1
|
Ashrafpour S, Ashrafpour M. Efficacy of spinal cord stimulation as an adjunctive therapy in heart failure: A systematic review. Neurophysiol Clin 2024; 54:102945. [PMID: 38422720 DOI: 10.1016/j.neucli.2024.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Neuromodulation therapy, like spinal cord stimulation (SCS), benefits individuals with chronic diseases, improving outcomes of patients with heart failure (HF). This systematic review aims to investigate the efficacy of SCS when used as an adjunctive therapy in HF. A systematic analysis of all studies that included SCS therapy in human participants with HF was conducted. After excluding studies not meeting specific criteria, 4 studies involving a total of 125 participants were selected. All participants had heart failure with the New York Heart Association (NYHA) classification ranging from 2.2 ± 0.4 to 3. The primary endpoints for assessment included the impact of SCS in HF-related symptoms, Left ventricular function, VO2 max, and NT-proBNP. All the studies could demonstrate safety and feasibility of SCS therapy, although the outcomes varied. Two studies reported improvement in NYHA classification, MLHFQ and QoL parameters after SCS. Concerning LVEF and VO2 max, only one study indicated positive changes. None of the studies found a significant change of NT-proBNP following SCS therapy. Given methodological variation, discrepancies in the results could be attributed to the diversity of the induction technique. Further studies are needed to develop a solid approach for employing SCS in human patients with HF.
Collapse
Affiliation(s)
- Sahand Ashrafpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Manouchehr Ashrafpour
- Mobility Impairment Research Center, Neuroscience Branch, Health Research Institute and Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Wu Y, Song M, Wu M, Lin L. Advances in device-based treatment of heart failure with preserved ejection fraction: evidence from clinical trials. ESC Heart Fail 2024; 11:13-27. [PMID: 37986663 PMCID: PMC10804156 DOI: 10.1002/ehf2.14562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a group of clinical syndromes that exhibit a remarkably heterogeneous phenotype, characterized by symptoms and signs of heart failure, left ventricular diastolic dysfunction, elevated levels of natriuretic peptides, and an ejection fraction greater than or equal to 50%. With the aging of the population and the escalating prevalence of hypertension, obesity, and diabetes, the incidence of HFpEF is progressively rising. Drug therapy options for HFpEF are currently limited, and the associated high risk of cardiovascular mortality and heart failure rehospitalization significantly impact patients' quality of life and longevity while imposing a substantial economic burden on society. Recent research indicates that certain device-based therapies may serve as valuable adjuncts to drug therapy in patients with specific phenotypes of HFpEF, effectively improving symptoms and quality of life while reducing the risk of readmission for heart failure. These include inter-atrial shunt and greater splanchnic nerve ablation to reduce left ventricular filling pressure, implantable heart failure monitor to guide diuresis, left atrial pacing to correct interatrial dyssynchrony, cardiac contractility modulation to enhance cardiac calcium handling, as well as renal denervation, baroreflex activation therapy, and vagus nerve stimulation to restore the autonomic imbalance. In this review, we provide a comprehensive overview of the mechanisms and clinical evidence pertaining to these devices, with the aim of enhancing therapeutic strategies for HFpEF.
Collapse
Affiliation(s)
- Ying Wu
- Department of CardiologyAffiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical UniversityPutianChina
| | - Meiyan Song
- Department of CardiologyAffiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical UniversityPutianChina
| | - Meifang Wu
- Department of CardiologyAffiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical UniversityPutianChina
| | - Liming Lin
- Department of CardiologyAffiliated Hospital of Putian University, School of Clinical Medicine, Fujian Medical UniversityPutianChina
| |
Collapse
|
3
|
Blanco C, Madej T, Mangner N, Hommel J, Grimm S, Knaut M, Linke A, Winzer EB. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction: a single-centre experience. ESC Heart Fail 2023; 10:3373-3384. [PMID: 37667319 PMCID: PMC10682889 DOI: 10.1002/ehf2.14508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) is associated with excessive sympathetic and impaired parasympathetic activity. The Barostim Neo™ device is used for electronical baroreflex activation therapy (BAT) to counteract autonomic nervous system dysbalance. Randomized trials have shown that BAT improves walking distance and reduces N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels at least in patients with only moderate elevation at baseline. Its impact on the risk of heart failure hospitalization (HFH) and death is not yet established, and experience in clinical routine is limited. METHODS AND RESULTS We report on patient characteristics and clinical outcome in a retrospective, non-randomized single-centre registry of BAT in HFrEF. Patients in the New York Heart Association (NYHA) Classes III and IV with a left ventricular ejection fraction (LVEF) <35% despite guideline-directed medical therapy were eligible. Symptom burden, echocardiography, and laboratory testing were assessed at baseline and after 12 months. Clinical events of HFH and death were recorded at routine clinical follow-up. Data are shown as number (%) or median (inter-quartile range). Between 2014 and 2020, 30 patients were treated with BAT. Median age was 67 (63-77) years, and 27 patients (90%) were male. Most patients (83%) had previous HFH. Device implantation was successful in all patients. At 12 months, six patients had died and three were alive but did not attend follow-up. NYHA class was III/IV in 26 (87%)/4 (13%) patients at baseline, improved in 19 patients, and remained unchanged in 5 patients (P < 0.001). LVEF improved from 25.5 (20.0-30.5) % at baseline to 30.0 (25.0-36.0) % at 12 months (P = 0.014). Left ventricular end-diastolic diameter remained unchanged. A numerical decrease in NT-proBNP [3165 (880-8085) vs. 1001 (599-3820) pg/mL] was not significant (P = 0.526). Median follow-up for clinical events was 16 (10-33) months. Mortality at 1 (n = 6, 20%) and 3 years (n = 10, 33%) was as expected by the Meta-Analysis Global Group in Chronic Heart Failure risk score. Despite BAT, event rate was high in patients with NYHA Class IV, NT-proBNP levels >1600 pg/mL, or estimated glomerular filtration rate (eGFR) <30 mL/min at baseline. NYHA class and eGFR were independent predictors of mortality. CONCLUSIONS Patients with HFrEF who are selected for BAT are in a stage of worsening or even advanced heart failure. BAT appears to be safe and improves clinical symptoms and-to a modest degree-left ventricular function. The risk of death remains high in advanced disease stages. Patient selection seems to be crucial, and the impact of BAT in earlier disease stages needs to be established.
