Anti-Inflammatory and Antioxidative Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4086631. [PMID: 36865747 PMCID: PMC9974257 DOI: 10.1155/2023/4086631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Peritoneal adhesions (PAs) occur and develop after abdominal surgery. Abdominal adhesions are common and often develop after abdominal surgery. Currently, there are no effective targeted pharmacotherapies for treating adhesive disease. In this regard, ginger is wildly used in traditional medicine because of its anti-inflammatory and antioxidant effects and has been investigated for peritoneal adhesion treatment. This study analyzed ginger ethanolic extraction via HPLC to have a 6-gingerol concentration. Four groups induced peritoneal adhesion to evaluate ginger's effects on peritoneal adhesion. Then, ginger extract (50, 150, and 450 mg/kg) was administered by gavage in various groups of male Wistar rats (220 ± 20 g, 6-8 weeks). After scarifying the animals for biological assessment, macroscopic and microscopic parameters were determined via scoring systems and immunoassays in the peritoneal lavage fluid. Next, the adhesion scores and interleukin IL-6, IL-10, tumor necrosis factor-(TNF-) α, transforming growth factor-(TGF-) β1, vascular endothelial growth factor (VEGF), and malondialdehyde (MDA) were elevated in the control group. The results showed that ginger extract (450 mg/kg) notably decreased inflammatory (IL-6 and TNF-α), fibrosis (TGF-β1), anti-inflammatory cytokine (IL-10), angiogenesis (VEGF), and oxidative (MDA) factors, while increased antioxidant factor glutathione (GSH), compared to the control group. These findings suggest that a hydro-alcoholic extract of ginger is a potentially novel therapeutic strategy for inhibiting adhesion formation. Also, it might be considered a beneficial anti-inflammatory or antifibrosis herbal medicine in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Comparative study on the impacts of visnagin and its methoxy derivative khellin on human lymphocyte proliferation and Th 1/Th 2 balance. Pharmacol Rep 2023; 75:411-422. [PMID: 36745338 DOI: 10.1007/s43440-023-00452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Visnagin is a phenolic and natural compound in turmeric and fenugreek, and its anti-inflammatory effect has been indicated. Therefore, this study aimed to investigate and compare the anti-inflammatory properties of visnagin and its methoxy derivative khellin on human lymphocytes. METHODS Human lymphocytes were treated with khellin, visnagin (10, 30, and 100 µM), and dexamethasone (0.1 mM) in the presence of phytohemagglutinin (PHA). The levels of cell proliferation, nitric oxide (NO), glutathione (GSH), malondialdehyde (MDA), and MDA/GSH ratio were measured using biochemistry methods. Furthermore, the mRNA levels of interferon-γ (IFN-γ), interleukin (IL)-4, and IL-10 were assessed using real-time PCR, while IFN-γ/IL-4(Th1/Th2), IFN-γ/IL-10(Th1/Treg), and IL-4/IL-10(Th2/Treg) ratios were made by dividing their exact values. RESULTS In the PHA-stimulated group, GSH and IFN-γ/IL-4 levels were markedly diminished, but other variables were significantly elevated compared to the control group. Khellin and visnagin significantly declined the levels of cell proliferation, MDA, MDA/GSH ratio, and NO production. Khellin and visnagin concentration-dependently diminished IFN-γ and IL-4 levels and increased IL-10 levels compared to the PHA-stimulated group. Two higher concentrations of khellin and visnagin (30 and 100 μM) considerably diminished the IFN-γ, IFN-γ/IL-10, and IL-4/IL-10 values compared to the PHA-stimulated group. However, 100 µM of khellin and visnagin significantly increased GSH level compared to the PHA-stimulated group. CONCLUSIONS In PHA-stimulated lymphocytes, representing Th2 dominant allergic diseases, khellin and visnagin provides more specific anti-oxidant, anti-inflammatory, and immunomodulatory functions than dexamethasone. In addition, the effects of khellin were more prominent than visnagin.
Collapse
|
14
|
Baradaran Rahimi V, Saadat S, Rahmanian Devin P, Jebalbarezy A, Moqaddam M, Boskabady MH, Askari VR. Crocetin regulates Th1/Th2 and Th17/Treg balances, nitric oxide production, and nuclear localization of NF-κB in Th2-provoked and normal situations in human-isolated lymphocytes. Biofactors 2023. [PMID: 36747328 DOI: 10.1002/biof.1942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
Crocetin is a natural carotenoid dicarboxylic acid derived from Crocus sativus. It has been utilized as natural biomedicine with healing effects. The immunoregulatory and anti-inflammatory properties may cause the biological activities of crocetin. Nevertheless, it is not still clear how this compound acts and causes an immune-modulatory impact on human lymphocytes. The effects of three concentrations (5, 10, and 20 μM) of crocetin or dexamethasone (0.1 mM) were assessed on gene expression and secretion of cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) level, and nitric oxide (NO) production in phytohaemagglutinin (PHA)-stimulated and non-stimulated lymphocytes. By incubation with PHA, gene expression and cytokine concentration comprising interferon (IFN)-γ, interleukin (IL)-17A, IL-10, and IL-4 were increased, along with NF-κB concentration and NO production (all, p < 0.001). In comparison with the controls, an alteration occurred in the T-helper (Th)2/Th1 and Th17/Treg balance in the stimulated lymphocyte toward a Th2 and Th17 response. In stimulated cells, crocetin and dexamethasone decreased pro-inflammatory significantly and increased anti-inflammatory cytokines and related gene expression, respectively. Moreover, Th17/Treg and Th1/Th2 balance was changed toward Treg and Th1 significantly reducing NF-κB and NO levels (p < 0.05 to p < 0.001). Promoting effects were represented by crocetin on T-cell subsets to Treg and Th1. Hence, it can have therapeutic value for treating predominant diseases of Th2 or Th17 cells.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Pouria Rahmanian Devin
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moqaddam
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Abd-Nikfarjam B, Dolati-Somarin A, Baradaran Rahimi V, Askari VR. Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases. Biofactors 2023. [PMID: 36637897 DOI: 10.1002/biof.1936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023]
Abstract
The medicinal properties of cannabis and cannabinoid-derivative are entirely investigated and known. In addition, the identification of psychotropic plant cannabinoids has led to more studies regarding the cannabinoid system and its therapeutic features in the treatment and management of clinical symptoms of neuroinflammatory disorders, such as multiple sclerosis (MS), Parkinsons disease (PD), and Alzheimers disease (AD). In fact, cannabinoid agonists are able to control and regulate inflammatory responses. In contrast to the cannabinoid receptor type 1 (CB1) and its unwanted adverse effects, the cannabinoid receptor type 2 (CB2) and its ligands hold promise for new and effective therapeutic approaches. So far, some successes have been achieved in this field. This review will discuss an outline of the endocannabinoid system's involvement in neuroinflammatory disorders. Moreover, the pharmacological efficacy of different natural and synthetic preparations of phytocannabinoids acting on cannabinoid receptors, particularly in MS, PD, and AD, will be updated. Also, the reasons for targeting CB2 for neurodegeneration will be explained.
