1
|
Wagner NRF, Fernandes R, Teixeira Frota Reichmann M, Lopes MCP, Welc LLS, Campos ACL. Use of Probiotics and Synbiotics in the Treatment of Small Intestinal Bacterial Overgrowth (SIBO) and Other Gastrointestinal Symptoms After Metabolic Bariatric Surgery: a Systematic Review and Meta-Analysis. Obes Surg 2024:10.1007/s11695-024-07599-2. [PMID: 39607556 DOI: 10.1007/s11695-024-07599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Metabolic bariatric surgery is considered the most effective treatment for severe obesity, however it may be associated with the development of Small Intestinal Bacterial Overgrowth (SIBO) and other gastrointestinal symptoms (GIS). This study conducted a systematic review and meta-analysis to evaluate the effects of probiotics or synbiotics on GIS and SIBO in post- metabolic bariatric surgery patients. Five studies that investigated the effect of probiotics or synbiotics in the treatment of post-surgery GIS were included in the review, with three focusing on SIBO. For the meta-analysis, three studies assessed GIS, and two examined SIBO. The results showed that probiotics did not offer significant benefits in treating GIS or SIBO in these patients.
Collapse
|
2
|
Zhang J, Chen Y, Guo X, Li X, Zhang R, Wang M, Zhu W, Yu K. The gut microbial metabolite indole-3-aldehyde alleviates impaired intestinal development by promoting intestinal stem cell expansion in weaned piglets. J Anim Sci Biotechnol 2024; 15:150. [PMID: 39511673 PMCID: PMC11545576 DOI: 10.1186/s40104-024-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Weaning stress-induced diarrhea is widely recognized as being associated with gut microbiota dysbiosis. However, it has been challenging to clarify which specific intestinal microbiota and their metabolites play a crucial role in the antidiarrhea process of weaned piglets. RESULTS In this study, we first observed that piglets with diarrhea exhibited a lower average daily gain and higher diarrhea score, and elevated levels of lipopolysaccharide (LPS) and D-lactate (D-LA) compared to healthy piglets. Subsequently, we analyzed the differences in intestinal microbial composition and metabolite levels between healthy and diarrheal weaned piglets. Diarrheal piglets demonstrated intestinal microbiota dysbiosis, characterized primarily by a higher Firmicutes to Bacteroidota ratio, a deficiency of Lactobacillus amylovorus and Lactobacillus reuteri, and an increased abundance of Bacteroides sp.HF-5287 and Bacteroides thetaiotaomicron. Functional profiling of the gut microbiota based on Kyoto Encyclopedia of Genes and Genomes (KEGG) data was performed, and the results showed that tryptophan metabolism was the most significantly inhibited pathway in piglets with diarrhea. Most tryptophan metabolites were detected at lower concentrations in diarrheal piglets than in healthy piglets. Furthermore, we explored the effects of dietary indole-3-aldehyde (IAld), a key tryptophan metabolite, on intestinal development and gut barrier function in weaned piglets. Supplementation with 100 mg/kg IAld in the diet increased the small intestine index and improved intestinal barrier function by promoting intestinal stem cell (ISC) expansion in piglets. The promotion of ISC expansion by IAld was also confirmed in porcine intestinal organoids. CONCLUSIONS These findings revealed that intestinal microbial tryptophan metabolite IAld alleviates impaired intestinal development by promoting ISC expansion in weaned piglets.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahui Chen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Wujiang Animal Health Inspection Institute, Suzhou, 215200, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Dai H, Wang J, Li Y, Lv Z. Hawthorn-leaf flavonoid alleviate intestinal health and microbial dysbiosis problems induced by glyphosate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116901. [PMID: 39178762 DOI: 10.1016/j.ecoenv.2024.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Glyphosate is the active ingredient in the herbicide (i.e., Roundup, Touchdown and Erasure), the safety of which has become a social concern. Hawthorn-leaf flavonoid (HF) possesses various biological functions, including antioxidant, regulating lipid metabolism and intestinal microbiota. Whether HF could reduce the health risk of pure glyphosate to birds remain unknown. The experiment aimed to evaluate the effects of pure glyphosate (25 mg/kg added to water) on the intestinal health and microbiota of chicks and the protective roles of HF (60 mg/kg added to the diet). Exposure to glyphosate decreased growth performance, ileal morphology structure, and antioxidant capacity, and increased the serum level of lipid and pro-inflammatory factors. 16S rRNA sequencing indicated that glyphosate decreased bacterial richness and the abundance of Lactobacillus, and increased proportions of pathogens in the ileum. Metabolomic results revealed that glyphosate increased the level of the cholic acid and fatty acids in the ileac digesta. Meanwhile, glyphosate down-regulated the protein expression associated with lipid transport, antioxidant and tight junction in the ileal mucosal tissue, and up-regulated the pro-inflammatory, oxidative stress proteins. However, dietary HF supplementation effectively mitigated the adverse effects of glyphosate and improved intestinal health of chicks. Therefore, dietary HF can ameliorate the harmful effects of glyphosate on birds, which highlights the potential application of HF in reducing the health risks.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujie Li
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Wu J, Wang H, Liao J, Ke L, Lu D, Deng B, Xu Z. Mitigation effects of plant carbon black on intestinal morphology, inflammation, antioxidant status, and microbiota in piglets challenged with deoxynivalenol. Front Immunol 2024; 15:1454530. [PMID: 39315103 PMCID: PMC11416923 DOI: 10.3389/fimmu.2024.1454530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Plant carbon black (PCB) is a new feed additive for zearalenone adsorption in China. However, information regarding whether PCB can effectively absorb deoxynivalenol (DON) is limited. Methods To explore this research gap, the present study examined the adsorption effectiveness of DON by PCB using a phosphate buffer, artificial gastric juice, and artificial intestinal juice. In a 21-day in vivo trial, 48 male piglets were randomly assigned to four treatment groups: (1) uncontaminated basal diet (CTR), (2) basal diet supplemented with 1 mg/kg PCB(PCB), (3) 2.3 mg/kg DON-contaminated diet (DON), and (4) 2.3 mg/kg DON-contaminated diet supplemented with 0.1% PCB (DON+PCB). Results When DON concentration was 1 µg/mL, the adsorption rate of PCB on DON in phosphate buffer systems (pH 2.0 and 6.0) and the artificial gastric and intestinal juices were 100%, 100%, 71.46%, and 77.20%, respectively. In the in vivo trial, the DON group significantly increased the DON+deepoxy-deoxynivalenol (DOM-1) content in serum as well as the inflammation cytokine proteins (interleukin-6, interleukin-8, and tumor necrosis factor-α) and mRNA expression of interleukin-6 and longchain acyl-CoA synthetase 4 in the jejunum and ileum. It decreased the villus height, goblet cells, mucosal thickness, and mRNA expression of Claudin-1 compared to the CTR group. In addition, DON decreased the Shannon and Simpson indices; reduced the relative abundances of Firmicutes, Lactobacillus, Candidatus_Saccharimonas, and Ruminococcus; and increased the relative abundances of Terrisporobacter and Clostridium_sensu_stricto_1 in the cecal content. Discussion In conclusion, these results suggest that PCB showed high adsorption efficacy on DON in vitro, and exhibit the protective effects against various intestinal toxicity manifestations in DON-challenged piglets.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hanyang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianling Liao
- Department of Techniques Developing, Fujian Baicaoshuang Biotechnology Co., Ltd., Nanping, China
| | - Linfu Ke
- Department of Techniques Developing, Fujian Baicaoshuang Biotechnology Co., Ltd., Nanping, China
| | - Deqiu Lu
- Department of Production Research and Development, Harbin PuFan Feed Co., Ltd., Harbin, China
| | - Bo Deng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziwei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Gong Z, Ye G, He X, He X. Effects of Tibetan Sheep-Derived Compound Probiotics on Growth Performance, Immune Function, Intestinal Tissue Morphology, and Intestinal Microbiota in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10339-8. [PMID: 39141211 DOI: 10.1007/s12602-024-10339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Probiotics play an important role in animal growth, immunity, and gut microbial balance and are now widely used in agriculture, food, and medicine. This study analysed the effects of different concentrations of Tibetan sheep compound probiotics on the immunity, tissue morphology, and intestinal microbiota of mice using histological, molecular, and 16S rRNA techniques. The results showed that the composite probiotics sourced from Tibetan sheep improved the growth performance of mice, increased the length of small intestinal villi and mucosal thickness, and enhanced the intestinal barrier function of mice. DZ-L and DZ-M significantly increased the mRNA expression levels of ZO-1, Occludin, and Claudin-1 mRNA. They also up-regulated IL-10 and TNF-β, and down-regulated TNF-α, IL-1β, and IL-8. The immune function of mice was enhanced, with DZ-M treatment having an extremely significant effect, while the effect of DZ-H treatment was slightly lower compared to DZ-L and DZ-M. In addition, the composition and diversity of the intestinal microbiota were modulated, and at the phylum level, the relative abundance of Firmicutes was higher in the DZ-M group, the relative abundance of Desulfobacterota, Actinobacteriota, and Patescibacteria was reduced in the probiotic complex group, and the relative abundance of Verrucomicrobiota was higher. At the genus level, the relative abundance of Muribaculaceae was higher in the DZ-L and DZ-M groups, and the relative abundance of Lachnospiraceae_NK4A136_group in the DZ-H group; and the relative abundance of Bacteroides and Roseburia in the composite probiotic group. This study can improve the reference for the development of new green feed additives instead of antibiotics, which will also further promote the development of the livestock industry.
Collapse
Affiliation(s)
- Zifeng Gong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, 810016, Qinghai, China
| | - Guisheng Ye
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China.
