1
|
Jiang Y, Wu W, Xie L, Zhou Y, Yang K, Wu D, Xu W, Fang R, Ge J. Molecular targets and mechanisms of Sijunzi decoction in the treatment of Parkinson's disease: evidence from network pharmacology, molecular docking, molecular dynamics simulation, and experimental validation. Front Pharmacol 2024; 15:1487474. [PMID: 39660000 PMCID: PMC11629541 DOI: 10.3389/fphar.2024.1487474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Aim To explore the molecular mechanism of Sijunzi Decoction (SJZD) in the treatment of Parkinson's disease (PD) through the application of network pharmacology, molecular docking, and molecular dynamics simulations, complemented by experimental verification. Methods The BATMAN-TCM, GeneCards, and DisGeNet databases were searched to screen the active components and therapeutic targets of SJZD. Cytoscape (3.7.1) was used to create a network diagram of the components and targets. The STRING platform was used to construct a protein-protein interaction (PPI) network. The Bioconductor database and RX64 (4.0.0) software were used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis on the core target genes. The binding sites and binding energies between SJZD active components and the target were analyzed by molecular docking and dynamic simulation. Finally, the therapeutic effect and mechanism of SJZD were verified by Cell Counting Kit-8 (CCK-8) and Western blotting (WB). Results This research identified 188 active compounds in SJZD, 1568 drug targets, 2069 PD targets, and 451 intersection targets related to PD. According to network analysis, Adenosine Triphosphate, Tridecanoic Acid, Hexadecanoic Acid, Pentadecanoic Acid, and Adenosine were identified as the core components of SJZD in the treatment of PD. The five targets with the highest Degree values in the PPI network were AKT1, INS, TNF, IL-6, and TP53. The GO and KEGG enrichment analyses, in turn, determined that the administration of SJZD for the treatment of PD may engage processes such as xenobiotic stimulation and biological stimulus response. Furthermore, AGE-RAGE and cAMP signaling pathways related to diabetic complications may be involved. Molecular docking and kinetic simulations showed that IL-6 and AKT1 bind best to Adenosine. Experimental results showed that SJZD significantly reduced 6-OHDA-induced apoptosis of SH⁃SY5Y cells by activating the PI3K/AKT signaling pathway and regulating the expression of apoptosis factors such as Bcl⁃2 and Bax. Conclusion SJZD is essential in the processes of apoptosis and neuronal protection, acting through various components that target multiple pathways. Notably, the PI3K/AKT pathway is a verified SJZD-PD target, providing a reference for clinical precision drug use for PD.
Collapse
Affiliation(s)
- Yang Jiang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Gastroenterology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Wanfeng Wu
- Department of Gastroenterology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Le Xie
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Yue Zhou
- Department of Scientific Research, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dahua Wu
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Wenfeng Xu
- Department of Nephrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rui Fang
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Institute of Clinical Pharmacology of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Kulhari U, Ambujakshan A, Ahmed M, Washimkar K, Kachari J, Mugale MN, Sahu BD. Nuciferine inhibits TLR4/NF-κB/MAPK signaling axis and alleviates adjuvant-induced arthritis in rats. Eur J Pharmacol 2024; 982:176940. [PMID: 39182545 DOI: 10.1016/j.ejphar.2024.176940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis is an inflammatory condition primarily affecting the joints. Nuciferine (NCF), a key bioactive aporphine alkaloid biosynthesized in lotus leaves, exhibits promising anti-inflammatory and antioxidant properties. In this study, we investigated whether NCF could alleviate inflammatory arthritis conditions in a complete Freund's adjuvant (CFA)-mediated arthritis model in rats. The arthritis model was established through intradermal injection of CFA (100 μL) in the sub-plantar region of the right hind paw. The arthritic animals were treated orally with NCF at 5 and 10 mg/kg and indomethacin (Indo) at 5 mg/kg body weight as reference control. NCF treatment remarkably alleviated inflammatory joint swelling and arthritic index. The radiological and histological analysis revealed evidence of the beneficial effects of NCF. NCF treatment decreased the content of pro-inflammatory cytokines (TNF-α and IL-1β) and myeloperoxidase (MPO) activity and restored the anti-inflammatory cytokine (IL-10) in the paw joints. The serum levels of pro-inflammatory cytokines were also markedly reduced in the NCF (10 mg/kg) treatment group. Moreover, the arthritis-induced inflammatory mediators, including cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and the toll-like receptor (TLR)-4, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling proteins were substantially decreased in the NCF treatment groups. NCF treatment also restored the antioxidant defense enzymes and abrogated lipid peroxidation in the paw tissue. Our findings strongly suggest that NCF is a promising therapeutic molecule for rheumatoid arthritis, inspiring further research, and development in this area.
Collapse
Affiliation(s)
- Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Anju Ambujakshan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India
| | - Kaveri Washimkar
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Jodumoni Kachari
- Department of Veterinary Surgery and Radiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, 781022, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
3
|
Chen X, Qin Y, Wang L, Zhu Y, Zhang H, Liu W, Zeng M, Dai Q. Co-amorphous systems of sulfasalazine with matrine-type alkaloids: Enhanced solubility behaviors and synergistic therapeutic potential. Eur J Pharm Biopharm 2024; 203:114475. [PMID: 39216557 DOI: 10.1016/j.ejpb.2024.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue. These newly obtained co-amorphous forms of SULF were comprehensively characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We also investigated their dissolution behavior, including powder dissolution, in vitro release, and intrinsic dissolution rate. Both co-amorphous systems exhibited superior dissolution performance compared to crystalline SULF. The underlying mechanism responsible for the enhanced dissolution behaviors in co-amorphous systems were also elucidated. These mechanisms include the inhibition of nucleation, complexation, increased hydrophilicity, and robust intermolecular interactions in aqueous solutions. Importantly, these co-amorphous systems demonstrated satisfactory physical stability under various storage conditions. Network pharmacological analysis was utilized to investigate the potential therapeutic targets of both co-amorphous systems against RA, revealing similar yet distinct multi-target synergistic therapeutic mechanisms in the treatment of this condition. Our study suggests these drug-drug co-amorphous systems hold promise for optimizing SULF dosage in the future and providing a potential drug combination strategy.
Collapse
Affiliation(s)
- Xin Chen
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Yirui Qin
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Lijun Wang
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yujing Zhu
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China; Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenhu Liu
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| | - Mei Zeng
- Innovation Centre for Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China; Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qian Dai
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China.
| |
Collapse
|
4
|
Shen X, Liu X, Guo X, Hou X, Huang H, Feng Z. Systematic review of Janus kinases inhibitors for rheumatoid arthritis: methodology, reporting, and quality of evidence evaluation. Front Pharmacol 2024; 15:1459511. [PMID: 39386036 PMCID: PMC11461343 DOI: 10.3389/fphar.2024.1459511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To evaluate the methodological, reporting and evidence quality of systematic reviews or meta-analyses of Janus kinases (JAK) inhibitors for the treatment of rheumatoid arthritis (RA). Methods Our study systematically retrieved reviews from various databases, spanning from inception to June 2024. Two evaluators independently assessed the methodological, reporting, and evidence quality of each review using the AMSTAR-2 and PRIAMA2020 tools. The evidence quality was evaluated according to GRADE criteria. Six aspects were evaluated: publication year, study type, homogeneity, risk of publication bias, AMSTAR-2 methodology, and PRIAMA2020 reporting quality. Excel 2016 facilitated conversion of scores into radar plots. Results Following stringent selection criteria, a total of 18 relevant studies were identified. The AMSTAR-2 scores ranged from 4 to 13 points, with five studies rated as low quality and the remaining 13 as critically low quality. All studies encompassed populations, interventions, controls, and outcome measures, demonstrating commendable integrity. However, there is room for improvement in study protocol development and registration, comprehensive search strategies, inclusion and exclusion criteria, conflict of interest disclosure, and discussion of heterogeneity. PRIAMA2020 assessments ranged from 14.5 to 21 points, with two studies scoring below 15 points due to increased bias risk from data transformation and sensitivity analysis. Notably, all reviews (100%) adhered to PRIAMA2020 guidelines for certain items but none met all criteria. GRADE evaluation included 446 outcome measures, with 158 of moderate, 156 of low, and 132 of very low quality, indicating JAK inhibitors is effective in improving RA. According to radar chart, the average rank score was 13.13. One study achieved a balanced score across all dimensions, while 11 exceeded the average, five showed significant differences in PRIAMA2020 scores, and four in AMSTAR two scores. Conclusion Despite summarizing the efficacy and safety of JAK inhibitors in treating RA, the included studies exhibited poor methodological and reporting quality, along with low-quality evidence overall. Therefore, caution is warranted among decision-makers regarding the use of JAK inhibitors in RA treatment. Urgent requirements include high-quality, multicenter studies investigating JAK inhibitors for RA. Systematic Review registration https://www.crd.york.ac.uk/PROSPERO, identifier 413415.