Collapse
Affiliation(s)
- Bahareh Abd-Nikfarjam
- Department of Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Moradi E, Rakhshandeh H, Rahimi Baradaran V, Ghadiri M, Hasanpour M, Iranshahi M, Askari V. HPLC/MS characterization of Syzygium aromaticum L. and evaluation of its effects on peritoneal adhesion: Investigating the role of inflammatory cytokines, oxidative factors, and fibrosis and angiogenesis biomarkers. Physiol Rep 2023; 11:e15584. [PMID: 36695659 PMCID: PMC9875745 DOI: 10.14814/phy2.15584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
The dried flower bud of Syzygium aromaticum L. (S. aromaticum) (Myrtaceae), cloves, have been used for their analgesic and anti-inflammatory activities. Peritoneal adhesion (PA) is the most common complication of abdominal and pelvic surgeries, which causes significant adverse effects and severe economic burden. The present study aimed to evaluate the preventive effect of S. extract (SAE) on PA formation in a rat model. Male Wistar 8-week-old rats were randomly divided into sham, control (received vehicle), and treatment (0.25%, 0.5%, and 1% w/v of SAE) groups. The adhesion and related factors were examined using the Nair scoring system and immunological and biochemical kits for the levels of inflammatory cytokines [interleukin (IL)-6 and tumor necrosis factor (TNF)-α], growth factors [transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)], oxidative [nitric oxide (NO) and malondialdehyde (MDA)], and anti-oxidative [glutathione (GSH)] factors. Our results figured out that the adhesion score and IL-6, TNF-α, TGF-β1, VEGF, NO, and MDA levels were significantly increased, but the GSH level was decreased in the control group compared to the sham group (p < 0.001-0.05). On the other hand, the 0.25% SAE group had a lower adhesion score, and IL-6, TNF-α, TGF-β1, VEGF, NO, and MDA levels were significantly decreased compared with the vehicle group, and the level of GSH was increased (p < 0.001-0.05). SAE could efficiently reduce adhesion score and regulate inflammatory cytokines, oxidative and anti-oxidative factors, and biomarkers of fibrosis and angiogenesis. Therefore, clove extract can be considered a potential candidate for PA management.
Collapse
Affiliation(s)
- Elham Moradi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Vafa Rahimi Baradaran
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mobarakeh Ghadiri
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Maedeh Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
| | - Vahid Reza Askari
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
17
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
β-Caryophyllene Acts as a Ferroptosis Inhibitor to Ameliorate Experimental Colitis. Int J Mol Sci 2022; 23:ijms232416055. [PMID: 36555694 PMCID: PMC9784863 DOI: 10.3390/ijms232416055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage infiltration is one of the main pathological features of ulcerative colitis (UC) and ferroptosis is a type of nonapoptotic cell death, connecting oxidative stress and inflammation. However, whether ferroptosis occurs in the colon macrophages of UC mice and whether targeting macrophage ferroptosis is an effective approach for UC treatment remain unclear. The present study revealed that macrophage lipid peroxidation was observed in the colon of UC mice. Subsequently, we screened several main components of essential oil from Artemisia argyi and found that β-caryophyllene (BCP) had a good inhibitory effect on macrophage lipid peroxidation. Additionally, ferroptotic macrophages were found to increase the mRNA expression of tumor necrosis factor alpha (Tnf-α) and prostaglandin-endoperoxide synthase 2 (Ptgs2), while BCP can reverse the effects of inflammation activated by ferroptosis. Further molecular mechanism studies revealed that BCP activated the type 2 cannabinoid receptor (CB2R) to inhibit macrophage ferroptosis and its induced inflammatory response both in vivo and in vitro. Taken together, BCP potentially ameliorated experimental colitis inflammation by inhibiting macrophage ferroptosis. These results revealed that macrophage ferroptosis is a potential therapeutic target for UC and identified a novel mechanism of BCP in ameliorating experimental colitis.
