1
|
Chauhan P, Wadhwa K, Singh G, Gupta S, Iqbal D, Abomughaid MM, Almutary AG, Mishra PC, Nelson VK, Jha NK. Exploring complexities of Alzheimer's disease: New insights into molecular and cellular mechanisms of neurodegeneration and targeted therapeutic interventions. Ageing Res Rev 2024:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD), the common form of dementia globally, is a complex condition including neurodegeneration; shares incompletely known pathogenesis. Signal transduction and biological activities, including cell metabolism, growth, and death are regulated by different signaling pathways including AKT/MAPK, Wnt, Leptin, mTOR, ubiquitin, Sirt1, and insulin. Absolute evidence linking specific molecular pathways with the genesis and/or progression of AD is still lacking. Changes in gut microbiota and blood-brain barrier also cause amyloid β aggregation in AD. The current review reports significant characteristics of various signaling pathways, their relationship with each other, and how they interact in disease genesis and/or progression. Nevertheless, due to the enormous complexity of the brain and numerous chemical linkages between these pathways, the use of signaling pathways as possible targets for drug development against AD is minimal. Currently, there is no permanent cure for AD, and there is no way to stop brain cell loss. This review also aimed to draw attention to the role of a novel group of signaling pathways, which can be collectively dubbed "anti-AD pathways", in multi-target therapy for AD, where cellular metabolic functions are severely impaired. Thus, different hypotheses have been formulated and elaborated to explain the genesis of AD, which can be further explored for drug development too.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Saurabh Gupta
- Deparment of Biotechnology, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
2
|
Pomierny B, Krzyżanowska W, Skórkowska A, Budziszewska B, Pera J. Neuroprotective Effects of VGLUT1 Inhibition in HT22 Cells Overexpressing VGLUT1 Under Oxygen Glucose Deprivation Conditions. Neuromolecular Med 2024; 26:35. [PMID: 39179680 PMCID: PMC11343943 DOI: 10.1007/s12017-024-08803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.
Collapse
Affiliation(s)
- B Pomierny
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland.
- BioImaging Laboratory, Centre for the Development of Therapies for Civilizational and Age-Related Diseases (CDT-CARD), Kraków, Poland.
| | - W Krzyżanowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - A Skórkowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland
- BioImaging Laboratory, Centre for the Development of Therapies for Civilizational and Age-Related Diseases (CDT-CARD), Kraków, Poland
| | - B Budziszewska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - J Pera
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
3
|
Wang M, Wang P, Li B, Zhao G, Zhang N, Cao R. Protein inhibitor of activated STAT1 (PIAS1) alleviates cerebral infarction and inflammation after cerebral ischemia in rats. Heliyon 2024; 10:e24743. [PMID: 38617924 PMCID: PMC11015098 DOI: 10.1016/j.heliyon.2024.e24743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 04/16/2024] Open
Abstract
Background Ischemic stroke is a severe disorder with high incidence, disability rate and mortality. Multiple pathogenesis mechanisms are involved in ischemic stroke, such as inflammation and neuronal cell apoptosis. Protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1) plays a crucial role in various biological processes, including inflammation. PIAS1 is also downregulated in ischemia-reperfusion injury and involved in the disease processes. However, the role of PIAS1 in cerebral ischemia is unclear. Methods Sprague-Dawley (SD) rats were induced with middle cerebral artery occlusion (MCAO). The role and mechanisms of PIAS1 in ischemic cerebral infarction were explored by Longa test, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, quantification of brain water content, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), Western blot and immunofluorescence assays. Results The expression of PIAS1 in MCAO-induced rat was declined compared to sham rats. Overexpression of PIAS1 reduced the Longa neurological scores, the percent of infarction area, the pathological abnormality, the escape latency of swimming and the percent of brain water content, and increased the number of platform crossings and time in the target quadrant in the MCAO-induced rats. Besides, overexpression of PIAS1 decreased the MCAO-induced the contents of IL-1β, IL-6 and TNF-α, but further elevated the concentrations of IL-10 in both sera and brain tissues. Moreover, overexpression of PIAS1 reversed the MCAO-induced apoptosis rate and the relative protein level of Bax, cleaved caspase3 and Bcl-2. Overexpression of PIAS1 also reversed the level of proteins involved in NF-κB pathway. Conclusion PIAS1 reduced inflammation and apoptosis, thereby alleviating ischemic cerebral infarction in MCAO-induced rats through regulation NF-κB pathway.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Pingzhi Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Bo Li
- Department of Rehabilitation Medicine, Shanxi Rongjun Hospital, Taiyuan, Shanxi, 030031, China
| | - Guohu Zhao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Nan Zhang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Ruifeng Cao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
4
|