Collapse
Affiliation(s)
- Xiaolan Shen
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Sciences, Institute of Rheumatology, China Three Gorges University, Yichang, China
| | - Xiaoman Liu
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Sciences, Institute of Rheumatology, China Three Gorges University, Yichang, China
| | - Xiang Guo
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqiang Hou
- The First College of Clinical Medical Sciences, Institute of Rheumatology, China Three Gorges University, Yichang, China
| | - Huiliang Huang
- The Second People’s Hospital of Yichang, The Second Clinical Hospital of Three Gorges University, Yichang, Hubei, China
| | - Zhitao Feng
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Sciences, Institute of Rheumatology, China Three Gorges University, Yichang, China
| |
Collapse
|
5
|
Yu H, Wang N, Zhao X, Han L, Peng J. Integrated serum pharmacochemistry with network pharmacology and pharmacological validation to elucidate the mechanism of yiqitongmai decoction (YQTMD) against myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118329. [PMID: 38750989 DOI: 10.1016/j.jep.2024.118329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiqitongmai decoction (YQTMD), a classic TCM, has been widely used in clinical treatment for MI. However, it is still difficult to clarify the potential active compounds and pharmacological mechanisms of it in treating MI. AIM OF THE STUDY To explore the active ingredients, pharmacological effects, potential targets and mechanisms of YQTMD against MI. MATERIALS AND METHODS Serum pharmacochemistry by UPLC-MS/MS was applied to analyze the phytochemical components in serum from YQTMD. These components were then used to predict the potential targets using network pharmacology approach and molecular dynamics simulations, and then the protective effect of them on H9c2 cells following hypoxic conditions was assessed. Afterwards, the pharmacological effects of YQTMD on MI in mice were tested by determining electrocardiogram (ECG), echocardiography, cardiac biomarkers, oxidative stress, inflammation and pathophysiological changes. The protein levels involving STAT3 signal were detected using Western blot and immunofluorescence assays. Furthermore, STAT3 inhibitor Sttatic was employed to further elucidate the underlying mechanisms. RESULTS Totally, 26 compounds derived from YQTMD were identified in mice serum, and 201 genes associated with the compounds were collected. The compounds including safflomin A, ferulic acid, gypenoside XVII, ginsenoside Rg1 and glycyrrhizic acid were identified as the critical compounds of YQTMD to regulate STAT3 pathway. In vitro, compounds combination significantly enhanced the viability of H9c2 cells and reduced ROS level compared to model cells. The in vivo results showed that YQTMD effectively reduced myocardial injury, as evidenced by the decreased serum cardiac injury markers, reduction in the size of myocardial infarct, restoration of abnormal alterations in ECG and decrease in cardiomyocyte apoptosis. Additionally, YQTMD attenuated MI-induced cardiac dysfunction, alleviated pathological changes, reduced MDA levels, and enhanced SOD and GSH levels compared with model mice. Significantly, the levels of IL-6, IL-1β, and TNF-α were observed to decrease in the YQTMD group. The expression levels of key proteins (p-STAT3, HIF-1α, NOX2, TLR5 and Caspase3) in STAT3 pathway were also regulated by YQTMD. However, the cardioprotective effects of YQTMD on MI were attenuated by STAT3 inhibitor Sttatic. CONCLUSIONS This study investigated the active ingredients and potential mechanisms of YQTMD for MI treatment based on serum pharmacochemistry and network pharmacology approaches, revealing that YQTMD exerts its therapeutic effects on MI by alleviating oxidative stress, inflammation and apoptosis through adjusting STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hao Yu
- Institute of Intergrative Medicine, College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Ning Wang
- Institute of Intergrative Medicine, College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Xuerong Zhao
- Institute of Intergrative Medicine, College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lan Han
- Department of Traditional Chinese Medicine Pharmacology, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Jinyong Peng
- Institute of Intergrative Medicine, College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
6
|
Chen S, Li Z, Xiao Y, Zhou Z, Zhan Q, Yu L. Rutin targets AKT to inhibit ferroptosis in ventilator-induced lung injury. Phytother Res 2024; 38:3401-3416. [PMID: 38666397 DOI: 10.1002/ptr.8212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 07/12/2024]
Abstract
Our previous research confirmed that rutin reduced ventilator-induced lung injury (VILI) in mice. Ferroptosis has been reported to participate in the pathogenic process of VILI. We will explore whether rutin inhibits ferroptosis to alleviate VILI. A mouse model of VILI was constructed with or without rutin pretreatment to perform a multiomics analysis. Hematoxylin-eosin (HE) staining and transmission electron microscopy were used to evaluate lung injury in VILI mice. Dihydroethidium (DHE) staining and the malondialdehyde (MDA) and superoxide dismutase (SOD) levels were detected. Molecular docking was performed to determine the binding affinity between rutin and ferroptosis-related proteins. Western blot analysis, real-time PCR (RT-PCR) and immunohistochemical (IHC) staining were conducted to detect the expression levels of GPX4, XCT, ACSL4, FTH1, AKT and p-AKT in lung tissues. Microscale thermophoresis (MST) was used to evaluate the binding between rutin and AKT1. Transcriptomic and proteomic analyses showed that ferroptosis may play a key role in VILI mice. Metabolomic analysis demonstrated that rutin may affect ferroptosis via the AKT pathway. Molecular docking analysis indicated that rutin may regulate the expression of ferroptosis-related proteins. Moreover, rutin upregulated GPX4 expression and downregulated the expression of XCT, ACSL4 and FTH1 in the lung tissues. Rutin also increased the ratio of p-AKT/AKT and p-AKT expression. MST analysis showed that rutin binds to AKT1. Rutin binds to AKT to activate the AKT signaling pathway, contributing to inhibit ferroptosis, thus preventing VILI in mice. Our study elucidated a possible novel strategy of involving the use of rutin for preventing VILI.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhonghao Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Yuhong Xiao
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhaobin Zhou
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, National Regional Center for Respiratory Medicine, Jiangxi Hospital of China-Japan Friendship Hospital, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lingling Yu
- Department of Rehabilitation Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Abdel-Maksoud MA, Askar MA, Abdel-rahman IY, Gharib M, Aufy M. Integrating Network Pharmacology and Molecular Docking Approach to Elucidate the Mechanism of Commiphora wightii for the Treatment of Rheumatoid Arthritis. Bioinform Biol Insights 2024; 18:11779322241247634. [PMID: 38765022 PMCID: PMC11102677 DOI: 10.1177/11779322241247634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/28/2024] [Indexed: 05/21/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is considered a notable prolonged inflammatory condition with no proper cure. Synovial inflammation and synovial pannus are crucial in the onset of RA. The "tumor-like" invading proliferation of new arteries is a keynote of RA. Commiphora wightii (C wightii) is a perennial, deciduous, and trifoliate plant used in several areas of southeast Asia to cure numerous ailments, including arthritis, diabetes, obesity, and asthma. Several in vitro investigations have indicated C wightii's therapeutic efficacy in the treatment of arthritis. However, the precise molecular action is yet unknown. Material and methods In this study, a network pharmacology approach was applied to uncover potential targets, active therapeutic ingredients and signaling pathways in C wightii for the treatment of arthritis. In the groundwork of this research, we examined the active constituent-compound-target-pathway network and evaluated that (Guggulsterol-V, Myrrhahnone B, and Campesterol) decisively donated to the development of arthritis by affecting tumor necrosis factor (TNF), PIK3CA, and MAPK3 genes. Later on, docking was employed to confirm the active components' efficiency against the potential targets. Results According to molecular-docking research, several potential targets of RA bind tightly with the corresponding key active ingredient of C wightii. With the aid of network pharmacology techniques, we conclude that the signaling pathways and biological processes involved in C wightii had an impact on the prevention of arthritis. The outcomes of molecular docking also serve as strong recommendations for future research. In the context of this study, network pharmacology combined with molecular docking analysis showed that C wightii acted on arthritis-related signaling pathways to exhibit a promising preventive impact on arthritis. Conclusion These results serve as the basis for grasping the mechanism of the antiarthritis activity of C wightii. However, further in vivo/in vitro study is needed to verify the reliability of these targets for the treatment of arthritis.
Collapse
Affiliation(s)
- Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A Askar
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ibrahim Y Abdel-rahman
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mustafa Gharib
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Chen S, Bai Y, Xia J, Zhang Y, Zhan Q. Rutin alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. iScience 2023; 26:107866. [PMID: 37817937 PMCID: PMC10561045 DOI: 10.1016/j.isci.2023.107866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Whether rutin relieves ventilator-induced lung injury (VILI) remains unclear. Here, we used network pharmacology, bioinformatics, and molecular docking to predict the therapeutic targets and potential mechanisms of rutin in the treatment of VILI. Subsequently, a mouse model of VILI was established to confirm the effects of rutin on VILI. HE staining showed that rutin alleviated VILI. TUNEL staining showed that rutin reduced apoptosis in the lung tissue of mice with VILI, and the same change was observed in the ratio of Bax/Bcl2. Furthermore, rutin reduced the expression of NLRP3, ASC, Caspase1, IL1β, and IL18 in the lung tissues of mice with VILI. Mechanistically, rutin suppressed the TLR4/NF-κB-P65 pathway, which promoted the M1 to M2 macrophage transition and alleviated inflammation in mice with VILI. Rutin relieved NLRP3 inflammasome activation by regulating M1/M2 macrophage polarization and inhibiting the activation of the TLR4/NF-κB-P65 pathway, resulting in the amelioration of VILI in mice.
Collapse
Affiliation(s)
- Shengsong Chen
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Yu Bai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Jingen Xia
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Peking Union Medical College, Chinese Academy of Medical Sciences, No 9 Dongdan Santiao, Dongcheng District, Beijing 100730, P.R.China
- National Center for Respiratory Medicine, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- National Clinical Research Center for Respiratory Diseases, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
- WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, No 2, East Yinghua Road, Chaoyang District, Beijing 100029, P.R.China
| |
Collapse
|
9
|
Qiu ZK, Zhou BX, Pang J, Zeng WQ, Wu HB, Yang F. The network pharmacology study and molecular docking to investigate the potential mechanism of Acoritataninowii Rhizoma against Alzheimer's Disease. Metab Brain Dis 2023; 38:1937-1962. [PMID: 37032419 DOI: 10.1007/s11011-023-01179-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/04/2023] [Indexed: 04/11/2023]
Abstract
Alzheimer's Disease is considered as an insidious neurodegenerative progressive disease but its pathogenesis has not been elucidated. Acoritataninowii Rhizoma exhibits anti-dementia effects as a traditional Chinese medicine (TCM), which is linked to its anti- Alzheimer's Disease mechanism. In this study, network pharmacology and molecular docking were used to examine the potential of Acoritataninowii Rhizoma for Alzheimer's Disease. In order to construct PPI networks and drug-component-target-disease networks, disease-related genes and proteins were gathered from the database. Gene ontology (GO), pathway enrichment (KEGG), and molecular docking were used to forecast the potential mechanism of Acoritataninowii Rhizoma on Alzheimer's disease. Therefore, 4 active ingredients and 81 target genes were screened from Acoritataninowii Rhizoma, 6765 specific target genes were screened from Alzheimer's Disease, and 61 drug-disease cross genes were validated. GO analysis showed that Acoritataninowii Rhizoma can regulate processes such as the protein serine/threonine kinase associated with MAPK. KeGG pathway analysis showed that the signaling pathways affected by Acoritataninowii Rhizoma were fluid shear stress and atherosclerosis, AGE-RAGE and other pathways. Molecular docking implied that the pharmacological influences of the bioactive constituents of Acoritataninowii Rhizoma (Cycloaartenol and kaempferol) on Alzheimer's Disease may related to ESR1 and AKT1, respectively. AKT1 and ESR1 may be the core target genes of the treatment for Alzheimer's disease. Kaempferol and Cycloartenol might be core bioactive constituents for treatment.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Bai-Xian Zhou
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China
| | - Jiali Pang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China
| | - Wei-Qiang Zeng
- Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan, China
| | - Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fan Yang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, People's Republic of China.