Collapse
|
19
|
Hosseini A, Alipour A, Baradaran Rahimi V, Askari VR. A comprehensive and mechanistic review on protective effects of kaempferol against natural and chemical toxins: Role of NF-κB inhibition and Nrf2 activation. Biofactors 2022; 49:322-350. [PMID: 36471898 DOI: 10.1002/biof.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different toxins, including chemicals and natural, can be entered from various routes and influence human health. Herbal medicines and their active components can attenuate the toxicity of agents via multiple mechanisms. For example, kaempferol, as a flavonoid, can be found in fruits and vegetables, and has an essential role in improving disorders such as cardiovascular disorders, neurological diseases, cancer, pain, and inflammation situations. The beneficial effects of kaempferol may be related to the inhibition of oxidative stress, attenuation of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. This flavonoid boasts a wide spectrum of toxin targeting effects in tissue fibrosis, inflammation, and oxidative stress thus shows promising protective effects against natural and chemical toxin induced hepatotoxicity, nephrotoxicity, cardiotoxicity, neurotoxicity, lung, and intestinal in the in vitro and in vivo setting. The most remarkable aspect of kaempferol is that it does not focus its efforts on just one organ or one molecular pathway. Although its significance as a treatment option remains questionable and requires more clinical studies, it seems to be a low-risk therapeutic option. It is crucial to emphasize that kaempferol's poor bioavailability is a significant barrier to its use as a therapeutic option. Nanotechnology can be a promising way to overcome this challenge, reviving optimism in using kaempferol as a viable treatment agent against toxin-induced disorders.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alieh Alipour
- Pharmacological Research Centre of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Cytotoxic and apoptotic activity of acetone and aqueous Artemisia vulgaris L. and Artemisia alba Turra extracts on colorectal cancer cells. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
22
|
Baradaran Rahimi V, Momeni-Moghaddam MA, Chini MG, Saviano A, Maione F, Bifulco G, Rahmanian-Devin P, Jebalbarezy A, Askari VR. Carnosol Attenuates LPS-Induced Inflammation of Cardiomyoblasts by Inhibiting NF- κB: A Mechanistic in Vitro and in Silico Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7969422. [PMID: 35571740 PMCID: PMC9095375 DOI: 10.1155/2022/7969422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023]
Abstract
Carnosol possesses several beneficial pharmacological properties. However, its role in lipopolysaccharide (LPS) induced inflammation and cardiomyocyte cell line (H9C2) has never been investigated. Therefore, the effect of carnosol and an NF-κB inhibitor BAY 11-7082 was examined, and the underlying role of the NF-κB-dependent inflammatory pathway was analyzed as the target enzyme. Cell viability, inflammatory cytokines levels (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and prostaglandin E 2 (PGE2)), and related gene expression (TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (COX-2)) were analyzed by ELISA and real-time PCR. In addition, docking studies analyzed carnosol's molecular interactions and binding modes to NF-κB and IKK. We report that LPS caused the reduction of cell viability while enhancing both cytokines protein and mRNA levels (P < 0.001, for all cases). However, the BAY 11-7082 pretreatment of the cells and carnosol increased cell viability and reduced cytokine protein and mRNA levels (P < 0.001 vs. LPS, for all cases). Furthermore, our in silico analyses also supported the modulation of NF-κB and IKK by carnosol. This evidence highlights the defensive effects of carnosol against sepsis-induced myocardial dysfunction and, contextually, paved the rationale for the next in vitro and in vivo studies aimed to precisely describe its mechanism(s) of action.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Anella Saviano
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Topical Formulation of Noscapine, a Benzylisoquinoline Alkaloid, Ameliorates Imiquimod-Induced Psoriasis-Like Skin Lesions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3707647. [PMID: 35497929 PMCID: PMC9054439 DOI: 10.1155/2022/3707647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Psoriasis is considered an autoimmune inflammatory disease. The disease is spread and diagnosed by the infiltration of inflammatory mediators and cells into the epidermis. Recent theoretical developments have focused on the effectiveness of noscapine (NOS) as a potential alkaloid for being used as a valuable treatment for different diseases. In the present study, psoriasis-like dermatitis was induced on the right ear pinna surface of male Balb/c mice by topical application of imiquimod (IMQ) for ten consecutive days, which was treated with noscapine (0.3, 1, 3, and 10% w/v) or clobetasol (0.05% w/v) as a positive control. The levels of ear length, thickness, severity of skin inflammation, psoriatic itch, psoriasis area severity index (PASI) score, and body weight were measured daily. On the 10th day of study, each ear was investigated for inflammation, fibrosis, proliferation, and apoptosis using histopathological (H&E and Masson's trichrome staining) and immunohistochemistry (Ki67 and p53 staining) assays. Furthermore, the levels of inflammatory biomarkers were characterized by an enzyme-linked immunosorbent assay (ELISA). The results confirmed IMQ-induced psoriasis for five consecutive days. In contrast, noscapine significantly reduced the ear length, thickness, severity of skin inflammation, psoriatic itch and body weight, tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interferon-gamma (IFN-γ), interleukin 6 (IL-6), IL-17, and IL-23p19 in a concentration-dependent manner (P < 0.001–0.05 for all cases). Overall, topical noscapine significantly ameliorated both the macroscopical and microscopical features of psoriasis. However, further clinical investigations are required to translate the effects to clinics.