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, 810016, Qinghai, China.
| | - Xi He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, 810016, Qinghai, China
| | - Xiaolong He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
6
|
Wang Y, Li L, Chen S, Yu Z, Gao X, Peng X, Ye Q, Li Z, Tan W, Chen Y. Faecalibacterium prausnitzii-derived extracellular vesicles alleviate chronic colitis-related intestinal fibrosis by macrophage metabolic reprogramming. Pharmacol Res 2024; 206:107277. [PMID: 38945379 DOI: 10.1016/j.phrs.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Faecalibacterium prausnitzii (F. prausnitzii) has been recognized for its various intestinal and extraintestinal benefits to human. And reduction of F. prausnitzii has been linked to an increased risk of intestinal fibrosis in patients of Crohn's disease (CD). In this study, oral administration of either live F. prausnitzii or its extracellular vesicles (FEVs) can markedly mitigate the severity of fibrosis in mice induced by repetitive administration of DSS. In vitro experiment revealed that FEVs were capable of directing the polarization of peripheral blood mononuclear cells (PBMCs) towards an M2b macrophage phenotype, which has been associated with anti-fibrotic activities. This effect of FEV was found to be stable under various conditions that promote the development of pro-fibrotic M1/M2a/M2c macrophages. Proteomics and RNA sequencing were performed to uncover the molecular modulation of macrophages by FEVs. Notably, we found that FEVs reprogramed every metabolism of macrophages by damaging the mitochondria, and inhibited oxidative phosphorylation and glycolysis. Moreover, FEV-treated macrophages showed a decreased expression of PPARγ and an altered lipid processing phenotype characterized by decreased cholesterol efflux, which may promote energy reprogramming. Taken together, these findings identify FEV as a driver of macrophage reprogramming, suggesting that triggering M2b macrophage polarization by oral admiration of FEV may serve as strategy to alleviate hyperfibrotic intestine conditions in CD.
Collapse
Affiliation(s)
- Ying Wang
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Linjie Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuze Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zonglin Yu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Gao
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiujuan Ye
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zitong Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Tan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Integrative Clinical Microecology Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Yang Z, Ni J, Sun X, Cui Q, Zhang X, Zhang M, Zhu X, Wu Z, Tang C, Zhu J, Mao H, Liu K, Wang C, Xing C, Zhu J. The prevention effect of Limosilactobacillus reuteri on acute kidney injury by regulating gut microbiota. Microbiol Immunol 2024; 68:213-223. [PMID: 38747013 DOI: 10.1111/1348-0421.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 07/09/2024]
Abstract
Acute kidney injury (AKI) has considerably high morbidity and mortality but we do not have proper treatment for it. There is an urgent need to develop new prevention or treatment methods. Gut microbiota has a close connection with renal diseases and has become the new therapy target for AKI. In this study, we found the oral administration of the probiotic Limosilactobacillus reuteri had a prevention effect on the AKI induced by lipopolysaccharide (LPS). It reduced serum concentration of creatinine and urea nitrogen and protected the renal cells from necrosis and apoptosis. Meanwhile, L. reuteri improved the gut barrier function, which is destroyed in AKI, and modulated the gut microbiota and relevant metabolites. Compared with the LPS group, L. reuteri increased the proportion of Proteobacteria and reduced the proportion of Firmicutes, changing the overall structure of the gut microbiota. It also influenced the fecal metabolites and changed the metabolite pathways, such as tyrosine metabolism, pentose and glucuronate interconversions, galactose metabolism, purine metabolism, and insulin resistance. These results showed that L. reuteri is a potential therapy for AKI as it helps in sustaining the gut barrier integrity and modulating gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Juan Ni
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xuewei Sun
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Binzhou Medical University, Yantai, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing, China
| | - Xinrui Zhang
- Huadong Medical Institute of Biotechniques, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyan Zhang
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojing Zhu
- Department of Pathlogy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihan Wu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | | | - Jingfeng Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Kang Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Chunhui Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Basic Medical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Xia J, Cui Y, Guo Y, Liu Y, Deng B, Han S. The Function of Probiotics and Prebiotics on Canine Intestinal Health and Their Evaluation Criteria. Microorganisms 2024; 12:1248. [PMID: 38930630 PMCID: PMC11205510 DOI: 10.3390/microorganisms12061248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Maintaining homeostasis within the intestinal microbiota is imperative for assessing the health status of hosts, and dysbiosis within the intestinal microbiota is closely associated with canine intestinal diseases. In recent decades, the modulation of canine intestinal health through probiotics and prebiotics has emerged as a prominent area of investigation. Evidence indicates that probiotics and prebiotics play pivotal roles in regulating intestinal health by modulating the intestinal microbiota, fortifying the epithelial barrier, and enhancing intestinal immunity. This review consolidates literature on using probiotics and prebiotics for regulating microbiota homeostasis in canines, thereby furnishing references for prospective studies and formulating evaluation criteria.
Collapse
Affiliation(s)
| | | | | | | | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.X.); (Y.C.); (Y.G.); (Y.L.)
| | - Sufang Han
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.X.); (Y.C.); (Y.G.); (Y.L.)
| |
Collapse
|
10
|
Khalid F, Aamer H, Tarique H, Yawar M, Tariq M, Shaheryar M, Hasan AH. Knowledge, Attitude, and Practice of Healthcare Professionals and Medical Students Regarding Probiotics and Prebiotics in Lahore, Pakistan: A Cross-Sectional Study. Cureus 2024; 16:e61788. [PMID: 38975523 PMCID: PMC11227422 DOI: 10.7759/cureus.61788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Objective This study aims to explore healthcare professionals' and medical students' knowledge and attitudes toward probiotics and prebiotics in various health conditions. It seeks to identify any obstacles associated with their use and gain insight into the healthcare community's perspectives on these supplements. Methods A descriptive cross-sectional study was conducted using a preformed questionnaire. Data was collected by a convenience sampling technique during October and November 2023. A total of 417 responses were collected, and the data analysis was performed using IBM SPSS Statistics for Windows, Version 20.0 (Released 2011; IBM Corp., Armonk, NY, USA). Results In the study, 198 participants (47.5%) were doctors, and 219 (52.5%) were medical students. Only 81 (37%) students had good knowledge about probiotics, while 36 (16.4%) had good knowledge about prebiotics. Poor knowledge was associated with a poor knowledge, attitude, and practice (KAP) score, indicating a link between knowledge, attitude, and practice. Similarly, only 96 (48.5%) doctors had good knowledge about probiotics, while 45 (22.7%) of them had good knowledge about prebiotics. The study found that a lack of knowledge was the primary barrier to the use of prebiotics and probiotics, as reported by 226 (54.4%) participants. The chi-square test showed no significant correlation between participants' demographics and their KAP. Conclusion The majority of respondents demonstrated poor knowledge and practices regarding probiotics and prebiotics, which can be attributed to insufficient awareness of their benefits. Education tools like curriculum and training programs should include evidence-based information to raise awareness among healthcare professionals about their benefits and address concerns associated with their use in treating patients.
Collapse
Affiliation(s)
- Fatima Khalid
- Community Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | - Hira Aamer
- Internal Medicine, Mayo Hospital, Lahore, PAK
| | | | | | - Maha Tariq
- Internal Medicine, Mayo Hospital, Lahore, PAK
| | | | | |
Collapse
|
11
|
A C, Zhang B, Chai J, Tu Z, Yan Z, Wu X, Wei M, Wu C, Zhang T, Wu P, Li M, Chen L. Multiomics Reveals the Microbiota and Metabolites Associated with Sperm Quality in Rongchang Boars. Microorganisms 2024; 12:1077. [PMID: 38930459 PMCID: PMC11205614 DOI: 10.3390/microorganisms12061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we investigated the correlation between the composition and function of the gut microbiota and the semen quality of Rongchang boars. Significant differences in gut microbial composition between boars with high (group H) and low (group L) semen utilization rates were identified through 16S rRNA gene sequencing, with 18 differential microbes observed at the genus level. Boars with lower semen utilization rates exhibited a higher relative abundance of Treponema, suggesting its potential role in reducing semen quality. Conversely, boars with higher semen utilization rates showed increased relative abundances of Terrisporobacter, Turicibacter, Stenotrophomonas, Clostridium sensu stricto 3, and Bifidobacterium, with Stenotrophomonas and Clostridium sensu stricto 3 showing a significant positive correlation with semen utilization rates. The metabolomic analyses revealed higher levels of gluconolactone, D-ribose, and 4-pyridoxic acid in the H group, with 4 pyridoxic acid and D-ribose showing a significant positive correlation with Terrisporobacter and Clostridium sensu stricto 3, respectively. In contrast, the L group showed elevated levels of D-erythrose-4-phosphate, which correlated negatively with Bifidobacterium and Clostridium sensu stricto 3. These differential metabolites were enriched in the pentose phosphate pathway, vitamin B6 metabolism, and antifolate resistance, potentially influencing semen quality. These findings provide new insights into the complex interplay between the gut microbiota and boar reproductive health and may offer important information for the discovery of disease biomarkers and reproductive health management.
Collapse
Affiliation(s)
- Chao A
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625041, China
| | - Bin Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
| | - Jie Chai
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Zhi Tu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Zhiqiang Yan
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Xiaoqian Wu
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Minghong Wei
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Chuanyi Wu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Pingxian Wu
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625041, China
| | - Li Chen
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China; (C.A.); (B.Z.); (J.C.); (Z.T.); (Z.Y.); (T.Z.); (P.W.)
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China; (X.W.); (M.W.)
| |
Collapse
|
12
|
Han Y, Zhou Y, Xu X, Chen S, Zhang S, Jiang N, Liu Z, Zhang J, Luo Z, Zhang X, Hao L, Chen T. Improvement of Post-Surgery Constipation in Patients with Fractures by Lactobacillus rhamnosus JYLR-127: A Single-Blind Randomized Controlled Trial. Nutrients 2024; 16:1505. [PMID: 38794748 PMCID: PMC11123980 DOI: 10.3390/nu16101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The high prevalence of constipation after fracture surgery brings intolerable discomfort to patients on the one hand, and affects post-surgery nutrient absorption on the other hand, resulting in poor prognosis. Given the acknowledged probiotic properties of Lactobacillus rhamnosus, 100 fracture patients with post-surgery constipation were centrally enrolled and administered orally with L. rhamnosus JYLR-127 to assess the efficacy of probiotic-adjuvant therapy in alleviating post-fracture constipation symptoms. The results showed that L. rhamnosus JYLR-127 improved fecal properties, promoted gastrointestinal recovery, and relieved constipation symptoms, which were mainly achieved by elevating Firmicutes (p < 0.01) and descending Bacteroidetes (p < 0.001), hence remodeling the disrupted intestinal microecology. In addition, blood routine presented a decrease in C-reactive protein levels (p < 0.05) and an increase in platelet counts (p < 0.05) after probiotic supplementation, prompting the feasibility of L. rhamnosus JYLR-127 in anti-inflammation, anti-infection and hemorrhagic tendency prevention after fracture surgery. Our study to apply probiotics in ameliorating constipation after fracture surgery is expected to bless the bothered patients, and provide broader application scenarios for L. rhamnosus preparations.
