1
|
Hu J, Chen J, Yu M, Ku Y. Binocular imbalance measured by SSVEP predicts impaired stereoacuity in amblyopia. Heliyon 2024; 10:e39358. [PMID: 39497992 PMCID: PMC11532837 DOI: 10.1016/j.heliyon.2024.e39358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose The current study aims to implement steady-state visual evoked potentials (SSVEPs) in quantifying the binocular imbalance of amblyopia and to assess the predictive value of SSVEP-derived indices for amblyopic stereoacuity. Methods We measure frequency-tagged SSVEP responses elicited by each eye (F1 = 6 Hz through the fellow eye; F2 = 7.5 Hz through the amblyopic eye) within a binocular rivalry paradigm among a cohort of anisometropic amblyopic observers (n = 29, mean age: 12 years). Binocular suppression was quantified by assessing the disparity in SSVEP amplitudes between the eyes, while the strength of interocular interaction was evaluated through the intermodulation response at F1+F2 = 13.5 Hz. Subsequent analyses explored the associations between these neural indices and relevant behavioral metrics in amblyopia. Results Results reveal a significant difference in SSVEP amplitudes elicited from the fellow eye and the amblyopic eye, with the former exhibiting notably higher responses. Moreover, the fellow eye demonstrated prolonged dominance duration compared to its amblyopic counterpart. Furthermore, a negative correlation between binocular suppression and interocular interaction was observed, with stereoacuity showing a significant correlation with binocular suppression. Utilizing stepwise mulptiple linear regression analysis, we established that a predictive model combining binocular suppression and visual acuity of the amblyopic eye provided the best prediction of stereoacuity. Conclusions These results highlight the potential of binocular suppression, as assessed by SSVEPs within a binocular rivalry paradigm, as a promising neural predictor of stereopsis in amblyopia.
Collapse
Affiliation(s)
- Jingyi Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Marchant JK, Ferris NG, Grass D, Allen MS, Gopalakrishnan V, Olchanyi M, Sehgal D, Sheft M, Strom A, Bilgic B, Edlow B, Hillman EMC, Juttukonda MR, Lewis L, Nasr S, Nummenmaa A, Polimeni JR, Tootell RBH, Wald LL, Wang H, Yendiki A, Huang SY, Rosen BR, Gollub RL. Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging - A Symposium Review. Neuroinformatics 2024; 22:679-706. [PMID: 39312131 PMCID: PMC11579116 DOI: 10.1007/s12021-024-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.
Collapse
Affiliation(s)
- Joshua K Marchant
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| | - Natalie G Ferris
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Harvard Biophysics Graduate Program, Cambridge, MA, USA.
| | - Diana Grass
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Magdelena S Allen
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Vivek Gopalakrishnan
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Olchanyi
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Devang Sehgal
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Maxina Sheft
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Strom
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Berkin Bilgic
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Meher R Juttukonda
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura Lewis
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shahin Nasr
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan R Polimeni
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Roger B H Tootell
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Yendiki
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Bruce R Rosen
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Randy L Gollub
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Tuna AR, Pinto N, Fernandes A, Brardo FM, Pato MV. Can repetitive transcranial magnetic stimulation influence the visual cortex of adults with amblyopia? - systematic review. Clin Exp Optom 2024; 107:691-697. [PMID: 39025787 DOI: 10.1080/08164622.2024.2363369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024] Open
Abstract
Amblyopia is the most frequent cause of monocular vision loss. Transcranial Magnetic Stimulation (TMS) has been used to improve several vision parameters of the amblyopic eye in adulthood. This study is relevant in order to evaluate TMS effects and to raise awareness of the need for further research. Transcranial Magnetic Stimulation (TMS) is a neuromodulation technique capable of changing cortical excitability. In the last decade, it has been used to improve visual parameters in amblyopic patients. The main goal of this systematic review is to evaluate the influence of TMS in the amblyopic eye, in the visual parameters of amblyopic patients. Searches were done in PubMed and Embase databases, and a combined search strategy was performed using the following Mesh, EMBASE, and keywords: 'Amblyopia', 'Transcranial Magnetic Stimulation', and 'theta burst stimulation'. This review included randomised controlled studies, descriptive cases, and clinical case studies with adult amblyopes. All articles that had any of the following characteristics were excluded: children or animal studies, reviews, pathologies other than amblyopia, and other techniques rather than repetitive TMS (rTMS), or Theta Burst Stimulation (TBS). A total of 42 articles were found, of which only four studies (46 amblyopes) meet the criteria above. Three of the articles found significant improvement after one session of continuous TBS (cTBS) in visual parameters like visual acuity, contrast sensitivity, suppressive imbalance, and stereoacuity. One study found a significant visual improvement with 10 Hz rTMS. Only one stimulation-related dropout was reported. The few existing studies found in this review seem to show that through the usage of high-frequency rTMS and cTBS, it is possible to re-balance the eyes of an adult amblyope. However, despite the promising results, further research with larger randomised double-blind studies is needed for a better understanding of this process.
Collapse
Affiliation(s)
- Ana Rita Tuna
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- GRUBI - Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- GRUBI - Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Andresa Fernandes
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- GRUBI - Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
- Department of Physics, University of Beira Interior, Covilhã, Portugal
| | - Francisco Miguel Brardo
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- GRUBI - Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
- Department of Physics, University of Beira Interior, Covilhã, Portugal
| | - Maria Vaz Pato
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- GRUBI - Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Malladi SN, Skerswetat J, Tootell RB, Gaier ED, Bex P, Hunter DG, Nasr S. Decreased scene-selective activity within the posterior intraparietal cortex in amblyopic adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597579. [PMID: 38895262 PMCID: PMC11185631 DOI: 10.1101/2024.06.05.597579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Amblyopia is a developmental disorder associated with reduced performance in visually guided tasks, including binocular navigation within natural environments. To help understand the underlying neurological disorder, we used fMRI to test the impact of amblyopia on the functional organization of scene-selective cortical areas, including the posterior intraparietal gyrus scene-selective (PIGS) area, a recently discovered region that responds selectively to ego-motion within naturalistic environments (Kennedy et al., 2024). Nineteen amblyopic adults (10 female) and thirty age-matched controls (12 female) participated in this study. Amblyopic participants spanned a wide range of amblyopia severity, based on their interocular visual acuity difference and stereoacuity. The visual function questionnaire (VFQ-39) was used to assess the participants' perception of their visual capabilities. Compared to controls, we found weaker scene-selective activity within the PIGS area in amblyopic individuals. By contrast, the level of scene-selective activity across the occipital place area (OPA), parahippocampal place area (PPA), and retrosplenial cortex (RSC)) remained comparable between amblyopic and control participants. The subjects' scores on "general vision" (VFQ-39 subscale) correlated with the level of scene-selective activity in PIGS. These results provide novel and direct evidence for amblyopia-related changes in scene-processing networks, thus enabling future studies to potentially link these changes across the spectrum of documented disabilities in amblyopia.
Collapse
Affiliation(s)
- Sarala N. Malladi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jan Skerswetat
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Roger B.H. Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Eric D. Gaier
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston’s Children Hospital, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter Bex
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - David G. Hunter
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Dong X, Liu L, Du X, Wang Y, Zhang P, Li Z, Bao M. Treating amblyopia using altered reality enhances the fine-scale functional correlations in early visual areas. Hum Brain Mapp 2023; 44:6499-6510. [PMID: 37929783 PMCID: PMC10681636 DOI: 10.1002/hbm.26526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Amblyopia is a developmental visual disorder that causes substantial visual deficits. Studies using resting-state functional magnetic resonance imaging have disclosed abnormal brain functional connectivity (FC) both across long-range cortical sites and within the visual cortex in amblyopes, which is considered to be related to impaired visual functions. However, little work has examined whether restoring the vision of amblyopes accompanies with an improvement of FC. Here in adult amblyopes and healthy participants, we compared their brain FC before and after an altered-reality adaptation training. Before the training, the voxel-wise FCs of amblyopia patients were substantially weaker than those of healthy control participants both within and across the early visual areas. After the training, visual acuities improved in amblyopes but not in the control participants. The effect kept strengthening in the subsequent month without further adaptation. Importantly, we observed enhanced voxel-wise FC both within and across the early visual areas of amblyopes. Moreover, the enhancement continued for at least 1 month. These results suggest that the effective treatment can improve both the amblyopes' vision and functional connections in the visual cortex.
Collapse
Affiliation(s)
- Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Lijuan Liu
- Beijing Institute of Ophthalmology, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Xinxin Du
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yue Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zhihao Li
- School of PsychologyShenzhen UniversityShenzhenGuangdongChina
- Department of Psychiatry and Behavioral SciencesEmory UniversityAtlantaGeorgiaUSA
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyChinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Kam KY, Chang DHF. Sensory eye dominance plasticity in the human adult visual cortex. Front Neurosci 2023; 17:1250493. [PMID: 37746154 PMCID: PMC10513037 DOI: 10.3389/fnins.2023.1250493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Sensory eye dominance occurs when the visual cortex weighs one eye's data more heavily than those of the other. Encouragingly, mechanisms underlying sensory eye dominance in human adults retain a certain degree of plasticity. Notably, perceptual training using dichoptically presented motion signal-noise stimuli has been shown to elicit changes in sensory eye dominance both in visually impaired and normal observers. However, the neural mechanisms underlying these learning-driven improvements are not well understood. Here, we measured changes in fMRI responses before and after a five-day visual training protocol to determine the neuroplastic changes along the visual cascade. Fifty visually normal observers received training on a dichoptic or binocular variant of a signal-in-noise (left-right) motion discrimination task over five consecutive days. We show significant shifts in sensory eye dominance following training, but only for those who received dichoptic training. Pattern analysis of fMRI responses revealed that responses of V1 and hMT+ predicted sensory eye dominance for both groups, but only before training. After dichoptic (but not binocular) visual training, responses of V1 changed significantly, and were no longer able to predict sensory eye dominance. Our data suggest that perceptual training-driven changes in eye dominance are driven by a reweighting of the two eyes' data in the primary visual cortex. These findings may provide insight into developing region-targeted rehabilitative paradigms for the visually impaired, particularly those with severe binocular imbalance.