Collapse
|
24
|
Novel Insights into the Immunomodulatory Effects of Caryophyllane Sesquiterpenes: A Systematic Review of Preclinical Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Immunomodulation is a key factor in the homeostasis of organisms, both for physiological and inflammatory conditions. In this context, great attention has been devoted to immunomodulant agents, which can boost or modulate the immune system, thus favoring disease relief. The present systematic review is focused on the immunomodulatory properties of plant-based caryophyllane sesquiterpenes, which are unique natural compounds widely studied due to their multiple and pleiotropic bioactivities. Despite lacking clinical evidence, the selected studies highlighted the ability of these substances, especially β-caryophyllene and α-humulene, to modulate the immune system of both in vitro and in vivo models of disease, such as neurodegenerative and inflammatory-based diseases, cancer, and allergies; moreover, some mechanistic hypotheses have been made too. The present overview suggests a further interest in immunomodulation by caryophyllane sesquiterpenes as a possible novel strategy for immune-based diseases or as an adjuvant treatment and encourages further high-quality studies, using high-purity compounds, to better clarify the mechanisms accounting for these properties and to support a further pharmaceutical development.
Collapse
|
25
|
Intraperitoneal Lavage with Crocus sativus Prevents Postoperative-Induced Peritoneal Adhesion in a Rat Model: Evidence from Animal and Cellular Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5945101. [PMID: 34956439 PMCID: PMC8702342 DOI: 10.1155/2021/5945101] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Postoperative peritoneal adhesions are considered the major complication following abdominal surgeries. The primary clinical complications of peritoneal adhesion are intestinal obstruction, infertility, pelvic pain, and postoperative mortality. In this study, regarding the anti-inflammatory and antioxidant activities of Crocus sativus, we aimed to evaluate the effects of Crocus sativus on the prevention of postsurgical-induced peritoneal adhesion. Male Wistar-Albino rats were used to investigate the preventive effects of C. sativus extract (0.5%, 0.25% and 0.125% w/v) against postsurgical-induced peritoneal adhesion compared to pirfenidone (PFD, 7.5% w/v). We also investigated the protective effects of PFD (100 μg/ml) and C. sativus extract (100, 200, and 400 μg/ml) in TGF-β1-induced fibrotic macrophage polarization. The levels of cell proliferation and oxidative, antioxidative, inflammatory and anti-inflammatory, fibrosis, and angiogenesis biomarkers were evaluated both in vivo and in vitro models. C. sativus extract ameliorates postoperational-induced peritoneal adhesion development by attenuating oxidative stress [malondialdehyde (MDA)]; inflammatory mediators [interleukin- (IL-) 6, tumour necrosis factor- (TNF-) α, and prostaglandin E2 (PGE2)]; fibrosis [transforming growth factor- (TGF-) β1, IL-4, and plasminogen activator inhibitor (PAI)]; and angiogenesis [vascular endothelial growth factor (VEGF)] markers, while propagating antioxidant [glutathione (GSH)], anti-inflammatory (IL-10), and fibrinolytic [tissue plasminogen activator (tPA)] markers and tPA/PAI ratio. In a cellular model, we revealed that the extract, without any toxicity, regulated the levels of cell proliferation and inflammatory (TNF-α), angiogenesis (VEGF), anti-inflammatory (IL-10), M1 [inducible nitric oxide synthase (iNOS)] and M2 [arginase-1 (Arg 1)] biomarkers, and iNOS/Arg-1 ratio towards antifibrotic M1 phenotype of macrophage, in a concentration-dependent manner. Taken together, the current study indicated that C. sativus reduces peritoneal adhesion formation by modulating the macrophage polarization from M2 towards M1 cells.
Collapse
|
26
|
Duan W, Sun Y, Wu M, Zhang Z, Zhang T, Wang H, Li F, Yang L, Xu Y, Liu ZJ, Hua T, Nie H, Cheng J. Carbon-silicon switch led to the discovery of novel synthetic cannabinoids with therapeutic effects in a mouse model of multiple sclerosis. Eur J Med Chem 2021; 226:113878. [PMID: 34634742 DOI: 10.1016/j.ejmech.2021.113878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Cannabinoids are widely studied as therapeutic agents for the treatment of various diseases. Among them, THC and CBD are two important phytocannabinoids which have served as structural templates for the design of synthetic analogs. In this study, we designed and synthesized a variety of novel cannabinoids based on the structural backbones of THC and CBD using the carbon-silicon switch strategy. A dimethyl silyl group was introduced as the tail group and two series of novel compounds were designed and synthesized, which showed a wide range of binding affinity for CB1 and CB2 receptors. Among them, compound 15b was identified as a non-selective CB1 and CB2 agonist and 38b as a selective agonist for the CB2 receptor. Preliminary screening showed that both compounds have improved metabolic stability than their carbon analogs and good in vivo pharmacokinetic profiles. Furthermore, both 15b and 38b significantly alleviated the phenotype of experimental autoimmune encephalomyelitis (EAE) in mice.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Ying Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Zhiyuan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Taotao Zhang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Hong Nie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
27
|
Rahmanian-Devin P, Baradaran Rahimi V, Jaafari MR, Golmohammadzadeh S, Sanei-far Z, Askari VR. Noscapine, an Emerging Medication for Different Diseases: A Mechanistic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8402517. [PMID: 34880922 PMCID: PMC8648453 DOI: 10.1155/2021/8402517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
Noscapine is a benzylisoquinoline alkaloid isolated from poppy extract, used as an antitussive since the 1950s, and has no addictive or euphoric effects. Various studies have shown that noscapine has excellent anti-inflammatory effects and potentiates the antioxidant defences by inhibiting nitric oxide (NO) metabolites and reactive oxygen species (ROS) levels and increasing total glutathione (GSH). Furthermore, noscapine has indicated antiangiogenic and antimetastatic effects. Noscapine induces apoptosis in many cancerous cell types and provides favourable antitumour activities and inhibitory cell proliferation in solid tumours, even drug-resistant strains, via mitochondrial pathways. Moreover, this compound attenuates the dynamic properties of microtubules and arrests the cell cycle in the G2/M phase. Noscapine can reduce endothelial cell migration in the brain by inhibiting endothelial cell activator interleukin 8 (IL-8). In fact, this study aimed to elaborate on the possible mechanisms of noscapine against different disorders.