Liu J, Gao T, Zhou B, Xu X, Zhai X, Yao Q, Chen X, Liu L, Cui W, Wu X. Fast green FCF prevents postoperative cognitive dysfunction via the downregulation of the P2X4 receptor in mice. Int Immunopharmacol 2023; 121:110462. [PMID: 37301120 DOI: 10.1016/j.intimp.2023.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a decline in cognitive function affecting the mental health of aged patients after surgery. The pathological mechanisms underlying POCD have not yet been clarified. The overexpression of the P2X4 receptor in the central nervous system (CNS) was reported to be associated with the onset of POCD. Fast green FCF (FGF), a widely used food dye, could decrease the expression of the P2X4 receptor in the CNS. This study aimed to explore whether FGF could prevent POCD via the down-regulation of CNS P2X4 receptor. Exploratory laparotomy under the anesthesia of fentanyl and droperidol was carried to establish an animal model of POCD in 10-12-months-olds mice. FGF significantly attenuated cognitive impairments and down-regulated the expression of the P2X4 receptor induced by surgery in mice. Moreover, the blockade of CNS P2X4 receptor by intrahippocampal injection of 5-BDBD induced cognitive-enhancing effects on POCD mice. In addition, the effects of FGF were abolished by ivermectin, which is a positive allosteric modulator of the P2X4 receptor. FGF also inhibited M1 polarization of microglia cells, decreased the phosphorylation of nuclear factor-κB (NF-κB), and reduced the production of pro-inflammatory cytokines. These results suggested that FGF produced anti-POCD cognitive-enhancing effects via down-regulation of the P2X4 receptor-associated neuroinflammation, providing a support that FGF might be a potential treatment for POCD.
Collapse
Affiliation(s)
- Jun Liu
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Tao Gao
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Bin Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaoxiao Xu
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaojie Zhai
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Qinghuan Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Xiaowei Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo 315012, China
| | - Wei Cui
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315211, China
| | - Xiang Wu
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| |
Collapse
|
5
|
Wu Q, Zou C. Microglial Dysfunction in Neurodegenerative Diseases via RIPK1 and ROS. Antioxidants (Basel) 2022; 11:antiox11112201. [PMID: 36358573 PMCID: PMC9686917 DOI: 10.3390/antiox11112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Microglial dysfunction is a major contributor to the pathogenesis of multiple neurodegenerative diseases. The neurotoxicity of microglia associated with oxidative stress largely depends on NF-κB pathway activation, which promotes the production and release of microglial proinflammatory cytokines and chemokines. In this review, we discuss the current literature on the essential role of the NF-κB pathway on microglial activation that exacerbates neurodegeneration, with a particular focus on RIPK1 kinase activity-dependent microglial dysfunction. As upregulated RIPK1 kinase activity is associated with reactive oxygen species (ROS) accumulation in neurodegenerative diseases, we also discuss the current knowledge about the mechanistic links between RIPK1 activation and ROS generation. Given RIPK1 kinase activity and oxidative stress are closely regulated with each other in a vicious cycle, future studies are required to be conducted to fully understand how RIPK1 and ROS collude together to disturb microglial homeostasis that drives neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Qiaoyan Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong District, Shanghai 201210, China
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong District, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Haike Rd, Pudong District, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
6
|
Mou CY, Xie YF, Wei JX, Wang QY, Le JY, Bao YJ, Zhang PP, Mao YC, Huang XH, Pan HB, Naman CB, Liu L, Liang HZ, Wu X, Xu J, Cui W. Rose Bengal inhibits β-amyloid oligomers-induced tau hyperphosphorylation via acting on Akt and CDK5 kinases. Psychopharmacology (Berl) 2022; 239:3579-3593. [PMID: 36221038 DOI: 10.1007/s00213-022-06232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES The research aimed to investigate if and how RB could prevent β-amyloid (Aβ) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS RB was tested in vitro (0.3-1 μM) and prevented Aβ oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aβ oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3β (GSK3β) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3β and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3β and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Chen-Ye Mou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yan-Fei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jia-Xin Wei
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qi-Yao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jing-Yang Le
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yong-Jie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Pan-Pan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yue-Chun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xing-Han Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Han-Bo Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Lin Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Hong-Ze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiang Wu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei Cui