Collapse
Affiliation(s)
- Ka Yee Kam
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dorita H. F. Chang
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Jiang SQ, Chen YR, Liu XY, Zhang JY. Contour integration deficits at high spatial frequencies in children treated for anisometropic amblyopia. Front Neurosci 2023; 17:1160853. [PMID: 37564367 PMCID: PMC10411894 DOI: 10.3389/fnins.2023.1160853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose This study was conducted to reexamine the question of whether children treated for anisometropic amblyopia have contour integration deficits. To do so, we used psychophysical methods that require global contour processing while minimizing the influence of low-level deficits: visibility, shape perception, and positional uncertainty. Methods Thirteen children with anisometropic amblyopia (age: 10.1 ± 1.8 years) and thirteen visually normal children (age: 10.8 ± 2.0 years) participated in this study. The stimuli were closed figures made up of Gabor patches either in noise or on a blank field. The contrast thresholds to detect a circular contour on a blank field, as well as the thresholds of aspect ratio and contour element number to discriminate a circular or elliptical contour in noise, were measured at Gabor spatial frequencies of 1.5, 3, and 6 cpd for amblyopic eyes (AEs), fellow eyes (FEs), and normal control eyes. Visual acuities and contrast sensitivity functions for AEs and FEs and the Randot stereoacuity were measured before testing. Results The AEs showed contrast deficits and degraded shape perception compared to the FEs at higher spatial frequencies (6 cpd). When the influence of abnormal contrast sensitivity and shape perception were minimized, the AEs showed contour integration deficits at spatial frequencies 3 and 6 cpd. These deficits were not related to basic losses in contrast sensitivity and acuity, stereoacuity, and visual crowding. Besides, no significant difference was found between the fellow eyes of the amblyopic children and the normal control eyes in the performance of contour integration. Conclusion After eliminating or compensating for the low-level deficits, children treated for anisometropic amblyopia still show contour integration deficits, primarily at higher spatial frequencies, which might reflect the deficits in global processing caused by amblyopia. Contour integration deficits are likely independent of spatial vision deficits. Refractive correction and/or occlusion therapies may not be sufficient to fully restore contour integration deficits, which indicates the need for the development of clinical treatments to recover these deficits.
Collapse
Affiliation(s)
- Shu-Qi Jiang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yan-Ru Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xiang-Yun Liu
- The Affiliated Tengzhou Hospital of Xuzhou Medical University, Tengzhou, Shandong, China
| | - Jun-Yun Zhang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
8
|
Wang G, Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefes Arch Clin Exp Ophthalmol 2022; 261:1229-1246. [PMID: 36282454 DOI: 10.1007/s00417-022-05826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder characterized by functional deficits in the visual cortex. Functional magnetic resonance imaging (fMRI) is the most commonly used neuroimaging technique for investigating amblyopia. Herein, we systematically searched a PubMed database from inception to December 2021 to highlight the current progress and promises about fMRI technology in amblyopia; amblyopia's neural mechanism, the comparison of different types of amblyopia, and the evaluation of the therapeutic effect were explored. Relevant articles published in English and appropriate cross-references were considered for inclusion, including basic studies, imaging techniques, clinical diagnostic and therapeutic studies, case series, and reviews.
Collapse
Affiliation(s)
- Guiqu Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
陈 霞, 廖 孟, 蒋 苹, 刘 陇, 龚 启. [Abnormal spontaneous brain functional activity in adult patients with amblyopia: a resting-state functional magnetic resonance imaging study]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:759-766. [PMID: 36008340 PMCID: PMC10957354 DOI: 10.7507/1001-5515.202203072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Amblyopia is a visual development deficit caused by abnormal visual experience in early life, mainly manifesting as defected visual acuity and binocular visual impairment, which is considered to reflect abnormal development of the brain rather than organic lesions of the eye. Previous studies have reported abnormal spontaneous brain activity in patients with amblyopia. However, the location of abnormal spontaneous activity in patients with amblyopia and the association between abnormal brain function activity and clinical deficits remain unclear. The purpose of this study is to analyze spontaneous brain functional activity abnormalities in patients with amblyopia and their associations with clinical defects using resting-state functional magnetic resonance imaging (fMRI) data. In this study, 31 patients with amblyopia and 31 healthy controls were enrolled for resting-state fMRI scanning. The results showed that spontaneous activity in the right angular gyrus, left posterior cerebellum, and left cingulate gyrus were significantly lower in patients with amblyopia than in controls, and spontaneous activity in the right middle temporal gyrus was significantly higher in patients with amblyopia. In addition, the spontaneous activity of the left cerebellum in patients with amblyopia was negatively associated with the best-corrected visual acuity of the amblyopic eye, and the spontaneous activity of the right middle temporal gyrus was positively associated with the stereoacuity. This study found that adult patients with amblyopia showed abnormal spontaneous activity in the angular gyrus, cerebellum, middle temporal gyrus, and cingulate gyrus. Furthermore, the functional abnormalities in the cerebellum and middle temporal gyrus may be associated with visual acuity defects and stereopsis deficiency in patients with amblyopia. These findings help explain the neural mechanism of amblyopia, thus promoting the improvement of the treatment strategy for amblyopia.
Collapse
Affiliation(s)
- 霞 陈
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 孟 廖
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 苹 蒋
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 陇黔 刘
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 启勇 龚
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
10
|
Wang YN, Pan YC, Shu HY, Zhang LJ, Li QY, Ge QM, Liang RB, Shao Y. Altered Spontaneous Brain Activity Patterns in Children With Strabismic Amblyopia After Low-Frequency Repetitive Transcranial Magnetic Stimulation: A Resting-State Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:790678. [PMID: 35463933 PMCID: PMC9027809 DOI: 10.3389/fnhum.2022.790678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivePrevious studies have demonstrated altered brain activity in strabismic amblyopia (SA). In this study, low-frequency repetitive transcranial magnetic stimulation (rTMS) was applied in children with strabismic amblyopia after they had undergone strabismus surgery. The effect of rTMS was investigated by measuring the changes of brain features using the amplitude of low-frequency fluctuation (ALFF).Materials and MethodsIn this study, 21 SA patients (12 males and 9 females) were recruited based on their age (7–13 years old), weight, and sex. They all had SA in their left eyes and they received rTMS treatment one month after strabismus surgery. Their vision before and after surgery were categorized as pre-rTMS (PRT) and post-rTMS (POT). All participants received rTMS treatment, underwent magnetic resonance imaging (MRI), and their data were analyzed using the repeated measures t-test. The team used correlation analysis to explore the relationship between logMAR visual acuity and ALFF.ResultsPre- versus post-rTMS values of ALFF were significantly different within individuals. In the POT group, ALFF values were significantly decreased in the Angular_R (AR), Parietal_Inf_L (PIL), and Cingulum_Mid_R (CMR) while ALFF values were significantly increased in the Fusiform_R (FR) and Frontal_Inf_Orb_L(FIL) compared to the PRT stage.ConclusionOur data showed that ALFF recorded from some brain regions was changed significantly after rTMS in strabismic amblyopes. The results may infer the pathological basis of SA and demonstrate that visual function may be improved using rTMS in strabismic amblyopic patients.
Collapse
|
11
|
Tailor V, Ludden S, Bossi M, Bunce C, Greenwood JA, Dahlmann-Noor A. Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years. Cochrane Database Syst Rev 2022; 2:CD011347. [PMID: 35129211 PMCID: PMC8819728 DOI: 10.1002/14651858.cd011347.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Current treatments for amblyopia, typically patching or pharmacological blurring, have limited success. Less than two-thirds of children achieve good acuity of 0.20 logMAR in the amblyopic eye, with limited improvement of stereopsis, and poor adherence to treatment. A new approach, based on presentation of movies or computer games separately to each eye, may yield better results and improve adherence. These treatments aim to balance the input of visual information from each eye to the brain. OBJECTIVES: To determine whether binocular treatments in children, aged three to eight years, with unilateral amblyopia result in better visual outcomes than conventional patching or pharmacological blurring treatment. SEARCH METHODS We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), MEDLINE, Embase, ISRCTN, ClinicalTrials.gov, and the WHO ICTRP to 19 November 2020, with no language restrictions. SELECTION CRITERIA Two review authors independently screened the results of the search for relevant studies. We included randomised controlled trials (RCTs) that enrolled children between the ages of three and eight years old with unilateral amblyopia. Amblyopia was classed as present when the best-corrected visual acuity (BCVA) was worse than 0.200 logMAR in the amblyopic eye, with BCVA 0.200 logMAR or better in the fellow eye, in the presence of an amblyogenic risk factor, such as anisometropia, strabismus, or both. To be eligible, children needed to have undergone cycloplegic refraction and ophthalmic examination, including fundal examination and optical treatment, if indicated, with stable BCVA in the amblyopic eye despite good adherence with wearing glasses. We included any type of binocular viewing intervention, on any device (e.g. computer monitors viewed with liquid-crystal display shutter glasses; hand-held screens, including mobile phones with lenticular prism overlay; or virtual reality displays). Control groups received standard amblyopia treatment, which could include patching or pharmacological blurring of the better-seeing eye. We included full-time (all waking hours) and part-time (between 1 and 12 hours a day) patching regimens. We excluded children who had received any treatment other than optical treatment; and studies with less than 8-week follow-up. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. The primary outcome of the review was the change from baseline of distance BCVA in the amblyopic eye after 16 (± 2) weeks of treatment, measured in logMAR units on an age-appropriate acuity test. MAIN RESULTS We identified one eligible RCT of conventional patching treatment versus novel binocular treatment, and analysed a subset of 68 children who fulfilled the age criterion of this review. We obtained data for the mean change in amblyopic eye visual acuity, adverse events (diplopia), and adherence to prescribed treatment at 8- and 16-week follow-up intervals, though no data were available for change in BCVA after 52 weeks. Risk of bias for the included study was considered to be low. The certainty of evidence for the visual acuity outcomes at 8 and 16 weeks of treatment and adherence to the study intervention was rated moderate using the GRADE criteria, downgrading by one level due to imprecision. The certainty of evidence was downgraded by two levels and rated low for the proportion of participants reporting adverse events due to the sample size. Acuity improved in the amblyopic eye in both the binocular and patching groups following 16 weeks of treatment (improvement of -0.21 logMAR in the binocular group and -0.24 logMAR in the patching group, mean difference (MD) 0.03 logMAR (95% confidence interval (CI) -0.10 to 0.04; 63 children). This difference was non-significant and the improvements in both the binocular and patching groups are also considered clinically similar. Following 8 weeks of treatment, acuity improved in both the binocular and patching groups (improvement of -0.18 logMAR in the patching group compared to -0.16 logMAR improvement in the binocular-treatment group) (MD 0.02, 95% CI -0.04 to 0.08). Again this difference was statistically non-significant, and the differences observed between the patching and binocular groups are also clinically non-significant. No adverse event of permanent diplopia was reported. Adherence was higher in the patching group (47% of participants in the iPad group achieved over 75% compliance compared with 90% of the patching group). Data were not available for changes in stereopsis nor for contrast sensitivity following treatment. AUTHORS' CONCLUSIONS Currently, there is only one RCT that offers evidence of the safety and effectiveness of binocular treatment. The authors are moderately confident that after 16 weeks of treatment, the gain in amblyopic eye acuity with binocular treatment is likely comparable to that of conventional patching treatment. However, due to the limited sample size and lack of long term (52 week) follow-up data, it is not yet possible to draw robust conclusions regarding the overall safety and sustained effectiveness of binocular treatment. Further research, using acknowledged methods of visual acuity and stereoacuity assessment with known reproducibility, is required to inform decisions about the implementation of binocular treatments for amblyopia in clinical practice, and should incorporate longer term follow-up to establish the effectiveness of binocular treatment. Randomised controlled trials should also include outcomes reported by users, adherence to prescribed treatment, and recurrence of amblyopia after cessation of treatment.