Collapse
Affiliation(s)
- Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sanei-far
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Auraptene, a Monoterpene Coumarin, Inhibits LTA-Induced Inflammatory Mediators via Modulating NF- κB/MAPKs Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5319584. [PMID: 34824589 PMCID: PMC8610650 DOI: 10.1155/2021/5319584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022]
Abstract
Objective Oxidative stress-mediated inflammatory events involve in the progress of several diseases such as asthma, cancers, and multiple sclerosis. Auraptene (AU), a natural prenyloxycoumarin, possesses numerous pharmacological activities. Here, the anti-inflammatory effects of AU were investigated in lipoteichoic acid- (LTA-) induced macrophage cells (RAW 264.7). Methods The expression of cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS) and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, c-Jun N-terminal kinase (JNK), heme oxygenase (HO-1), p65, and IκBα were all identified by western blotting assay. The level of nitric oxide (NO) was measured by spectrometer analysis. The nuclear translocation of p65 nuclear factor kappa B (NF-κB) was assessed by the confocal microscopic staining method. Native polyacrylamide gel electrophoresis was performed to perceive the activity of antioxidant enzyme catalase (CAT). Results AU expressively reduced NO production and COX-2, TNF-α, IL-1 β, and iNOS expression in LTA-stimulated cells. AU at higher concentration (10 µM) inhibited ERK and JNK, but not p38 phosphorylation induced by LTA. Moreover, AU blocked IκB and p65 phosphorylation, and p65 nuclear translocation. However, AU pretreatment was not effective on antioxidant HO-1 expression, CAT activity, and reduced glutathione (GSH, a nonenzymatic antioxidant), in LTA-induced RAW 264.7 cells. Conclusion The findings of this study advocate that AU shows anti-inflammatory effects via reducing NF-κB/MAPKs signaling pathways.
Collapse
|
29
|
Gholoobi A, Askari VR, Naghedinia H, Ahmadi M, Vakili V, Baradaran Rahimi V. Colchicine effectively attenuates inflammatory biomarker high-sensitivity C-reactive protein (hs-CRP) in patients with non-ST-segment elevation myocardial infarction: a randomised, double-blind, placebo-controlled clinical trial. Inflammopharmacology 2021; 29:1379-1387. [PMID: 34420187 DOI: 10.1007/s10787-021-00865-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/07/2021] [Indexed: 11/28/2022]
Abstract
Myocardial infarction without ST-segment elevation (NSTEMI) is considered an inflammatory disorder associated with a high mortality rate worldwide. High-sensitivity C-reactive protein (hs-CRP) is an important inflammatory marker for NSTEMI and related to cardiovascular events. Colchicine, as a potent anti-inflammatory drug, is frequently prescribed for the treatment of gout and pericarditis. The present study aimed to evaluate the effects of colchicine, as an anti-inflammatory drug, on hs-CRP levels in NSTEMI patients. We performed a randomised, double-blind, placebo-controlled trial involving 150 NSTEMI patients referred to Imam Reza and Ghaem Hospitals affiliated to Mashhad University of Medical Sciences. The patients were randomised to receive colchicine or placebo along with optimal medications for 30 days. The hs-CRP was measured at the admission and end of the study. Our results revealed that, in both colchicine and placebo groups, hs-CRP levels were significantly mitigated in NSTEMI patients compared to baseline (P < 0.001). However, the decreasing properties of colchicine on hs-CRP levels were remarkably stronger than placebo following the 30 days of treatment (P < 0.001). Nevertheless, neither colchicine nor placebo treatment could achieve hs-CRP levels lower than 2 mg/L. There were no significant differences between the effects of colchicine on the hs-CRP decrease in diabetic and non-diabetic, male and female, and normal and preserved LVEF NSTEMI patients. It can be concluded that colchicine may prevent the disease progression and succedent cardiovascular events in NSTEMI patients by attenuating the inflammation.
Collapse
Affiliation(s)
- Arash Gholoobi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Naghedinia
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Ahmadi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Vakili
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Evaluation of the Therapeutic Effects of the Hydroethanolic Extract of Portulaca oleracea on Surgical-Induced Peritoneal Adhesion. Mediators Inflamm 2021; 2021:8437753. [PMID: 34381307 PMCID: PMC8352699 DOI: 10.1155/2021/8437753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/18/2021] [Indexed: 01/26/2023] Open
Abstract
Objective Peritoneal adhesion (PA) is an abnormal connective tissue that usually occurs between tissues adjacent to damaged organs during processes such as surgery. In this study, the anti-inflammatory and antioxidant effects of Portulaca oleracea (PO) were investigated against postoperative-induced peritoneal adhesion. Methods Thirty healthy male Wistar rats (220 ± 20 g, 6-8 weeks) were randomly divided into four groups: (1) normal, (2) control (induced peritoneal adhesion), and (3) and (4) PO extracts (induced peritoneal adhesion and received 100 or 300 mg/kg/day of PO extract for seven days). Finally, macroscopic and microscopic examinations were performed using different scoring systems and immunoassays in the peritoneal lavage fluid. Results We found that the levels of adhesion scores and interleukin- (IL-) 1β, IL-6, IL-10, tumour necrosis factor- (TNF-) α, transforming growth factor- (TGF-) β 1, vascular endothelial growth factor (VEGF), and malondialdehyde (MDA) were increased in the control group. However, PO extract (100 and 300 mg/kg) notably reduced inflammatory (IL-1β, IL-6, and TNF-α), fibrosis (TGF-β 1), angiogenesis (VEGF), and oxidative (MDA) factors, while increased anti-inflammatory cytokine IL-10, antioxidant factor glutathione (GSH), compared to the control group. Conclusion Oral administration of PO improved postoperational-induced PA by alleviating the oxidative factors, fibrosis, inflammatory cytokines, angiogenesis biomarkers, and stimulating antioxidative factors. Hence, PO can be considered a potential herbal medicine to manage postoperative PA. However, further clinical studies are required to approve the effectiveness of PO.