Collapse
Affiliation(s)
- Carola Blanco
- Department of Internal Medicine and CardiologyHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| | - Tomas Madej
- Department of Cardiac SurgeryHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| | - Norman Mangner
- Department of Internal Medicine and CardiologyHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| | - Jennifer Hommel
- Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Susanna Grimm
- Department of Internal Medicine and CardiologyHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| | - Michael Knaut
- Department of Cardiac SurgeryHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| | - Axel Linke
- Department of Internal Medicine and CardiologyHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| | - Ephraim B. Winzer
- Department of Internal Medicine and CardiologyHeart Centre Dresden, University Hospital, Technische Universität DresdenDresdenGermany
| |
Collapse
|
4
|
Boden K, Pongratanakul P, Vogel J, Willemsen N, Jülke EM, Balitzki J, Tinel H, Truebel H, Dinh W, Mondritzki T. Telemetric long-term assessment of autonomic function in experimental heart failure. J Pharmacol Toxicol Methods 2023; 124:107480. [PMID: 37979811 DOI: 10.1016/j.vascn.2023.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Despite medical advances in the treatment of heart failure (HF), mortality remains high. It has been shown that alterations of the autonomic-nervous-system (ANS) are associated with HF progression and increased mortality. Preclinical models are required to evaluate the effectiveness of novel treatments modulating the autonomic imbalance. However, there are neither standard models nor diagnostic methods established to measure sympathetic and parasympathetic outflow continuously. Digital technologies might be a reliable tool for continuous assessment of autonomic function within experimental HF models. Telemetry devices and pacemakers were implanted in beagle dogs (n = 6). HF was induced by ventricular pacing. Cardiac hemodynamics, plasma catecholamines and parameter describing the ANS ((heart rate variability (HRV), deceleration capacity (DC), and baroreflex sensitivity (BRS)) were continuously measured at baseline, during HF conditions and during recovery phase. The pacing regime led to the expected depression in cardiac hemodynamics. Telemetric assessment of the ANS function showed a significant decrease in Total power, DC, and Heart rate recovery, whereas BRS was not significantly affected. In contrast, plasma catecholamines, revealing sympathetic activity, showed only a significant increase in the recovery phase. A precise diagnostic of the ANS in the context of HF is becoming increasingly important in experimental models. Up to now, these models have shown many limitations. Here we present the continuous assessment of the autonomic function in the progression of HF. We could demonstrate the advantage of highly resolved ANS measurement by HR and BP derived parameters due to early detection of an autonomic imbalance in the progression of HF.
Collapse
Affiliation(s)
- Katharina Boden
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany
| | | | - Julia Vogel
- University of Witten/Herdecke, Witten, Germany; Clinic for Cardiology and Angiology, West-German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Germany
| | - Nicola Willemsen
- Bayer AG, Wuppertal, Germany; University of Duisburg-, Essen, Germany
| | | | - Jakob Balitzki
- Bayer AG, Wuppertal, Germany; Hannover Medical School, Hannover, Germany
| | | | | | - Wilfried Dinh
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany; Department of Cardiology, HELIOS Clinic Wuppertal, University Hospital Witten/Herdecke, Wuppertal, Germany
| | - Thomas Mondritzki
- Bayer AG, Wuppertal, Germany; University of Witten/Herdecke, Witten, Germany.
| |
Collapse
|
5
|
Pahuja M, Akhtar KH, Krishan S, Nasir YM, Généreux P, Stavrakis S, Dasari TW. Neuromodulation Therapies in Heart Failure: A State-of-the-Art Review. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101199. [PMID: 39131073 PMCID: PMC11307467 DOI: 10.1016/j.jscai.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 08/13/2024]
Abstract
Heart failure (HF) continues to impact the population globally with increasing prevalence. While the pathophysiology of HF is quite complex, the dysregulation of the autonomic nervous system, as evident in heightened sympathetic activity, serves as an attractive pathophysiological target for newer therapies and HF. The degree of neurohormonal activation has been found to correlate to the severity of symptoms, decline in functional capacity, and mortality. Neuromodulation of the autonomic nervous system aims to restore the balance between sympathetic nervous system and the parasympathetic nervous system. Given that autonomic dysregulation plays a major role in the development and progression of HF, restoring this balance may potentially have an impact on the core pathophysiological mechanisms and various HF syndromes. Autonomic modulation has been proposed as a potential therapeutic strategy aimed at reduction of systemic inflammation. Such therapies, complementary to drug and device-based therapies may lead to improved patient outcomes and reduce disease burden. Most professional societies currently do not provide a clear recommendation on the use of neuromodulation techniques in HF. These include direct and indirect vagal nerve stimulation, spinal cord stimulation, baroreflex activation therapy, carotid sinus stimulation, aortic arch stimulation, splanchnic nerve modulation, cardiopulmonary nerve stimulation, and renal sympathetic nerve denervation. In this review, we provide a comprehensive overview of neuromodulation in HF.
Collapse
Affiliation(s)
- Mohit Pahuja
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Khawaja Hassan Akhtar
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Satyam Krishan
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yusra Minahil Nasir
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Philippe Généreux
- Department of Medicine, Section of Cardiovascular Medicine, Morristown Medical Center, Morristown, New Jersey
| | - Stavros Stavrakis
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tarun W. Dasari
- Department of Medicine, Section of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Heart Rhythm Institute, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
6
|
Matarazzo JV, Ajay EA, Payne SC, Trang EP, Thompson AC, Marroquin JB, Wise AK, Fallon JB, Richardson RT. Combined optogenetic and electrical stimulation of the sciatic nerve for selective control of sensory fibers. Front Neurosci 2023; 17:1190662. [PMID: 37360169 PMCID: PMC10285517 DOI: 10.3389/fnins.2023.1190662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Electrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation. Methods The sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured. Results Optically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aβ) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aβ hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aβ fiber and myogenic thresholds (p = 0.008, n = 4). Discussion The results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aβ fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery.