Collapse
Affiliation(s)
- Vijay Tailor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Experimental Psychology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Siobhan Ludden
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- HSE DNCC Grangegorman Eye Clinic, Dublin, Ireland
| | - Manuela Bossi
- Department of Visual Neurosciences, UCL Institute of Ophthalmology, London, UK
| | - Catey Bunce
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Annegret Dahlmann-Noor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
12
|
Li CQ, Ge QM, Shu HY, Liao XL, Pan YC, Wu JL, Su T, Zhang LJ, Liang RB, Shao Y, Zeng EM. Investigation of Altered Spontaneous Brain Activities in Patients With Moyamoya Disease Using Percent Amplitude of Fluctuation Method: A Resting-State Functional MRI Study. Front Neurol 2022; 12:801029. [PMID: 35002939 PMCID: PMC8740316 DOI: 10.3389/fneur.2021.801029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Moyamoya disease (MMD) is a chronic progressive cerebrovascular abnormality characterized by chronic occlusion of large intracranial vessels with smoky vascular development at the base of the skull. In patients with MMD, abnormal spontaneous brain activity would be expected. Purpose: To assess the brain activity changes in patients with MMD by resting-state functional MRI (rs-fMRI), using the percent amplitude of fluctuation (PerAF) analysis method. Materials and Methods: A total of 17 patients with MMD (3 males and 14 females) and 17 healthy control (HC) subjects with matched gender and age were recruited for this study. We used rs-fMRI to scan all the patients with MMD. Spontaneous neural activity was evaluated using the PerAF approach. The receiver operating characteristic (ROC) curve analysis was used to assess the ability of the PerAF to distinguish patients with MMD from HCs. The Hospital Anxiety and Depression Scale (HADS) tests were performed to assess the emotional status of patients with MMD and retinal nerve fiber layer thickness (RNFLT) was measured using high-resolution optical coherence tomography (hr-OCT). The relationship between the HADS scores, RNFLT values, and the PerAF signals was assessed using the Pearson's correlation analysis. Results: Compared with HCs, the PerAF signals in patients with MMD were decreased in the Frontal_Sup_Medial_R and Precentral_L, whereas those in the Caudate_L were increased. The areas under the ROC curves indicated that signals in these brain regions could distinguish between patients with MMD and HCs. The PerAF value of Frontal_Sup_Medial_R was positively correlated with the left and right eye RNFLT values and negatively correlated with the HADS scores. Conclusion: In patients with MMD, reduced PerAF signals in the Frontal_Sup_Medial_R, Precentral_L, and Caudate_L may be associated with psychiatric diseases including anxiety and depression and decreased RNFLT may be associated with ophthalmic complications due to the compression of terminal branches of the internal carotid artery in the retinal fiber layer. The PerAF can be used as an effective indicator of ocular complications of MMD and to study the neural mechanism underpinning emotional complications in patients with MMD.
Collapse
Affiliation(s)
- Chu-Qi Li
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Ye Shu
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi-Cong Pan
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie-Li Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Eye Institute of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, China
| | - Ting Su
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Department of Ophthalmology, Eye Institute of Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen University School of Medicine, Xiamen, China.,Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Li-Juan Zhang
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Er-Ming Zeng
- Department of Neurosurgery and Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Su T, Zhu PW, Li B, Shi WQ, Lin Q, Yuan Q, Jiang N, Pei CG, Shao Y. Gray matter volume alterations in patients with strabismus and amblyopia: voxel-based morphometry study. Sci Rep 2022; 12:458. [PMID: 35013442 PMCID: PMC8748957 DOI: 10.1038/s41598-021-04184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
This study proposes the use of the voxel-based morphometry (VBM) technique to investigate structural alterations of the cerebral cortex in patients with strabismus and amblyopia (SA). Sixteen patients with SA and sixteen healthy controls (HCs) underwent magnetic resonance imaging. Original whole brain images were analyzed using the VBM method. Pearson correlation analysis was performed to evaluate the relationship between mean gray matter volume (GMV) and clinical manifestations. Receiver operating characteristic (ROC) curve analysis was applied to classify the mean GMV values of the SA group and HCs. Compared with the HCs, GMV values in the SA group showed a significant difference in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, bilateral parahippocampal gyrus, and left anterior cingulate cortex. The mean GMV value in the right superior temporal gyrus, posterior and anterior lobes of the cerebellum, and bilateral parahippocampal gyrus were negatively correlated with the angle of strabismus. The ROC curve analysis of each cerebral region confirmed the accuracy of the area under the curve. Patients with SA have reduced GMV values in some brain regions. These findings might help to reveal the potential pathogenesis of SA and its relationship with the atrophy of specific regions of the brain.
Collapse
Affiliation(s)
- Ting Su
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China.,Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Nan Jiang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, People's Republic of China
| | - Chong-Gang Pei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
14
|
Tong Y, Huang X, Qi CX, Shen Y. Assessment of spontaneous brain activity patterns in patients with iridocyclitis: a resting-state study. Neuroreport 2021; 32:612-620. [PMID: 33789337 DOI: 10.1097/wnr.0000000000001631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several studies demonstrated that patients with iridocyclitis were associated with vision loss and cognitive decline, whereas alterations in spontaneous brain activity occur in iridocyclitis patients remains unknown. The study aimed to explore spontaneous brain activity changes in iridocyclitis patients. Twenty-six patients with iridocyclitis and 26 healthy controls were finally included in our study. Resting-state MRI (rs-MRI) scan was conducted on both groups and the whole brain amplitude of low-frequency fluctuations (ALFFs) value was collected to assess differences in spontaneous brain activity. A receiver operating characteristic (ROC) curve was analyzed to distinguish between the fMRI data of patients with iridocyclitis and healthy controls. Patients with iridocyclitis showed significantly lower ALFF values in the right inferior parietal lobule, right calcarine, right superior temporal gyrus and right precentral gyrus compared to healthy controls and significantly higher ALFF values in the left superior frontal gyrus (P < 0.01, false discovery rate correction). The ROC curve analysis of different brain areas showed that the accuracies of ALFF value specificity between the iridocyclitis and healthy controls of the area under the curve were over 0.8. Our study highlighted an altered spontaneous activity in multiple brain regions, including the visual cortex, default-mode network, auditory area and sensorimotor areas in iridocyclitis. This may provide valuable information about underlying pathogenic mechanisms of iridocyclitis. These findings also indicate that rs-fMRI serves as a potential tool in the disease detection and evaluation of neurologic impairment in iridocyclitis.
Collapse
Affiliation(s)
- Yan Tong
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, Nanchang
| | - Chen-Xing Qi
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Neural markers of suppression in impaired binocular vision. Neuroimage 2021; 230:117780. [PMID: 33503479 PMCID: PMC8063178 DOI: 10.1016/j.neuroimage.2021.117780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/29/2020] [Accepted: 01/17/2021] [Indexed: 11/26/2022] Open
Abstract
Even after conventional patching treatment, individuals with a history of amblyopia typically lack good stereo vision. This is often attributed to atypical suppression between the eyes, yet the specific mechanism is still unclear. Guided by computational models of binocular vision, we tested explicit predictions about how neural responses to contrast might differ in individuals with impaired binocular vision. Participants with a history of amblyopia (N = 25), and control participants with typical visual development (N = 19) took part in the study. Neural responses to different combinations of contrast in the left and right eyes, were measured using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Stimuli were sinusoidal gratings with a spatial frequency of 3c/deg, flickering at 4 Hz. In the fMRI experiment, we also ran population receptive field and retinotopic mapping sequences, and a phase-encoded localiser stimulus, to identify voxels in primary visual cortex (V1) sensitive to the main stimulus. Neural responses in both modalities increased monotonically with stimulus contrast. When measured with EEG, responses were attenuated in the weaker eye, consistent with a fixed tonic suppression of that eye. When measured with fMRI, a low contrast stimulus in the weaker eye substantially reduced the response to a high contrast stimulus in the stronger eye. This effect was stronger than when the stimulus-eye pairings were reversed, consistent with unbalanced dynamic suppression between the eyes. Measuring neural responses using different methods leads to different conclusions about visual differences in individuals with impaired binocular vision. Both of the atypical suppression effects may relate to binocular perceptual deficits, e.g. in stereopsis, and we anticipate that these measures could be informative for monitoring the progress of treatments aimed at recovering binocular vision.
Collapse
|
16
|
Levi DM. Amblyopia. HANDBOOK OF CLINICAL NEUROLOGY 2021; 178:13-30. [PMID: 33832673 DOI: 10.1016/b978-0-12-821377-3.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amblyopia is a neurodevelopmental abnormality that results in physiological alterations in the visual pathways and impaired vision in one eye, less commonly in both. It reflects a broad range of neural, perceptual, oculomotor, and clinical abnormalities that can occur when normal visual development is disrupted early in life. Aside from refractive error, amblyopia is the most common cause of vision loss in infants and young children. It causes a constellation of perceptual deficits in the vision of the amblyopic eye, including a loss of visual acuity, position acuity, and contrast sensitivity, particularly at high spatial frequencies, as well as increased internal noise and prolonged manual and saccadic reaction times. There are also perceptual deficits in the strong eye, such as certain types of motion perception, reflecting altered neural responses and functional connectivity in visual cortex (Ho et al., 2005). Treatment in young children consists of correction of any refractive error and patching of the strong eye. Compliance with patching is challenging and a substantial proportion of amblyopic children fail to achieve normal acuity or stereopsis even after extended periods of treatment. There are a number of promising experimental treatments that may improve compliance and outcomes, such as the playing of action video games with the strong eye patched. Although there may be a sensitive period for optimal effects of treatment, there is evidence that amblyopic adults may still show some benefit of treatment. However, there is as yet no consensus on the treatment of adults with amblyopia.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States.
| |
Collapse
|
17
|
Abstract
Recent work has transformed our ideas about the neural mechanisms, behavioral consequences and effective therapies for amblyopia. Since the 1700's, the clinical treatment for amblyopia has consisted of patching or penalizing the strong eye, to force the "lazy" amblyopic eye, to work. This treatment has generally been limited to infants and young children during a sensitive period of development. Over the last 20 years we have learned much about the nature and neural mechanisms underlying the loss of spatial and binocular vision in amblyopia, and that a degree of neural plasticity persists well beyond the sensitive period. Importantly, the last decade has seen a resurgence of research into new approaches to the treatment of amblyopia both in children and adults, which emphasize that monocular therapies may not be the most effective for the fundamentally binocular disorder that is amblyopia. These approaches include perceptual learning, video game play and binocular methods aimed at reducing inhibition of the amblyopic eye by the strong fellow eye, and enhancing binocular fusion and stereopsis. This review focuses on the what we've learned over the past 20 years or so, and will highlight both the successes of these new treatment approaches in labs around the world, and their failures in clinical trials. Reconciling these results raises important new questions that may help to focus future directions.