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China. .,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Chronic multiple mild stress induces sustained adverse psychological states in rats. Neuroreport 2022; 33:669-680. [DOI: 10.1097/wnr.0000000000001832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Li RM, Xiao L, Zhang T, Ren D, Zhu H. Overexpression of fibroblast growth factor 13 ameliorates amyloid-β-induced neuronal damage. Neural Regen Res 2022; 18:1347-1353. [PMID: 36453422 PMCID: PMC9838149 DOI: 10.4103/1673-5374.357902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer's disease mouse models and patients, and that it plays a vital role in the learning and memory. However, the underlying mechanisms of fibroblast growth factor 13 in Alzheimer's disease remain unclear. In this study, we established rat models of Alzheimer's disease by stereotaxic injection of amyloid-β (Aβ1-42)-induced into bilateral hippocampus. We also injected lentivirus containing fibroblast growth factor 13 into bilateral hippocampus to overexpress fibroblast growth factor 13. The expression of fibroblast growth factor 13 was downregulated in the brain of the Alzheimer's disease model rats. After overexpression of fibroblast growth factor 13, learning and memory abilities of the Alzheimer's disease model rats were remarkably improved. Fibroblast growth factor 13 overexpression increased brain expression levels of oxidative stress-related markers glutathione, superoxide dismutase, phosphatidylinositol-3-kinase, AKT and glycogen synthase kinase 3β, and anti-apoptotic factor BCL. Furthermore, fibroblast growth factor 13 overexpression decreased the number of apoptotic cells, expression of pro-apoptotic factor BAX, cleaved-caspase 3 and amyloid-β expression, and levels of tau phosphorylation, malondialdehyde, reactive oxygen species and acetylcholinesterase in the brain of Alzheimer's disease model rats. The changes were reversed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings suggest that overexpression of fibroblast growth factor 13 improved neuronal damage in a rat model of Alzheimer's disease through activation of the phosphatidylinositol-3-kinase/AKT/glycogen synthase kinase 3β signaling pathway.
Collapse
Affiliation(s)
- Ruo-Meng Li
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Lan Xiao
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ting Zhang
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Dan Ren
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Hong Zhu
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China,Correspondence to: Hong Zhu, .
| |
Collapse
|
9
|
Xue W, Cui D, Qiu Y. Research Progress of Pyroptosis in Alzheimer's Disease. Front Mol Neurosci 2022; 15:872471. [PMID: 35782390 PMCID: PMC9244792 DOI: 10.3389/fnmol.2022.872471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a disease characterized by insidious and progressive neurodegeneration, with clinical syndromes of memory and visuospatial skills damage. The pathogenic mechanism of AD is complex in which neural inflammation and neuron death play important roles. Pyroptosis, an inflammatory programmed cell death, has been reported to be involved in neuron death. Pyroptosis is executed by the protein family of gasdermins which punch pores on plasma membrane when activated by the upstream signals including the activation of NLRP3 and caspases, and subsequently triggers the inflammatory cascades featured by the release of interleukin (IL) -1β and IL-18. Herein, we summarized the current research on the roles of neuron pyroptosis in AD, aiming to provide a comprehensive view of the molecular mechanisms underlying AD pathogenesis and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Weiyue Xue
- Department of Physical Education, Hunan University, Changsha, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha, China
| | - Ye Qiu
- Department of Biology, Hunan University, Changsha, China
| |
Collapse
|
10
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
11
|
Min JO, Strohäker T, Jeong BC, Zweckstetter M, Lee SJ. Chicago sky blue 6B inhibits α-synuclein aggregation and propagation. Mol Brain 2022; 15:27. [PMID: 35346306 PMCID: PMC8962151 DOI: 10.1186/s13041-022-00913-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abnormal deposition of α-synuclein aggregates in Lewy bodies and Lewy neurites is the hallmark lesion in Parkinson’s disease (PD). These aggregates, thought to be the culprit of disease pathogenesis, spread throughout the brain as the disease progresses. Agents that inhibit α-synuclein aggregation and/or spread of aggregates would thus be candidate disease-modifying drugs. Here, we found that Chicago sky blue 6B (CSB) may be such a drug, showing that it inhibits α-synuclein aggregation and cell-to-cell propagation in both in vitro and in vivo models of synucleinopathy. CSB inhibited the fibrillation of α-synuclein in a concentration-dependent manner through direct binding to the N-terminus of α-synuclein. Furthermore, both seeded polymerization and cell-to-cell propagation of α-synuclein were inhibited by CSB treatment. Notably, CSB alleviated behavioral deficits and neuropathological features, such as phospho-α-synuclein and astrogliosis, in A53T α-synuclein transgenic mice. These results indicate that CSB directly binds α-synuclein and inhibits its aggregation, thereby blocking α-synuclein cell-to-cell propagation.