Collapse
Affiliation(s)
| | - Elise A. Ajay
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | - Ella P. Trang
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | - Alex C. Thompson
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
| | | | - Andrew K. Wise
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, University of Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, University of Melbourne, Fitzroy, VIC, Australia
| | - Rachael T. Richardson
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
7
|
Arya AV, Bisht H, Tripathi A, Agrawal M, Konat A, Patel J, Mozumder K, Shah D, Chaturvedi D, Sharma K. A Comparative Review of Vagal Nerve Stimulation Versus Baroreceptor Activation Therapy in Cardiac Diseases. Cureus 2023; 15:e40889. [PMID: 37492836 PMCID: PMC10364457 DOI: 10.7759/cureus.40889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Sympathetic imbalance coupled with impairment of baroreceptor control is a key factor responsible for hemodynamic abnormalities in congestive heart failure. Vagal nerve stimulation (VNS) and baroreceptor activation therapy (BAT) are two novel interventions for the same. In this paper, we review the role of sympathovagal alterations in cardiac diseases like heart failure, arrhythmia, hypertension (HTN), etc. Studies like neural cardiac therapy for heart failure (NECTAR-HF), autonomic regulation therapy to enhance myocardial function and reduce progression of heart failure (ANTHEM-HF), and baroreflex activation therapy for heart failure (BEAT-HF), which comprise the history, efficacy, limitations, and current protocols, were extensively analyzed in contrast to one another. Vagal nerve stimulation reverses the reflex inhibition of cardiac vagal efferent activity, which is caused as a result of sympathetic overdrive during the course for heart failure. It has shown encouraging results in certain pre-clinical studies; however, there is also a possibility of serious cardiovascular adverse events if given in higher than the recommended dosage. Attenuated baroreflex sensitivity is attributed to cardiac arrhythmogenesis during heart failure. Baroreceptor activation therapy reverses this phenomenon. However, the surgical procedure for baroreceptor stimulation can have unwarranted complications, including worsening heart failure and hypertension. Considering the effectiveness of the given modalities and taking into account the inconclusive evidence of their adverse events, more clinical trials are needed for establishing the future prospects of these interventional approaches.
Collapse
Affiliation(s)
- Akshat V Arya
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Himanshi Bisht
- Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | | | - Manali Agrawal
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Ashwati Konat
- Zoology, Biomedical Technology and Human Genetics, Gujarat University, Ahmedabad, IND
| | - Jay Patel
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Kamalika Mozumder
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Dhrumil Shah
- Internal Medicine, Gujarat Medical Education and Research Society Medical College, Gandhinagar, IND
| | | | - Kamal Sharma
- Cardiology, Kamal Sharma Cardiology Clinic, Ahmedabad, IND
| |
Collapse
|
8
|
Costa T, Bagnall A, Murray S, Bailey K, MacGowan G, Ng WF, McKinnon I, Watson S, McAllister-Williams RH. Role of autonomic dysregulation in quality of life and functional impairment in implantable cardioverter defibrillator patients. J Psychosom Res 2023; 171:111390. [PMID: 37270908 DOI: 10.1016/j.jpsychores.2023.111390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Affiliation(s)
- Tiago Costa
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Northern Centre for Mood Disorders, Wolfson Research Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, St. Nicholas Hospital, Jubilee Road, Gosforth, Newcastle upon Tyne NE3 3XT, United Kingdom.
| | - Alan Bagnall
- Newcastle Cardiovascular Trials and Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cardiovascular Research, Room 122F, Education Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen Murray
- Newcastle Cardiovascular Trials and Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cardiovascular Research, Room 122F, Education Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Kristian Bailey
- Newcastle Cardiovascular Trials and Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cardiovascular Research, Room 122F, Education Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Guy MacGowan
- Newcastle Cardiovascular Trials and Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, Cardiovascular Research, Room 122F, Education Centre, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Wan-Fai Ng
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Catherine Cookson Building, Newcastle upon Tyne NE2 4HH, United Kingdom; NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Campus for Ageing and Vitality, Westgate Road, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Iain McKinnon
- Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, St. Nicholas Hospital, Jubilee Road, Gosforth, Newcastle upon Tyne NE3 3XT, United Kingdom; Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Stuart Watson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Northern Centre for Mood Disorders, Wolfson Research Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, St. Nicholas Hospital, Jubilee Road, Gosforth, Newcastle upon Tyne NE3 3XT, United Kingdom
| | - R Hamish McAllister-Williams
- Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom; Northern Centre for Mood Disorders, Wolfson Research Centre, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom; Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, St. Nicholas Hospital, Jubilee Road, Gosforth, Newcastle upon Tyne NE3 3XT, United Kingdom
| |
Collapse
|
9
|
Soltani D, Stavrakis S. Neuromodulation for the Management of Atrial Fibrillation—How to Optimize Patient Selection and the Procedural Approach. CURRENT CARDIOVASCULAR RISK REPORTS 2023. [DOI: 10.1007/s12170-023-00718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Kawada T, Yokoi A, Nishiura A, Kakuuchi M, Yokota S, Matsushita H, Li M, Uemura K, Saku K. Dynamic accentuated antagonism of heart rate control during different levels of vagal nerve stimulation intensity in rats. Am J Physiol Regul Integr Comp Physiol 2023; 324:R260-R270. [PMID: 36572552 DOI: 10.1152/ajpregu.00229.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accentuated antagonism refers to a phenomenon in which the vagal effect on heart rate (HR) is augmented by background sympathetic tone. The dynamic aspect of accentuated antagonism remains to be elucidated during different levels of vagal nerve stimulation (VNS) intensity. We performed VNS on anesthetized rats (n = 8) according to a binary white noise signal with a switching interval of 500 ms at three different stimulation rates (low-intensity: 0-10 Hz, moderate-intensity: 0-20 Hz, and high-intensity: 0-40 Hz). The transfer function from VNS to HR was estimated with and without concomitant tonic sympathetic nerve stimulation (SNS) at 5 Hz. The asymptotic low-frequency (LF) gain (in beats/min/Hz) of the transfer function increased with SNS regardless of the VNS rate [low-intensity: 3.93 ± 0.70 vs. 5.82 ± 0.65 (P = 0.021), moderate-intensity: 3.87 ± 0.62 vs. 5.36 ± 0.53 (P = 0.018), high-intensity: 4.77 ± 0.85 vs. 7.39 ± 1.36 (P = 0.011)]. Moreover, SNS slightly increased the ratio of high-frequency (HF) gain to the LF gain. These effects of SNS were canceled by the pretreatment of ivabradine, an inhibitor of hyperpolarization-activated cyclic nucleotide-gated channels, in another group of rats (n = 6). Although background sympathetic tone antagonizes the vagal effect on mean HR, it enables finer HR control by increasing the dynamic gain of the vagal HR transfer function regardless of VNS intensity. When interpreting the HF component of HR variability, the augmenting effect from background sympathetic tone needs to be considered.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Aimi Yokoi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akitsugu Nishiura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Midori Kakuuchi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