Collapse
Affiliation(s)
- Dennis M Levi
- University of California, Berkeley, School of Optometry & Helen Wills Neuroscience Institute, Berkeley, CA, USA.
| |
Collapse
|
18
|
Mortazavi M, Aigner KM, Antono JE, Gambacorta C, Nahum M, Levi DM, Föcker J. Neural correlates of visual spatial selective attention are altered at early and late processing stages in human amblyopia. Eur J Neurosci 2020; 53:1086-1106. [PMID: 33107117 DOI: 10.1111/ejn.15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
Amblyopia is a neurodevelopmental visual disorder which results in reduced visual acuity in one eye and impaired binocular interactions. Previous studies suggest attentional deficits in amblyopic individuals. However, spatial cues which orient attention to a visual field improved performance. Here, we investigate the neural correlates of auditory-visual spatial selective attention in amblyopia during EEG recording. An auditory cue, that was followed by the presentation of two Gabor patches presented in the lower left and right visual fields, indicated the most likely location of an upcoming target Gabor. The target Gabor differed in orientation from the more frequently presented non-target Gabor patches. Adults with amblyopia and neurotypical observers were asked to detect the target Gabor monocularly at the cued location, while withholding their response to targets presented at the uncued location and to all non-target Gabor patches. Higher response rates were observed for cued compared to uncued targets in both groups. However, amblyopic individuals detected targets less efficiently with their amblyopic eye as compared to their fellow eye. Correspondingly, event-related potentials (ERPs) recorded to the onset of the non-target Gabor patches were delayed at early processing stages (150-300 ms: posterior N100) and reduced in amplitude at later time windows (150-350 ms: P200, 300-500 ms: sustained activity) in the amblyopic eye compared to the fellow eye. Such interocular differences were not observed in neurotypical observers. These findings suggest that neural resources allocated to the early formation of visual discrimination as well as later stimulus recognition processes are altered in the amblyopic eye.
Collapse
Affiliation(s)
- Matin Mortazavi
- Department of Radiology, University Hospital LMU, Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Munich, Germany
| | - Kiera M Aigner
- Faculty of Psychology and Educational Sciences, Ludwig-Maximilian University, Munich, Munich, Germany
| | - Jessica E Antono
- European Neuroscience Institute-Goettingen, A Joint Initiative of the University Medical Center Goettingen and the Max Planck Society, Goettingen, Germany
| | - Christina Gambacorta
- School of Optometry, Graduate Group in Vision Science and Helen Wills Neuroscience Institute, University of California, Berkley, Berkley, CA, USA
| | - Mor Nahum
- School of Occupational Therapy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dennis M Levi
- School of Optometry, Graduate Group in Vision Science and Helen Wills Neuroscience Institute, University of California, Berkley, Berkley, CA, USA
| | - Julia Föcker
- School of Psychology, College of Social Sciences, University of Lincoln, Lincoln, UK
| |
Collapse
|
19
|
Kiziltoprak H, Tekin K, Yetkin E, Sekeroglu MA. Static and Dynamic Pupil Characteristics in Myopic Anisometropic Amblyopia. BEYOGLU EYE JOURNAL 2020; 5:86-92. [PMID: 35098069 PMCID: PMC8784473 DOI: 10.14744/bej.2020.08760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The purpose of this study was to compare static and dynamic pupillometry measurements in patients with myopic anisometropic amblyopia with those of age-matched, healthy subjects. METHODS This prospective, cross-sectional study consisted of 29 patients with myopic anisometropic amblyopia and 83 control subjects. While both the amblyopic eye and the fellow eye of patients with myopic anisometropic amblyopia were examined, data were only recorded for the right eye of the subjects in the control group. Static pupillometry measurements determined included the scotopic pupil diameter (PD), mesopic PD, low photopic PD, and high photopic PD. Subsequently, dynamic pupillometry measurements were obtained, including the resting diameter, amplitude of pupil contraction, latency of pupil contraction, duration of pupil contraction, velocity of pupil contraction, latency of pupil dilation, duration of pupil dilation, and velocity of pupil dilation. RESULTS In the myopic anisometropia patients, there was a statistically significant difference in the low photopic PD and high photopic PD values of the amblyopic eyes and the corresponding fellow eyes compared with the healthy subjects (p<0.05 for each). These parameters of low photopic PD and high photopic PD were similar between the highly myopic eyes and the fellow eyes. There was no statistically significant difference in the mesopic or scotopic PD values between any of the groups (p>0.05 for each). There were no significant differences in the dynamic pupillometric measurements between the study and control eyes. CONCLUSION These results confirm that amblyopia is a binocular disorder. The dynamic pupillary responses were similar in the highly myopic and fellow eyes, indicating that evaluation of relative afferent pupillary defects may not be a useful test to differentiate amblyopic eyes from healthy corresponding eyes.
Collapse
Affiliation(s)
- Hasan Kiziltoprak
- Department of Ophthalmology, Bingol Women’s Health and Children’s Hospital, Bingol, Turkey
| | - Kemal Tekin
- Department of Ophthalmology, Ercis State Hospital, Van, Turkey
| | - Esat Yetkin
- Department of Ophthalmology, Midyat State Hospital, Mardin, Turkey
| | - Mehmet Ali Sekeroglu
- Department of Ophthalmology, Ankara Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Shi WQ, Tang LY, Lin Q, Li B, Jiang N, Zhu PW, Yuan Q, Ye L, Shao Y. Altered spontaneous brain activity patterns in diabetic patients with vitreous hemorrhage using amplitude of low‑frequency fluctuation: A resting‑state fMRI study. Mol Med Rep 2020; 22:2291-2299. [PMID: 32705185 PMCID: PMC7411342 DOI: 10.3892/mmr.2020.11294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/08/2020] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to assess the local character of spontaneous brain activity in type-2 diabetic patients with vitreous hemorrhage (VH) and its relationship with clinical features via the amplitude of low-frequency fluctuations (ALFF) method. A total of 31 subjects (15 females and 16 males) with type-2 diabetic VH and 31 normal controls (NCs) with similar characteristics (sex, age and educational level) were recruited in the present study. All subjects underwent resting-state functional magnetic resonance imaging scans. The local character of spontaneous brain activity was assessed using the ALFF method. The difference between the type-2 diabetic patients with VH and NCs was determined using receiver operating characteristic curves. Pearson's correlation analysis was applied to evaluate the relationship between the mean ALFF values of specific brain areas and related clinical manifestations in type-2 diabetic patients with VH. The ALFF values of type-2 diabetic patients with VH were significantly increased in the right and left cerebellum posterior lobes, left cerebellum posterior lobe/left lingual gyrus and bilateral superior frontal gyrus/left postcentral gyrus, compared with those obtained for NCs (P<0.05). By contrast, these values were significantly decreased in the left and right middle frontal gyri, right medial frontal gyrus/left anterior cingulate, right inferior frontal gyrus, right superior frontal gyrus, right middle frontal gyrus, right superior frontal gyrus/middle frontal gyrus and left middle frontal gyrus of the former group compared with the NCs (P<0.05). Nevertheless, there was no significant association between the mean ALFF values and clinical characteristics in different brain areas. Unusual spontaneous activity occurred in multiple brain areas, which may suggest the neuropathological mechanisms of visual impairment in type-2 diabetic patients with VH.
Collapse
Affiliation(s)
- Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Ying Tang
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Lin
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Biao Li
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Jiang
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei-Wen Zhu
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Yuan
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lei Ye
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Province Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Liang M, Xiao H, Xie B, Yin X, Wang J, Yang H. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study. BMC Neurosci 2019; 20:39. [PMID: 31375091 PMCID: PMC6679496 DOI: 10.1186/s12868-019-0524-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/29/2019] [Indexed: 02/02/2023] Open
Abstract
Background Amblyopia is generally considered a neurodevelopmental disorder that results from abnormal visual experiences in early childhood and may persist to adulthood. The neural basis of amblyopia has been a matter of interest for many decades, but the critical neural processing sites in amblyopia are not entirely understood. Although many functional neuroimaging studies have found abnormal neuronal responses both within and beyond V1, few studies have focused on the neurophysiologic abnormalities in the visual cortex from the viewpoint of potential structural reorganization. In this study, we used a well-validated and highly accurate surface-based method to examine cortical morphologic changes in the visual cortex using multiple parameters (including cortical thickness, surface area, volume and mean curvature). Results The cortical thicknesses of the bilateral V1, left V2, left ventral V3, left V4 and left V5/MT+ in patients were significantly thinner than that in controls. The mean curvature of the bilateral V1 was significantly increased in the patients compared with the controls. For the surface area and gray matter volume, no significant differences were found between patients and controls in all region of interests. The cortical thicknesses of the bilateral V1 were both negatively correlated with the amount of anisometropia. No significant correlations were found between any other surface parameters and clinical variables. Conclusion In addition to cortical thickness, the altered mean curvature of the cortex may indicate neuroanatomic impairments of the visual cortex in patients with anisometropic amblyopia. Moreover, the structural changes were bilateral in the primary visual cortex but were unilateral in the secondary and more senior visual cortex.