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, The Center for Drug Research and Development, Guangdong Pharmaceutical University, GuangZhou, 510006, Guangdong, China.
| |
Collapse
|
10
|
Chandrasekaran J, Elumalai S, Murugesan V, Kunjiappan S, Pavadai P, Theivendren P. Computational design of PD-L1 small molecule inhibitors for cancer therapy. Mol Divers 2023; 27:1633-1644. [PMID: 36006501 DOI: 10.1007/s11030-022-10516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
Drug repurposing opens new avenues in cancer therapy. Drug repurposing, or finding new uses for existing drugs, can substantially reduce drug discovery time and costs. Cheminformatics, genetics, and systems biology advances enable repositioning drugs. Clinical usage of PD-1/PD-L1 blocking has been approved because of its efficacy in improving prognosis in select groups. The PD-1/PD-L1 axis was considered to represent a mechanism for tumour evasion of host tumour antigen-specific T-cell immunity in early preclinical research. The expression of PD-L1 in cancer cells causes T lymphocytes to become exhausted by transmitting a co-inhibitory signal. A better understanding of how PD-L1 is regulated in cancer cells could lead to new therapeutic options. In this view, the study was aimed to repurpose the existing FDA-approved drugs as a potential PD-L1 inhibitor through e-Pharmacophore modelling, molecular docking and dynamic simulation. e-Pharmacophore screening retrieved 324 FDA-approved medications with the fitness score ≥ 1. The top 10-docked FDA candidates were compared with IN-35 (Clinical trial candidate) for its interaction pattern with critical amino acid residues. Mirabegron and Indacaterol exhibited a greater affinity for PD-L1 with docking scores of - 9.213 kcal mol-1 and - 8.023 kcal mol-1, respectively. Mirabegron retain interactions at all three major hotspots in the PD-L1 dimer interface similar to IN-35. MM-GBSA analyses indicated that Mirabegron uses less energy to create a more stable complex and retains all of the inhibitor's positive interactions found in clinical trial ligand IN-35. Molecular dynamics simulation analysis of the Mirabegron complex showed a similar pattern of deviation in correlation with IN-35, and it retains the interaction with the active key amino acids throughout the simulation time. Our present study has shown Mirabegron as a powerful inhibitor of PD-L1 expression in cancer cells using a drug-repurposing screen.
Collapse
Affiliation(s)
- Jaikanth Chandrasekaran
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS University, Secunderabad, 500017, India.
| | - Senthilkumar Elumalai
- Department of Pharmacology, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, India
| | - Vidya Murugesan
- Department of Chemistry and Biochemistry, Science and Commerce, M S Ramaiah College of Arts, Bengaluru, 560054, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, India
| |
Collapse
|
11
|
Wang L, Li P, Zhou Y, Gu R, Lu G, Zhang C. Magnoflorine Ameliorates Collagen-Induced Arthritis by Suppressing the Inflammation Response via the NF-κB/MAPK Signaling Pathways. J Inflamm Res 2023; 16:2271-2296. [PMID: 37265745 PMCID: PMC10231344 DOI: 10.2147/jir.s406298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Magnoflorine (Mag) has been reported to have anxiolytics, anti-cancer, and anti-inflammatory properties. In this study, we aim to investigate the effects of Mag on the rheumatoid arthritis (RA) and explore the underlying mechanism using a collagen-induced arthritis (CIA) mouse model and a lipopolysaccharide (LPS)-stimulated macrophage inflammation model. Methods The in vivo effects of Mag on CIA were studied by inducing CIA in a mouse model using DBA/1J mice followed by treatment with vehicle, methotrexate (MTX, 1 mg/kg/d), and Mag (5 mg/kg/d, 10 mg/kg/d, and 20 mg/kg/d), and the in vitro effects of Mag on macrophages were examined by stimulation of RAW264.7 cells line and peritoneal macrophages (PMs) by LPS in the presence of different concentrations of Mag. Network pharmacology and molecular docking was then performed to predict the the binding ability between Mag and its targets. Inflammatory mediators were assayed by quantitative real-time PCR and enzyme linked immunosorbent assay (ELISA). Signaling pathway changes were subsequently determined by Western blotting and immunohistochemistry (IHC). Results In vivo experiments demonstrated that Mag decreased arthritis severity scores, joints destruction, and macrophages infiltration into the synovial tissues of the CIA mice. Network pharmacology analysis revealed that Mag interacted with TNF-α, IL-6, IL-1β, and MCP-1. Consistent with this, analysis of the serum, synovial tissue of the CIA mice, and the supernatant of the cultured RAW264.7 cells and PMs showed that Mag suppressed the expression of TNF-α, IL-6, IL-1β, MCP-1, iNOS, and IFN-β. Furthermore, Mag attenuated the phosphorylation of p65, IκBα, ERK, JNK, and p38 MAPKs in the synovial tissues of the CIA mice and LPS-stimulated RAW 264.7 cells. Conclusion Mag may exert anti-arthritic and anti-inflammatory effects by inhibiting the activation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Lei Wang
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yu Zhou
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Renjun Gu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Ge Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Chunbing Zhang
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
12
|
Xiang G, Gao M, Qin H, Shen X, Huang H, Hou X, Feng Z. Benefit-risk assessment of traditional Chinese medicine preparations of sinomenine using multicriteria decision analysis (MCDA) for patients with rheumatoid arthritis. BMC Complement Med Ther 2023; 23:37. [PMID: 36747185 PMCID: PMC9901080 DOI: 10.1186/s12906-023-03864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE A multicriteria decision analysis (MCDA) model was used to evaluate the benefits and risks of traditional Chinese medicine preparations of sinomenine alone or in combination with conventional drugs in the treatment of rheumatoid arthritis (RA) and to provide a basis for the rational clinical application of sinomenine. METHODS A study search was performed using six major databases, and Review Manager 5.3 was used for data analysis. Then, an MCDA model evaluation system was established for the treatment of RA with sinomenine preparations, and the benefit values, risk values, and total benefit-risk values of sinomenine preparations alone or in combination with conventional drugs were calculated using Hiview 3.2 software. Finally, Monte Carlo simulations were performed using Crystal Ball embedded in Excel software to calculate the 95% confidence intervals (95% CI), and the probability of the differences between the 2 drug regimens was determined to optimize the evaluation results. RESULTS Forty-four randomized controlled trials (RCTs) were included. Quantitative assessment of the MCDA model showed that the sinomenine preparation alone offered less benefits than when combined with conventional drugs with a benefit difference of 20 (95% CI 3.06, 35.71). However, the risk of the combination was significantly lower with a risk difference of 13(95% CI -10.26, 27.52). The total value of the benefit-risk of sinomenine alone and in combination with conventional drugs was 46 and 53 at 60% and 40% of the benefit-risk ratio of the two dosing regimens, respectively, with a difference of 7 (95% CI -4.26, 22.12). The probability that the comprehensive score of the combined regimen is greater than that of sinomenine alone is 90.1%, and the evaluation was steady. CONCLUSION The benefit-risk of the combined application regimen of sinomenine is greater than that of sinomenine alone.
Collapse
Affiliation(s)
- Gao Xiang
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Min Gao
- Yichuan Community Health Service Center, Shanghai, 200065 China
| | - Huirong Qin
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Xiaolan Shen
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Huilian Huang
- grid.254148.e0000 0001 0033 6389Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001 Hubei China
| | - Xiaoqiang Hou
- grid.254148.e0000 0001 0033 6389The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China ,grid.254148.e0000 0001 0033 6389Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China
| | - Zhitao Feng
- grid.254148.e0000 0001 0033 6389Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003 Hubei China ,grid.254148.e0000 0001 0033 6389Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
13
|
Liu X, Chen H, Chen X, Wu P, Zhang J. Identification of Potential Targets and Mechanisms of Sinomenine in Allergic Rhinitis Treatment Based on Network Pharmacology and Molecular Docking. Crit Rev Immunol 2023; 43:1-10. [PMID: 37830189 DOI: 10.1615/critrevimmunol.2023049479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
This study aimed to investigate the potential targets and molecular mechanism of sinomenine in treating allergic rhinitis (AR) using network pharmacology and molecular docking. Relevant targets of sinomenine and AR were obtained from public databases, and differentially expressed genes (DEGs) for AR were identified in the Gene Expression Omnibus database. Using VennDiagram, we identified 22 potential targets of sinomenine against AR by crossing disease targets, drug targets, and DEGs. Functional analysis revealed that sinomenine may act via its anti-inflammatory and immunosuppressive effects, and its action pathways may include the MAPK, HIF-1, and JAK-STAT pathways. Furthermore, hub targets were identified using EPC, MCC, and MNC algorithms, and six hub targets (STAT3, EGFR, NFKB1, HIF1A, PTGS2, and JAK1) were selected by integrating the top 10 hub genes and 22 potential targets. Molecular docking analysis indicated that STAT3, EGFR, PTGS2, and JAK1 may be key targets of sinomenine against AR. Overall, our results suggest that sinomenine has potential therapeutic effects against AR, and its mechanism of action may involve the regulation of key targets and pathways related to inflammation and immunity.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hong Chen
- Department of Rehabilitation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaobo Chen
- Department of Rehabilitation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Peng Wu
- Department of Internal Medicine, Ganzhou Hospital of TCM, Ganzhou, 341000, China
| | - Jianhua Zhang
- Academic Affairs Office, The First Affiliated Hospital of Gannan Medical University, No. 23 Qingnian Road, Ganzhou, 341000, China
| |
Collapse
|
14
|
Xie W, Yang H, Guo C, Xie R, Yu G, Li Y. Integrated Network Pharmacology and Experimental Validation Approach to Investigate the Mechanisms of Stigmasterol in the Treatment of Rheumatoid Arthritis. Drug Des Devel Ther 2023; 17:691-706. [PMID: 36915642 PMCID: PMC10007868 DOI: 10.2147/dddt.s387570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease of the joints associated with systemic comorbidities. Sinomenium acutum is regarded as an effective traditional Chinese medicine (TCM) for the treatment of RA. Materials and Methods Based on network pharmacology and Gene Expression Omnibus (GEO) database, 33 RA-related differentially-expressed genes (DEGs) targeting active compounds of Sinomenium acutum were initially screened in our investigation. Results Gene Ontology (GO) and Kyoto encyclopaedia of genes and genome (KEGG) analyses found the important involvement of these DEGs in osteoclast differentiation, and finally 5 core DEGs, including NCF4, NFKB1, CYBA, IL-1β and NCF1 were determined through protein-protein interaction (PPI) network. We also identified the related active component of Sinomenium acutum include Stigmasterol. Finally, in order to experimentally verify these results, a rat model of collagen-induced arthritis (CIA) was established, and subsequently treated with Stigmasterol solution. Conclusion Similar to the healing effect of Indomethacin, Stigmasterol was observed to reduce the levels of inflammatory factors (IL-6 and IL-1β) and osteoclast differentiation-related factors (RANKL, ACP5 and Cathepsin K), which can also reduce the arthritis index score and alleviate the degree of pathological injury of rat ankle joints. The predictions and experimental data uncover the involvement of Stigmasterol, an active component of Sinomenium acutum, in regulation of osteoclast differentiation, exerting great medicinal potential in the treatment of RA.