Collapse
Affiliation(s)
- Yiyang Han
- Department of Orthopedics, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.C.); (S.Z.); (N.J.)
| | - Yunlong Zhou
- Department of Orthopedics, Leshan People’s Hospital, Leshan 614003, China; (Y.Z.); (Z.L.); (J.Z.)
| | - Xuan Xu
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (X.X.); (Z.L.)
| | - Shen Chen
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.C.); (S.Z.); (N.J.)
| | - Shuwei Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.C.); (S.Z.); (N.J.)
| | - Nan Jiang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.C.); (S.Z.); (N.J.)
| | - Zhiqiang Liu
- Department of Orthopedics, Leshan People’s Hospital, Leshan 614003, China; (Y.Z.); (Z.L.); (J.Z.)
| | - Junyu Zhang
- Department of Orthopedics, Leshan People’s Hospital, Leshan 614003, China; (Y.Z.); (Z.L.); (J.Z.)
| | - Zhaowei Luo
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (X.X.); (Z.L.)
| | - Xinfeng Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| | - Liang Hao
- Department of Orthopedics, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Tingtao Chen
- Department of Orthopedics, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (X.X.); (Z.L.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China;
| |
Collapse
|
13
|
Li B, Zhang X, Zhang Q, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutr Rev 2024:nuae023. [PMID: 38626282 DOI: 10.1093/nutrit/nuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The gut barrier is the first line of defense against harmful substances and pathogens in the intestinal tract. The balance of proliferation and apoptosis of intestinal epithelial cells (IECs) is crucial for maintaining the integrity of the intestinal mucosa and its function. However, oxidative stress and inflammation can cause DNA damage and abnormal apoptosis of the IECs, leading to the disruption of the intestinal epithelial barrier. This, in turn, can directly or indirectly cause various acute and chronic intestinal diseases. In recent years, there has been a growing understanding of the vital role of dietary ingredients in gut health. Studies have shown that certain amino acids, fibers, vitamins, and polyphenols in the diet can protect IECs from excessive apoptosis caused by oxidative stress, and limit intestinal inflammation. This review aims to describe the molecular mechanism of apoptosis and its relationship with intestinal function, and to discuss the modulation of IECs' physiological function, the intestinal epithelial barrier, and gut health by various nutrients. The findings of this review may provide a theoretical basis for the use of nutritional interventions in clinical intestinal disease research and animal production, ultimately leading to improved human and animal intestinal health.
Collapse
Affiliation(s)
- Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Zhao M, Zhang Y, Li Y, Liu K, Bao K, Li G. Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis. Front Microbiol 2024; 15:1369402. [PMID: 38633690 PMCID: PMC11021720 DOI: 10.3389/fmicb.2024.1369402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Bao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Tao S, Fan J, Li J, Wu Z, Yao Y, Wang Z, Wu Y, Liu X, Xiao Y, Wei H. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J Adv Res 2024:S2090-1232(24)00111-5. [PMID: 38508446 DOI: 10.1016/j.jare.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024] Open
Abstract
INTRODUCTION Diarrheic disease is a common intestinal health problem worldwide, causing great suffering to humans and animals. Precise manipulation strategies based on probiotics to combat diarrheic diseases have not been fully developed. OBJECTIVES The aim of this study was to investigate the molecular mechanisms by which probiotics manipulate macrophage against diarrheic disease. METHODS Metagenome reveals gut microbiome profiles of healthy and diarrheic piglets. Fecal microbial transplantation (FMT) was employed to explore the causal relationship between gut microbes and diarrhea. The protective role of probiotics and their derived extracellular vesicles (EVs) was investigated in ETEC K88-infected mice. Macrophage depletion was performed to assess the role of macrophages in EVs against diarrhea. Execution of in vitro cell co-culture and transcriptome analyses elucidated the molecular mechanisms by which EVs modulate the macrophage and intestinal epithelial barrier. RESULTS Escherichia coli was enriched in weaned diarrheic piglets, while Lactobacillus johnsonii (L. john) showed a negative correlation with Escherichia coli. The transmission of diarrheic illness symptoms was achieved by transferring fecal microbiota, but not metabolites, from diarrheic pigs to germ-free (GF) mice. L. john's intervention prevented the transmission of disease phenotypes from diarrheic piglets to GF mice. L. john also reduces the gut inflammation induced by ETEC K88. The EVs secreted by L. john demonstrated enhanced efficacy in mitigating the adverse impacts induced by ETEC K88 through the modulation of macrophage phenotype. In vitro experiments have revealed that EVs activate M2 macrophages in a manner that shuts down ERK, thereby inhibiting NLRP3 activation in intestinal epithelial cells. CONCLUSION Our results reveal that intestinal microbiota drives the onset of diarrheic disease and that probiotic-derived EVs ameliorate diarrheic disease symptoms by modulating macrophage phenotypes. These findings can enhance the advancement of innovative therapeutic approaches for diarrheic conditions based on probiotic-derived EVs.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Winther KD, Boll EJ, Sandvang D, Williams AR. Probiotic Bacillus spp. enhance TLR3-mediated TNF signalling in macrophages. Immunology 2024; 171:402-412. [PMID: 38030377 DOI: 10.1111/imm.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Probiotics have been reported to have immunomodulatory properties in the context of infectious disease and inflammation, although the underlying mechanisms are not fully understood. Here, we aimed to determine how different probiotic bacterial strains modulated macrophage function during TLR3 stimulation mimicking viral infection. We screened 14 different strains for their ability to modulate TNF-α, IL-6 IL-10, IFN-α, IFN-β and IFN-γ secretion in RAW 264.7 macrophages with or without poly(I:C) stimulation. Seven strains were selected for further analysis using primary porcine alveolar macrophages. In-depth transcriptomic analysis on alveolar macrophages was conducted for two strains. Most strains induced a synergistic effect when co-incubated with poly(I:C) resulting in increased levels of IL-6 and TNF-α secretion from RAW 264.7 cells. This synergistic effect was found to be TLR2 independent. Only strains of Bacillus spp. could induce this effect in alveolar macrophages. Transcriptomic analysis indicated that the increased TNF-α secretion in alveolar macrophages after co-incubation with poly(I:C) correlated with significant upregulation of TNF and IL23A-related pathways. Collectively, our data show that probiotic bacteria possess strain-dependent immunomodulatory properties that may be harnessed to enhance innate immune responses to pathogens.
Collapse
Affiliation(s)
- Katrine Damgaard Winther
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, Hørsholm, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Erik Juncker Boll
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, Hørsholm, Denmark
| | - Dorthe Sandvang
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, Hørsholm, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
17
|
Hu R, Yang T, Ai Q, Shi Y, Ji Y, Sun Q, Tong B, Chen J, Wang Z. Autoinducer-2 promotes the colonization of Lactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis. J Transl Med 2024; 22:177. [PMID: 38369503 PMCID: PMC10874557 DOI: 10.1186/s12967-024-04991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Collapse
Affiliation(s)
- Riqiang Hu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanchun Ji
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Sun
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Tong
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| | - Zhengli Wang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
18
|
Kim WK, Jang YJ, Park S, Min SG, Kwon H, Jo MJ, Ko G. Lactobacillus acidophilus KBL409 Ameliorates Atopic Dermatitis in a Mouse Model. J Microbiol 2024; 62:91-99. [PMID: 38386273 PMCID: PMC11021314 DOI: 10.1007/s12275-024-00104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.
Collapse
Affiliation(s)
- Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| | - You Jin Jang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - SungJun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
- N-Bio, Seoul National University, Seoul, 08826, Republic of Korea
- KoBioLabs, Inc, Seoul, 08826, Republic of Korea
| | - Sung-Gyu Min
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeun Kwon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Jung Jo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, 08826, Republic of Korea
- N-Bio, Seoul National University, Seoul, 08826, Republic of Korea
- KoBioLabs, Inc, Seoul, 08826, Republic of Korea
| |
Collapse
|
19
|
Dorosky RJ, Schreier JE, Lola SL, Sava RL, Coryell MP, Akue A, KuKuruga M, Carlson PE, Dreher-Lesnick SM, Stibitz S. Nanobodies as potential tools for microbiological testing of live biotherapeutic products. AMB Express 2024; 14:9. [PMID: 38245586 PMCID: PMC10799837 DOI: 10.1186/s13568-023-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/22/2024] Open
Abstract
Nanobodies are highly specific binding domains derived from naturally occurring single chain camelid antibodies. Live biotherapeutic products (LBPs) are biological products containing preparations of live organisms, such as Lactobacillus, that are intended for use as drugs, i.e. to address a specific disease or condition. Demonstrating potency of multi-strain LBPs can be challenging. The approach investigated here is to use strain-specific nanobody reagents in LBP potency assays. Llamas were immunized with radiation-killed Lactobacillus jensenii or L. crispatus whole cell preparations. A nanobody phage-display library was constructed and panned against bacterial preparations to identify nanobodies specific for each species. Nanobody-encoding DNA sequences were subcloned and the nanobodies were expressed, purified, and characterized. Colony immunoblots and flow cytometry showed that binding by Lj75 and Lj94 nanobodies were limited to a subset of L. jensenii strains while binding by Lc38 and Lc58 nanobodies were limited to L. crispatus strains. Mass spectrometry was used to demonstrate that Lj75 specifically bound a peptidase of L. jensenii, and that Lc58 bound an S-layer protein of L. crispatus. The utility of fluorescent nanobodies in evaluating multi-strain LBP potency assays was assessed by evaluating a L. crispatus and L. jensenii mixture by fluorescence microscopy, flow cytometry, and colony immunoblots. Our results showed that the fluorescent nanobody labelling enabled differentiation and quantitation of the strains in mixture by these methods. Development of these nanobody reagents represents a potential advance in LBP testing, informing the advancement of future LBP potency assays and, thereby, facilitation of clinical investigation of LBPs.