Collapse
Affiliation(s)
- Minglong Liang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Radiology, Aviation Medical Evaluation & Training Center of Airforce in Hangzhou, Hangzhou, Zhejiang, China
| | - He Xiao
- Department of Outpatient, Southwest Hospital, Army Medical University, Chongqing, China
| | - Bing Xie
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Yang
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
22
|
Thompson B, Maehara G, Goddard E, Farivar R, Mansouri B, Hess RF. Long-Range Interocular Suppression in Adults with Strabismic Amblyopia: A Pilot fMRI Study. Vision (Basel) 2019; 3:vision3010002. [PMID: 31735803 PMCID: PMC6802762 DOI: 10.3390/vision3010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/15/2018] [Accepted: 12/31/2018] [Indexed: 11/24/2022] Open
Abstract
Interocular suppression plays an important role in the visual deficits experienced by individuals with amblyopia. Most neurophysiological and functional MRI studies of suppression in amblyopia have used dichoptic stimuli that overlap within the visual field. However, suppression of the amblyopic eye also occurs when the dichoptic stimuli do not overlap, a phenomenon we refer to as long-range suppression. We used functional MRI to test the hypothesis that long-range suppression reduces neural activity in V1, V2 and V3 in adults with amblyopia, indicative of an early, active inhibition mechanism. Five adults with amblyopia and five controls viewed monocular and dichoptic quadrant stimuli during fMRI. Three of five participants with amblyopia experienced complete perceptual suppression of the quadrants presented to their amblyopic eye under dichoptic viewing. The blood oxygen level dependant (BOLD) responses within retinotopic regions corresponding to amblyopic and fellow eye stimuli were analyzed for response magnitude, time to peak, effective connectivity and stimulus classification. Dichoptic viewing slightly reduced the BOLD response magnitude in amblyopic eye retinotopic regions in V1 and reduced the time to peak response; however, the same effects were also present in the non-dominant eye of controls. Effective connectivity was unaffected by suppression, and the results of a classification analysis did not differ significantly between the control and amblyopia groups. Overall, we did not observe a neural signature of long-range amblyopic eye suppression in V1, V2 or V3 using functional MRI in this initial study. This type of suppression may involve higher level processing areas within the brain.
Collapse
Affiliation(s)
- Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
- School of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand
- Correspondence: ; Tel.: +1-519-888-4567 (39398)
| | - Goro Maehara
- Department of Human Sciences, Kanagawa University, Yokohama 221-8686, Japan
| | - Erin Goddard
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| | - Reza Farivar
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| | - Behzad Mansouri
- Department of Ophthalmology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert F. Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| |
Collapse
|
23
|
Mendola JD, Lam J, Rosenstein M, Lewis LB, Shmuel A. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. NEUROIMAGE-CLINICAL 2018; 18:192-201. [PMID: 29868445 PMCID: PMC5984596 DOI: 10.1016/j.nicl.2018.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/10/2017] [Accepted: 01/18/2018] [Indexed: 11/30/2022]
Abstract
Amblyopia is a prevalent developmental visual disorder of childhood that typically persists in adults. Due to altered visual experience during critical periods of youth, the structure and function of adult visual cortex is abnormal. In addition to substantial deficits shown with task-based fMRI, previous studies have used resting state measures to demonstrate altered long-range connectivity in amblyopia. This is the first study in amblyopia to analyze connectivity between regions of interest that are smaller than a single cortical area and to apply partial correlation analysis to reduce network effects. We specifically assess short-range connectivity between retinotopically defined regions of interest within the occipital lobe of 8 subjects with amblyopia and 7 subjects with normal vision (aged 19–45). The representations of visual areas V1, V2, and V3 within each of the four quadrants of visual space were further subdivided into three regions based on maps of visual field eccentricity. Connectivity between pairs of all nine regions of interest in each quadrant was tested via correlation and partial correlation for both groups. Only the tests of partial correlation, i.e., correlation between time courses of two regions following the regression of time courses from all other regions, yielded significant differences between resting state functional connectivity in amblyopic and normal subjects. Subjects with amblyopia showed significantly higher partial correlation between para-foveal and more eccentric representations within V1, and this effect associated with poor acuity of the worse eye. In addition, we observed reduced correlation in amblyopic subjects between isoeccentricity regions in V1 and V2, and separately, between such regions in V2 and V3. We conclude that partial correlation-based connectivity is altered in an eccentricity-dependent pattern in visual field maps of amblyopic patients. Moreover, results are consistent with known clinical and psychophysical vision loss. More broadly, this provides evidence that abnormal cortical adaptations to disease may be better isolated with tests of partial correlation connectivity than with the regular correlation techniques that are currently widely used. Cortical functional connectivity abnormalities exist in amblyopia at a scale finer than previously reported. Connectivity changes within primary visual cortex are consistent with known loss of function. Connectivity changes between visual areas are consistent with concept of deafferentation. Partial correlation differentiates patients from controls, whereas correlation does not.
Collapse
Affiliation(s)
- J D Mendola
- Department of Ophthalmology, McGill University, Montreal, QC, Canada.
| | - J Lam
- Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - M Rosenstein
- Department of Ophthalmology, McGill University, Montreal, QC, Canada
| | - L B Lewis
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - A Shmuel
- Departments of Neurology, Neurosurgery, Physiology and Biomedical Engineering, McGill University, Montreal, QC, Canada; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Min YL, Su T, Shu YQ, Liu WF, Chen LL, Shi WQ, Jiang N, Zhu PW, Yuan Q, Xu XW, Ye L, Shao Y. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat 2018; 14:2351-2359. [PMID: 30275692 PMCID: PMC6157537 DOI: 10.2147/ndt.s171462] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Previous studies have demonstrated that strabismus or amblyopia can result in markedly brain function and anatomical alterations. However, the differences in spontaneous brain activities of strabismus with amblyopia (SA) patients still remain unclear. This current study intended to use the amplitude of low-frequency fluctuation (ALFF) technique to investigate the intrinsic brain activity changes in SA subjects. PATIENTS AND METHODS A total of 16 patients with SA (6 males and 10 females) and 16 healthy controls (HCs; 6 males and 10 females) similarly matched in age, gender, and education status were recruited and examined with the resting-state functional MRI. The spontaneous brain activity changes were investigated using the ALFF technique. The receiver operating characteristic curve was performed to classify the mean ALFF signal values of the SA patients from HCs. The correlations between the ALFF values of distinct brain regions and the clinical manifestations in SA patients were evaluated in terms of the Pearson's correlation analysis. RESULTS Compared with HCs, SA patients had significantly decreased ALFF in the left cerebellum posterior lobe, left middle frontal gyrus, and bilateral thalamus. In contrast, SA patients showed increased ALFF values in the right superior frontal gyrus, right precuneus, left cuneus, and bilateral precentral gyrus. Nonetheless, there was no linear correlation between the mean ALFF values in brain regions and clinical features. CONCLUSION Diverse brain regions including vision-related and motion-related areas exhibited aberrant intrinsic brain activity patterns, which imply the neuropathologic mechanisms of oculomotor disorder and vision deficit in the SA patients.
Collapse
Affiliation(s)
- You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Ting Su
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian, China
| | - Yong-Qiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006 Jiangxi, China
| | - Wen-Feng Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Ling-Long Chen
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006 Jiangxi, China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Nan Jiang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Xiao-Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang 330006 Jiangxi, China,
| |
Collapse
|
25
|
Tang A, Chen T, Zhang J, Gong Q, Liu L. Abnormal Spontaneous Brain Activity in Patients With Anisometropic Amblyopia Using Resting-State Functional Magnetic Resonance Imaging. J Pediatr Ophthalmol Strabismus 2017; 54:303-310. [PMID: 28617520 DOI: 10.3928/01913913-20170320-05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/03/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE To explore the abnormality of spontaneous activity in patients with anisometropic amblyopia under resting-state functional magnetic resonance imaging (Rs-fMRI). METHODS Twenty-four participants were split into two groups. The anisometropic amblyopia group had 10 patients, all of whom had anisometropic amblyopia of the right eye, and the control group had 14 healthy subjects. All participants underwent Rs-fMRI scanning. Measurement of amplitude of low frequency fluctuations of the brain, which is a measure of the amplitudes of spontaneous brain activity, was used to investigate brain changes between the anisometropic amblyopia and control groups. RESULTS Compared with an age- and gender-matched control group, the anisometropic amblyopia group showed increased amplitude of low frequency fluctuations of spontaneous brain activity in the left superior temporal gyrus, the left inferior parietal lobe, the left pons, and the right inferior semi-lunar lobe. The anisometropic amblyopia group also showed decreased amplitude of low frequency fluctuations in the bilateral medial frontal gyrus. CONCLUSIONS This study demonstrated abnormal spontaneous brain activities in patients with anisometropic amblyopia under Rs-fMRI, and these abnormalities might contribute to the neuropathological mechanisms of anisometropic amblyopia. [J Pediatr Ophthalmol Strabismus. 2017;54(5):303-310.].
Collapse
|
26
|
Brown HDH, Woodall RL, Kitching RE, Baseler HA, Morland AB. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 2017; 36:240-65. [PMID: 27112223 PMCID: PMC4855621 DOI: 10.1111/opo.12293] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/25/2023]
Abstract
Purpose Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post‐mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non‐invasively examine the effects of eye disease on the whole visual pathway, including the lateral geniculate nucleus, striate and extrastriate cortex. This review aims to summarise research using MRI to investigate structural, chemical and functional effects of eye diseases, including: macular degeneration, retinitis pigmentosa, glaucoma, albinism, and amblyopia. Recent Findings Structural MRI has demonstrated significant abnormalities within both grey and white matter densities across both visual and non‐visual areas. Functional MRI studies have also provided extensive evidence of functional changes throughout the whole of the visual pathway following visual loss, particularly in amblyopia. MR spectroscopy techniques have also revealed several abnormalities in metabolite concentrations in both glaucoma and age‐related macular degeneration. GABA‐edited MR spectroscopy on the other hand has identified possible evidence of plasticity within visual cortex. Summary Collectively, using MRI to investigate the effects on the visual pathway following disease and dysfunction has revealed a rich pattern of results allowing for better characterisation of disease. In the future MRI will likely play an important role in assessing the impact of eye disease on the visual pathway and how it progresses over time.
Collapse
Affiliation(s)
| | | | | | - Heidi A Baseler
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| | - Antony B Morland
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| |
Collapse
|
27
|
Roberts M, Cymerman R, Smith RT, Kiorpes L, Carrasco M. Covert spatial attention is functionally intact in amblyopic human adults. J Vis 2016; 16:30. [PMID: 28033433 PMCID: PMC5215291 DOI: 10.1167/16.15.30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/20/2016] [Indexed: 11/24/2022] Open
Abstract
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.