Collapse
Affiliation(s)
- Wendong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Chun Guo
- Medical Innovation Experiment Center, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Rui Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Guoliang Yu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yifu Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
15
|
Zhang C, Zhang S, Liao J, Gong Z, Chai X, Lyu H. Towards Better Sinomenine-Type Drugs to Treat Rheumatoid Arthritis: Molecular Mechanisms and Structural Modification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248645. [PMID: 36557779 PMCID: PMC9781648 DOI: 10.3390/molecules27248645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Sinomenine is the main component of the vine Sinomenium acutum. It was first isolated in the early 1920s and has since attracted special interest as a potential anti-rheumatoid arthritis (RA) agent, owing to its successful application in traditional Chinese medicine for the treatment of neuralgia and rheumatoid diseases. In the past few decades, significant advances have broadened our understanding of the molecular mechanisms through which sinomenine treats RA, as well as the structural modifications necessary for improved pharmacological activity. In this review, we summarize up-to-date reports on the pharmacological properties of sinomenine in RA treatment, document their underlying mechanisms, and provide an overview of promising sinomenine derivatives as potential RA drug therapies.
Collapse
Affiliation(s)
- Cuili Zhang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Shujie Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Liao
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Xin Chai
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| | - Haining Lyu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| |
Collapse
|
16
|
Hypoglycemic Effect and Experimental Validation of Scutellariae Radix based on Network Pharmacology and Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Scutellariae Radix (SR) is a well-known traditional herb that has good pharmacological effects against diabetes. However, the mechanism of SR against diabetes is not clear. In this study, the ingredient–target–pathway relationship and hypoglycemic effect of SR on diabetes were explored using network pharmacology, molecular docking and an animal experiment. The targets of SR and diabetes were mined. The selected targets were studied using Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. The network of active components, targets and pathways was integrated to analyze the ingredient–target–pathway relationship. Then, the correspondence between the active components and targets was verified using molecular docking. Finally, an animal experiment was used to verify the hypoglycemic effect of SR. There were 52 components and 22 targets for the hypoglycemic effect of SR. We identified 18 biological processes, 9 cellular components, 15 molecular functions and 25 signaling pathways. Molecular docking results indicated that the targets of diabetes bound strongly to the main components. The animal experiments showed that SR could significantly decrease the blood glucose level of diabetic rats (p ≤ 0.05). This study explored the potential targets and signaling pathways of SR in diabetes, and the results may help to illustrate the hypoglycemic mechanism of SR.
Collapse
|
17
|
Cao Y, Li XY, Tchivelekete GM, Li X, Zhou X, He Z, Reilly J, Tan Z, Shu X. Bioinformatical and biochemical analyses on the protective role of traditional Chinese medicine against age-related macular degeneration. Curr Eye Res 2022; 47:1450-1462. [PMID: 35947018 DOI: 10.1080/02713683.2022.2108456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the commonest cause of permanent vision loss in the elderly. Traditional Chinese medicine (TCM) has long been used to treat AMD, although the underlying functional mechanisms are not understood. This study aims to predict the active ingredients through screening the chemical ingredients of anti-AMD Decoction and to elucidate the underlying mechanisms. METHODS We collected the prescriptions for effective AMD treatment with traditional Chinese medicine and screened several Chinese medicines that were used most frequently in order to compose "anti-AMD decoction". The pharmacologically active ingredients and corresponding targets in this anti-AMD decoction were mined using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the AMD-related targets were identified through the GeneCards database. Network pharmacology was performed to construct the visual network of anti-AMD Decoction-AMD protein-protein interaction (PPI). Further, the Autodock software was adopted for molecular docking on the core active ingredients and core targets. The function of core ingredients against oxidative stress and inflammation in retinal pigment epithelial cells was assessed using biochemical assays. RESULTS We screened out 268 active ingredients in anti-AMD Decoction corresponding to 258 ingredient targets, combined with 2160 disease targets in AMD, and obtained 129 drug-disease common targets. The key core proteins were predominantly involved in inflammation. Furthermore, molecular docking showed that four potential active ingredients (Quercetin, luteolin, naringenin and hederagenin) had good affinity with the core proteins, IL6, TNF and MAPK3. Quercetin, luteolin and naringenin demonstrated capacities against oxidative stress and inflammation in human retinal pigment epithelial cells. CONCLUSIONS The data suggests that anti-AMD Decoction has multiple functional components and targets in treating AMD, possibly mediated by suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Xiao-Ya Li
- Department of Chinese Medical, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Gabriel Mbuta Tchivelekete
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA.,Department of Marine Biology, Faculty of Natural Science, University of Namibe, Angola
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA
| | - Zhoujin Tan
- Department of Chinese Medical, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China.,Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA
| |
Collapse
|
18
|
Hu Y, Yuan W, Cai N, Jia K, Meng Y, Wang F, Ge Y, Lu H. Exploring Quercetin Anti-Osteoporosis Pharmacological Mechanisms with In Silico and In Vivo Models. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070980. [PMID: 35888070 PMCID: PMC9322149 DOI: 10.3390/life12070980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/13/2023]
Abstract
Since osteoporosis critically influences the lives of patients with a high incidence, effective therapeutic treatments are important. Quercetin has been well recognized as a bone-sparing agent and thus the underlying mechanisms warrant further investigation. In the current study, the network pharmacology strategy and zebrafish model were utilized to explain the potential pharmacological effects of quercetin on osteoporosis. The potential targets and related signaling pathways were explored through overlapping target prediction, protein–protein interaction network construction, and functional enrichment analysis. Furthermore, we performed docking studies to verify the specific interactions between quercetin and crucial targets. Consequently, 55 targets were related to osteoporosis disease among the 159 targets of quercetin obtained by three database sources. Thirty hub targets were filtered through the cytoNCA plugin. Additionally, the Gene Ontology functions in the top 10 respective biological processes, molecular functions, and cell components as well as the top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were depicted. The most significance difference in the KEGG pathways was the TNF signaling pathway, consisting of the Nuclear Factor Kappa B Subunit (NF-κB), Extracellular Regulated Protein Kinases (ERK) 1/2, Activator Protein 1 (AP-1), Interleukin 6 (IL6), Transcription factor AP-1 (Jun), and Phosphatidylinositol 3 Kinase (PI3K), which were probably involved in the pharmacological effects. Moreover, molecular docking studies revealed that the top three entries were Interleukin 1 Beta (IL1B), the Nuclear Factor NF-Kappa-B p65 Subunit (RelA), and the Nuclear Factor Kappa B Subunit 1 (NFKB1), respectively. Finally, these results were verified by alizarin red-stained mineralized bone in zebrafish and related qPCR experiments. The findings probably facilitate the mechanism elucidation related to quercetin anti-osteoporosis action.
Collapse
Affiliation(s)
- Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
- Correspondence: (W.Y.); (H.L.)
| | - Na Cai
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
| | - Fei Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
| | - Yurui Ge
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou 341000, China; (Y.H.); (N.C.); (K.J.); (Y.M.); (F.W.); (Y.G.)
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji’an 343009, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji’an 343009, China
- Correspondence: (W.Y.); (H.L.)
| |
Collapse
|
19
|
Jiao C, Yun H, Liang H, Lian X, Li S, Chen J, Qadir J, Yang BB, Xie Y. An active ingredient isolated from Ganoderma lucidum promotes burn wound healing via TRPV1/SMAD signaling. Aging (Albany NY) 2022; 14:5376-5389. [PMID: 35696640 PMCID: PMC9320545 DOI: 10.18632/aging.204119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
The mushroom Ganoderma lucidum is a traditional Chinese medicine and G. lucidum spore oil (GLSO) is the lipid fraction isolated from Ganoderma spores. We examined the effect of GLSO on burn wound healing in mice. Following wounding, GLSO was applied on the wounds twice daily. Repair analysis was performed by Sirius-Red-staining at different time points. Cell proliferation and migration assays were performed to verify the effect of GLSO on growth. Network pharmacology analysis to identify possible targets was also carried out, followed by Western blotting, nuclear translocation, cell proliferation, and immunofluorescence assays for in-depth investigation of the mechanism. Our study showed that GLSO significantly promoted cell proliferation, and network pharmacology analysis suggested that GLSO might act through transient receptor potential vanilloid receptor 1 (TRPV1)/SMAD signaling. Furthermore, GLSO elevated SMAD2/3 expression in skin burn and promoted its nuclear translocation, and TRPV1 expression was also increased upon exposure to GLSO. Cell proliferation and immunofluorescence assays with TRPV1 inhibitor showed that GLSO accelerated skin burn wound healing through TRPV1 and SMADs signaling, which provides a foundation for clinical application of GLSO in the healing of deep skin burns.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| | - Hao Yun
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Xiaodong Lian
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Shunxian Li
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing 526000, P. R. China
| | - Jiaming Chen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China
| | - Javeria Qadir
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou 510663, P. R. China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, P. R. China
| |
Collapse
|
20
|
Network pharmacology approach and molecular docking to explore the potential mechanism of Wu-Wei-Wen-Tong Chubi capsules in rheumatoid arthritis. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1061-1073. [PMID: 35670824 DOI: 10.1007/s00210-022-02260-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Network pharmacology, a holistic approach based on the theory of biological network technology, integrates information from biological systems, drugs, and diseases. Here, this theory was used to predict the targets of Wu-Wei-Wen-Tong Chubi capsule (WWWT) to explore the mechanism in the treatment of rheumatoid arthritis (RA). The ingredients of each herbal medicine in WWWT were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the active ingredients were screened through bioavailability (OB) ≥30% and drug-likeness (DL) ≥ 0.18. SwissTargetPrection and TCMSP were utilized to calculate and predict the targets of active ingredients. RA-related targets were obtained by searching the Genecards and OMIM databases. The common targets of RA and WWWT were used for gene ontology (GO), KEGG pathway enrichment, protein-protein interaction (PPI) analysis, and molecular docking. And then, four key genes were screened for subsequent verification experiments. In total, 90 active compounds and 330 potential targets of WWWT, 1310 targets of RA, and 135 intersection targets were found. Additionally, GO and pathway analysis identified 4610 significant GO terms and 147 significant KEGG pathways. Based on the PPI network, 11 key genes including IL-6, MMP-9, and TNF-α were screened out for molecular docking. Molecular docking showed that these key genes have good binding activities to active compounds of WWWT such as oroxylin a, kaempferol, and luteolin. Simultaneously, Western blot experimental validation demonstrated that the protein expressions of IL-6, MMP-9, TNF-α, and VEGFA significantly decreased after WWWT treatment. The mechanism of WWWT in treating RA involves multiple active compounds acting on multiple targets, and multiple pathways, which provides an important reference for further elucidation the mechanism and clinical applications of WWWT in the treatment of RA.
Collapse
|
21
|
Investigating the Mechanisms of Pollen Typhae in the Treatment of Diabetic Retinopathy Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5728408. [PMID: 35024051 PMCID: PMC8747905 DOI: 10.1155/2022/5728408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. METHODS Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. RESULTS A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. CONCLUSION The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.