Collapse
|
31
|
Rodríguez Mesa XM, Moreno Vergara AF, Contreras Bolaños LA, Guevara Moriones N, Mejía Piñeros AL, Santander González SP. Therapeutic Prospects of Cannabinoids in the Immunomodulation of Prevalent Autoimmune Diseases. Cannabis Cannabinoid Res 2021; 6:196-210. [PMID: 34030476 PMCID: PMC8266560 DOI: 10.1089/can.2020.0183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Cannabinoids such as ▵-9-THC and CBD can downregulate the immune response by modulating the endocannabinoid system. This modulation is relevant for the treatment of prevalent autoimmune diseases (ADs), such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), diabetes mellitus type 1 (DMT1), and rheumatoid arthritis (RA). These conditions require new therapeutic options with fewer side effects for the control of the autoimmune response. Objective: to conduct a literature review of preclinical scientific evidence that supports further clinical investigations for the use of cannabinoids (natural or synthetic) as potential immunomodulators of the immune response in ADs. Methodology: A systematic search was carried out in different databases using different MeSH terms, such as Cannabis sativa L., cannabinoids, immunomodulation, and ADs. Initially, 677 journal articles were found. After filtering by publication date (from 2000 to 2020 for SLE, DMT1, and RA; and 2010 to 2020 for MS) and removing the duplicate items, 200 articles were selected and analyzed by title and summary associated with the use of cannabinoids as immunomodulatory treatment for those diseases. Results: Evidence of the immunomodulatory effect of cannabinoids in the diseases previously mentioned, but SLE that did not meet the search criteria, was summarized from 24 journal articles. CBD was found to be one of the main modulators of the immune response. This molecule decreased the number of Th1 and Th17 proinflammatory cells and the production of the proinflammatory cytokines, interleukin (IL)-1, IL-12, IL-17, interferon (IFN)-γ, and tumor necrosis factor alpha, in mouse models of MS and DMT1. Additionally, new synthetic cannabinoid-like molecules, with agonist or antagonist activity on CB1, CB2, TRPV1, PPAR-α, and PPAR-γ receptors, have shown anti-inflammatory properties in MS, DMT1, and RA. Conclusion: Data from experimental animal models of AD showed that natural and synthetic cannabinoids downregulate inflammatory responses mediated by immune cells responsible for AD chronicity and progression. Although synthetic cannabinoid-like molecules were evaluated in just two clinical trials, they corroborated the potential use of cannabinoids to treat some ADs. Notwithstanding, new cannabinoid-based approaches are required to provide alternative treatments to patients affected by the large group of ADs.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Andrés Felipe Moreno Vergara
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Faculty of Medicine, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Leonardo Andrés Contreras Bolaños
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Natalia Guevara Moriones
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Faculty of Medicine, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Antonio Luis Mejía Piñeros
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá, Colombia
- Group of Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá, Colombia
| |
Collapse
|
32
|
Ghadiri M, Baradaran Rahimi V, Moradi E, Hasanpour M, Clark CCT, Iranshahi M, Rakhshandeh H, Askari VR. Standardised pomegranate peel extract lavage prevents postoperative peritoneal adhesion by regulating TGF-β and VEGF levels. Inflammopharmacology 2021; 29:855-868. [PMID: 33993390 DOI: 10.1007/s10787-021-00819-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Peritoneal adhesion represents a severe complication following surgery. Punica granatum (pomegranate) possesses several anti-oxidative and anti-inflammatory properties. Pomegranate peel extract (PPEx) can alleviate the production of various inflammatory factors and cytokines. Thus, we sought to evaluate the anti-adhesion effects of pomegranate in rats. Thirty male Wistar rats (6-week-old, 220 ± 20 g) were divided into five groups (n = 6): normal group without any surgical procedures, control group, and experimental groups receiving 2 ml of 1%, 2%, and 4% w/v PPEx, respectively. Peritoneal adhesions were examined macroscopically. Furthermore, we evaluated inflammatory cytokines levels [interleukin 6 (IL-6), and tumour necrosis factor-α (TNF-α)], growth factors [transforming growth factor- β1 (TGF-β1), and vascular endothelial growth factor (VEGF)], and oxidative stress parameters [nitric oxide metabolites (NO), and malondialdehyde (MDA), and glutathione (GSH)] using biochemical methods. Our results showed that the adhesion score and IL-6, TNF-α, TGF-β1, VEGF, NO, and MDA levels were increased in the control group. In contrast, the GSH level was diminished in the control group compared with the normal group (P < 0.001). PPEx (1 and 2% w/v) markedly reduced all measured parameters compared with the control group (P < 0.001-0.05). PPEx may reduce peritoneal adhesion by alleviating adhesion formation, IL-6, TNF-α, TGF-β1, VEGF, NO, and MDA, and stimulating anti-oxidative factors. Therefore, PPEx may be considered an appropriate candidate for the treatment of postoperative peritoneal adhesion.
Collapse
Affiliation(s)
- Mobarakeh Ghadiri
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Moradi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran.