Collapse
Affiliation(s)
- Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Rachel Cymerman
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - R Theodore Smith
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Lynne Kiorpes
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
28
|
Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization? J Neurosci 2016; 35:14740-55. [PMID: 26538646 DOI: 10.1523/jneurosci.1101-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The neural basis of amblyopia is a matter of debate. The following possibilities have been suggested: loss of foveal cells, reduced cortical magnification, loss of spatial resolution of foveal cells, and topographical disarray in the cellular map. To resolve this we undertook a population receptive field (pRF) functional magnetic resonance imaging analysis in the central field in humans with moderate-to-severe amblyopia. We measured the relationship between averaged pRF size and retinal eccentricity in retinotopic visual areas. Results showed that cortical magnification is normal in the foveal field of strabismic amblyopes. However, the pRF sizes are enlarged for the amblyopic eye. We speculate that the pRF enlargement reflects loss of cellular resolution or an increased cellular positional disarray within the representation of the amblyopic eye. SIGNIFICANCE STATEMENT The neural basis of amblyopia, a visual deficit affecting 3% of the human population, remains a matter of debate. We undertook the first population receptive field functional magnetic resonance imaging analysis in participants with amblyopia and compared the projections from the amblyopic and fellow normal eye in the visual cortex. The projection from the amblyopic eye was found to have a normal cortical magnification factor, enlarged population receptive field sizes, and topographic disorganization in all early visual areas. This is consistent with an explanation of amblyopia as an immature system with a normal complement of cells whose spatial resolution is reduced and whose topographical map is disordered. This bears upon a number of competing theories for the psychophysical defect and affects future treatment therapies.
Collapse
|
29
|
The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Sci Rep 2016; 6:19280. [PMID: 26763954 PMCID: PMC4725886 DOI: 10.1038/srep19280] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/01/2015] [Indexed: 11/08/2022] Open
Abstract
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia.
Collapse
|
30
|
Qi S, Mu YF, Cui LB, Li R, Shi M, Liu Y, Xu JQ, Zhang J, Yang J, Yin H. Association of Optic Radiation Integrity with Cortical Thickness in Children with Anisometropic Amblyopia. Neurosci Bull 2016; 32:51-60. [PMID: 26769488 DOI: 10.1007/s12264-015-0005-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/09/2015] [Indexed: 11/24/2022] Open
Abstract
Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P < 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lingual cortex, lateral occipitotemporal gyrus, cuneus, occipital lobe, inferior parietal lobe, and temporal lobe (P < 0.05, corrected), but was higher in the calcarine gyrus (P < 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lateral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.
Collapse
Affiliation(s)
- Shun Qi
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yun-Feng Mu
- Department of Radiotherapy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Long-Biao Cui
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rong Li
- Department of Ophthalmology, The Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Mei Shi
- Department of Radiotherapy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Qing Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
31
|
Tailor V, Bossi M, Bunce C, Greenwood JA, Dahlmann‐Noor A. Binocular versus standard occlusion or blurring treatment for unilateral amblyopia in children aged three to eight years. Cochrane Database Syst Rev 2015; 2015:CD011347. [PMID: 26263202 PMCID: PMC6718221 DOI: 10.1002/14651858.cd011347.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Current treatments for amblyopia in children, occlusion and pharmacological blurring, have had limited success, with less than two-thirds of children achieving good visual acuity of at least 0.20 logMAR in the amblyopic eye, limited improvement of stereopsis, and poor compliance. A new treatment approach, based on the dichoptic presentation of movies or computer games (images presented separately to each eye), may yield better results, as it aims to balance the input of visual information from each eye to the brain. Compliance may also improve with these more child-friendly treatment procedures. OBJECTIVES To determine whether binocular treatments in children aged three to eight years with unilateral amblyopia result in better visual outcomes than conventional occlusion or pharmacological blurring treatment. SEARCH METHODS We searched the Cochrane Eyes and Vision Group Trials Register (last date of searches: 14 April 2015), the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to April 2015), EMBASE (January 1980 to April 2015), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. SELECTION CRITERIA Two review authors independently screened the results of the search in order to identify studies that met the inclusion criteria of the review: randomised controlled trials (RCTs) that enrolled participants between the ages of three and eight years old with unilateral amblyopia, defined as best-corrected visual acuity (BCVA) worse than 0.200 logMAR in the amblyopic eye, and BCVA 0.200 logMAR or better in the fellow eye, in the presence of an amblyogenic risk factor such as anisometropia, strabismus, or both. Prior to enrolment, participants were to have undergone a cycloplegic refraction and comprehensive ophthalmic examination including fundal examination. In addition, participants had to have completed a period of optical treatment, if indicated, and BCVA in the amblyopic eye had to remain unchanged on two consecutive assessments despite reportedly good compliance with glasses wearing. Participants were not to have received any treatment other than optical treatment prior to enrolment. We planned to include any type of binocular viewing intervention; these could be delivered on different devices including computer monitors viewed with LCD shutter glasses or hand-held screens including mobile phone screens with lenticular prism overlay. Control groups were to have received standard amblyopia treatment; this could include occlusion or pharmacological blurring of the better-seeing eye. We planned to include full-time (all waking hours) and part-time (between 1 and 12 hours a day) occlusion regimens. DATA COLLECTION AND ANALYSIS We planned to use standard methodological procedures expected by The Cochrane Collaboration. We had planned to meta-analyse the primary outcome, that is mean distance BCVA in the amblyopic eye at 12 months after the cessation of treatment. MAIN RESULTS We could identify no RCTs in this subject area. AUTHORS' CONCLUSIONS Further research is required to allow decisions about implementation of binocular treatments for amblyopia in clinical practice. Currently there are no clinical trials offering standardised evidence of the safety and effectiveness of binocular treatments, but results from non-controlled cohort studies are encouraging. Future research should be conducted in the form of RCTs, using acknowledged methods of visual acuity and stereoacuity assessment with known reproducibility. Other important outcome measures include outcomes reported by users, compliance with treatment, and recurrence of amblyopia after cessation of treatment.
Collapse
Affiliation(s)
- Vijay Tailor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology162 City RoadLondonUKEC1V 2PD
| | - Manuela Bossi
- UCL Institute of OphthalmologyDepartment of Visual NeurosciencesLondonUK
| | - Catey Bunce
- Moorfields Eye Hospital NHS Foundation TrustResearch and Development DepartmentCity RoadLondonUKEC1V 2PD
| | - John A Greenwood
- University College LondonExperimental Psychology26 Bedford WayLondonUKWC1H 0AP
| | - Annegret Dahlmann‐Noor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology162 City RoadLondonUKEC1V 2PD
| |
Collapse
|
32
|
Baker DH, Simard M, Saint-Amour D, Hess RF. Steady-state contrast response functions provide a sensitive and objective index of amblyopic deficits. Invest Ophthalmol Vis Sci 2015; 56:1208-16. [PMID: 25634977 DOI: 10.1167/iovs.14-15611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Visual deficits in amblyopia are neural in origin, yet are difficult to characterize with functional magnetic resonance imagery (fMRI). Our aim was to develop an objective electroencephalography (EEG) paradigm that can be used to provide a clinically useful index of amblyopic deficits. METHODS We used steady-state visual evoked potentials (SSVEPs) to measure full contrast response functions in both amblyopic (n = 10, strabismic or mixed amblyopia, mean age: 44 years) and control (n = 5, mean age: 31 years) observers, both with and without a dichoptic mask. RESULTS At the highest target contrast, the ratio of amplitudes across the weaker and stronger eyes was highly correlated (r = 0.76) with the acuity ratio between the eyes. We also found that the contrast response function in the amblyopic eye had both a greatly reduced amplitude and a shallower slope, but that surprisingly dichoptic masking was weaker than in controls. The results were compared with the predictions of a computational model of amblyopia and suggest a modification to the model whereby excitatory (but not suppressive) signals are attenuated in the amblyopic eye. CONCLUSIONS We suggest that SSVEPs offer a sensitive and objective measure of the ocular imbalance in amblyopia and could be used to assess the efficacy of amblyopia therapies currently under development.
Collapse
Affiliation(s)
- Daniel H Baker
- Department of Psychology, University of York, Heslington, York, United Kingdom
| | - Mathieu Simard
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, Canada
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology, McGill University, Montréal, Canada
| |
Collapse
|
33
|
Hamm LM, Black J, Dai S, Thompson B. Global processing in amblyopia: a review. Front Psychol 2014; 5:583. [PMID: 24987383 PMCID: PMC4060804 DOI: 10.3389/fpsyg.2014.00583] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/25/2014] [Indexed: 01/13/2023] Open
Abstract
Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing.
Collapse
Affiliation(s)
- Lisa M Hamm
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand
| | - Joanna Black
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand
| | - Shuan Dai
- Department of Ophthalmology, Starship Children's Hospital Auckland, New Zealand ; Department of Ophthalmology, University of Auckland Auckland, New Zealand
| | - Benjamin Thompson
- Department of Optometry and Vision Science, University of Auckland Auckland, New Zealand ; Department of Optometry and Vision Science, University of Waterloo Waterloo, Canada
| |
Collapse
|
34
|
Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, Yu C. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res 2014; 1563:41-51. [PMID: 24661911 DOI: 10.1016/j.brainres.2014.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/01/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Amblyopia is a developmental disorder resulting from anomalous binocular visual input in early life. Task-based neuroimaging studies have widely investigated cortical functional impairments in amblyopia, but changes in spontaneous neuronal functional activities in amblyopia remain largely unknown. In the present study, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on fMRI, was applied for the first time to investigate changes in cortical functional connectivities in amblyopia during the resting-state. We quantified and compared both short- and long-range FCD in both the brains of children with anisometropic amblyopia (AAC) and normal sighted children (NSC). In contrast to the NSC, the AAC showed significantly decreased short-range FCD in the inferior temporal/fusiform gyri, parieto-occipital and rostrolateral prefrontal cortices, as well as decreased long-range FCD in the premotor cortex, dorsal inferior parietal lobule, frontal-insular and dorsal prefrontal cortices. Furthermore, most regions with reduced long-range FCD in the AAC showed decreased functional connectivity with occipital and posterior parietal cortices in the AAC. The results suggest that chronically poor visual input in amblyopia not only impairs the brain's short-range functional connections in visual pathways and in the frontal cortex, which is important for cognitive control, but also affects long-range functional connections among the visual areas, posterior parietal and frontal cortices that subserve visuomotor and visual-guided actions, visuospatial attention modulation and the integration of salient information. This study provides evidence for abnormal spontaneous brain activities in amblyopia.