Collapse
Affiliation(s)
- Robert J Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Stephanie L Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rosa L Sava
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael P Coryell
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Adovi Akue
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Paul E Carlson
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sheila M Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
20
|
Kato K, Arai S, Sato S, Iwabuchi N, Takara T, Tanaka M. Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on Immune Parameters in Healthy Adults-A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2024; 16:216. [PMID: 38257109 PMCID: PMC10821487 DOI: 10.3390/nu16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Previous clinical studies have shown that heat-killed Lacticaseibacillus paracasei MCC1849 suppresses subjective symptoms among healthy adults. However, the mechanism underlying this beneficial effect remains unclear. This clinical study aimed to investigate the effects of MCC1849 on immune functions in humans. In this randomized, double-blind, placebo-controlled, parallel-group study, 100 healthy adults were randomly divided into MCC1849 or placebo groups. Participants ingested test powder with 5 × 1010 MCC1849 cells or placebo powder for 4 weeks. Immune functions were evaluated using expression levels of CD86 and HLA-DR on dendritic cells (DCs), neutrophils, and natural killer cells. The expression levels of interferon (IFN)-α, -β, and -γ in peripheral blood mononuclear cells incubated with Cpg2216 in vitro were quantified. Efficacy analysis was performed on participants in the per-protocol set (placebo group; n = 47, MCC1849 group; n = 49). The expression level of CD86 on pDCs and the gene expression levels of IFN-α, -β, and -γ upon TLR9 agonist stimulation were significantly higher in the MCC1849 group at 4 weeks. No side effects were observed. This is the first report to show the positive effects of MCC1849 on human immune cells. These findings reveal one possible mechanism of how MCC1849 suppresses subjective symptoms.
Collapse
Affiliation(s)
- Kumiko Kato
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Satoshi Arai
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Soichiro Sato
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| | - Tsuyoshi Takara
- Medical Corporation Seishinkai, Takara Clinic, 2-3-2-9, Higashigotanda, Shinagawa, Tokyo 141-0022, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama 252-8583, Japan
| |
Collapse
|
21
|
Shen X, Xie A, Li Z, Jiang C, Wu J, Li M, Yue X. Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review. Foods 2024; 13:151. [PMID: 38201179 PMCID: PMC10778471 DOI: 10.3390/foods13010151] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Jiaqi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
22
|
Zou L, Yu X, Cai K, Xu B, Chen C, Xiao G. Angiotensin-converting enzyme inhibitory peptide IVGFPAYGH protects against liver injury in mice fed a high‑sodium diet by inhibiting the RAS and remodeling gut microbial communities. Int J Biol Macromol 2024; 256:128265. [PMID: 37984577 DOI: 10.1016/j.ijbiomac.2023.128265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Consuming a high‑sodium diet carries serious health risks and significantly influences the activation state of the renin-angiotensin system (RAS). This study evaluates the protective effect of angiotensin-converting enzyme (ACE) inhibitory peptide IVGFPAYGH on a high‑sodium diet-induced liver injury. IVGFPAYGH supplementation increased the activities of liver antioxidase and decreased the levels of liver inflammatory factor in mice fed a high‑sodium diet (8 % NaCl). IVGFPAYGH supplementation also reduced liver fatty acid synthesis and promoted fatty acid oxidation, increased the expression of low-density lipoprotein receptor, and improved liver dyslipidemia. Furthermore, IVGFPAYGH supplementation inhibited the activation of the liver RAS via inhibiting ACE activity and reducing angiotensin II levels in mice fed a high‑sodium diet. Moreover, IVGFPAYGH supplementation could alter the gut microbiota composition toward a normal gut microbiota composition and increase the abundance of the Lactobacillus genus. IVGFPAYGH supplementation also increased the expression levels of small intestinal tight junction protein and cecum short-chain fatty acids. Thus, IVGFPAYGH supplementation may maintain intestinal homeostasis and improve high‑sodium diet-induced liver injury by altering the gut microbiota composition and inhibiting the RAS. IVGFPAYGH is a promising functional ingredient for protecting liver damage caused by a high‑sodium diet.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Kezhou Cai
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China.
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui province, People's Republic of China.
| |
Collapse
|
23
|
Zhang Z, Zhao L, Wu J, Pan Y, Zhao G, Li Z, Zhang L. The Effects of Lactobacillus johnsonii on Diseases and Its Potential Applications. Microorganisms 2023; 11:2580. [PMID: 37894238 PMCID: PMC10609197 DOI: 10.3390/microorganisms11102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lactobacillus johnsonii has been used as a probiotic for decades to treat a wide range of illnesses, and has been found to have specific advantages in the treatment of a number of ailments. We reviewed the potential therapeutic effects and mechanisms of L. johnsonii in various diseases based on PubMed and the Web of Science databases. We obtained the information of 149 L. johnsonii from NCBI (as of 14 February 2023), and reviewed their comprehensive metadata, including information about the plasmids they contain. This review provides a basic characterization of different L. johnsonii and some of their potential therapeutic properties for various ailments. Although the mechanisms are not fully understood yet, it is hoped that they may provide some evidence for future studies. Furthermore, the antibiotic resistance of the various strains of L. johnsonii is not clear, and more complete and in-depth studies are needed. In summary, L. johnsonii presents significant research potential for the treatment or prevention of disease; however, more proof is required to justify its therapeutic application. An additional study on the antibiotic resistance genes it contains is also needed to reduce the antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Ziyi Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Jiacheng Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Yingmiao Pan
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China
| | - Ziyun Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| |
Collapse
|
24
|
Wang L, Jiang L, Chu Y, Feng F, Tang W, Chen C, Qiu Y, Hu Z, Diao H, Tang Z. Dietary Taurine Improves Growth Performance and Intestine Health via the GSH/GSSG Antioxidant System and Nrf2/ARE Signaling Pathway in Weaned Piglets. Antioxidants (Basel) 2023; 12:1852. [PMID: 37891931 PMCID: PMC10604690 DOI: 10.3390/antiox12101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Early weaning of piglets was prone to increase reactive oxygen species, disrupt the redox balance, decrease antioxidant capacity, cause oxidative stress and intestinal oxidative damage, and lead to diarrhea in piglets. This research aimed to study dietary taurine (Tau) supplementation at a level relieving intestinal oxidative damage in early-weaned piglets. A total of 48 piglets were assigned to four groups of 12 individuals and fed a basal diet with 0.0% Tau (CON), 0.2% Tau (L-Tau), 0.3% Tau (M-Tau), or 0.4% Tau (H-Tau), respectively. The animal experiment lasted 30 days. The final weight, weight gain, average daily gain, and feed conversion rate increased with the increase in dietary Tau (Linear, p < 0.05; Quadratic p < 0.05), while the diarrhea index of piglets decreased with the increase in dietary Tau (Linear, p < 0.05). Serum malondialdehyde, nitric oxide (NO), D-lactose, and oxidized glutathione (GSSG) concentrations decreased with the increase in dietary Tau (Linear, p < 0.05). The O2•- and •OH clearance rate in serum, liver, and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). Serum superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity, catalase (CAT) activity, and peroxidase (POD) activity and total antioxidant capacity increased with the increase in dietary Tau (Linear, p < 0.05). The serum glutathione (GSH) concentration and the ratio of GSH to GSSG increased with the increase in dietary Tau (Linear, p < 0.05). The POD and glutathione synthase activity in the liver and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of HO-1 and GPX1 in the H-Tau group were higher than that in the L-Tau, M-Tau, and CON groups (p < 0.05). The mRNA abundances of SOD1 and Nrf2 in the M-Tau and H-Tau groups were higher than in the L-Tau and CON groups (p < 0.05). The mRNA abundance of SOD2 in the L-Tau, M-Tau, and H-Tau groups was higher than in the CON group (p < 0.05). The VH and the ratio of VH to CD of jejunum and ileum increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of occludens 1 and claudin 1 in the H-Tau group were higher than that in the CON, L-Tau, and M-Tau (p < 0.05). The mRNA abundance of occludin in the L-Tau, M-Tau, and H-Tau groups was higher than that in CON (p < 0.05). The abundance of Firmicutes increased with the increase in dietary Tau (Linear, p < 0.05), while Proteobacteria and Spirochaetota decreased with the increase in dietary Tau (Linear, p < 0.05). Collectively, dietary supplementation of 0.3% and 0.4% Tau in feed could significantly improve the growth performance and enhance the antioxidant capacity of piglets.
Collapse
Affiliation(s)
- Lingang Wang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Liwen Jiang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Yunyun Chu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Fu Feng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (W.T.); (H.D.)
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Chen Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Yibin Qiu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Zhijin Hu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (W.T.); (H.D.)