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Azadi Sq., Vakil Abad Highway, 9177948564, Mashhad, Iran. .,Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
34
|
Shirani K, Iranshahi M, Askari VR, Gholizadeh Z, Zadeh AA, Zeinali M, Hassani FV, Taherzadeh Z. Comparative evaluation of the protective effects of oral administration of auraptene and umbelliprenin against CFA-induced chronic inflammation with polyarthritis in rats. Biomed Pharmacother 2021; 139:111635. [PMID: 34243601 DOI: 10.1016/j.biopha.2021.111635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the anti-inflammatory effect of Auraptene (AUR) and Umbelliprenin (UMB) in a rat model of rheumatoid arthritis (RA) induced by using complete Freund's adjuvant (CFA). Paw swelling of adjuvant arthritis rats measured at various times after CFA injection. Over 15 days of RA induction, mediator/cytokine-mediated processes involved in managing the regulation and resolving RA's inflammation were also quantified with ELISA. Histopathological changes were also assessed under a microscope 15 days after the CFA injection. AUR at all doses and UMB administration only at a 16 mM /kg administration dose significantly reduced CFA-induced paw edema level compared to the control group. UMB (64 and 32 mM) and AUR (64, 32, and 16 mM) could reduce the PGE2 (p < .0001-.01) and NO (p < .0001-.05) levels in the treatment groups compared to the negative control group. However, these compounds showed no significant effect on the TNF-α, IFN-γ, TGF-β, IL-4, and IL-10 levels than the control group (p > .05). Unlike indomethacin and prednisolone, treatment of rats with AUR (16, 32, and 64 mM/kg) and UMB (16 and 32 mM/kg) reduced the level of IL-2 (p < .0001). In all treatment groups, the serum level of IL-17 was significantly reduced compared to the CFA group (p < .001-0.05). We suggested AUR and UMB could diminish inflammation by reducing the serum level of IL-17 and could be considered a proper alternative in the treatment of IL-17 related inflammatory diseases such as rheumatoid arthritis. Given that AUR and UMB apply their anti-inflammatory effects by changing distinct cytokine release/inhibition patterns, their potential application in diverse inflammatory diseases seems different.
Collapse
Affiliation(s)
- Kobra Shirani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholizadeh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Armin Attaran Zadeh
- Department of Medical Genetics, Faculty of Medicines, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Zeinali
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zhila Taherzadeh
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, P.O. Box: 1365-91775, Mashhad, Iran.
| |
Collapse
|
35
|
Duffy SS, Hayes JP, Fiore NT, Moalem-Taylor G. The cannabinoid system and microglia in health and disease. Neuropharmacology 2021; 190:108555. [PMID: 33845074 DOI: 10.1016/j.neuropharm.2021.108555] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Recent years have yielded significant advances in our understanding of microglia, the immune cells of the central nervous system (CNS). Microglia are key players in CNS development, immune surveillance, and the maintenance of proper neuronal function throughout life. In the healthy brain, homeostatic microglia have a unique molecular signature. In neurological diseases, microglia become activated and adopt distinct transcriptomic signatures, including disease-associated microglia (DAM) implicated in neurodegenerative disorders. Homeostatic microglia synthesise the endogenous cannabinoids 2-arachidonoylglycerol and anandamide and express the cannabinoid receptors CB1 and CB2 at constitutively low levels. Upon activation, microglia significantly increase their synthesis of endocannabinoids and upregulate their expression of CB2 receptors, which promote a protective microglial phenotype by enhancing their production of neuroprotective factors and reducing their production of pro-inflammatory factors. Here, we summarise the effects of the microglial cannabinoid system in the CNS demyelinating disease multiple sclerosis, the neurodegenerative diseases Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, chronic inflammatory and neuropathic pain, and psychiatric disorders including depression, anxiety and schizophrenia. We discuss the therapeutic potential of cannabinoids in regulating microglial activity and highlight the need to further investigate their specific microglia-dependent immunomodulatory effects.
Collapse
Affiliation(s)
- Samuel S Duffy
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Jessica P Hayes
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Nathan T Fiore
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia
| | - Gila Moalem-Taylor
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
36
|
Giussani P, Prinetti A, Tringali C. The role of Sphingolipids in myelination and myelin stability and their involvement in childhood and adult demyelinating disorders. J Neurochem 2020; 156:403-414. [PMID: 33448358 DOI: 10.1111/jnc.15133] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) represents the most common demyelinating disease affecting the central nervous system (CNS) in adults as well as in children. Furthermore, in children, in addition to acquired diseases such as MS, genetically inherited diseases significantly contribute to the incidence of demyelinating disorders. Some genetic defects lead to sphingolipid alterations that are able to elicit neurological symptoms. Sphingolipids are essential for brain development, and their aberrant functionality may thus contribute to demyelinating diseases such as MS. In particular, sphingolipidoses caused by deficits of sphingolipid-metabolizing enzymes, are often associated with demyelination. Sphingolipids are not only structural molecules but also bioactive molecules involved in the regulation of cellular events such as development of the nervous system, myelination and maintenance of myelin stability. Changes in the sphingolipid metabolism deeply affect plasma membrane organization. Thus, changes in myelin sphingolipid composition might crucially contribute to the phenotype of diseases characterized by demyelinalization. Here, we review key features of several sphingolipids such as ceramide/dihydroceramide, sphingosine/dihydrosphingosine, glucosylceramide and, galactosylceramide which act in myelin formation during rat brain development and in human brain demyelination during the pathogenesis of MS, suggesting that this knowledge could be useful in identifying targets for possible therapies.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università di Milano, LITA Segrate, Segrate, Italy
| |
Collapse
|
37
|
The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases through Cannabinoid System Modulation-Evidence from In Vivo Studies. J Clin Med 2020; 9:jcm9082395. [PMID: 32726998 PMCID: PMC7464236 DOI: 10.3390/jcm9082395] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders such as neurodegenerative diseases or traumatic brain injury are associated with cognitive, motor and behavioural changes that influence the quality of life of the patients. Although different therapeutic strategies have been developed and tried until now to decrease the neurological decline, no treatment has been found to cure these pathologies. In the last decades, the implication of the endocannabinoid system in the neurological function has been extensively studied, and the cannabinoids have been tried as a new promising potential treatment. In this study, we aimed to overview the recent available literature regarding in vivo potential of natural and synthetic cannabinoids with underlying mechanisms of action for protecting against cognitive decline and motor impairments. The results of studies on animal models showed that cannabinoids in traumatic brain injury increase neurobehavioral function, working memory performance, and decrease the neurological deficit and ameliorate motor deficit through down-regulation of pro-inflammatory markers, oedema formation and blood–brain barrier permeability, preventing neuronal cell loss and up-regulating the levels of adherence junction proteins. In neurodegenerative diseases, the cannabinoids showed beneficial effects in decreasing the motor disability and disease progression by a complex mechanism targeting more signalling pathways further than classical receptors of the endocannabinoid system. In light of these results, the use of cannabinoids could be beneficial in traumatic brain injuries and multiple sclerosis treatment, especially in those patients who display resistance to conventional treatment.