Collapse
|
22
|
A System Bioinformatics Approach Predicts the Molecular Mechanism Underlying the Course of Action of Radix Salviae Reverses GBM Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1218969. [PMID: 35154340 PMCID: PMC8825271 DOI: 10.1155/2021/1218969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Objective This study used in vitro techniques to investigate the therapeutic effect of Radix Salviae on human glioblastoma and decode its underlying molecular mechanism. Methods The active components and targets of the Radix Salviae were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). The targets of human glioblastoma were obtained from the GeneCards Database. The Radix Salviae-mediated antiglioblastoma was evaluated by Gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, mechanism of action of Radix Salviae against human glioblastoma was deduced by molecular docking and experiments. Results We screened 66 active ingredients and 45 targets of the Radix Salviae. The enrichment analysis based on the targets mentioned above suggested a possible role in protein phosphorylation, cell transcription, apoptosis, and inflammatory factor signaling pathways. Further study demonstrated that cryptotanshinone, an essential component of Radix Salviae, played a significant role in killing human glioblastoma cells and protecting the body by inhibiting the AKT, IKB, and STAT3 signaling pathways. Conclusions Radix Salviae could inhibit the proliferation and invasion of human glioblastoma by regulating STAT3, Akt, and IKB signaling pathways. Radix Salviae has potential therapeutic value in the future for human glioblastoma.
Collapse
|
23
|
Network Pharmacology and Molecular Docking Study of Zhishi-Baizhu Herb Pair in the Treatment of Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2311486. [PMID: 34899944 PMCID: PMC8660205 DOI: 10.1155/2021/2311486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Objective This study aimed to investigate the possible mechanism of the Zhishi and Baizhu herb pair in the treatment of gastric cancer by means of network pharmacology and molecular docking and to provide a theoretical basis for experiments and clinical application of traditional Chinese medicine for treating gastric cancer. Methods The main active chemical components of Zhishi and Baizhu were screened through Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and selected by using the thresholds of oral bioavailability ≥30% and drug-likeness ≥18%. The targets of Zhishi and Baizhu were obtained from TCMSP, Therapeutic Targets Database (TTD), and the DrugBank database. The corresponding genes of the targets were retrieved from the UniProt database, and the gastric cancer targets were obtained from the GeneCards database and TTD. Subsequently, the networks were built between the main drug components, drug targets, and gastric cancer targets. Then, the enrichment analyses of GO and KEGG were applied to predict the potential roles of gastric cancer pathogenesis via the R package clusterProfiler. Finally, molecular docking was used to determine the affinity between the targets and components. Results Twenty-seven main active components were predicted from the Zhishi-Baizhu herb pair, and a total of 120 intersection genes were screened from 303 potential medicine genes and 1,839 disease genes. The enrichment included the PI3K-Akt and IL-17 signaling pathways, and the network analysis showed that the Zhishi-Baizhu herb pair acted on seven key targets, namely, AKT1, MMP9, IL-6, CCND1, BCL2, MTOR, and MDM2 (where they played a role in treating gastric cancer). Molecular docking showed that luteolin and naringenin could stably bind to the targets. Conclusion The possible mechanisms of the components of the Zhishi-Baizhu herb pair in treating gastric cancer might be related to luteolin and naringenin, which intervened with the targets AKT1, MMP9, IL-6, CCND1, BCL2, MTOR, and MDM2, and are linked with the PI3K-Akt and IL-17 signaling pathways. This knowledge will lay a solid foundation for further experimental and clinical studies.
Collapse
|
24
|
Xia CY, Xu JK, Li L, Lian WW, Yan Y, Ma BZ, He J, Zhang WK. Identifying the mechanism underlying antidepressant-like effects of loganin by network pharmacology in combination with experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114526. [PMID: 34400264 DOI: 10.1016/j.jep.2021.114526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loganin, an iridoid glycoside, is one of the quality control indexes of Cornus officinalis Sieb. et Zucc. Increasing evidence emphasize the important role of inflammation in the pathology of depression, which links depression with other chronic diseases. Loganin prevents inflammatory response in multiple diseases and reverses depressive-like behaviors. However, the mechanisms underlying antidepressant-like effects of loganin for the treatment of inflammation-associated depression are not utterly understood. AIM OF THE STUDY The present study was designed to predict the potential targets of loganin against inflammation-associated depression using a network pharmacology approach. MATERIALS AND METHODS Pharmmapper and Uniport were used to predict loganin-related targets. Targets of inflammation were identified through GeneCards databases and Online Mendelian Inheritance in Man (OMIM). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to identify the potential mechanism. Finally, qRT-PCR and ELISA were used to confirm the role of loganin on these targets. RESULTS There were 15 nodes in the loganin-inflammation-depression intersection targets network. In the network, the degree value of CTNNB1 was above 3. Among top ten pathways identified by KEGG analysis, Th1/Th2 cell differentiation and IL-17 signaling pathways were related with both inflammation and depression. As indicated by qRT-PCR results, loganin increased CTNNB1 mRNA level. Moreover, loganin elevated M2 markers of microglia but decreased M1 markers of microglia against lipopolysaccharide (LPS), indicated by qRT-PCR results and ELISA results. CONCLUSION CTNNB1 was the main target of loganin. Loganin alleviated LPS-induced inflammation through inhibiting M1 polarization of microglia. Our results provide a better understanding of loganin-induced antidepressant-like effects for the treatment of inflammation-associated depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
25
|
An W, Huang Y, Chen S, Teng T, Shi Y, Sun Z, Xu Y. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation. Sci Rep 2021; 11:20849. [PMID: 34675276 PMCID: PMC8531350 DOI: 10.1038/s41598-021-00293-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/05/2021] [Indexed: 02/08/2023] Open
Abstract
This study systematically explored the underlying mechanism of Rhizoma Coptidis against type 2 diabetes mellitus (T2DM) by using network pharmacology and molecular docking and experimental validation. We retrieved and screened active compounds of Rhizoma Coptidis and corresponding T2DM-related targets across multiple databases. PPI networks of the genes were constructed using STRING, and the core targets were screened via topological analysis. GO and KEGG enrichment analyses were performed by using DAVID. Finally, molecular docking and experimental studies were performed after bioinformatic analysis for verification. There were 14 active compounds and 19 core targets of Rhizoma Coptidis-T2DM, of which quercetin was identified as the main compound and IL6, VEGFA and TNF were the most significant core targets. GO and KEGG enrichment analyses showed that Rhizoma Coptidis ameliorated T2DM by regulating multiple biological processes and pathways. Docking studies indicated that IL6, VEGFA and TNF could stably bind with all active compounds of Rhizoma Coptidis. The results of our experiments revealed that Rhizoma Coptidis could inhibit the expression of IL6 and TNFα and enhance islet cell viability. This study suggests anti-inflammatory therapeutic effects of Rhizoma Coptidis on T2DM, thereby providing a scientific basis and new insight for further research on the antidiabetic effect of Rhizoma Coptidis.
Collapse
Affiliation(s)
- Wenrong An
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanqin Huang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Shouqiang Chen
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 1 Jingba Road, Jinan, 250001, China
| | - Tao Teng
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 1 Jingba Road, Jinan, 250001, China
| | - Yingning Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenhai Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 1 Jingba Road, Jinan, 250001, China.
| |
Collapse
|
26
|
Rivero-García I, Castresana-Aguirre M, Guglielmo L, Guala D, Sonnhammer ELL. Drug repurposing improves disease targeting 11-fold and can be augmented by network module targeting, applied to COVID-19. Sci Rep 2021; 11:20687. [PMID: 34667255 PMCID: PMC8526804 DOI: 10.1038/s41598-021-99721-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
This analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that drugs on average target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the maximum number of disease modules targeted per drug increases from 158 to 229 when drug targets are neighbor-extended. Moreover, our results highlight that drug repurposing is more dependent on target proteins being shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.
Collapse
Affiliation(s)
- Inés Rivero-García
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Miguel Castresana-Aguirre
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Luca Guglielmo
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Dimitri Guala
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| | - Erik L. L. Sonnhammer
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, Box 1031, 17121 Solna, Sweden
| |
Collapse
|
27
|
Qiu ZK, Liu ZT, Pang JL, Wu HB, Liu X, Yang ZM, Li X, Chen JS. A network pharmacology study with molecular docking to investigate the possibility of licorice against posttraumatic stress disorder. Metab Brain Dis 2021; 36:1763-1777. [PMID: 34417940 DOI: 10.1007/s11011-021-00816-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Post traumatic stress disorder (PTSD) is a mental health condition that has a debilitating effect on a person's quality of life and leads to a high socioeconomic burden. Licorice has been demonstrated to have neuroprotective and antidepressant-like effects, but little is known about its effects for the treatment of PTSD. The present study aimed to explore the potential of licorice for PTSD therapy using a network pharmacology approach with molecular docking studies. The compounds of licorice were obtained from databases with screening by absorption, distribution, metabolism and excretion (ADME) evaluation. Genes associated with compounds or PTSD were obtained from public databases, and the genes overlapping between licorice compounds and PTSD were compared by Venn diagram. A network of medicine-ingredients-targets-disease was constructed, visualized, and analyzed using cytoscape software. Protein-protein interactions, gene ontology, pathway enrichment and molecular docking were performed to evaluate the effect of licorice for the treatment of PTSD. 69 potential compounds were screened after ADME evaluation. A total of 81 compound-related genes and 566 PTSD-related genes were identified in the databases with 27 overlapping genes. Licorice compounds (e.g., medicarpin, 7-methoxy-2-methyl isoflavone, shinpterocarpin, formononetin, licochalcone a) and target proteins (e.g., ESR1, PTGS2, NOS2, and ADRB2) with high degree in the network were involved in G protein-coupled receptor signaling pathways at the postsynaptic/synaptic membrane. Moreover, neuroactive ligand-receptor interactions, calcium signaling, cholinergic synapse, serotonergic synapse and adrenergic signaling in cardiomyocytes may play important roles in the treatment of PTSD by licorice. This study provides molecular evidence of the beneficial effects of licorice for the treatment of PTSD.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Zhi-Ting Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jia-Li Pang
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Han-Biao Wu
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Xu Liu
- Medical Supplies Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Ze-Min Yang
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Xiong Li
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China.
| | - Ji-Sheng Chen
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
28
|
Ji M, Wang C, Yang T, Meng X, Wang X, Li M. Integrated Phytochemical Analysis Based on UPLC-MS/MS and Network Pharmacology Approaches to Explore the Effect of Odontites vulgaris Moench on Rheumatoid Arthritis. Front Pharmacol 2021; 12:707687. [PMID: 34526896 PMCID: PMC8435626 DOI: 10.3389/fphar.2021.707687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Odontites vulgaris Moench has the effect of clearing away heat, detoxification, dispelling wind, and clearing dampness. In this study, the potential anti-inflammatory compounds of O. vulgaris were investigated using ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) combined with the network pharmacology approach and further confirmed on an LPS-activated RAW 264.7 macrophage model. Monomer compounds were prepared from the active fraction using modern advanced separation and purification methods. UPLC-Q-Exactive HRMS was used to identify the chemical compounds in the active fractions of O. vulgaris. D-mannitol, geniposidic acid, salidroside, shanzhiside methyl ester, eleutheroside B, geniposide, 7,8-dihydroxycoumarin, gardoside methyl ester, arenarioside, vanillic acid, p-hydroxy-cinnamic acid, melampyroside, syringaresinol, tricin, and diosmetin were isolated from O. vulgaris for the first time. A compound database of O. vulgaris was established based on the existing literature to predict the mechanism of O. vulgaris in the treatment of rheumatoid arthritis. The results suggest that the PI3K-Akt pathway mediates O. vulgaris and deserves more attention in the treatment of RA. Finally, the anti-rheumatoid arthritis effects of the four target compounds were validated with the decreased levels of NO, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophage cells treated with LPS. The present study explored the potential targets and signaling pathways of O. vulgaris in the treatment of RA, which may help to illustrate the mechanisms involved in the action of O. vulgaris and may provide a better understanding of the relationship between O. vulgaris and RA. This study provides novel insights into the development of new drugs and utilization of Mongolian traditional Chinese medicine resources.