11
|
Karatela MF, Fudim M, Mathew JP, Piccini JP. Neuromodulation therapy for atrial fibrillation. Heart Rhythm 2023; 20:100-111. [PMID: 35988908 DOI: 10.1016/j.hrthm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation has a multifactorial pathophysiology influenced by cardiac autonomic innervation. Both sympathetic and parasympathetic influences are profibrillatory. Innovative therapies targeting the neurocardiac axis include catheter ablation or pharmacologic suppression of ganglionated plexi, renal sympathetic denervation, low-level vagal stimulation, and stellate ganglion blockade. To date, these therapies have variable efficacy. As our understanding of atrial fibrillation and the cardiac nervous system expands, our approach to therapeutic neuromodulation will continue evolving for the benefit of those with AF.
Collapse
Affiliation(s)
- Maham F Karatela
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Marat Fudim
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Jonathan P Piccini
- Cardiac Electrophysiology Section, Duke Heart Center and Department of Medicine, Duke University Medical Center, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
12
|
Verrier RL, Libbus I, Nearing BD, KenKnight BH. Multifactorial Benefits of Chronic Vagus Nerve Stimulation on Autonomic Function and Cardiac Electrical Stability in Heart Failure Patients With Reduced Ejection Fraction. Front Physiol 2022; 13:855756. [PMID: 35431984 PMCID: PMC9005779 DOI: 10.3389/fphys.2022.855756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Heart failure with reduced left ventricular ejection fraction is a progressive disease that claims > 352,000 lives annually in the United States alone. Despite the development of an extensive array of pharmacologic and device therapies, prognosis remains poor. Disruption in autonomic balance in the form of heightened sympathetic nerve activity and reduced vagal tone have been established as major causes of heart failure progression. Interest in chronic neuromodulation mediated by vagus nerve stimulation (VNS) has intensified in recent years. This review focuses on four main goals: (1) To review the preclinical evidence that supports the concept of a cardioprotective effect of VNS on autonomic function and cardiac electrical stability along with the underlying putative mechanisms. (2) To present the initial clinical experience with chronic VNS in patients with heart failure and highlight the controversial aspects of the findings. (3) To discuss the latest findings of the multifactorial effects of VNS on autonomic tone, baroreceptor sensitivity, and cardiac electrical stability and the state-of-the-art methods employed to monitor these relationships. (4) To discuss the implications of the current findings and the gaps in knowledge that require attention in future investigations.
Collapse
Affiliation(s)
- Richard L. Verrier
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Cardiovascular Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Richard L. Verrier, , orcid.org/0000-0001-5602-6793
| | - Imad Libbus
- LivaNova USA, Inc., Houston, TX, United States
| | - Bruce D. Nearing
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Cardiovascular Medicine, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
13
|
Kittipibul V, Fudim M. Tackling Inflammation in Heart Failure With Preserved Ejection Fraction: Resurrection of Vagus Nerve Stimulation? J Am Heart Assoc 2022; 11:e024481. [PMID: 35023352 PMCID: PMC9238495 DOI: 10.1161/jaha.121.024481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marat Fudim
- Division of Cardiology Duke University Medical Center Durham NC.,Duke Clinical Research Institute Durham NC
| |
Collapse
|
14
|
Cooper CM, Farrand AQ, Andresen MC, Beaumont E. Vagus nerve stimulation activates nucleus of solitary tract neurons via supramedullary pathways. J Physiol 2021; 599:5261-5279. [PMID: 34676533 PMCID: PMC11328930 DOI: 10.1113/jp282064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2021] [Indexed: 01/20/2023] Open
Abstract
Vagus nerve stimulation (VNS) treats patients with drug-resistant epilepsy, depression and heart failure, but the mechanisms responsible are uncertain. The mild stimulus intensities used in chronic VNS suggest activation of myelinated primary visceral afferents projecting to the nucleus of the solitary tract (NTS). Here, we monitored the activity of second and higher order NTS neurons in response to peripheral vagal activation using therapeutic VNS criteria. A bipolar stimulating electrode activated the left cervical vagus nerve, and stereotaxically placed single tungsten electrodes recorded unit activity from the left caudomedial NTS of chloralose-anaesthetized rats. High-intensity single electrical stimuli established vagal afferent conduction velocity (myelinated A-type or unmyelinated C-type) as well as synaptic order (second vs. higher order using paired electrical stimuli) for inputs to single NTS neurons. Then, VNS treatment was applied. A mid-collicular knife cut (KC) divided the brainstem from all supramedullary regions to determine their contribution to NTS activity. Our chief findings indicate that the KC reduced basal spontaneous activity of second-order NTS neurons receiving myelinated vagal input by 85%. In these neurons, acute VNS increased activity similarly in Control and KC animals. Interestingly, the KC interrupted VNS activation of higher order NTS neurons and second-order NTS neurons receiving unmyelinated vagal input, indicating that supramedullary descending projections to NTS are needed to amplify the peripheral neuronal signal from VNS. The present study begins to define the pathways activated during VNS and will help to better identify the central nervous system contributions to the therapeutic benefits of VNS therapy. KEY POINTS: Vagus nerve stimulation is routinely used in the clinic to treat epilepsy and depression, despite our uncertainty about how this treatment works. For this study, the connections between the nucleus of the solitary tract (NTS) and the higher brain regions were severed to learn more about their contribution to activity of these neurons during stimulation. Severing these brain connections reduced baseline activity as well as reducing stimulation-induced activation for NTS neurons receiving myelinated vagal input. Higher brain regions play a significant role in maintaining both normal activity in NTS and indirect mechanisms of enhancing NTS neuronal activity during vagus nerve stimulation.