Collapse
Affiliation(s)
- Joo-Ok Min
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea
| | - Timo Strohäker
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Byung-Chul Jeong
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.,Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
12
|
Liang T, Zhang Y, Wu S, Chen Q, Wang L. The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Front Pharmacol 2022; 13:845185. [PMID: 35250595 PMCID: PMC8889079 DOI: 10.3389/fphar.2022.845185] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Lin Wang,
| |
Collapse
|
13
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
15
|
Yang M, Jin L, Wu Z, Xie Y, Zhang P, Wang Q, Yan S, Chen B, Liang H, Naman CB, Zhang J, He S, Yan X, Zhao L, Cui W. PLGA-PEG Nanoparticles Facilitate In Vivo Anti-Alzheimer's Effects of Fucoxanthin, a Marine Carotenoid Derived from Edible Brown Algae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9764-9777. [PMID: 34404210 DOI: 10.1021/acs.jafc.1c00569] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The marine natural product fucoxanthin has been reported previously to produce anti-Alzheimer's disease (AD) neuroprotective effects in vitro and in vivo. Fucoxanthin was also demonstrated to be safe in preclinical and small population clinical studies, but the low bioavailability of fucoxanthin in the central nervous system (CNS) has limited its clinical applications. To overcome this, poly lactic-co-glycolic acid-block-polyethylene glycol loaded fucoxanthin (PLGA-PEG-Fuc) nanoparticles with diameter at around 200 nm and negative charge were synthesized and suggested to penetrate into the CNS. Loaded fucoxanthin could be liberated from PLGA-PEG nanoparticles by sustained released in the physiological environment. PLGA-PEG-Fuc nanoparticles were shown to significantly inhibit the formation of Aβ fibrils and oligomers. Moreover, these nanoparticles were taken up by both neurons and microglia, leading to the reduction of Aβ oligomers-induced neurotoxicity in vitro. Most importantly, intravenous injection of PLGA-PEG-Fuc nanoparticles prevented cognitive impairments in Aβ oligomers-induced AD mice with greater efficacy than free fucoxanthin, possibly via acting on Nrf2 and NF-κB signaling pathways. These results altogether suggest that PLGA-PEG nanoparticles can enhance the bioavailability of fucoxanthin and potentiate its efficacy for the treatment of AD, thus potentially enabling its future use for AD therapy.
Collapse
Affiliation(s)
- Mengxiang Yang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Lingli Jin
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zhuoying Wu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Panpan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Bojun Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Lingling Zhao
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
16
|
Vasilopoulou F, Escolano C, Pallàs M, Griñán-Ferré C. Microarray Analysis Revealed Inflammatory Transcriptomic Changes after LSL60101 Treatment in 5XFAD Mice Model. Genes (Basel) 2021; 12:1315. [PMID: 34573297 PMCID: PMC8468036 DOI: 10.3390/genes12091315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
I2-IR have been found dysregulated in patients with neurodegenerative diseases, such as Alzheimer's disease (AD), in which the importance of neuroinflammation in the establishment and maintenance of cognitive decline is well-documented. To research the implication of I2-IR in neuroinflammatory pathways altered in AD, we determined the expression profile of genes associated with inflammation in the 5XFAD model treated with LSL60101, a well-established I2-IR ligand. Thus, we performed a qPCR array containing 84 inflammation-related genes. Hierarchical clustering analysis revealed three gene clusters, suggesting that treatment with LSL60101 affects the gene expression associated with inflammation in the 5XFAD model. Furthermore, we evaluated the functions of the three clusters; thereby performing a pathway enrichment analysis using the GO database. As we expected, clusters 2 and 3 showed alterations in the inflammatory response, chemotaxis and the chemokine-mediated signaling pathway, among others. To validate previous results from the gene profiling analysis, the expression levels of a representative subset of mRNAs were selected according to the intensity of the observed changes and their biological relevance. Interestingly, changes induced by LSL60101 in the 5XFAD model were validated for several genes. These results suggest that treatment with LSL60101 in the 5XFAD model reverses the inflammatory process during the development of AD.