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| |
Collapse
|
25
|
Máiz Carro L. [Probiotics and Respiratory Infections]. OPEN RESPIRATORY ARCHIVES 2023; 5:100283. [PMID: 38033401 PMCID: PMC10684386 DOI: 10.1016/j.opresp.2023.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Affiliation(s)
- Luis Máiz Carro
- Servicio de Neumología, Unidad de Infección Bronquial Crónica, Hospital Ramón y Cajal, Madrid, España
| |
Collapse
|
26
|
Sakata S, Sakamaki Y, Yuki M, Sugaya T, Hirota T. Screening of heat-killed lactic acid bacteria based on inhibitory activity against oral bacteria and effects of oral administration of heat-killed Ligilactobacillus salivarius CP3365 on periodontal health in healthy participants: a double-blinded, randomized, placebo-controlled trial. J Oral Microbiol 2023; 15:2250649. [PMID: 37649969 PMCID: PMC10464545 DOI: 10.1080/20002297.2023.2250649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives The aims of this study were to select heat-killed lactic acid bacteria (HKL) with antibiotic activity and investigate the efficacy of this bacteria in maintaining periodontal parameters in healthy participants. Materials and methods An in vitro evaluation was conducted to assess the inhibitory efficacy of lactic acid bacteria against Porphyromonas gingivalis and Fusobacterium nucleatum subsp. nucleatum. The effects of HKL administration on various parameters (plaque control record, bleeding on probing, and probing pocket depth) were assessed in a randomized, placebo-controlled trial. Participants in the test and placebo groups (n = 32) consumed oral tablets containing placebo or HKL daily for 8 weeks. Oral bacteria in supra-plaque and saliva were identified using 16S rRNA gene community profiling analysis. Results Heat-killed Ligilactobacillus salivarius CP3365 significantly (p < 0.05) decreased the viability of oral bacteria and was selected for clinical trials. Administration of HKL CP3365 significantly (p < 0.05) inhibited increases in each parameter. No changes in the relative abundance of P. gingivalis or F. nucleatum subsp. nucleatum were detected by HKL CP3365, but the relative abundance of oral bacteria (genera Porphyromonas, Fusobacterium, and Haemophilus) was significantly (p < 0.05) decreased. Conclusion HKL CP3365 effectively inhibited oral bacteria growth and was useful for maintaining periodontal health. Clinical Trial Registration [https://www.umin.ac.jp/ctr/index.htm], identifier [UMIN000045656].
Collapse
Affiliation(s)
- Shinji Sakata
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| | - Yukiko Sakamaki
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| | - Masahiro Yuki
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| | - Tsutomu Sugaya
- Periodontology & Endodontology Department of Oral Health Science Faculty of Dental Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| |
Collapse
|
27
|
Chamignon C, Mallaret G, Rivière J, Vilotte M, Chadi S, de Moreno de LeBlanc A, LeBlanc JG, Carvalho FA, Pane M, Mousset PY, Langella P, Lafay S, Bermúdez-Humarán LG. Beneficial Effects of Lactobacilli Species on Intestinal Homeostasis in Low-Grade Inflammation and Stress Rodent Models and Their Implication in the Modulation of the Adhesive Junctional Complex. Biomolecules 2023; 13:1295. [PMID: 37759696 PMCID: PMC10527021 DOI: 10.3390/biom13091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Intestinal barrier integrity is essential in order to maintain the homeostasis of mucosal functions and efficient defensive reactions against chemical and microbial challenges. An impairment of the intestinal barrier has been observed in several chronic diseases. The gut microbiota and its impact on intestinal homeostasis is well described and numerous studies suggest the ability of some probiotic strains to protect the intestinal epithelial integrity and host homeostasis. In this work, we aimed to assess the beneficial effects of three Lactobacillus strains (Lacticaseibacillus rhamnosus LR04, Lacticaseibacillus casei LC03, and Lactiplantibacillus plantarum CNCM I-4459) and their mechanism of action in low-grade inflammation or neonatal maternal separation models in mice. We compared the impact of these strains to that of the well-known probiotic Lacticaseibacillus rhamnosus GG. Our results demonstrated that the three strains have the potential to restore the barrier functions by (i) increasing mucus production, (ii) restoring normal permeability, and (iii) modulating colonic hypersensitivity. Moreover, gene expression analysis of junctional proteins revealed the implication of Claudin 2 and Cingulin in the mechanisms that underlie the interactions between the strains and the host. Taken together, our data suggest that LR04, CNCM I-4459, and LC03 restore the functions of an impaired intestinal barrier.
Collapse
Affiliation(s)
- Célia Chamignon
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
- INDIGO Therapeutics, 33000 Bordeaux, France (S.L.)
| | - Geoffroy Mallaret
- INSERM U1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France; (G.M.); (F.A.C.)
| | - Julie Rivière
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | - Marthe Vilotte
- INRAE, GABI, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Sead Chadi
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | | | - Jean Guy LeBlanc
- CERELA-CONICET, San Miguel de Tucumán T4000ILC, Tucumán, Argentina; (A.d.M.d.L.); (J.G.L.)
| | - Frédéric Antonio Carvalho
- INSERM U1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France; (G.M.); (F.A.C.)
| | - Marco Pane
- Probiotical Research, 28100 Novara, Italy;
| | | | - Philippe Langella
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| | - Sophie Lafay
- INDIGO Therapeutics, 33000 Bordeaux, France (S.L.)
| | - Luis G. Bermúdez-Humarán
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), Micalis Institut, AgroParisTech, University of Paris-Saclay, 78350 Jouy-en-Josas, France; (C.C.); (J.R.); (S.C.); (P.L.)
| |
Collapse
|
28
|
Jo Y, Lee G, Ahmad S, Son H, Kim MJ, Sliti A, Lee S, Kim K, Lee SE, Shin JH. The Alteration of the Gut Microbiome during Ramadan Offers a Novel Perspective on Ramadan Fasting: A Pilot Study. Microorganisms 2023; 11:2106. [PMID: 37630666 PMCID: PMC10459652 DOI: 10.3390/microorganisms11082106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
An intermittent fasting regimen is widely perceived to lead to various beneficial health effects, including weight loss, the alleviation of insulin resistance, and the restructuring of a healthy gut microbiome. Because it shares certain commonalities with this dietary intervention, Ramadan fasting is sometimes misinterpreted as intermittent fasting, even though there are clear distinctions between these two regimens. The main purpose of this study is to verify whether Ramadan fasting drives the same beneficial effects as intermittent fasting by monitoring alterations in the gut microbiota. We conducted a study involving 20 Muslim individuals who were practicing Ramadan rituals and assessed the composition of their gut microbiomes during the 4-week period of Ramadan and the subsequent 8-week period post-Ramadan. Fecal microbiome analysis was conducted, and short-chain fatty acids (SCFAs) were assessed using liquid-chromatography-mass spectrometry. The observed decrease in the levels of SCFAs and beneficial bacteria during Ramadan, along with the increased microbial diversity post-Ramadan, suggests that the daily diet during Ramadan may not provide adequate nutrients to maintain robust gut microbiota. Additionally, the notable disparities in the functional genes detected through the metagenomic analysis and the strong correlation between Lactobacillus and SCFAs provide further support for our hypothesis.
Collapse
Affiliation(s)
- YoungJae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Sajjad Ahmad
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Seungjun Lee
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
29
|
Li J, Feng S, Pi Y, Jiang X, Li X, Zhou Z, Liu X, Wei H, Tao S. Limosilactobacillus johnsoni and Limosilactobacillus mucosae and Their Extracellular Vesicles Alleviate Gut Inflammatory Injury by Mediating Macrophage Polarization in a Lipopolysaccharide-Challenged Piglet Model. J Nutr 2023; 153:2497-2511. [PMID: 37343627 DOI: 10.1016/j.tjnut.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Limosilactobacillus johnsoni (L. j) and Limosilactobacillus mucosae (L. m) can alleviate the inflammatory response. OBJECTIVES This study aimed to elucidate the underlying mechanisms by which L. j- and L. m-derived extracellular vesicles (EVs) mitigate lipopolysaccharide (LPS)-induced intestinal injury. METHODS Piglets were assigned to 4 groups: oral phosphate-buffered saline inoculation for 2 wk prior to intraperitoneal injection of physiological saline or LPS, and oral L. j/L. m inoculation for 2 wk prior to intraperitoneal injection of LPS. The intestinal integrity, macrophage markers, cytokine levels, and microbiota were determined. The cytokine levels and macrophage phenotype were detected after L. j/L. m and their EVs were coincubated with macrophages. The levels of cytokines, tight junction proteins, and apoptosis were measured after intestinal epithelial cells were cocultured with macrophages. RESULTS LPS challenge decreased jejunal villus length; expression levels of zonula occludens-1 (ZO-1), occludin, arginase-1 (Arg1), and interleukin (IL)-10; and number of CD163+ cells and increased the expression levels of inducible nitric oxide synthase (iNOS), IL-1β, IL-6, and tumor necrosis factor (TNF)-α compared with that in the control. L. j and L. m pretreatment rescued the aforementioned indicators compared with LPS challenge. Pretreatment of L. j and L. m and their EVs reversed the levels of IL-1β, IL-6, TNF-α, and IL-10 and the gene expression of iNOS and Arg1 in the LPS group in macrophages. Pretreatment with L. j and L. m-derived EVs increased ZO-1 and occludin mRNA expression and reduced IL-1β, caspase-3, and bax gene expression in intestinal epithelial cells of the coculture system. Enzyme-treated EVs were less effective than native EVs. CONCLUSIONS This study suggests that EVs secreted by L. j and L. m control inflammation by modulating macrophage polarization, thereby improving intestinal barrier function.
Collapse
Affiliation(s)
- Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengkai Feng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zutao Zhou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
30
|
Gao J, Wang L, Jiang J, Xu Q, Zeng N, Lu B, Yuan P, Sun K, Zhou H, He X. A probiotic bi-functional peptidoglycan hydrolase sheds NOD2 ligands to regulate gut homeostasis in female mice. Nat Commun 2023; 14:3338. [PMID: 37286542 PMCID: PMC10247697 DOI: 10.1038/s41467-023-38950-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-β-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.
Collapse
Affiliation(s)
- Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Lei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Jing Jiang
- Department Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China
| | - Qian Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Bingyun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, 518101, Shenzhen, Guangdong, China
| | - Peibo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China
| | - Kai Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510655, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Li J, Feng S, Wang Z, He J, Zhang Z, Zou H, Wu Z, Liu X, Wei H, Tao S. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 2023; 9:33. [PMID: 37280255 DOI: 10.1038/s41522-023-00403-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
The diarrheal disease causes high mortality, especially in children and young animals. The gut microbiome is strongly associated with diarrheal disease, and some specific strains of bacteria have demonstrated antidiarrheal effects. However, the antidiarrheal mechanisms of probiotic strains have not been elucidated. Here, we used neonatal piglets as a translational model and found that gut microbiota dysbiosis observed in diarrheal piglets was mainly characterized by a deficiency of Lactobacillus, an abundance of Escherichia coli, and enriched lipopolysaccharide biosynthesis. Limosilactobacillus mucosae and Limosilactobacillus reuteri were a signature bacterium that differentiated healthy and diarrheal piglets. Germ-free (GF) mice transplanted with fecal microbiota from diarrheal piglets reproduced diarrheal disease symptoms. Administration of Limosilactobacillus mucosae but not Limosilactobacillus reuteri alleviated diarrheal disease symptoms induced by fecal microbiota of diarrheal piglets and by ETEC K88 challenge. Notably, Limosilactobacillus mucosae-derived extracellular vesicles alleviated diarrheal disease symptoms caused by ETEC K88 by regulating macrophage phenotypes. Macrophage elimination experiments demonstrated that the extracellular vesicles alleviated diarrheal disease symptoms in a macrophage-dependent manner. Our findings provide insights into the pathogenesis of diarrheal disease from the perspective of intestinal microbiota and the development of probiotic-based antidiarrheal therapeutic strategies.