Collapse
Affiliation(s)
- Mingyue Ji
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Congcong Wang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Tieyi Yang
- Trauma Orthopedic, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiangxi Meng
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China.,Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Key Laboratory of Resourceology of Chinese Medicinal Materials, Baotou, China.,Inner Mongolia Engineering Research Center of The Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou, China
| |
Collapse
|
29
|
Network Pharmacology-Based Analysis of Gegenqinlian Decoction Regulating Intestinal Microbial Activity for the Treatment of Diarrhea. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5520015. [PMID: 34354757 PMCID: PMC8331269 DOI: 10.1155/2021/5520015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 01/30/2023]
Abstract
Gegenqinlian decoction (GD) has been extensively used for the treatment of diarrhea with intestinal dampness-heat syndrome (IDHS) with a satisfying therapeutic effect. The purpose of this study is to clarify the active ingredients and mechanism of GD in the treatment of diarrhea with IDHS. The TCMSP database was used to screen out the active ingredients of the four Chinese herbal medicines in GD, and the targets of the active ingredients were predicted. We selected the targets related to diarrhea through the DisGeNET database, then used the NCBI database to screen out related targets of lactase and sucrase, and constructed the visual network to search for the active ingredients of GD in the treatment of diarrhea and related mechanisms of the targets. Combined with network pharmacology, we screened out 146 active ingredients in GD corresponding to 252 ingredient targets, combined with 328 disease targets in diarrhea, and obtained 12 lactase targets and 11 sucrase targets. The key active ingredients involved quercetin, formononetin, β-sitosterol kaempferol, and wogonin. Furthermore, molecular docking showed that these five potential active ingredients had good affinities with the core targets PTGS2. The active ingredients in GD (such as quercetin, formononetin, and β-sitosterol) may increase the microbial activity of the intestinal mucosa of mice and reduce the microbial activity of the intestinal contents through multiple targets, thereby achieving the effect of treating diarrhea.
Collapse
|
30
|
Han C, Li Y, Zhang Y, Wang Y, Cui D, Luo T, Zhang Y, Liu Q, Li H, Wang C, Xu D, Ma Y, Wei W. Targeted inhibition of GRK2 kinase domain by CP-25 to reverse fibroblast-like synoviocytes dysfunction and improve collagen-induced arthritis in rats. Acta Pharm Sin B 2021; 11:1835-1852. [PMID: 34386323 PMCID: PMC8343125 DOI: 10.1016/j.apsb.2021.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease and is mainly characterized by abnormal proliferation of fibroblast-like synoviocytes (FLS). The up-regulated cellular membrane expression of G protein coupled receptor kinase 2 (GRK2) of FLS plays a critical role in RA progression, the increase of GRK2 translocation activity promotes dysfunctional prostaglandin E4 receptor (EP4) signaling and FLS abnormal proliferation. Recently, although our group found that paeoniflorin-6ʹ-O-benzene sulfonate (CP-25), a novel compound, could reverse FLS dysfunction via GRK2, little is known as to how GRK2 translocation activity is suppressed. Our findings revealed that GRK2 expression up-regulated and EP4 expression down-regulated in synovial tissues of RA patients and collagen-induced arthritis (CIA) rats, and prostaglandin E2 (PGE2) level increased in arthritis. CP-25 could down-regulate GRK2 expression, up-regulate EP4 expression, and improve synovitis of CIA rats. CP-25 and GRK2 inhibitors (paroxetine or GSK180736A) inhibited the abnormal proliferation of FLS in RA patients and CIA rats by down-regulating GRK2 translocation to EP4 receptor. The results of microscale thermophoresis (MST), cellular thermal shift assay, and inhibition of kinase activity assay indicated that CP-25 could directly target GRK2, increase the protein stability of GRK2 in cells, and inhibit GRK2 kinase activity. The docking of CP-25 and GRK2 suggested that the kinase domain of GRK2 might be an important active pocket for CP-25. G201, K220, K230, A321, and D335 in kinase domain of GRK2 might form hydrogen bonds with CP-25. Site-directed mutagenesis and co-immunoprecipitation assay further revealed that CP-25 down-regulated the interaction of GRK2 and EP4 via controlling the key amino acid residue of Ala321 of GRK2. Our data demonstrate that FLS proliferation is regulated by GRK2 translocation to EP4. Targeted inhibition of GRK2 kinase domain by CP-25 improves FLS function and represents an innovative drug for the treatment of RA by targeting GRK2.
Collapse
Affiliation(s)
- Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
- Public Health and Preventive Medicine Postdoctoral Research Station of Anhui Medical University, Hefei 230032, China
| | - Yifan Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Yuwen Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Yang Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Dongqian Cui
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Tingting Luo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Qian Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Hao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Dexiang Xu
- Public Health and Preventive Medicine Postdoctoral Research Station of Anhui Medical University, Hefei 230032, China
- Corresponding authors. Tel./fax: +86 551 65161209.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
- Corresponding authors. Tel./fax: +86 551 65161209.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
- Corresponding authors. Tel./fax: +86 551 65161209.
| |
Collapse
|
31
|
Blin JA, Hamid RA, Khaza'ai H. Bioactive fractions and compound of Ardisia crispa roots exhibit anti-arthritic properties mediated via angiogenesis inhibition in vitro. BMC Complement Med Ther 2021; 21:176. [PMID: 34172047 PMCID: PMC8235828 DOI: 10.1186/s12906-021-03341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/03/2021] [Indexed: 01/18/2023] Open
Abstract
Background Ardisia crispa (Thunb.) A.DC (Primulaceae), is a medicinal herb traditionally used by Asian people as remedies to cure inflammatory related diseases, including rheumatism. The plant roots possess various pharmacological activities including antipyretic, anti-inflammation and antitumor. Previous phytochemical studies of the plant roots have identified long chain alkyl-1,4-benzoquinones as major constituents, together with other phytochemicals. Hexane fraction of the plant roots (ACRH), was previously reported with anti-angiogenic and anti-arthritic properties, while its effect on their anti-arthritic in vitro, is yet unrevealed. Considering the significance of angiogenesis inhibition in developing new anti-arthritic agent, thus we investigated the anti-arthritic potential of Ardisia crispa roots by suppressing angiogenesis, in vitro. Methods Ardisia crispa roots hexane extract (ACRH) was prepared from the plant roots using absolute n-hexane. ACRH was fractionated into quinone-rich fraction (QRF) and further isolated to yield benzoquinonoid compound (BQ), respectively. In vitro experiments using VEGF-induced human umbilical vein endothelial cells (HUVECs) and IL-1β-induced human fibroblast-like synoviocytes for rheumatoid arthritis (HFLS-RA) were performed to evaluate the effects of these samples on VEGF-induced HUVECs proliferation and tube formation, and towards IL-1β-induced HFLS-RA proliferation, invasion, and apoptosis, respectively. Therapeutic concentrations (0.05, 0.5, and 5 μg/mL) tested in this study were predetermined based on the IC50 values obtained from the MTT assay. Results ACRH, QRF, and BQ exerted concentration-independent antiproliferative effects on VEGF-induced HUVECs and IL-1β-induced HFLS-RA, with IC50 values at 1.09 ± 0.18, 3.85 ± 0.26, and 1.34 ± 0.16 μg/mL in HUVECs; and 3.60 ± 1.38, 4.47 ± 0.34, and 1.09 ± 0.09 μg/mL in HFLS-RA, respectively. Anti-angiogenic properties of these samples were verified via significant inhibition on VEGF-induced HUVECs tube formation, in a concentration-independent manner. The invasiveness of IL-1β-induced HFLS-RA was also significantly inhibited in a concentration-independent manner by all samples. ACRH and BQ, but not QRF, significantly enhanced the apoptosis of IL-1β-induced HFLS-RA elicited at their highest concentration (5 μg/mL) (P < 0.05). Conclusions These findings highlight the bioactive fractions and compound from Ardisia crispa roots as potential anti-arthritic agents by inhibiting both HUVECs and HFLS-RA’s cellular functions in vitro, possibly mediated via their anti-angiogenic effects. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03341-y.
Collapse
Affiliation(s)
- Joan Anak Blin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Roslida Abdul Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Huzwah Khaza'ai
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
32
|
Chen L, Wang HJ, Ji TF, Zhang CJ. Chemoproteomics-based target profiling of sinomenine reveals multiple protein regulators of inflammation. Chem Commun (Camb) 2021; 57:5981-5984. [PMID: 34027538 DOI: 10.1039/d1cc01522b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although sinomenine (SIN) has been used to treat several inflammation-related diseases in the clinic for decades, the detailed anti-inflammatory mechanism remains elusive. Here, we present a chemoproteomic study that supports a polypharmacological mode of action for SIN to inhibit inflammation. Notably, functional validation revealed multiple new protein regulators whose knockdown could significantly affect inflammation.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Hong-Jian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Teng-Fei Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
33
|
Qu K, Cha H, Ru Y, Que H, Xing M. Buxuhuayu decoction accelerates angiogenesis by activating the PI3K-Akt-eNOS signalling pathway in a streptozotocin-induced diabetic ulcer rat model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113824. [PMID: 33581257 DOI: 10.1016/j.jep.2021.113824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buxuhuayu decoction (BXHYD) has been frequently used to treat patients with diabetic ulcers (DUs), without notable adverse reactions. However, the related molecular mechanism remains unelucidated. AIM OF THE STUDY This study assessed the potential mechanism of BXHYD against DUs by using network pharmacology and animal experiments. MATERIALS AND METHODS First, high-performance liquid chromatography (HPLC) was used for quality control of BXHYD. Further, the hub compounds and targets were screened from the Active Compound-Targets (ACT) network and the protein and protein interaction (PPI) network. Enrichment analysis was performed using DAVID, and molecular docking technology was used to identify active compounds that may play a key role in pub targets. Finally, a DUs animal model was established and used to elucidate the effect of BXHYD on the PI3K/Akt/eNOS signalling pathway. RESULTS (1) Calycosin-7-glucoside, amygdalin, and tanshinone iiA were detected in the freeze-dried powder of BXHYD. (2) Twelve hub compounds and eight hub targets were screened using the ACT and PPI networks. Through molecular docking, it was found that the four hub targets (TP53, IL6, VEGFA, and AKT1) binds luteolin and quercetin more tightly. (3) BXHYD is most likely to promote angiogenesis and wound healing by activating the PI3K/Akt/eNOS signalling pathway. CONCLUSIONS This research revealed that BXHYD might activate the PI3K/Akt/eNOS signalling pathway to promote DUs healing. These findings support the clinical use of BXHYD and provide the foundation for its subsequent studies.