Collapse
Affiliation(s)
- Coty M Cooper
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Ariana Q Farrand
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | - Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
15
|
Eiber CD, Payne SC, Biscola NP, Havton LA, Keast JR, Osborne PB, Fallon JB. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. J Neural Eng 2021; 18. [PMID: 34740201 DOI: 10.1088/1741-2552/ac36e2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022]
Abstract
Objective.Neuromodulation of visceral nerves is being intensively studied for treating a wide range of conditions, but effective translation requires increasing the efficacy and predictability of neural interface performance. Here we use computational models of rat visceral nerve to predict how neuroanatomical variability could affect both electrical stimulation and recording with an experimental planar neural interface.Approach.We developed a hybrid computational pipeline,VisceralNerveEnsembleRecording andStimulation (ViNERS), to couple finite-element modelling of extracellular electrical fields with biophysical simulations of individual axons. Anatomical properties of fascicles and axons in rat pelvic and vagus nerves were measured or obtained from public datasets. To validate ViNERS, we simulated pelvic nerve stimulation and recording with an experimental four-electrode planar array.Main results.Axon diameters measured from pelvic nerve were used to model a population of myelinated and unmyelinated axons and simulate recordings of electrically evoked single-unit field potentials (SUFPs). Across visceral nerve fascicles of increasing size, our simulations predicted an increase in stimulation threshold and a decrease in SUFP amplitude. Simulated threshold changes were dominated by changes in perineurium thickness, which correlates with fascicle diameter. We also demonstrated that ViNERS could simulate recordings of electrically-evoked compound action potentials (ECAPs) that were qualitatively similar to pelvic nerve recording made with the array used for simulation.Significance.We introduce ViNERS as a new open-source computational tool for modelling large-scale stimulation and recording from visceral nerves. ViNERS predicts how neuroanatomical variation in rat pelvic nerve affects stimulation and recording with an experimental planar electrode array. We show ViNERS can simulate ECAPS that capture features of our recordings, but our results suggest the underlying NEURON models need to be further refined and specifically adapted to accurately simulate visceral nerve axons.
Collapse
Affiliation(s)
- Calvin D Eiber
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| | - Natalia P Biscola
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Leif A Havton
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Soucy JR, Burchett G, Brady R, Nichols K, Breault DT, Koppes AN, Koppes RA. Innervated adrenomedullary microphysiological system to model nicotine and opioid exposure. ORGANS-ON-A-CHIP 2021; 3:100009. [PMID: 38650595 PMCID: PMC11034938 DOI: 10.1016/j.ooc.2021.100009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Transition to extrauterine life results in a surge of catecholamines necessary for increased cardiovascular, respiratory, and metabolic activity. Mechanisms mediating adrenomedullary catecholamine release are poorly understood. Important mechanistic insight is provided by newborns delivered by cesarean section or subjected to prenatal nicotine or opioid exposure, demonstrating impaired release of adrenomedullary catecholamines. To investigate mechanisms regulating adrenomedullary innervation, we developed compartmentalized 3D microphysiological systems (MPS) by exploiting GelPins, capillary pressure barriers between cell-laden hydrogels. The MPS comprises discrete cultures of adrenal chromaffin cells and preganglionic sympathetic neurons within a contiguous bioengineered microtissue. Using this model, we demonstrate that adrenal chromaffin innervation plays a critical role in hypoxia-mediated catecholamine release. Opioids and nicotine were shown to affect adrenal chromaffin cell response to a reduced oxygen environment, but neurogenic control mechanisms remained intact. GelPin containing MPS represent an inexpensive and highly adaptable approach to study innervated organ systems and improve drug screening platforms.
Collapse
Affiliation(s)
| | | | - Ryan Brady
- Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Kyla Nichols
- Chemical Engineering, Northeastern University, Boston, MA, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Center for Life Sciences, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Abigail N. Koppes
- Chemical Engineering, Northeastern University, Boston, MA, USA
- Biology, Northeastern University, Boston, MA, USA
| | - Ryan A. Koppes
- Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Kulkarni K, Singh JP, Parks KA, Katritsis DG, Stavrakis S, Armoundas AA. Low-Level Tragus Stimulation Modulates Atrial Alternans and Fibrillation Burden in Patients With Paroxysmal Atrial Fibrillation. J Am Heart Assoc 2021; 10:e020865. [PMID: 34075778 PMCID: PMC8477868 DOI: 10.1161/jaha.120.020865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Low‐level tragus stimulation (LLTS) has been shown to significantly reduce atrial fibrillation (AF) burden in patients with paroxysmal AF. P‐wave alternans (PWA) is believed to be generated by the same substrate responsible for AF. Hence, PWA may serve as a marker in guiding LLTS therapy. We investigated the utility of PWA in guiding LLTS therapy in patients with AF. Methods and Results Twenty‐eight patients with AF were randomized to either active LLTS or sham (earlobe stimulation). LLTS was delivered through a transcutaneous electrical nerve stimulation device (pulse width 200 μs, frequency 20 Hz, amplitude 10–50 mA), for 1 hour daily over a 6‐month period. AF burden over 2‐week periods was assessed by noninvasive continuous ECG monitoring at baseline, 3 months, and 6 months. A 5‐minute control ECG for PWA analysis was recorded during all 3 follow‐up visits. Following the control ECG, an additional 5‐minute ECG was recorded during active LLTS in all patients. At baseline, acute LLTS led to a significant rise in PWA burden. However, active patients receiving chronic LLTS demonstrated a significant reduction in both PWA and AF burden after 6 months (P<0.05). Active patients who demonstrated an increase in PWA burden with acute LLTS showed a significant drop in AF burden after 6 months of chronic LLTS. Conclusions Chronic, intermittent LLTS resulted in lower PWA and AF burden than did sham control stimulation. Our results support the use of PWA as a potential marker for guiding LLTS treatment of paroxysmal AF.