Collapse
Affiliation(s)
- Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuaifei Feng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jinhui He
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyue Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huicong Zou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
32
|
Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, Mihai L, Ungureanu A, Kassim MAK, Andrusca A, Nicolae M, Cuzic V, Lupu VV, Cambrea SC. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023; 15:nu15112529. [PMID: 37299492 DOI: 10.3390/nu15112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The intestinal microbiota is a diverse and complex microecosystem that lives and thrives within the human body. The microbiota stabilizes by the age of three. This microecosystem plays a crucial role in human health, particularly in the early years of life. Dysbiosis has been linked to the development of various allergic diseases with potential long-term implications. Next-generation sequencing methods have established that allergic diseases are associated with dysbiosis. These methods can help to improve the knowledge of the relationship between dysbiosis and allergic diseases. The aim of this review paper is to synthesize the current understanding on the development of the intestinal microbiota in children, the long-term impact on health, and the relationship between dysbiosis and allergic diseases. Furthermore, we examine the connection between the microbiome and specific allergies such as atopic dermatitis, asthma, and food allergies, and which mechanisms could determine the induction of these diseases. Furthermore, we will review how factors such as mode of delivery, antibiotic use, breastfeeding, and the environment influence the development of the intestinal flora, as well as review various interventions for the prevention and treatment of gut microbiota-related allergies.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Corina Elena Frecus
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adina Ungureanu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| | | | - Antonio Andrusca
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Maria Nicolae
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viviana Cuzic
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| |
Collapse
|
33
|
Tian L, Zhong C, He Y, Lu Q, Wang Y, Zhao X, Wei H, Tao X. Preventive of Lacticaseibacillus casei WLCA02 against Salmonella Typhimurium infection via strengthening the intestinal barrier and activating the macrophages. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
34
|
Vale GC, Mota BIS, Ando-Suguimoto ES, Mayer MPA. Effect of Probiotics Lactobacillus acidophilus and Lacticaseibacillus rhamnosus on Antibacterial Response Gene Transcription of Human Peripheral Monocytes. Probiotics Antimicrob Proteins 2023; 15:264-274. [PMID: 34405373 DOI: 10.1007/s12602-021-09832-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/23/2022]
Abstract
Periodontitis and related systemic inflammatory diseases are characterized by imbalanced ratio between pro- and anti-inflammatory factors. Probiotics may control inflammation by altering the inflammatory phenotype of defense cells. We aimed to evaluate the gene transcription of the antibacterial response of monocytes to exposure to probiotic lactobacilli. CD14 + monocytes were obtained by positive selection from peripheral blood mononuclear cells from healthy donors (5 × 104 CD14 + /mL) and cultured with probiotic strains of Lacticaseibacillus rhamnosus (LR-32) and Lactobacillus acidophilus (LA-5) at a 1:10 multiplicity of infection in 24-well plates for 12 h. The gene expression analysis was performed by RT-qPCR using the Kit RT2 human antibacterial response, and in the supernatant, the cytokines were determined by ELISA. Tukey's post hoc test following an ANOVA with a p value of 5% was used for statistical analysis. Both probiotic strains increased the levels of cytokines TNF-α and CXCL-8 in the supernatant compared to the control of non-challenged cells (p < 0.05), but for IL-1Β and IL-6, this effect was observed only for LA-5 (p < 0.05). The fold-regulation values for the following genes for LA-5 and LR-32 were, respectively, IL-12B (431.94 and 33.30), IL-1Β (76.73 and 17.14), TNF-α (94.63 and 2.49), CXCL-8 (89.59 and 4.18), and TLR-2 (49.68 and 3.40). Likewise, most of the other genes evaluated showed greater expression for LA-5 compared to LR-32 (p < 0.05). The positive regulation of inflammatory factors such as IL-1β promoted by L. acidophilus LA-5 may increase the antibacterial activity of innate defense in periodontal tissues. However, this property may be deleterious by increasing inflammatory response.
Collapse
Affiliation(s)
- Glauber Campos Vale
- Restorative Dentistry Department, Federal University of Piauí, Teresina, Brazil.
| | | | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Abstract
The human gastrointestinal tract hosts a complex and dynamic population of commensal bacterial species, which have coevolved with the host, generating a symbiotic relationship. Some compounds present in foods, such as polyols, prebiotic fibers, or phenolic compounds, are poorly metabolized and absorbed by the host before the transformation guided by the colonic microbiota. By influencing gut microbiota, diet plays a fundamental role in understanding the beneficial effects of the gut microbiota on the host, including its long-term metabolism. The idea that probiotics can act not only by influencing the colonizing microbiota opens the door to a wider range of probiotic possibilities, encouraging innovation in the field. Furthermore, it has been shown both that some probiotics increase phagocytosis or the activity of natural killer cells. Current prebiotics are mainly based on carbohydrates, but other substances, such as polyphenols and polyunsaturated fatty acids, could exert prebiotic effects. A prebiotic substance has been defined as ‘a substrate that is selectively used by host microorganisms that confer a health benefit’, and so can interact with the gut microbiota through competition for nutrients, antagonism, cross-feeding, and support for microbiota stability. Influencing its composition in terms of richness and diversity, food components have a key impact on the intestinal microbiota. Eating habits can strongly influence the composition of the intestinal microbiota. A healthy intestinal microbiota is essential for maintaining general health, and diet is one of the major modulators of this fascinating world of microorganisms. This must give us one more reason to adopt a healthy lifestyle.
Collapse
|
36
|
Zaccaria E, Klaassen T, Alleleyn AME, Boekhorst J, Smokvina T, Kleerebezem M, Troost FJ. Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial. MICROBIOME 2023; 11:43. [PMID: 36879297 PMCID: PMC9990280 DOI: 10.1186/s40168-023-01491-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The effects of fermented food consumption on the small intestine microbiome and its role on host homeostasis are largely uncharacterised as our knowledge on intestinal microbiota relies mainly on faecal samples analysis. We investigated changes in small intestinal microbial composition and functionality, short chain fatty acid (SCFA) profiles, and on gastro-intestinal (GI) permeability in ileostomy subjects upon the consumption of fermented milk products. RESULTS We report the results from a randomised, cross-over, explorative study where 16 ileostomy subjects underwent 3, 2-week intervention periods. In each period, they consumed either milk fermented by Lacticaseibacillus rhamnosus CNCM I-3690, or milk fermented by Streptococcus thermophilus CNCM I-1630 and Lactobacillus delbrueckii subsp. bulgaricus CNCM I-1519, or a chemically acidified milk (placebo) daily. We performed metataxonomic, metatranscriptomic analysis, and SCFA profiling of ileostomy effluents as well as a sugar permeability test to investigate the microbiome impact of these interventions and their potential effect on mucosal barrier function. Consumption of the intervention products impacted the overall small intestinal microbiome composition and functionality, mainly due to the introduction of the product-derived bacteria that reach in several samples 50% of the total microbial community. The interventions did not affect the SCFA levels in ileostoma effluent, or gastro-intestinal permeability and the effects on the endogenous microbial community were negligible. The impact on microbiome composition was highly personalised, and we identified the poorly characterised bacterial family, Peptostreptococcaceae, to be positively associated with a low abundance of the ingested bacteria. Activity profiling of the microbiota revealed that carbon- versus amino acid-derived energy metabolism of the endogenous microbiome could be responsible for the individual-specific intervention effects on the small intestine microbiome composition and function, reflected also on urine microbial metabolites generated through proteolytic fermentation. CONCLUSIONS The ingested bacteria are the main drivers of the intervention effect on the small intestinal microbiota composition. Their transient abundance level is highly personalised and influenced by the energy metabolism of the ecosystem that is reflected by its microbial composition ( http://www. CLINICALTRIALS gov , ID NCT NCT02920294). Video Abstract.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
| | - Tim Klaassen
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Annick M E Alleleyn
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Jos Boekhorst
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Tamara Smokvina
- Danone Nutricia Research, Av. De la Vauve, 91767, Palaiseau, France
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708WD, Wageningen, The Netherlands.
| | - Freddy J Troost
- Food Innovation and Health, Center for Healthy Eating and Food Innovation, Maastricht University, Venlo, 5911AA, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| |
Collapse
|
37
|
Nowicki KN, Pories WJ. Bacteria with potential: Improving outcomes through probiotic use following Roux-en-Y gastric bypass. Clin Obes 2023; 13:e12552. [PMID: 36127843 PMCID: PMC10078542 DOI: 10.1111/cob.12552] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 01/19/2023]
Abstract
Obesity impairs the gastrointestinal microbiome (GM) and may promote micronutrient deficiencies. Bariatric surgery (BS), the most efficacious treatment for severe obesity, produces sustained weight loss and improvements in obesity-related comorbidities, but might not fully restore microbial balance. Moreover, BS may result in deleterious consequences that affect weight loss and further intensify post-operative micronutrient deficiencies. To date, the use of probiotics appears to be associated with greater weight loss in bariatric patients, improved vitamin synthesis and availability, and decreased instances of small intestinal bacterial overgrowth. Thus, manipulation of the GM through probiotics represents a promising therapeutic approach in bariatric patients. This review aims to highlight the benefits of using probiotics in bariatric surgical patients by addressing the impact of probiotics on the GM, how BS impacts the microbial environment, associations between gastrointestinal dysbiosis and negative health outcomes, how BS contributes to dysbiosis, and how probiotics may prove efficacious in treating patients who undergo Roux-en-Y gastric bypass (RYGB). Based on currently available data, the role of microbial manipulation post-RYGB through probiotics has shown great potential, but a further clinical investigation is warranted to better understand their efficacy.