Collapse
Affiliation(s)
- Keshen Qu
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - HuiJung Cha
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Huafa Que
- Department of Traditional Chinese Surgery, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Meng Xing
- Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, 710003, China.
| |
Collapse
|
34
|
Wang L, Pu X, Nie X, Wang D, Jiang H, Chen Y, Pang L, Wang S, Wang X, Xu Z, Fu C, Lin D, Zhang J. Integrated serum pharmacochemistry and network pharmacological analysis used to explore possible anti-rheumatoid arthritis mechanisms of the Shentong-Zhuyu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113988. [PMID: 33667569 DOI: 10.1016/j.jep.2021.113988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong-Zhuyu decoction (STZYD) has been recognized by the Chinese National Administration of Traditional Chinese Medicine (TCM) as a classic TCM formula. Use of STZYD has shown a satisfactory clinical therapeutic outcome for rheumatoid arthritis (RA); despite this, its bioactive chemical composition and relevant mechanism(s) of this action have not been clearly elucidated. AIM OF THE STUDY To explore the bioactive chemical composition of STZYD used for RA treatment and its possible mechanism(s) of action. MATERIALS AND METHODS Serum pharmacochemistry mediated by the UPLC-Q-Exactive MS/MS method was employed to identify the absorbed phytochemical compounds in serum derived from STZYD, which were commonly considered as the potential bioactive compounds. And then, these components were used to construct a compound-target network for RA using a network pharmacology approach, to predict the possible biological targets of STZYD along with potential signaling pathways. Afterwards, we established a Complete Freund's adjuvant (CFA)-induced RA rat model, and observed the anti-RA effect of STZYD by a series of indexes, including foot swelling, ankle diameter, arthritis score, morphological and radiographic analysis, serum inflammatory factors, and histopathological analysis of synovial tissues. Particularly, the predicted pathway by the combination of serum pharmacochemistry and network pharmacology was further validated using RT-qPCR, Western blot, and immunohistochemical analyses in animal experiment. RESULTS Totally, 38 compounds derived from STZYD have been identified by serum sample analysis. Based on it, 387 genes related to these identified compounds in STZYD and 3807 genes related to RA were collected by network pharmacology. Critically, KEGG analysis indicated that the PI3K/AKT signaling pathway was recommended as one of the main pathway related to anti-RA effect of STZYD. Experimentally, STZYD significantly alleviated CFA-induced arthritis without any visible side-effects. Compared to the RA model group without any treatment, the treatment of STZYD significantly reduced the expression of both mRNA and protein targets in the PI3K/AKT signaling pathway. Furthermore, this result was also corroborated by immunohistochemistry analysis. All these studies could effectively corroborate the predicted result as above, suggested that the feasibility of this integrated strategy. CONCLUSION This study provided a useful strategy to identify bioactive compounds and the potential mechanisms for TCM formula by integrating serum pharmacochemistry and network pharmacology.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiulan Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xin Nie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Lan Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shengju Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhiyi Xu
- Chengdu Huasun Technology Group Inc., Ltd., Chengdu, 611731, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dasheng Lin
- Chengdu Huasun Technology Group Inc., Ltd., Chengdu, 611731, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
35
|
Chen J, Li LF, Hu XR, Wei F, Ma S. Network Pharmacology-Based Strategy for Elucidating the Molecular Basis Forthe Pharmacologic Effects of Licorice ( Glycyrrhiza spp.). Front Pharmacol 2021; 12:590477. [PMID: 33995004 PMCID: PMC8114075 DOI: 10.3389/fphar.2021.590477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Licorice (Glycyrrhiza spp.) is used widely in traditional Chinese medicine (TCM) due to its numerous pharmacologic effects. However, the mechanisms of action of the chemical constituents of licorice and their structure–function relationships are not fully understood. To address these points, we analyzed the chemical compounds in licorice listed in the TCM Systems Pharmacology database and TCM Integrated database. Target proteins of the compounds were predicted using Integrative Pharmacology-based Research Platform of TCM v2.0. Information on the pharmacologic effects of licorice was obtained from the 2020 Chinese Pharmacopoeia, and disease-related genes that have been linked to these effects were identified from the Encyclopedia of TCM database. Pathway analyses using the Kyoto Encyclopedia of Genes and Genomes database were carried out for target proteins, and pharmacologic networks were constructed based on drug target–disease-related gene and protein–protein interactions. A total of 451 compounds were analyzed, of which 211 were from the medicinal parts of the licorice plant. The 241 putative targets of 106 bioactive compounds in licorice comprised 52 flavonoids, 47 triterpenoids, and seven coumarins. Four distinct pharmacologic effects of licorice were defined: 61 major hubs were the putative targets of 23 compounds in heat-clearing and detoxifying effects; 68 were targets of six compounds in spleen-invigorating and qi-replenishing effects; 28 were targets of six compounds in phlegm-expulsion and cough-suppressant effects; 25 compounds were targets of six compounds in spasm-relieving and analgesic effects. The major bioactive compounds of licorice were identified by ultra-high-performance liquid chromatography–quadrupole time-of-flight–tandem mass spectrometry. The anti-inflammatory properties of liquiritin apioside, liquiritigenin, glycyrrhizic acid and isoliquiritin apioside were demonstrated by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Liquiritin apioside, liquiritigenin, isoliquiritin, isoliquiritin apioside, kaempferol, and kumatakenin were the main active flavonoids, and 18α- and 18β-glycyrrhetinic acid were the main active triterpenoids of licorice. The former were associated with heat-clearing and detoxifying effects, whereas the latter were implicated in the other three pharmacologic effects. Thus, the compounds in licorice have distinct pharmacologic effects according to their chemical structure. These results provide a reference for investigating the potential of licorice in treatment of various diseases.
Collapse
Affiliation(s)
- Jia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiao-Ru Hu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
36
|
Li X, Zhang C, Hui H, Tan Z. Effect of Gegenqinlian decoction on intestinal mucosal flora in mice with diarrhea induced by high temperature and humidity treatment. 3 Biotech 2021; 11:83. [PMID: 33505838 PMCID: PMC7815854 DOI: 10.1007/s13205-020-02628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
The objective of this study is to investigate the regulation effects of the active ingredients in Gegenqinlian Decoction (GD) on the intestinal mucosal flora of mice with diarrhea induced by high temperature and humidity based on systems pharmacology approach. Fifteen mice were randomly assigned to three equal groups of five mice, namely control (ctcm) group, model (ctmm) group and treatment (cttm) group. Mice in the cttm group were given 20 mL/kg of GD and sterile water was used as a placebo control twice a day for four consecutive days. We used the third-generation molecular high-throughput sequencing technology to measure the intestinal mucosal flora changes in mice. Combined with network pharmacology to predict the medicinal substances and action targets of GD against diarrhea. Results showed that Operational Taxonomic Unit (OTU) number and Alpha diversity in the intestinal mucosal flora of cttm group recovered and higher than that of the ctcm group. There were differences in the community structure between the ctmm and cttm groups in the Principal Coordinates Analysis (PCoA). The relative abundance results indicated dominant bacteria species (such as Lactobacillus crispatus, Muribaculum intestinal, Neisseria mucosa) in the intestinal mucosa of the three groups. Moreover, we screened out 146 active ingredients in GD corresponding to 252 component targets, and 328 disease targets in diarrhea to obtain 31 drug-disease common targets. Protein-protein interaction (PPI) networks mainly involved the core proteins such as Tumor necrosis factor (TNF) and Interleukin-6 (IL-6). Enrichment analyses showed that GD played a role in the treatment of diarrhea by regulating the hypoxia inducible factor-1 (HIF-1), vascular endothelial growth factor (VEGF) and adipocytokine signaling pathways and so on. In brief, the active ingredients of GD could intervene from oxidative stress and inflammatory response through multiple targets and multiple channels to adjust the balance of intestinal mucosa flora, thereby playing a role in the treatment of diarrhea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02628-0.
Collapse
Affiliation(s)
- Xiaoya Li
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Chenyang Zhang
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Huaying Hui
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan Province China
| |
Collapse
|
37
|
Song Y, Yang J, Jing W, Wang Q, Liu Y, Cheng X, Ye F, Tian J, Wei F, Ma S. Systemic elucidation on the potential bioactive compounds and hypoglycemic mechanism of Polygonum multiflorum based on network pharmacology. Chin Med 2020; 15:121. [PMID: 33292335 PMCID: PMC7672844 DOI: 10.1186/s13020-020-00401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes is a complex metabolic disease characterized by hyperglycemia, plaguing the whole world. However, the action mode of multi-component and multi-target for traditional Chinese medicine (TCM) could be a promising treatment of diabetes mellitus. According to the previous research, the TCM of Polygonum multiflorum (PM) showed noteworthy hypoglycemic effect. Up to now, its hypoglycemic active ingredients and mechanism of action are not yet clear. In this study, network pharmacology was employed to elucidate the potential bioactive compounds and hypoglycemic mechanism of PM. METHODS First, the compounds with good pharmacokinetic properties were screened from the self-established library of PM, and the targets of these compounds were predicted and collected through database. Relevant targets of diabetes were summarized by searching database. The intersection targets of compound-targets and disease-targets were obtained soon. Secondly, the interaction net between the compounds and the filtered targets was established. These key targets were enriched and analyzed by protein-protein interactions (PPI) analysis, molecular docking verification. Thirdly, the key genes were used to find the biologic pathway and explain the therapeutic mechanism by genome ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis. Lastly, the part of potential bioactive compounds were under enzyme activity inhibition tests. RESULTS In this study, 29 hypoglycemic components and 63 hypoglycemic targets of PM were filtrated based on online network database. Then the component-target interaction network was constructed and five key components resveratrol, apigenin, kaempferol, quercetin and luteolin were further obtained. Sequential studies turned out, AKT1, EGFR, ESR1, PTGS2, MMP9, MAPK14, and KDR were the common key targets. Docking studies indicated that the bioactive compounds could stably bind the pockets of target proteins. There were 38 metabolic pathways, including regulation of lipolysis in adipocytes, prolactin signaling pathway, TNF signaling pathway, VEGF signaling pathway, FoxO signaling pathway, estrogen signaling pathway, linoleic acid metabolism, Rap1 signaling pathway, arachidonic acid metabolism, and osteoclast differentiation closely connected with the hypoglycemic mechanism of PM. And the enzyme activity inhibition tests showed the bioactive ingredients have great hypoglycemic activity. CONCLUSION In summary, the study used systems pharmacology to elucidate the main hypoglycemic components and mechanism of PM. The work provided a scientific basis for the further hypoglycemic effect research of PM and its monomer components, but also provided a reference for the secondary development of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenguang Jing
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Fei Ye
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jinying Tian
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China.