Collapse
Affiliation(s)
- Tianyue Wang
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Road, Hexi District, Tianjin 300203, China
| | - Qian Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingxia Guo
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Road, Hexi District, Tianjin 300203, China.
| | - Yanmin Peng
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Road, Hexi District, Tianjin 300203, China
| | - Qingji Li
- Department of Strabismus and Amblyopia, Tianjin Aier Eye Hospital, Tianjin, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Chunshui Yu
- School of Medical Imaging, Tianjin Medical University, No. 1, Guangdong Road, Hexi District, Tianjin 300203, China; Department of Radiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
35
|
Abstract
Over the last 35 years or so, there has been substantial progress in revealing and characterizing the many interesting and sometimes mysterious sensory abnormalities that accompany amblyopia. A goal of many of the studies has been to try to make the link between the sensory losses and the underlying neural losses, resulting in several hypotheses about the site, nature, and cause of amblyopia. This article reviews some of these hypotheses, and the assumptions that link the sensory losses to specific physiological alterations in the brain. Despite intensive study, it turns out to be quite difficult to make a simple linking hypothesis, at least at the level of single neurons, and the locus of the sensory loss remains elusive. It is now clear that the simplest notion-that reduced contrast sensitivity of neurons in cortical area V1 explains the reduction in contrast sensitivity-is too simplistic. Considerations of noise, noise correlations, pooling, and the weighting of information also play a critically important role in making perceptual decisions, and our current models of amblyopia do not adequately take these into account. Indeed, although the reduction of contrast sensitivity is generally considered to reflect "early" neural changes, it seems plausible that it reflects changes at many stages of visual processing.
Collapse
Affiliation(s)
- Dennis M Levi
- School of Optometry & Helen Wills Neuroscience Institute, University of California, Berkeley, California
| |
Collapse
|
36
|
Zhai J, Chen M, Liu L, Zhao X, Zhang H, Luo X, Gao J. Perceptual learning treatment in patients with anisometropic amblyopia: a neuroimaging study. Br J Ophthalmol 2013; 97:1420-4. [PMID: 24037607 DOI: 10.1136/bjophthalmol-2013-303778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To investigate the neuromechanisms of perceptual learning treatment in patients with anisometropic amblyopia using functional MRI (fMRI) and diffusion tensor imaging (DTI) techniques. METHODS 20 patients with monocular anisometropic amblyopia participated in the study. Both fMRI and DTI data were acquired for each patient twice: before and after 30 days' perceptual learning treatment for the amblyopic eye. During fMRI scanning, patients viewed the stimuli with either the sound or amblyopic eye. Changes of cortical activation after treatment were evaluated. In the DTI exams, the fractional anisotropy (FA) values, apparent diffusion coefficient (ADC) values, the voxel numbers of optic radiations (ORs), and the number of tracks were compared between the ipsilateral and the contralateral ORs and also between the previous and posterior scans. RESULTS Remarkable increased activation via the amblyopic eyes was found in Brodmann Area (BA) 17-19, bilateral temporal lobes, and right cingulate gyrus after the perceptual learning treatment. No significant changes were found in the FA values, ADC values, voxel numbers, and the number of tracks after the treatment. CONCLUSIONS These results indicate that perceptual learning treatment for amblyopia had a positive effect on the visual cortex and temporal lobe visual areas in patients with anisometropic amblyopia.
Collapse
Affiliation(s)
- Jingjing Zhai
- Department of Radiology, Beijing Hospital, , Beijing, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Spiegel DP, Byblow WD, Hess RF, Thompson B. Anodal Transcranial Direct Current Stimulation Transiently Improves Contrast Sensitivity and Normalizes Visual Cortex Activation in Individuals With Amblyopia. Neurorehabil Neural Repair 2013; 27:760-9. [DOI: 10.1177/1545968313491006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background. Amblyopia is a neurodevelopmental disorder of vision that is associated with abnormal patterns of neural inhibition within the visual cortex. This disorder is often considered to be untreatable in adulthood because of insufficient visual cortex plasticity. There is increasing evidence that interventions that target inhibitory interactions within the visual cortex, including certain types of noninvasive brain stimulation, can improve visual function in adults with amblyopia. Objective. We tested the hypothesis that anodal transcranial direct current stimulation (a-tDCS) would improve visual function in adults with amblyopia by enhancing the neural response to inputs from the amblyopic eye. Methods. Thirteen adults with amblyopia participated and contrast sensitivity in the amblyopic and fellow fixing eye was assessed before, during and after a-tDCS or cathodal tDCS (c-tDCS). Five participants also completed a functional magnetic resonance imaging (fMRI) study designed to investigate the effect of a-tDCS on the blood oxygen level–dependent response within the visual cortex to inputs from the amblyopic versus the fellow fixing eye. Results. A subgroup of 8/13 participants showed a transient improvement in amblyopic eye contrast sensitivity for at least 30 minutes after a-tDCS. fMRI measurements indicated that the characteristic cortical response asymmetry in amblyopes, which favors the fellow eye, was reduced by a-tDCS. Conclusions. These preliminary results suggest that a-tDCS deserves further investigation as a potential tool to enhance amblyopia treatment outcomes in adults.
Collapse
|
38
|
BOLD responses to different temporospatial frequency stimuli in V1 and V2 visual cortex of anisometropic amblyopia. Eur J Ophthalmol 2013; 23:147-55. [PMID: 23161178 DOI: 10.5301/ejo.5000211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE Functional magnetic resonance imaging (fMRI) is the most advanced neuroimaging technique. The aim of this study was to investigate the blood oxygenation level-dependent (BOLD) of V1 and V2 visual cortex in anisometropic amblyopia with fMRI and explore the neural mechanism of amblyopia. METHODS fMRI was performed with a 3.0-T MRI scanner during reversal checkerboard visual stimulation with different spatial frequencies (SF) of 0.4, 2, and 8 cpd in 2 states of temporal frequencies (TF) of 6 Hz and 8 Hz in a group of patients with anisometropic amblyopia (n=5) and a group of normal observers (n=4). Data were processed by SPM software offline. Responses of different eyes were compared in different conditions. RESULTS The BOLD signal magnitude in V1 and V2 visual cortex of amblyopic eyes was significantly lower than the fellow eyes with anisometropic amblyopia at low SF (0.4-2 cpd) (p<0.05), but it was significantly higher than the fellow eyes at high SF (8 cpd) (p<0.05). The BOLD signal magnitude in V1 and V2 visual cortex of amblyopic eyes was significantly lower than the nondominant eyes in normal subjects in all conditions (p<0.001). CONCLUSIONS There are cortical deficits in V1 and V2 visual cortex of anisometropic amblyopia, which may be useful for selecting an optimum stimulus at proper temporospatial frequency.
Collapse
|
39
|
Wong AM. New concepts concerning the neural mechanisms of amblyopia and their clinical implications. Can J Ophthalmol 2012; 47:399-409. [DOI: 10.1016/j.jcjo.2012.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 05/09/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
|
40
|
Körtvélyes J, Bankó EM, Andics A, Rudas G, Németh J, Hermann P, Vidnyánszky Z. Visual cortical responses to the input from the amblyopic eye are suppressed during binocular viewing. ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 1:65-79. [PMID: 22453742 DOI: 10.1556/abiol.63.2012.suppl.1.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Amblyopia is a visual disorder caused by an anomalous early visual experience. It has been suggested that suppression of the visual input from the weaker eye might be a primary underlying mechanism of the amblyopic syndrome. However, it is still an unresolved question to what extent neural responses to the visual information coming from the amblyopic eye are suppressed during binocular viewing. To address this question we measured event-related potentials (ERP) to foveal face stimuli in amblyopic patients, both in monocular and binocular viewing conditions. The results revealed no difference in the amplitude and latency of early components of the ERP responses between the binocular and fellow eye stimulation. On the other hand, early ERP components were reduced and delayed in the case of monocular stimulation of the amblyopic eye as compared to the fellow eye stimulation or to binocular viewing. The magnitude of the amblyopic effect measured on the ERP amplitudes was comparable to that found on the fMRI responses in the fusiform face area using the same face stimuli and task conditions. Our findings showing that the amblyopic effects present on the early ERP components in the case of monocular stimulation are not manifested in the ERP responses during binocular viewing suggest that input from the amblyopic eye is completely suppressed already at the earliest stages of visual cortical processing when stimuli are viewed by both eyes.
Collapse
Affiliation(s)
- Judit Körtvélyes
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
41
|
Li C, Cheng L, Yu Q, Xie B, Wang J. Relationship of visual cortex function and visual acuity in anisometropic amblyopic children. Int J Med Sci 2012; 9:115-20. [PMID: 22211099 PMCID: PMC3245421 DOI: 10.7150/ijms.9.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To detect the functional deficit of the visual cortex in anisometropic amblyopia children using functional magnetic resonance imaging (fMRI) technique, and investigate the relationship between visual acuity and visual cortex function. METHODS Blood oxygenation level-dependent fMRI (BOLD-fMRI) was performed in ten monocular anisometropic amblyopia children and ten normal controls. fMRI images were acquired in two runs with visual stimulation delivered separately through the sound and amblyopic eyes. Measurements were performed in cortical activation of striate and extrastriate areas at the occipital lobe. The relationship between cortex function and visual acuity was analyzed by Pearson partial analysis. RESULTS The activation areas of both the striate and extrastriate cortices in the amblyopic eyes were significantly lower than that of the sound fellow eyes. No relationship was found between the striate and extrastriate cortex activation. No relationship was found between the visual cortical activation of striate, extrastriate areas and visual acuity of anisometropic amblyopes. CONCLUSIONS BOLD-fMRI revealed the independent striate and extrastriate cortical deficits in anisometropic amblyopes. In addition, the visual acuity lesion and the striate and extrastriate cortical deficits were not parallel, and results of fMRI examination have much potential value in the evaluation of amblyopia.
Collapse
Affiliation(s)
- Chuanming Li
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | |
Collapse
|
42
|
Secen J, Culham J, Ho C, Giaschi D. Neural correlates of the multiple-object tracking deficit in amblyopia. Vision Res 2011; 51:2517-27. [DOI: 10.1016/j.visres.2011.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022]
|
43
|
Chen VJ, Tarczy-Hornoch K. Functional magnetic resonance imaging of binocular interactions in visual cortex in strabismus. J Pediatr Ophthalmol Strabismus 2011; 48:366-74. [PMID: 21117523 DOI: 10.3928/01913913-20101118-01] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 11/28/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE To observe changes in primary visual cortical activation associated with perceptual suppression in individuals with strabismus, using functional magnetic resonance imaging (fMRI). METHODS In Phase 1, pilot data were collected from 1 control and 8 strabismic participants, including 5 with amblyopia. In Phase 2, results were collected from 7 participants with strabismus (2 recalled and 5 new), including 2 with amblyopia. fMRI compared primary visual cortex activation in two conditions: visual stimuli presented to both eyes, to evoke perceptual suppression of one eye in individuals with strabismus, and visual stimulation presented only to one eye. RESULTS Visual cortical activity modulations positively correlated with perceptual suppression were seen in 3 of 5 non-amblyopic Phase 2 study participants, but not in amblyopic subjects. CONCLUSION Cortical activity modulations correlated with modulation of strabismic suppression are detectable in non-amblyopic individuals using fMRI, suggesting a neural basis for strabismic suppression in primary visual cortex.