Collapse
Affiliation(s)
- Kanchan Kulkarni
- Cardiovascular Research Center Massachusetts General Hospital Boston MA
| | - Jagmeet P Singh
- Cardiology Division Cardiac Arrhythmia Service Massachusetts General Hospital Boston MA
| | | | | | - Stavros Stavrakis
- Heart Rhythm Institute University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Antonis A Armoundas
- Cardiovascular Research Center Massachusetts General Hospital Boston MA.,Institute for Medical Engineering and Science Massachusetts Institute of TechnologyCambridge MA
| |
Collapse
|
18
|
Dasari TW, Csipo T, Amil F, Lipecz A, Fulop GA, Jiang Y, Samannan R, Johnston S, Zhao YD, Silva-Palacios F, Stavrakis S, Yabluchanskiy A, Po SS. Effects of Low-Level Tragus Stimulation on Endothelial Function in Heart Failure With Reduced Ejection Fraction. J Card Fail 2021; 27:568-576. [PMID: 33387632 PMCID: PMC9473302 DOI: 10.1016/j.cardfail.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Autonomic dysregulation in heart failure with reduced ejection fraction plays a major role in endothelial dysfunction. Low-level tragus stimulation (LLTS) is a novel, noninvasive method of autonomic modulation. METHODS AND RESULTS We enrolled 50 patients with heart failure with reduced ejection fraction (left ventricular ejection fraction of ≤40%) in a randomized, double-blinded, crossover study. On day 1, patients underwent 60 minutes of LLTS with a transcutaneous stimulator (20 Hz, 200 μs pulse width) or sham (ear lobule) stimulation. Macrovascular function was assessed using flow-mediated dilatation in the brachial artery and cutaneous microcirculation with laser speckle contrast imaging in the hand and nail bed. On day 2, patients were crossed over to the other study arm and underwent sham or LLTS; vascular tests were repeated before and after stimulation. Compared with the sham, LLTS improved flow-mediated dilatation by increasing the percent change in the brachial artery diameter (from 5.0 to 7.5, LLTS on day 1, P = .02; and from 4.9 to 7.1, LLTS on day 2, P = .003), compared with no significant change in the sham group (from 4.6 to 4.7, P = .84 on day 1; and from 5.6 to 5.9 on day 2, P = .65). Cutaneous microcirculation in the hand showed no improvement and perfusion of the nail bed showed a trend toward improvement. CONCLUSIONS Our study demonstrated the beneficial effects of acute neuromodulation on macrovascular function. Larger studies to validate these findings and understand mechanistic links are warranted.
Collapse
Affiliation(s)
- Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine; Heart Rhythm Institute.
| | - Tamas Csipo
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | - Faris Amil
- Cardiovascular Section, Department of Internal Medicine
| | - Agnes Lipecz
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | - Gabor A Fulop
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | | | | | - Sarah Johnston
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Stavros Stavrakis
- Cardiovascular Section, Department of Internal Medicine; Heart Rhythm Institute
| | - Andriy Yabluchanskiy
- Department of Biochemistry and Molecular Biology; Section of Geriatrics, Department of Internal Medicine
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine; Heart Rhythm Institute
| |
Collapse
|
19
|
Nearing BD, Libbus I, Carlson GM, Amurthur B, KenKnight BH, Verrier RL. Chronic vagus nerve stimulation is associated with multi-year improvement in intrinsic heart rate recovery and left ventricular ejection fraction in ANTHEM-HF. Clin Auton Res 2021; 31:453-462. [PMID: 33590355 PMCID: PMC8184538 DOI: 10.1007/s10286-021-00780-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022]
Abstract
Purpose Disturbed autonomic function is implicated in high mortality rates in heart failure patients. High-intensity vagus nerve stimulation therapy was shown to improve intrinsic heart rate recovery and left ventricular ejection fraction over a period of 1 year. Whether these beneficial effects are sustained across multiple years and are related to improved baroreceptor response was unknown. Methods All patients (n = 21) enrolled in the ANTHEM-HF clinical trial (NCT01823887, registered 4/3/2013) with 24 h ambulatory electrocardiograms at all time points and 54 normal subjects (PhysioNet database) were included. Intrinsic heart rate recovery, based on ~ 2000 spontaneous daily activity-induced heart rate acceleration/deceleration events per patient, was analyzed at screening and after 12, 24, and 36 months of chronic vagus nerve stimulation therapy (10 or 5 Hz, 250 μs pulse width, 18% duty cycle, maximum tolerable current amplitude). Results In response to chronic high-intensity vagus nerve stimulation (≥ 2.0 mA), intrinsic heart rate recovery (all time points, p < 0.0001), heart rate turbulence slope, an indicator of baroreceptor reflex gain (all, p ≤ 0.02), and left ventricular ejection fraction (all, p ≤ 0.04) were improved over screening at 12, 24, and 36 months. Intrinsic heart rate recovery and heart rate turbulence slope were inversely correlated at both screening (r = 0.67, p < 0.002) and 36 months (r = 0.78, p < 0.005). Conclusion This non-randomized study provides evidence of an association between improvement in intrinsic heart rate recovery and left ventricular ejection fraction during high-intensity vagus nerve stimulation for a period of ≥ 3 years. Correlated favorable effects on heart rate turbulence slope implicate enhanced baroreceptor function in response to chronic, continuously cyclic vagus nerve stimulation as a physiologic mechanism.