Collapse
|
38
|
Chen Z, Ding C, Gu Y, He Y, Chen B, Zheng S, Li Q. Association between gut microbiota and hepatocellular carcinoma from 2011 to 2022: Bibliometric analysis and global trends. Front Oncol 2023; 13:1120515. [PMID: 37064156 PMCID: PMC10098157 DOI: 10.3389/fonc.2023.1120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignant tumor responsible for approximately 90% of all liver cancers in humans, making it one of the leading public health problems worldwide. The gut microbiota is a complex microbial ecosystem that can influence tumor formation, metastasis, and resistance to treatment. Therefore, understanding the potential mechanisms of gut microbiota pathogenesis is critical for the prevention and treatment of HCC. Materials and methods A search was conducted in the Web of Science Core Collection (WoSCC) database for English literature studies on the relationship between gut microbiota and HCC from 2011 to 2022. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were used to analyze global trends and research hotspots in this field. Results A total of 739 eligible publications, comprising of 383 articles and 356 reviews, were analyzed. Over the past 11 years, there has been a rapid increase in the annual number of publications and average citation levels, especially in the last five years. The majority of published articles on this topic originated from China (n=257, 34.78%), followed by the United States of America (n=203, 27.47%), and Italy (n=85, 11.50%). American scholars demonstrated high productivity, prominence, and academic environment influence in the research of this subject. Furthermore, the University of California, San Diego published the most papers (n=24) and had the highest average citation value (value=152.17) in the study of the relationship between gut microbiota and HCC. Schnabl B from the USA and Ohtani N from Japan were the authors with the highest number of publications and average citation value, respectively. Conclusion In recent years, research on the gut microbiota's role in HCC has made rapid progress. Through a review of published literature, it has been found that the gut microbiota is crucial in the pathogenesis of HCC and in oncotherapy.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Chenchen Ding
- Affiliated Mental Health Centre & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangjun Gu
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Yahui He
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Bing Chen
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- School of Medicine, Zhejiang Chinese Medical University, Zhejiang Shuren College, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| | - Qiyong Li
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Qiyong Li, ; Shusen Zheng,
| |
Collapse
|
39
|
Zaccaria E, Klaassen T, Alleleyn AM, Boekhorst J, Chervaux C, Smokvina T, Troost FJ, Kleerebezem M. L. rhamnosus CNCM I-3690 survival, adaptation, and small bowel microbiome impact in human. Gut Microbes 2023; 15:2244720. [PMID: 37589280 PMCID: PMC10438856 DOI: 10.1080/19490976.2023.2244720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Fermented foods and beverages are a significant source of dietary bacteria that enter the gastrointestinal (GI) tract. However, little is known about how these microbes survive and adapt to the small intestinal environment. Colony-forming units (CFU) enumeration and viability qPCR of Lacticaseibacillus rhamnosus CNCM I-3690 in the ileal effluent of 10 ileostomy subjects during 12-h post consumption of a dairy product fermented with this strain demonstrated the high level of survival of this strain during human small intestine passage. Metatranscriptome analyses revealed the in situ transcriptome of L. rhamnosus in the small intestine, which was contrasted with transcriptome data obtained from in vitro cultivation. These comparative analyses revealed substantial metabolic adaptations of L. rhamnosus during small intestine transit, including adjustments of carbohydrate metabolism, surface-protein expression, and translation machinery. The prominent presence of L. rhamnosus in the effluent samples did not elicit an appreciable effect on the composition of the endogenous small intestine microbiome, but significantly altered the ecosystem's overall activity profile, particularly of pathways associated with carbohydrate metabolism. Strikingly, two of the previously recognized gut-brain metabolic modules expressed in situ by L. rhamnosus (inositol degradation and glutamate synthesis II) are among the most dominantly enriched activities in the ecosystem's activity profile. This study establishes the survival capacity of L. rhamnosus in the human small intestine and highlights its functional adjustment in situ, which we postulate to play a role in the probiotic effects associated with this strain.
Collapse
Affiliation(s)
- Edoardo Zaccaria
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Tim Klaassen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Venlo, The Netherlands
| | - Annick M.E. Alleleyn
- Food Innovation and Health, Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Venlo, The Netherlands
| | - Jos Boekhorst
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Tamara Smokvina
- Danone Nutricia Research, Centre Daniel Carasso, Palaiseau, France
| | - Freddy J. Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
40
|
Lactobacillus gasseri JM1 Isolated from Infant Feces Alleviates Colitis in Mice via Protecting the Intestinal Barrier. Nutrients 2022; 15:nu15010139. [PMID: 36615796 PMCID: PMC9823819 DOI: 10.3390/nu15010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease, and the intestinal barrier is an important line of defense against intestinal disease. Herein, we investigated the effect of Lactobacillus gasseri JM1 at different doses (1 × 106, 1 × 107, 1 × 108 CFU/day) on colitis mice and explored the possible mechanism. The results showed that L. gasseri JM1 alleviated DSS-induced colitis in mice, with reductions in disease activity index (DAI), histological scores and myeloperoxidase activity as well as alleviation of colonic shortening. Furthermore, L. gasseri JM1 regulated the levels of inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-10; restored the expression of Claudin-3, Occludin, ZO-1, and MUC2; and increased the number of goblet cells and acidic mucin. The 16S rDNA sequencing results indicated that intervention with L. gasseri JM1 balanced the gut microbiota structure by elevating the abundance of beneficial bacteria (Oscillospira, Clostridium and Ruminococcus) and decreasing that of harmful bacteria (Shigella and Turicibacter). Meanwhile, the contents of short-chain fatty acids (SCFAs) increased. In conclusion, L. gasseri JM1 could alleviate intestinal barrier damage in colitis mice by modulating the tight junction structures, intestinal mucus layer, inflammatory cytokines, gut microbiota, and SCFAs. It can be considered a potential preventive strategy to alleviate colitis injury.
Collapse
|
41
|
Ma X, Liu B, Fan L, Liu Y, Zhao Y, Ren T, Li Y, Li Y. Native and engineered exosomes for inflammatory disease. NANO RESEARCH 2022; 16:6991-7006. [PMID: 36591564 PMCID: PMC9793369 DOI: 10.1007/s12274-022-5275-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Exosomes are extracellular vesicles which carry specific molecular information from donor cells and act as an intercellular communication vehicle, which have emerged as a novel cell-free strategy for the treatment of many diseases including inflammatory disease. Recently, rising studies have developed exosome-based strategies for novel inflammation therapy due to their biocompatibility and bioactivity. Researchers not only use native exosomes as therapeutic agents for inflammation, but also strive to make up for the natural defects of exosomes through engineering methods to improve and update the property of exosomes for enhanced therapeutic effects. The engineered exosomes can improve cargo-loading efficiency, targeting ability, stability, etc., to achieve combined and diverse treatment strategies in inflammation diseases. Herein, a comprehensive overview of the recent advances in application studies of native and engineered exosomes as well as the engineered methods is provided. Meanwhile, potential application prospects, possible challenges, and the development of clinical researches of exosome treatment strategy are concluded from plentiful examples, which may be able to provide guidance and suggestions for the future research and application of exosomes.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Limin Fan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Tianbin Ren
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
42
|
Poupet C, Rifa É, Theil S, Bonnet M, Veisseire P, Cardin G, Guéret É, Rialle S, Chassard C, Nivoliez A, Bornes S. In vivo investigation of Lcr35 ® anti-candidiasis properties in Caenorhabditis elegans reveals the involvement of highly conserved immune pathways. Front Microbiol 2022; 13:1062113. [PMID: 36620055 PMCID: PMC9816150 DOI: 10.3389/fmicb.2022.1062113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France,*Correspondence: Cyril Poupet,
| | - Étienne Rifa
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Philippe Veisseire
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Guillaume Cardin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Élise Guéret
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
43
|
Koduru L, Lakshmanan M, Lee YQ, Ho PL, Lim PY, Ler WX, Ng SK, Kim D, Park DS, Banu M, Ow DSW, Lee DY. Systematic evaluation of genome-wide metabolic landscapes in lactic acid bacteria reveals diet- and strain-specific probiotic idiosyncrasies. Cell Rep 2022; 41:111735. [PMID: 36476869 DOI: 10.1016/j.celrep.2022.111735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are well known to elicit health benefits in humans, but their functional metabolic landscapes remain unexplored. Here, we analyze differences in growth, intestinal persistence, and postbiotic biosynthesis of six representative LAB and their interactions with 15 gut bacteria under 11 dietary regimes by combining multi-omics and in silico modeling. We confirmed predictions on short-term persistence of LAB and their interactions with commensals using cecal microbiome abundance and spent-medium experiments. Our analyses indicate that probiotic attributes are both diet and species specific and cannot be solely explained using genomics. For example, although both Lacticaseibacillus casei and Lactiplantibacillus plantarum encode similarly sized genomes with diverse capabilities, L. casei exhibits a more desirable phenotype. In addition, "high-fat/low-carb" diets more likely lead to detrimental outcomes for most LAB. Collectively, our results highlight that probiotics are not "one size fits all" health supplements and lay the foundation for personalized probiotic design.
Collapse
Affiliation(s)
- Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Pooi-Leng Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Pei-Yu Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Wei Xuan Ler
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Dongseok Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Doo-Sang Park
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Mazlina Banu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Dave Siak Wei Ow
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore.