Collapse
Affiliation(s)
- Vincent J Chen
- Department of Radiology and Vision Center, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | | |
Collapse
|
44
|
Li X, Coyle D, Maguire L, McGinnity TM, Hess RF. Long timescale fMRI neuronal adaptation effects in human amblyopic cortex. PLoS One 2011; 6:e26562. [PMID: 22065999 PMCID: PMC3204980 DOI: 10.1371/journal.pone.0026562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 09/29/2011] [Indexed: 11/19/2022] Open
Abstract
An investigation of long timescale (5 minutes) fMRI neuronal adaptation effects, based on retinotopic mapping and spatial frequency stimuli, is presented in this paper. A hierarchical linear model was developed to quantify the adaptation effects in the visual cortex. The analysis of data involved studying the retinotopic mapping and spatial frequency adaptation effects in the amblyopic cortex. Our results suggest that, firstly, there are many cortical regions, including V1, where neuronal adaptation effects are reduced in the cortex in response to amblyopic eye stimulation. Secondly, our results show the regional contribution is different, and it seems to start from V1 and spread to the extracortex regions. Thirdly, our results show that there is greater adaptation to broadband retinotopic mapping as opposed to narrowband spatial frequency stimulation of the amblyopic eye, and we find significant correlation between fMRI response and the magnitude of the adaptation effect, suggesting that the reduced adaptation may be a consequence of the reduced response to different stimuli reported for amblyopic eyes.
Collapse
Affiliation(s)
- Xingfeng Li
- Intelligent Systems Research Centre, University of Ulster, Derry, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Miki A, Iijima A, Takagi M, Yaoeda K, Usui T, Hasegawa S, Abe H, Bando T. Pupillography of automated swinging flashlight test in amblyopia. Clin Ophthalmol 2011; 2:781-6. [PMID: 19668431 PMCID: PMC2699796 DOI: 10.2147/opth.s3754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Relative afferent pupillary defects (RAPDs) in amblyopia have been reported, and it is widely accepted that amblyopes can have an RAPD. We investigated whether or not this could be confirmed by the use of binocular pupillography. We examined twelve patients (6 males and 6 females, aged 7-57 years) with unilateral amblyopia associated with anisometropia and/or strabismus, using binocular infrared video pupillography (Newopto, Kawasaki, Japan). Eight normal subjects were also tested in the same manner. Two patients' data had to be excluded because of poor recording quality. Only one patient with moderate anisometropic amblyopia was found to have reduced contraction amplitude in the amblyopic eye, and one patient with a borderline pupillary defect. The other amblyopes, some of whom showed even denser amblyopia, did not have a pupillary defect. This study has confirmed that only a small proportion of amblyopes have a reduced pupillary contraction amplitude in the affected eye, as established by pupillographic recordings, and even these amblyopes are not necessarily associated with dense amblyopia.
Collapse
Affiliation(s)
- Atsushi Miki
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Barb SM, Rodriguez-Galindo C, Wilson MW, Phillips NS, Zou P, Scoggins MA, Li Y, Qaddoumi I, Helton KJ, Bikhazi G, Haik BG, Ogg RJ. Functional neuroimaging to characterize visual system development in children with retinoblastoma. Invest Ophthalmol Vis Sci 2011; 52:2619-26. [PMID: 21245407 DOI: 10.1167/iovs.10-5600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To use functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to investigate visual system development in children being treated for retinoblastoma. METHODS Informed consent was obtained for all participants (N = 42) in this institutional review board-approved study. Participants were imaged with a 1.5-T scanner while under propofol sedation. Diagnostic brain and orbital imaging was followed by investigational functional neuroimaging, which included fMRI during photic stimulation through closed eyelids, to measure functional activation in the visual cortex, and DTI, to evaluate diffusion parameters of white matter tracts in the corpus callosum and the periventricular optic radiations. Analysis included 115 examinations of 39 patients with a median age of 16.4 months and age range from 1.5 to 101.5 months at first evaluation. RESULTS The blood oxygen level-dependent signal was predominantly negative and located in the anterior visual cortex. Activation was affected by tumor lateralization (unilateral or bilateral), macular involvement, and retinal detachment. Patients who had undergone unilateral enucleation showed cortical dominance corresponding to the projection from the nasal hemiretina in the unaffected eye. Diffusion parameters followed a normal developmental trajectory in the optic radiations and corpus callosum, but variability was greater in the splenium than in the genu of the corpus callosum. CONCLUSIONS Longitudinal functional neuroimaging demonstrated important effects of disease and treatment. Therefore, fMRI and DTI may be useful for characterizing the impact of retinoblastoma on the developing visual system and improving the prediction of visual outcome in survivors.
Collapse
Affiliation(s)
- Scott M Barb
- Department of Radiological Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hess RF, Li X, Lu G, Thompson B, Hansen BC. The contrast dependence of the cortical fMRI deficit in amblyopia; a selective loss at higher contrasts. Hum Brain Mapp 2010; 31:1233-48. [PMID: 20063352 DOI: 10.1002/hbm.20931] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although there is general agreement that the fMRI cortical response is reduced in humans with amblyopia, the deficit is subtle and has little correlation with threshold-based psychophysics. From a purely contrast sensitivity perspective, one would expect fMRI responses to be selectively reduced for stimuli of low contrasts. However, to date, all fMRI stimuli used in studies of amblyopia have been of high contrast. Furthermore, if the deficit is selective for low contrasts, one would expect it to reflect a selective M-cell loss, because M-cells have much higher contrast gain than P-cells and make a larger contribution to the threshold detection of stimuli of low spatial and medium temporal frequencies. To test these two predictions, we compared % BOLD response between the eyes of normals and amblyopes for low- and high-contrast stimuli using a phase-encoded design. The results suggest that the fMRI deficit in amblyopia depends upon stimulus contrast and that it is greater at high contrasts. This is consistent with a selective P-cell contrast deficit at a precortical or early cortical site.
Collapse
Affiliation(s)
- Robert F Hess
- Department of Ophthalmology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
48
|
Effective connectivity anomalies in human amblyopia. Neuroimage 2010; 54:505-16. [PMID: 20682351 DOI: 10.1016/j.neuroimage.2010.07.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/22/2010] [Accepted: 07/24/2010] [Indexed: 11/20/2022] Open
Abstract
We investigate the effective connectivity in the lateral geniculate nucleus and visual cortex of humans with amblyopia. Six amblyopes participated in this study. Standard retinotopic mapping stimuli were used to define the boundaries of early visual cortical areas. We obtained fMRI time series from thalamic, striate and extrastriate cortical regions for the connectivity study. Thalamo-striate and striate-extrastriate networks were constructed based on known anatomical connections and the effective connectivities of these networks were assessed by means of a nonlinear system identification method. The effective connectivity of all networks studied was reduced when driven by the amblyopic eye, suggesting contrary to the current single-cell model of localized signal reduction, that a significant part of the amblyopic deficit is due to anomalous interactions between cells in disparate brain regions. The effective connectivity loss was unrelated to the fMRI loss but correlated with the degree of amblyopia (ipsilateral LGN to V1 connection), suggesting that it may be a more relevant measure. Feedforward and feedback connectivities were similarly affected. A hemispheric dependence was found for the thalamo-striate feedforward input that was not present for the feedback connection, suggesting that the reduced function of the LGN recently found in amblyopic humans may not be solely determined by the feedback influence from the cortex. Both ventral and dorsal connectivities were reduced.
Collapse
|
49
|
Hess RF, Thompson B, Gole GA, Mullen KT. The amblyopic deficit and its relationship to geniculo-cortical processing streams. J Neurophysiol 2010; 104:475-83. [PMID: 20463193 DOI: 10.1152/jn.01060.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amblyopia or lazy eye is the most common cause of uniocular blindness in adults and is caused by a disruption to normal visual development as a consequence of unmatched inputs from the two eyes in early life, arising from a turned eye (strabismus), unequal refractive error (anisometropia), or form deprivation (e.g., cataract). Using high-field functional magnetic resonance imaging in a group of human adults with amblyopia, we previously demonstrated that reduced responses are observable at a thalamic level, that of the lateral geniculate nucleus (LGN). Here we investigate the selectivity of this deficit by using chromatic and achromatic stimuli that are designed to bias stimulation to one or other of the three ascending pathways (the parvocellular, magnocellular, and koniocellular). We find the greatest LGN deficit is for stimuli modulated along the chromatic, L/M cone opponent axis of color space, suggesting a selective loss of parvocellular function in the LGN. We also demonstrate a cortical deficit that involves all the visual areas studied (V1, V2, V3, VP, V3A, V4), and we find this is greatest for the two chromatic responses (S cone opponent and L/M cone opponent) versus the achromatic response, as might be expected from a loss of segregation of chromatic pathways in the cortex.
Collapse
Affiliation(s)
- Robert F Hess
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Canada.
| | | | | | | |
Collapse
|
50
|
Hess RF, Li X, Mansouri B, Thompson B, Hansen BC. Selectivity as well as sensitivity loss characterizes the cortical spatial frequency deficit in amblyopia. Hum Brain Mapp 2010; 30:4054-69. [PMID: 19507159 DOI: 10.1002/hbm.20829] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing deficit in amblyopia is not restricted to just high spatial frequencies but also involves low-medium spatial frequency processing, for suprathreshold stimuli with a broad orientational bandwidth. This is the case in all three forms of amblyopia; strabismic, anisometropic, and deprivation. Here we use both a random block design and a phase-encoded design to ascertain (1) the extent to which fMRI activation is reduced at low-mid spatial frequencies in different visual areas, (2) how accurately spatial frequency is mapped across the amblyopic cortex. We report a loss of function to suprathreshold low-medium spatial frequency stimuli that involves more than just area V1, suggesting a diffuse loss in spatial frequency processing in a number of different cortical areas. An analysis of the fidelity of the spatial frequency cortical map reveals that many voxels lose their spatial frequency preference when driven by the amblyopic eye, suggesting a broader tuning for spatial frequency for neurons driven by the amblyopic eye within this low-mid spatial frequency range.
Collapse
Affiliation(s)
- Robert F Hess
- Department of Ophthalmology, McGill Vision Research, McGill University, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | |
Collapse
|