Collapse
|
38
|
Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol Rep 2020; 73:154-162. [PMID: 32166733 DOI: 10.1007/s43440-020-00083-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Inflammation is characterized as a defensive response of our body against endogenous or exogenous stimuli. Chronic inflammation and oxidative stress play an important role in the pathogenesis of various disorders such as asthma, cancers, and multiple sclerosis. Recently, diverse pharmacological activities of auraptene, a natural prenyloxycoumarin, were reported. In the present study, we aimed to evaluate the anti-oxidative and anti-inflammatory effects of auraptene on human isolated lymphocytes. METHOD The effects of auraptene (10, 30 and 90 μM) and dexamethasone (0.1 mM) were evaluated on cell viability, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and total glutathione content (GSH) as well as the secretion of interleukin 6 (IL-6) and tumor necrosis factor (TNF)-α in phytohemagglutinin (PHA)-stimulated human lymphocytes. RESULTS Auraptene (10-90 μM) did not affect lymphocytes' viability after 48 h incubation. PHA markedly elevated ROS, MDA, IL-6, and TNF-α levels, while diminished the GSH content, and CAT and SOD activities in human lymphocytes (p < 0.001 for all cases). Treatment with auraptene (10-90 µM) significantly ameliorated ROS, MDA, IL-6, and TNF-α levels, and markedly increased GSH content, and CAT and SOD activities (p < 0.5-0.001). CONCLUSION Auraptene may possess promising healing effects in the different inflammatory disorders associated with activation of the acquired immune system such as multiple sclerosis and asthma.
Collapse
|
39
|
Caputo LS, Campos MIC, Dias HJ, Crotti AEM, Fajardo JB, Vanelli CP, Presto ÁCD, Alves MS, Aarestrup FM, Paula ACC, Da Silva Filho AA, Aarestrup BJV, Pereira OS, Corrêa JODA. Copaiba oil suppresses inflammation in asthmatic lungs of BALB/c mice induced with ovalbumin. Int Immunopharmacol 2020; 80:106177. [PMID: 32007706 DOI: 10.1016/j.intimp.2019.106177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory disease that represents high hospitalizations and deaths in world. Copaiba oil (CO) is popularly used for relieving asthma symptoms and has already been shown to be effective in many inflammation models. This study aimed to investigate the immunomodulatory relationship of CO in ovalbumin (OVA)-induced allergic asthma. The composition of CO sample analyzed by GC and GC-MS and the toxicity test was performed in mice at doses of 50 or 100 mg/kg (by gavage). After, the experimental model of allergic asthma was induced with OVA and mice were orally treated with CO in two pre-established doses. The inflammatory infiltrate was evaluated in bronchoalveolar lavage fluid (BALF), while cytokines (IL-4, IL-5, IL-17, IFN-γ, TNF-α), IgE antibody and nitric oxide (NO) production was evaluated in BALF and lung homogenate (LH) of mice, together with the histology and histomorphometry of the lung tissue. CO significantly attenuated the number of inflammatory cells in BALF, suppressing NO production and reducing the response mediated by TH2 and TH17 (T helper) cells in both BALF and LH. Histopathological and histomorphometric analysis confirmed that CO significantly reduced the numbers of inflammatory infiltrate in the lung tissue, including in the parenchyma area. Our results indicate that CO has an effective in vivo antiasthmatic effect.
Collapse
Affiliation(s)
- Ludmila S Caputo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria Inês C Campos
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Herbert J Dias
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantesn° 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Antônio E M Crotti
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantesn° 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Júlia B Fajardo
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Chislene P Vanelli
- Health Department, Faculty of Medical Sciences and Health of Juiz de Fora (SUPREMA), Alameda Salvaterra n° 200, Salvaterra, 36.033-003 Juiz de Fora, MG, Brazil
| | - Álvaro C D Presto
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Maria S Alves
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Fernando M Aarestrup
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ana Claudia C Paula
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ademar A Da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Beatriz J V Aarestrup
- Laboratory of Experimental Immunology and Pathology, Reproduction Biology Center (CBR), Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Olavo S Pereira
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - José Otávio do A Corrêa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|