| |
Collapse
|
38
|
Li J, Luo H, Liu X, Zhang J, Zhou W, Guo S, Chen X, Liu Y, Jia S, Wang H, Li B, Cheng G, Wu J. Dissecting the mechanism of Yuzhi Zhixue granule on ovulatory dysfunctional uterine bleeding by network pharmacology and molecular docking. Chin Med 2020; 15:113. [PMID: 33110441 PMCID: PMC7584092 DOI: 10.1186/s13020-020-00392-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Yuzhi Zhixue Granule (YZG) is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG. Methods The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein–protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules. Results The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds. Conclusion This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.
Collapse
Affiliation(s)
- Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000 China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000 China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| |
Collapse
|
39
|
Xu W, Chen S, Wang X, Wu H, Tahara K, Tanaka S, Sugiyama K, Yamada H, Sawada T, Hirano T. Effects of sinomenine on the proliferation, cytokine production, and regulatory T-cell frequency in peripheral blood mononuclear cells of rheumatoid arthritis patients. Drug Dev Res 2020; 82:251-258. [PMID: 33006164 DOI: 10.1002/ddr.21748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022]
Abstract
Sinomenine (SN) is a plant-derived alkaloid isolated from Caulis Sinomenii. It has been approved by the State Food and Drug Administration of China for treating rheumatoid arthritis (RA) nearly 20 years ago. To investigate the anti-RA mechanism of SN, a lot of scholars reported the immunosuppressive effect of SN on T lymphocytes. We continued to evaluate the suppressive function of SN by using human peripheral blood mononuclear cells (PBMCs) isolated from RA patients. As the positive control, 10 ng/ml of methylprednisolone (MP) showed the antiproliferation effect on mitogen-activated PBMCs of RA patients significantly (*p < .05). Meanwhile, MP decreased the frequency of CD4+ CD25+ T cells and suppressed the secretion of inflammatory Th1/Th2/Th17 cytokines such as IL-4, IL-6, IL-10, IL-17, IFN-γ, and TNF-α. However, SN at concentrations of 0.3-30 μM, showed little suppressive effects on the proliferation of PBMCs of RA patients. We did not observe any suppressive effects of SN on percentages of CD4+ T cells and CD4+ CD25+ T cells in the mitogen-activated PBMCs of RA patients. The influence of SN on the percentage of CD4+ CD25+ Foxp3+ T cells was also limited. Finally, even 30 μM of SN did not influence the secretion of Th1/Th2/Th17 cytokine significantly. The present study provided evidence that anti-RA mechanism of SN seems not to be related with the suppressive effects on peripheral T cells.
Collapse
Affiliation(s)
- Wencheng Xu
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China.,Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shuhe Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Institute of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hongguang Wu
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Koichiro Tahara
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Haruki Yamada
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
40
|
Yang HJ, Kong B, Shuai W, Zhang JJ, Huang H. Shensong Yangxin Protects Against Metabolic Syndrome-Induced Ventricular Arrhythmias by Inhibiting Electrical Remodeling. Front Pharmacol 2020; 11:993. [PMID: 32733242 PMCID: PMC7363804 DOI: 10.3389/fphar.2020.00993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shensong Yangxin (SSYX) is a traditional Chinese medicine, which has been proven to improve the clinical symptoms of arrhythmia. However, the role of SSYX in metabolic syndrome (MetS)-induced electrical remodeling remains to be fully elucidated. Here, we sought to clarify whether SSYX can alter the electrophysiological remodeling of cardiac myocytes from MetS rats by regulating transient outward potassium current (Ito) and calcium current (ICa-L). Male Wistar rats were subjected to 16 weeks of high-carbohydrate, high-fat to produce a MetS model group. SSYX (0.4 g/kg) was administrated by daily gavage 8 weeks following high-carbohydrate, high-fat for 8 weeks. In vivo electrophysiological study was performed to evaluated ventricular arrhythmias (VA) vulnerability and electrophysiological properties. The potential electrical mechanisms were estimated by whole-cell patch-clamp and molecular analysis. The H9C2 cells were used to verify the protective role of SSYX in vitro. After 16-week high-carbohydrate, high-fat feeding, MetS model rats showed increased body weight (BW), blood pressure (BP), blood sugar (BS), heart rate (HR) and heart weights to tibia length (HW/TL) ratio. Furthermore, MetS rats depicted increased VA inducibility, shortened effective refractory period (ERP) and prolonged action potential duration (APD). Lower ICa-L and Ito current densities were observed in MetS rats than CTL rats. Additionally, MetS rats exhibited significantly increased cardiac fibrosis, decreased Cx43 expression and protein levels of Cav1.2, Kv4.2, Kv4.3 than CTL group. As expected, these MetS-induced effects above were reversed when SSYX was administrated. Mechanistically, SSYX administrated significantly down-regulated the TLR4/MyD88/CaMKII signaling pathway both in vivo and in vitro. Collectively, our data indicated that the electrical remodeling induced by MetS contributed to the increased VA susceptibility. SSYX protects against MetS-induced VA by inhibiting electrical remodeling through TLR4/MyD88/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Hong-Jie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
41
|
Liang M, Yan L, Mei Z, Luo Y, Hou X, Feng Z. Methodological and reporting quality evaluation of meta-analyses on the Chinese herbal preparation Zheng Qing Feng Tong Ning for the treatment of rheumatoid arthritis. BMC Complement Med Ther 2020; 20:195. [PMID: 32586308 PMCID: PMC7318442 DOI: 10.1186/s12906-020-02978-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Zheng Qing Feng Tong Ning (ZQFTN) is a sinomenine (SIN) preparation that has been used in clinical practice. Our study aimed to assess the methodological and reporting quality of meta-analyses on the Chinese herbal formula ZQFTN for the treatment of rheumatoid arthritis (RA). METHODS Systematic searches were carried out with the 5 following electronic databases from inception to July 2019: China National Knowledge Infrastructure (CNKI), Wanfang, VIP database for Chinese technical periodicals (VIP), Cochrane Library and PubMed. The quality of the methodology and reporting was measured with the assessment of multiple systematic reviews 2 (AMSTAR 2) scale, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). RESULTS Eight studies were identified. Among the 16 items of the AMSTAR 2 scale, four items were optimally reported ("Y" =100% of the items), and another four items were poorly reported ("Y" =0% of the items). Only 2 studies received a good overall score ("Y" ≥50% of the items). Regarding the PRISMA statement, the scores of 5 studies were lower than the average score (17.69), indicating that the quality of the reports was very low. In terms of the GRADE, none of the 61 results were of high quality (0.0%). Fifteen results were of medium quality (25%), 34 were of low quality (55%), and 12 were of very low quality (20%). Among the five downgrading factors, deviation risk (n = 61, 100%) was the most common downgrading factor, followed by inconsistency (n = 30, 50%), publication bias (n = 17, 28%), inaccuracy (n = 11, 18%) and indirectness (n = 0, 0%). CONCLUSIONS The methodological and reporting quality of the meta-analyses and systematic reviews in the included studies are less than optimal, and researchers should undergo additional training and follow the AMSTAR 2 scale, PRISMA statement and GRADE to design high-quality studies in the future.
Collapse
Affiliation(s)
- Mingge Liang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
| | - Lan Yan
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China
| | - Xiaoqiang Hou
- Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Rheumatology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443003, Hubei, China.
| |
Collapse
|
42
|
Gu S, Xue Y, Zhang Y, Chen K, Xue S, Pan J, Tang Y, Zhu H, Wu H, Dou D. An Investigation of the Mechanism of Rapid Relief of Ulcerative Colitis Induced by Five-flavor Sophora Flavescens Enteric-coated Capsules Based on Network Pharmacology. Comb Chem High Throughput Screen 2020; 23:239-252. [PMID: 32116186 PMCID: PMC7475943 DOI: 10.2174/1386207323666200302121711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
Abstract
AIM AND OBJECTIVE Five-Flavor Sophora flavescens Enteric-Coated Capsules (FSEC) are the only proprietary Chinese medicine approved for the treatment of ulcerative colitis (UC) in China. Phase II and III clinical trials have shown that the curative effect of FSEC in relieving UC was not inferior to that of mesalazine granules and enteric-coated tablets, but its pharmacological mechanism is unclear. Therefore, the network pharmacology is used to reveal the more comprehensive effective components and targets of FSEC in the treatment of UC. METHODS We screened the components of FSEC based on the TCMSP database, determined the action targets of these compounds through target fishing, and integrated the UC disease targets of several disease gene databases. The FSEC-UC composite targets were obtained by matching the two results, and then a PPI network was constructed to analyze the relationship between these targets, and the core targets were selected by topological correlation parameters. Finally, GO-BP and KEGG enrichment analyses were carried out using the clusterProfiler software package. RESULTS One hundred and sixty active components of FSEC were identified and 77 targets were obtained. Of these, 30 core targets were the main targets of FESC in the treatment of UC. And quercetin, kaempferol, luteolin and mangiferin were regarded as the core active components of FSEC. The results screened by GO and KEGG enrichment analysis showed that FSEC played a comprehensive therapeutic role in immune recognition, anti-inflammation and antioxidation mainly through IL-17, TNF, Toll-like receptor, NF-kappa B, and Th17 cell differentiation. CONCLUSION The molecular mechanism of UC remission induced by FSEC was predicted by network pharmacology. These findings provide an important theoretical basis for further study of the effective substances and mechanism of FSEC in the treatment of UC.
Collapse
Affiliation(s)
- Sizhen Gu
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Xue
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yuli Zhang
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Kanjun Chen
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shigui Xue
- Digestive Endoscopy Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ji Pan
- Digestive Endoscopy Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yini Tang
- Digestive Endoscopy Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hui Zhu
- Emergency Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Huan Wu
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Danbo Dou
- Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|