Collapse
Affiliation(s)
- Bruce D Nearing
- Department of Medicine, Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, RN-301, Boston, MA, 02215-3908, USA
| | | | | | | | | | - Richard L Verrier
- Department of Medicine, Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, RN-301, Boston, MA, 02215-3908, USA.
| |
Collapse
|
20
|
Chen M, Wang S, Li X, Yu L, Yang H, Liu Q, Tang J, Zhou S. Non-invasive Autonomic Neuromodulation Is Opening New Landscapes for Cardiovascular Diseases. Front Physiol 2021; 11:550578. [PMID: 33384606 PMCID: PMC7769808 DOI: 10.3389/fphys.2020.550578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023] Open
Abstract
Autonomic imbalance plays a crucial role in the genesis and maintenance of cardiac disorders. Approaches to maintain sympatho-vagal balance in heart diseases have gained great interest in recent years. Emerging therapies However, certain types of emerging therapies including direct electrical stimulation and nerve denervation require invasive implantation of a generator and a bipolar electrode subcutaneously or result in autonomic nervous system (ANS) damage, inevitably increasing the risk of complications. More recently, non-invasive neuromodulation approaches have received great interest in ANS modulation. Non-invasive approaches have opened new fields in the treatment of cardiovascular diseases. Herein, we will review the protective roles of non-invasive neuromodulation techniques in heart diseases, including transcutaneous auricular vagus nerve stimulation, electromagnetic field stimulation, ultrasound stimulation, autonomic modulation in optogenetics, and light-emitting diode and transcutaneous cervical vagus nerve stimulation (gammaCore).
Collapse
Affiliation(s)
- Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xuping Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hui Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianjun Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Booth LC, Yao ST, Korsak A, Farmer DGS, Hood SG, McCormick D, Boesley Q, Connelly AA, McDougall SJ, Korim WS, Guild SJ, Mastitskaya S, Le P, Teschemacher AG, Kasparov S, Ackland GL, Malpas SC, McAllen RM, Allen AM, May CN, Gourine AV. Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal. Brain Stimul 2020; 14:88-96. [PMID: 33217609 PMCID: PMC7836098 DOI: 10.1016/j.brs.2020.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease. Objective Here we report a successful application of optogenetics for selective stimulation of vagal efferent activity in a large animal model (sheep). Methods and results Twelve weeks after viral transduction of a subset of vagal motoneurons, strong axonal membrane expression of the excitatory light-sensitive ion channel ChIEF was achieved in the efferent projections innervating thoracic organs and reaching beyond the level of the diaphragm. Blue laser or LED light (>10 mW mm−2; 1 ms pulses) applied to the cervical vagus triggered precisely timed, strong bursts of efferent activity with evoked action potentials propagating at speeds of ∼6 m s−1. Conclusions These findings demonstrate that in species with a large, multi-fascicled vagus nerve, it is possible to stimulate a specific sub-population of efferent fibers using light at a site remote from the vector delivery, marking an important step towards eventual clinical use of optogenetic technology for autonomic neuromodulation. Described is a method of selective efferent vagus nerve stimulation using light. Vagal preganglionic neurons are targeted to express light-sensitive channels. Specific efferent VNS by light delivery to the cervical vagus is achieved in a large animal model. Demonstrates feasibility of using optogenetic technology for autonomic neuromodulation.
Collapse
Affiliation(s)
- Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Song T Yao
- Florey Department of Neuroscience and Mental Health, MDHS, University of Melbourne, Melbourne, Australia
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David G S Farmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Sally G Hood
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Daniel McCormick
- Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Quinn Boesley
- Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angela A Connelly
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Sarah-Jane Guild
- Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Phuong Le
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Anja G Teschemacher
- Physiology, Neuroscience and Pharmacology, University of Bristol, Bristol, UK
| | - Sergey Kasparov
- Physiology, Neuroscience and Pharmacology, University of Bristol, Bristol, UK; Baltic Federal University, Kaliningrad, Russian Federation
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Simon C Malpas
- Department of Physiology and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Andrew M Allen
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
22
|
Subramanian M, Edwards L, Melton A, Branen L, Herron A, Sivasubramanian MK, Monteiro R, Stansbury S, Balasubramanian P, Morris L, Elkholey K, Niewiadomska M, Stavrakis S. Non-invasive vagus nerve stimulation attenuates proinflammatory cytokines and augments antioxidant levels in the brainstem and forebrain regions of Dahl salt sensitive rats. Sci Rep 2020; 10:17576. [PMID: 33067477 PMCID: PMC7567801 DOI: 10.1038/s41598-020-74257-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The anti-inflammatory effects of vagus nerve stimulation are well known. It has recently been shown that low-level, transcutaneous stimulation of vagus nerve at the tragus (LLTS) reduces cardiac inflammation in a rat model of heart failure with preserved ejection fraction (HFpEF). The mechanisms by which LLTS affect the central neural circuits within the brain regions that are important for the regulation of cardiac vagal tone are not clear. Female Dahl salt-sensitive rats were initially fed with either low salt (LS) or high salt (HS) diet for a period of 6 weeks, followed by sham or active stimulation (LLTS) for 30 min daily for 4 weeks. To study the central effects of LLTS, four brainstem (SP5, NAb, NTS, and RVLM) and two forebrain sites (PVN and SFO) were examined. HS diet significantly increased the gene expression of proinflammatory cytokines in the SP5 and SFO. LLTS reversed HS diet-induced changes at both these sites. Furthermore, LLTS augmented the levels of antioxidant Nrf2 in the SP5 and SFO. Taken together, these findings suggest that LLTS has central anti-inflammatory and antioxidant properties that could mediate the neuromodulation of cardiac vagal tone in the rat model of HFpEF.