Collapse
Affiliation(s)
- Foteini Vasilopoulou
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (F.V.); (M.P.)
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (F.V.); (M.P.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028 Barcelona, Spain; (F.V.); (M.P.)
| |
Collapse
|
17
|
Xuan Z, Gu X, Yan S, Xie Y, Zhou Y, Zhang H, Jin H, Hu S, Mak MSH, Zhou D, Keung Tsim KW, Carlier PR, Han Y, Cui W. Dimeric Tacrine(10)-hupyridone as a Multitarget-Directed Ligand To Treat Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2462-2477. [PMID: 34156230 DOI: 10.1021/acschemneuro.1c00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, a multitarget-directed ligands (MTDLs) strategy has been developed to treat AD. We have previously designed and synthesized dimeric tacrine(10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognitive-enhancing ability in AD animal models. In this study, A10E could prevent cognitive impairments in APP/PS1 transgenic mice and β-amyloid (Aβ) oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aβ production and deposition, alleviate neuroinflammation, enhance BDNF expression, and elevate cholinergic neurotransmission in vivo. At nanomolar concentrations, A10E could inhibit Aβ oligomers-induced neurotoxicity via the activation of tyrosine kinase receptor B (TrkB)/Akt pathway in SH-SY5Y cells. Furthermore, Aβ oligomerization and fibrillization could be directly disrupted by A10E. Importantly, A10E at high concentrations did not produce obvious hepatotoxicity. Our results indicated that A10E could produce anti-AD neuroprotective effects via the inhibition of Aβ aggregation, the activation of the BDNF/TrkB pathway, the alleviation of neuroinflammation, and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results also suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinmei Gu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yiying Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haibo Jin
- Affiliated Hospital of Medical School Ningbo University and Ningbo City Third Hospital, Ningbo 315211, China
| | - Shengquan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Marvin S. H. Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | | | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
18
|
Zhang J, Zheng Y, Zhao Y, Zhang Y, Liu Y, Ma F, Wang X, Fu J. Andrographolide ameliorates neuroinflammation in APP/PS1 transgenic mice. Int Immunopharmacol 2021; 96:107808. [PMID: 34162168 DOI: 10.1016/j.intimp.2021.107808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease is a devastating neurodegenerative disorder, with no disease-modifying treatment available yet. There is increasing evidence that neuroinflammation plays a critical role in the pathogenesis of AD. Andrographolide (Andro), a labdane diterpene extracted from the herb Andrographis paniculata, has been reported to exhibit neuroprotective property in central nervous system diseases. However, its effects on Aβ and Aβ-induced neuroinflammation have not yet been studied. In the present study, we found that Andro administration significantly alleviated cognitive impairments, reduced amyloid-β deposition, inhibited microglial activation, and decreased the secretion of proinflammatory factors in APP/PS1 mice. Furthermore, transcriptome sequencing analysis revealed that Andro could significantly decrease the expression of Itgax, TLR2, CD14, CCL3, CCL4, TLR1, and C3ar1 in APP/PS1 mice, which was further validated by qRT-PCR. Our results suggest that Andro might be a potential therapeutic drug for AD by regulating neuroinflammation.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yu Liu
- Department of Medicine, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Fang Ma
- Department of Neurosurgery, Lushi People's Hospital, Henan 472200, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
19
|
Zhang D, Feng Y, Pan H, Xuan Z, Yan S, Mao Y, Xiao X, Huang X, Zhang H, Zhou F, Chen B, Chen X, Liu H, Yan X, Liang H, Cui W. 9-Methylfascaplysin exerts anti-ischemic stroke neuroprotective effects via the inhibition of neuroinflammation and oxidative stress in rats. Int Immunopharmacol 2021; 97:107656. [PMID: 33895476 DOI: 10.1016/j.intimp.2021.107656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This study was aimed to investigate the neuroprotective effects of 9-methylfascaplysin, a novel marine derivative derived from sponge, against middle cerebral artery occlusion/reperfusion (MCAO)-induced motor impairments, neuroinflammation and oxidative stress in rats. METHODS Neurological and behavioral tests were used to evaluate behavioral changes. The 2, 3, 5-triphenyltetrazolium chloride staining was used to determine infarct size and edema extent. Activated microglia/macrophage was analyzed by immunohistochemical staining of Iba-1. RT-PCR and ELISA were used to measure the expression of inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, CD16 and CD206. Western blotting analysis was performed to explore the activation of nuclear factor-κB (NF-κB) and NLRP3. The levels of oxidative stress were studied by evaluating the activities of superoxide dismutase, catalase and glutathione peroxidase. RESULTS Post-occlusion intracerebroventricular injection of 9-methylfascaplysin significantly attenuated motor impairments and infarct size in MCAO rats. Moreover, 9-methylfascaplysin reduced the activation of microglia/macrophage in ischemic penumbra as evidenced by the decreased Iba-1-positive area and the reduced expression of pro-inflammatory factors. Furthermore, 9-methylfascaplysin inhibited MCAO-induced oxidative stress and activation of NF-κB and NLRP3 inflammasome. CONCLUSION All the results suggested that 9-methylfascaplysin might produce neuroprotective effects against MCAO via the reduction of oxidative stress and neuroinflammation, simultaneously, possibly via the inhibition of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Difan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yi Feng
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hanbo Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yuechun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiao Xiao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinghan Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fei Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Bojun Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaowei Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315020, China.