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
44
|
Tyutkov N, Zhernyakova A, Birchenko A, Eminova E, Nadtochii L, Baranenko D. Probiotics viability in frozen food products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Wang W, Li X, Shi F, Zhang Z, Lv H. Study on the preparation of EGCG-γ-Cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. Int J Pharm 2022; 630:122419. [PMID: 36423710 DOI: 10.1016/j.ijpharm.2022.122419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
In this study, γ-cyclodextrins (γ-CD) and epigallocatechin-3-gallate (EGCG) were designed to form an inclusion complex (EGCG-γ-IC) for ulcerative colitis (UC) treatment. The drug-excipient combined therapeutic potential of γ-CD and EGCG was verified, when stability and compliance were also achieved. EGCG-γ-IC effectively inhibited the secretions of NO, TNF-α, and IL-6 and the intracellular ROS in RAW264.7 cells. The effectiveness of EGCG-γ-IC in treating DSS-induced acute UC in mice was observed including improving the histological conditions of the colon, reducing the levels of IL-1β, IL-6, and TNF-α in serum, and restoring MPO, GSH, and sIgA levels in intestinal tissues. Moreover, EGCG-γ-IC had a more prominent effect on regulating bacterial dysbiosis caused by DSS than EGCG and γ-CD alone. Therefore, EGCG-γ-IC designed here displayed UC treating capacity with safety in the long-term application and promised an industrial production potential due to its excellent storage stability.
Collapse
Affiliation(s)
- Weiqin Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Xuefeng Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Fanli Shi
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| |
Collapse
|
46
|
Sun H, Gu T, Li G, Chen L, Tian Y, Xu W, Zeng T, Lu L. Effects of Compound Probiotics on Growth Performance, Serum Biochemical and Immune Indices, Antioxidant Capacity, and Intestinal Tissue Morphology of Shaoxing Duck. Animals (Basel) 2022; 12:ani12223219. [PMID: 36428446 PMCID: PMC9686755 DOI: 10.3390/ani12223219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
This experiment was conducted to investigate the effects of compound probiotics on growth performance, serum biochemical and immune indices, antioxidant capacity, and the intestinal tissue morphology of Shaoxing ducks. A total of 640 1-day-old healthy Shaoxing ducks of similar body weight were randomly divided into two treatment groups with eight replicates each and forty ducks per replicate. The ducks were fed a basal diet (Ctrl) or a basal diet supplemented with 0.15% compound probiotics (CP) for 125 d. The results revealed that the live body weight (BW; day 85 and 125) and the average daily gain (ADG; 28−85 and 85−125 d) of the CP group were significantly higher (p < 0.05) than those of the Ctrl group. In the CP group, total protein and total cholesterol contents were significantly increased (p < 0.05) on days 28 and 85, while triglyceride and low-density lipoprotein contents were significantly decreased (p < 0.05) on day 85. Furthermore, interferon-γ content was significantly increased (p < 0.05) in the CP group on days 28, 85, and 125. Interleukin-2 content was significantly increased (p < 0.05) in the CP group on days 28 and 85. Interleukin-4 content was significantly decreased (p < 0.05) in the CP group on day 85. Moreover, in the CP group, superoxide dismutase content was significantly increased (p < 0.05) on days 28 and 125, and glutathione peroxidase content was significantly increased (p < 0.05) on day 125. The crypt depth (CD) in the duodenum of the CP group was significantly decreased (p < 0.05) on days 28 and 125, whereas the villus height (VH) in the jejunum of the CP group was significantly increased (p < 0.05) on days 85 and 125. The VH/CD ratio in the ileum of the CP group was significantly increased (p < 0.05) on days 28 and 85. The VH in the ileum of the CP group was significantly increased (p < 0.05) on day 28. The CD in the ileum of the CP group was significantly decreased (p < 0.05) on day 28. In summary, the compound probiotics improved the growth performance, increased serum biochemical and immune indices, increased antioxidant capacity, and improved the intestinal tissue morphology of Shaoxing ducks.
Collapse
|
47
|
Amato M, Di Spirito F, D’Ambrosio F, Boccia G, Moccia G, De Caro F. Probiotics in Periodontal and Peri-Implant Health Management: Biofilm Control, Dysbiosis Reversal, and Host Modulation. Microorganisms 2022; 10:2289. [PMID: 36422359 PMCID: PMC9694231 DOI: 10.3390/microorganisms10112289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023] Open
Abstract
Periodontitis and peri-implantitis are microbially associated diseases of the tissues supporting the teeth and dental implants that are mediated by host inflammation and eventually lead to tooth and dental implant loss. Given the probiotics' role in biofilm control, dysbiosis reversal, and host modulation, their potential beneficial effects on the improvement of periodontitis and peri-implantitis have been recently investigated. Moreover, probiotics use has also been proposed in periodontal health management in patients undergoing fixed orthodontic therapy. Therefore, the present study aimed to review, considering the periodontal microbiome composition around teeth and dental implants in healthy and pathological conditions, the putative favorable effects of probiotics on gingivitis, periodontitis, and peri-implantitis. The secondary aim of the present narrative review was to synthesize the supporting evidence and proposed protocols for probiotics use as adjuncts in periodontitis and peri-implantitis treatment and the periodontal health management of orthodontic patients with fixed appliances. Contrasting findings from the literature may be due to the different methods, posology, and duration of probiotics prescriptions and due to the heterogeneous biological and clinical measurement methods employed. Thus, no definitive conclusions could be drawn about the effectiveness of probiotics in periodontal management, both in healthy and pathological conditions. Further studies are needed to validate probiotics for periodontal management and provide recommended protocols.
Collapse
|
48
|
Lee YR, Bang WY, Baek KR, Kim GH, Kang MJ, Yang J, Seo SO. Safety Evaluation by Phenotypic and Genomic Characterization of Four Lactobacilli Strains with Probiotic Properties. Microorganisms 2022; 10:2218. [PMID: 36363810 PMCID: PMC9696993 DOI: 10.3390/microorganisms10112218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 10/29/2023] Open
Abstract
Probiotic Lactobacillus species are known to exert health benefits in hosts when administered in adequate quantities. A systematic safety assessment of the strains must be performed before the Lactobacillus strains can be designated as probiotics for human consumption. In this study, we selected Lactobacillus fermentum IDCC 3901, L. gasseri IDCC 3101, L. helveticus IDCC 3801, and L. salivarius IDCC 3551 as representative Lactobacilli probiotic strains and investigated their probiotic properties and potential risks through phenotypic and genomic characterization. Various assays including antimicrobial resistance, biogenic amine production, L-/D-lactate production, acute oral toxicity, and antipathogenic effect were performed to evaluate the safety of the four Lactobacillus strains. Genomic analysis using whole genome sequencing was performed to investigate virulence and antibiotic resistance genes in the genomes of the selected probiotic strains. The phenotypes of the strains such as enzymatic activity and carbohydrate utilization were also investigated. As a result, antibiotic resistances of the four Lactobacillus species were detected; however, neither antibiotic resistance-related genes nor virulence genes were found by genomic analysis. Moreover, the four Lactobacillus species did not exhibit hemolytic activity or β-glucuronidase activity. The biogenic amine production and oral acute toxicity were not shown in the four Lactobacillus species, whereas they produced D-lactate with minor ratio. The four Lactobacillus species exhibited antipathogenic effect to five pathogenic microorganisms. This study provides a way to assess the potential risks of four different Lactobacillus species and validates the safety of all four strains as probiotics for human consumption.
Collapse
Affiliation(s)
- Ye-Rim Lee
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| | | | - Kwang-Rim Baek
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| | - Geun-Hyung Kim
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| | - Min-Ji Kang
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| | | | - Seung-Oh Seo
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon 14662, Korea
| |
Collapse
|
49
|
Lactic Acid Bacteria as Mucosal Immunity Enhancers and Antivirals through Oral Delivery. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucosal vaccination offer an advantage over systemic inoculation from the immunological viewpoint. The development of an efficient vaccine is now a priority for emerging diseases such as COVID-19, that was declared a pandemic in 2020 and caused millions of deaths globally. Lactic acid bacteria (LAB) especially Lactobacillus are the vital microbiota of the gut, which is observed as having valuable effects on animals’ and human health. LAB produce lactic acid as the major by-product of carbohydrate degradation and play a significant role in innate immunity enhancement. LAB have significant characteristics to mimic pathogen infections and intrinsically possess adjuvant properties to enhance mucosal immunity. Increasing demand and deliberations are being substantially focused on probiotic organisms that can enhance mucosal immunity against viral diseases. LAB can also strengthen their host’s antiviral defense system by producing antiviral peptides, and releasing metabolites that prevent viral infections and adhesion to mucosal surfaces. From the perspectives of “one health” and the use of probiotics, conventional belief has opened up a new horizon on the use of LAB as antivirals. The major interest of this review is to depict the beneficial use of LAB as antivirals and mucosal immunity enhancers against viral diseases.
Collapse
|
50
|
Huang L, Wang J, Kong L, Wang X, Li Q, Zhang L, Shi J, Duan J, Mu H. ROS-responsive hyaluronic acid hydrogel for targeted delivery of probiotics to relieve colitis. Int J Biol Macromol 2022; 222:1476-1486. [PMID: 36195227 DOI: 10.1016/j.ijbiomac.2022.09.247] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Probiotics are generally used as therapeutic intervention in inflammatory bowel disease. However, the low survival rate in harsh gastrointestinal environment and limited retention in intestine greatly restrict their health benefits. To address this problem, a ROS-responsive hydrogel based on hyaluronic acid (HA) was developed for encapsulation and targeted delivery of probiotics. The hydrogel was prepared facilely by physiological crosslink with methacrylated HA and thiolated thioketal. As a model probiotic, Lactobacillu reuteri showed a significantly increased survival rate in simulated digestive conditions after encapsulated in hydrogel. The negative properties conferred the hydrogel preferential adhesions to inflammation sites. Meanwhile, the excess reactive oxygen species (ROS) produced by inflamed colon tissues selectively cleaved thioketal linkages resulted in hydrogel degradation and local probiotics release. Furthermore, the hydrogel exerted an appropriate ROS-scavenge capacity and protected HT-29 cells from oxidative damage. Animal experiments indicated that hydrogel-encapsulated L. reuteri could remarkably alleviate the symptoms and improve the survival rate of mice with dextran sulfate sodium (DSS)-induced colitis. These results suggested that the biocompatible hydrogel may be a delivery platform to target inflamed intestines and expand the application of probiotics as pharmaceuticals.
Collapse
Affiliation(s)
- Lijie Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junjie Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Kong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiulei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingjiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|