| |
Collapse
|
20
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases. Biomed Pharmacother 2021; 138:111428. [PMID: 33667787 DOI: 10.1016/j.biopha.2021.111428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
In an ageing society, neurodegenerative diseases have attracted attention because of their high incidence worldwide. Despite extensive research, there is a lack of conclusive insights into the pathogenesis of neurodegenerative diseases, which limit the strategies for symptomatic treatment. Therefore, better elucidation of the molecular mechanisms involved in neurodegenerative diseases can provide an important theoretical basis for the discovery of new and effective prevention and treatment methods. The innate immune system is activated during the ageing process and in response to neurodegenerative diseases. Inflammasomes are multiprotein complexes that play an important role in the activation of the innate immune system. They mediate inflammatory reactions and pyroptosis, which are closely involved in neurodegeneration. There are different types of inflammasomes, although the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is the most common inflammasome; NLRP3 plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we will discuss the mechanisms that are involved in the activation of the NLRP3 inflammasome and its crucial role in the pathology of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. We will also review various treatments that target the NLRP3 inflammasome pathway and alleviate neuroinflammation. Finally, we will summarize the novel treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lin-Yu Wu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China; Hebei Key Laboratory of Critical Disease Mechanism and intervention, Shijiazhuang 050051, PR China.
| |
Collapse
|
21
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
22
|
Peng Y, Zhuang J, Ying G, Zeng H, Zhou H, Cao Y, Chen H, Xu C, Fu X, Xu H, Li J, Cao S, Chen J, Gu C, Yan F, Chen G. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinflammation 2020; 17:165. [PMID: 32450897 PMCID: PMC7247752 DOI: 10.1186/s12974-020-01830-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is closely associated with the poor prognosis in subarachnoid hemorrhage (SAH) patients. This study was aimed to determine the role of stimulator of IFN genes (STING), an essential regulator to innate immunity, in the context of SAH. METHODS A total of 344 male C57BL/6 J mice were subjected to endovascular perforation to develop a model of SAH. Selective STING antagonist C-176 and STING agonist CMA were administered at 30 min or 1 h post-modeling separately. To investigate the underlying mechanism, the AMPK inhibitor compound C was administered intracerebroventricularly at 30 min before surgery. Post-SAH assessments included SAH grade, neurological test, brain water content, western blotting, RT-PCR, and immunofluorescence. Oxygenated hemoglobin was introduced into BV2 cells to establish a SAH model in vitro. RESULTS STING was mainly distributed in microglia, and microglial STING expression was significantly increased after SAH. Administration of C-176 substantially attenuated SAH-induced brain edema and neuronal injury. More importantly, C-176 significantly alleviated both short-term and persistent neurological dysfunction after SAH. Meanwhile, STING agonist CMA remarkably exacerbated neuronal injury and deteriorated neurological impairments. Mechanically, STING activation aggravated neuroinflammation via promoting microglial activation and polarizing into M1 phenotype, evidenced by microglial morphological changes, as well as the increased level of microglial M1 markers including IL-1β, iNOS, IL-6, TNF-α, MCP-1, and NLRP3 inflammasome, while C-176 conferred a robust anti-inflammatory effect. However, all the mentioned beneficial effects of C-176 including alleviated neuroinflammation, attenuated neuronal injury and the improved neurological function were reversed by AMPK inhibitor compound C. Meanwhile, the critical role of AMPK signal in C-176 mediated anti-inflammatory effect was also confirmed in vitro. CONCLUSION Microglial STING yielded neuroinflammation after SAH, while pharmacologic inhibition of STING could attenuate SAH-induced inflammatory injury at least partly by activating AMPK signal. These data supported the notion that STING might be a potential therapeutic target for SAH.
Collapse
Affiliation(s)
- Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Guangyu Ying
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Hangzhe Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Jingyin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310000, China.
| |
Collapse
|
23
|
韩 芳, 刘 春, 杨 常, 孙 元. [Effect of directive differentiation of microglia by SN50 on hypoxia-caused neurons injury in mice]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:509-517. [PMID: 32291991 PMCID: PMC8171504 DOI: 10.7507/1002-1892.201905131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/26/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the effect and mechanism of directive differentiation of microglia by SN50 on hypoxia-caused neurons injury in mice. METHODS The microglia were isolated and purified from brain tissue of new-born BALB/c mice through differential velocity adherent and vibration technique. The quantity of the microglia was identified by immunofluorescence staining of inducible nitric oxide synthetase (iNOS) and ionized calcium binding adapter molecule 1 (Iba1) and real-time fluorescence quantitative PCR (qRT-PCR) for special expression genes [iNOS, CD32, and interlenkin 10 (IL-10)]. Then the microglia were cultured with SN50, and the expressions of nuclear factor κB (NF-κB), differentiation-related genes (iNOS, CD11b, IL-10, and CD206), and apoptosis were detected by Western blot, qRT-PCR, and flow cytometry, respectively. The hypoxia model of neuron was established, and the cell apoptosis was evaluated by MTT after 0, 2, 6, 12, 24, and 48 hours of anoxic treatment. The apoptosis related markers (Bcl-2 and Caspase-3) were measured by Western blot and flow cytometry. In addition, the neurons after anoxic treatment were co-cultured with SN50 treated microglia (experimental group) and normal microglia (control group) for 24 hours. And the cell viability and apoptosis related markers (Bcl-2 and Caspase-3) were also measured. RESULTS Immunofluorescence staining and qRT-PCR analysis showed that the cells expressed the specific proteins and genes of microglia. Compared with the normal microglia, the relative expressions of NF-κB protein and iNOS and CD11b mRNAs in the microglia treated with SN50 significantly decreased ( P<0.05), the relative expressions of IL-10 and CD206 mRNAs significantly increased ( P<0.05), and the cell apoptosis rate had no significant change ( P>0.05). Compared with the normal neurons, the cell viability, the relative expressions of Bcl-2 and Caspase-3 proteins after anoxic treatment significantly decreased ( P<0.05), while the relative expressions of cleaved-Caspase-3 protein and cell apoptosis rate of neurons significantly increased ( P<0.05). In the co-culture system, the cell viability, the relative expressions of Bcl-2 and Caspase-3 proteins were significantly higher in experimental group than those in control group ( P<0.05), while the relative expressions of cleaved-Caspase-3 protein and cell apoptosis rate were significantly lower in experimental group than those in control group ( P<0.05). CONCLUSION SN50 can induce the microglia differentiation into M2 type through NF-κB pathway. The SN50-induced microglia can protect neurons from hypoxic injury.
Collapse
Affiliation(s)
- 芳芳 韩
- 漯河医学高等专科学校医疗系(河南漯河 462002)Medical Treatment Department, Luohe Medical College, Luohe Henan, 462002, P.R.China
- 广州中医药大学针灸康复临床医学院(广州 510006)Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou Guangdong, 510006, P.R.China
| | - 春龙 刘
- 漯河医学高等专科学校医疗系(河南漯河 462002)Medical Treatment Department, Luohe Medical College, Luohe Henan, 462002, P.R.China
| | - 常青 杨
- 漯河医学高等专科学校医疗系(河南漯河 462002)Medical Treatment Department, Luohe Medical College, Luohe Henan, 462002, P.R.China
| | - 元华 孙
- 漯河医学高等专科学校医疗系(河南漯河 462002)Medical Treatment Department, Luohe Medical College, Luohe Henan, 462002, P.R.China
| |
Collapse
|