Collapse
Affiliation(s)
- Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA.
| | - Laura Edwards
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Avery Melton
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lyndee Branen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Angela Herron
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samantha Stansbury
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Priya Balasubramanian
- Reynolds Oklahoma Center On Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lynsie Morris
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK, 73104, USA
| | - Khaled Elkholey
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monika Niewiadomska
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
23
|
Machhada A, Hosford PS, Dyson A, Ackland GL, Mastitskaya S, Gourine AV. Optogenetic Stimulation of Vagal Efferent Activity Preserves Left Ventricular Function in Experimental Heart Failure. JACC Basic Transl Sci 2020; 5:799-810. [PMID: 32875170 PMCID: PMC7452237 DOI: 10.1016/j.jacbts.2020.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
This study was designed to determine the effect of selective optogenetic simulation of vagal efferent activity on left ventricular function in an animal (rat) model of MI-induced heart failure. Optogenetic stimulation of dorsal brainstem vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved LV function and exercise capacity in animals with MI. The data suggest that activation of vagal efferents is critically important to deliver the therapeutic benefit of VNS in chronic heart failure.
Large clinical trials designed to test the efficacy of vagus nerve stimulation (VNS) in patients with heart failure did not demonstrate benefits with respect to the primary endpoints. The nonselective nature of VNS may account for the failure to translate promising results of preclinical and earlier clinical studies. This study showed that optogenetic stimulation of vagal pre-ganglionic neurons transduced to express light-sensitive channels preserved left ventricular function and exercise capacity in a rat model of myocardial infarction−induced heart failure. These data suggested that stimulation of vagal efferent activity is critically important to deliver the therapeutic benefit of VNS in heart failure.
Collapse
Key Words
- ABP, arterial blood pressure
- DVMN, dorsal motor nucleus of the vagus nerve
- GRK2, G-protein−coupled receptor kinase 2
- LAD, left anterior descending coronary artery
- LV dP/dtMAX, maximum rate of rise of left ventricular pressure
- LV, left ventricle
- LVEDP, left ventricular end-diastolic pressure
- LVESP, left ventricular end-systolic pressure
- LVP, left ventricular pressure
- LVV, lentiviral vector
- MI, myocardial infarction
- VNS, vagus nerve stimulation
- autonomic nervous system
- eGFP, enhanced green fluorescent protein
- heart failure
- myocardial infarction
- neuromodulation
- vagus nerve stimulation
Collapse
Affiliation(s)
- Asif Machhada
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alex Dyson
- Clinical Physiology, Division of Medicine, University College London, London, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
24
|
Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic Modulation of Cardiac Arrhythmias: Methods to Assess Treatment and Outcomes. JACC Clin Electrophysiol 2020; 6:467-483. [PMID: 32439031 PMCID: PMC7370838 DOI: 10.1016/j.jacep.2020.02.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of multiple cardiac arrhythmias, including atrial fibrillation and ventricular tachycardia. As such, autonomic modulation represents an attractive therapeutic approach in these conditions. Notably, autonomic modulation exploits the plasticity of the neural tissue to induce neural remodeling and thus obtain therapeutic benefit. Different forms of autonomic modulation include vagus nerve stimulation, tragus stimulation, renal denervation, baroreceptor activation therapy, and cardiac sympathetic denervation. This review seeks to highlight these autonomic modulation therapeutic modalities, which have shown promise in early preclinical and clinical trials and represent exciting alternatives to standard arrhythmia treatment. We also present an overview of the various methods used to assess autonomic tone, including heart rate variability, skin sympathetic nerve activity, and alternans, which can be used as surrogate markers and predictors of the treatment effect. Although the use of autonomic modulation to treat cardiac arrhythmias is supported by strong preclinical data and preliminary studies in humans, in light of the disappointing results of a number of recent randomized clinical trials of autonomic modulation therapies in heart failure, the need for optimization of the stimulation parameters and rigorous patient selection based on appropriate biomarkers cannot be overemphasized.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Kanchan Kulkarni
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
25
|
Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, Elkholey K, Javed I, Twidale N, Riha P, Varahan S, Scherlag BJ, Jackman WM, Dasari TW, Po SS. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): A Randomized Clinical Trial. JACC Clin Electrophysiol 2020; 6:282-291. [PMID: 32192678 PMCID: PMC7100921 DOI: 10.1016/j.jacep.2019.11.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study was a sham-controlled, double-blind, randomized clinical trial to examine the effect of chronic low level tragus stimulation (LLTS) in patients with paroxysmal AF. BACKGROUND Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve at the tragus (LLTS) acutely suppresses atrial fibrillation (AF) in humans, but the chronic effect remains unknown. METHODS LLTS (20 Hz, 1 mA below the discomfort threshold) was delivered using an ear clip attached to the tragus (active arm) (n = 26) or the ear lobe (sham control arm) (n = 27) for 1 h daily over 6 months. AF burden over 2-week periods was assessed by noninvasive continuous electrocardiogram monitoring at baseline, 3 months, and 6 months. Five-minute electrocardiography and serum were obtained at each visit to measure heart rate variability and inflammatory cytokines, respectively. RESULTS Baseline characteristics were balanced between the 2 groups. Adherence to the stimulation protocol (≤4 sessions lost per month) was 75% in the active arm and 83% in the control arm (p > 0.05). At 6 months, the median AF burden was 85% lower in the active arm compared with the control arm (ratio of medians: 0.15; 95% confidence interval: 0.03 to 0.65; p = 0.011). Tumor necrosis factor-alpha was significantly decreased by 23% in the active group relative to the control group (ratio of medians: 0.77; 95% confidence interval: 0.63 to 0.94; p = 0.0093). Frequency domain indices of heart rate variability were significantly altered with active versus control stimulation (p < 0.01). No device-related side effects were observed. CONCLUSIONS Chronic, intermittent LLTS resulted in lower AF burden than did sham control stimulation, supporting its use to treat paroxysmal AF in selected patients. (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation [TREAT-AF]; NCT02548754).
Collapse
Affiliation(s)
- Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Julie A Stoner
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mary Beth Humphrey
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lynsie Morris
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Adrian Filiberti
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Justin C Reynolds
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Khaled Elkholey
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Isma Javed
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nicholas Twidale
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Pavel Riha
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Subha Varahan
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Warren M Jackman
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tarun W Dasari
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sunny S Po
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Anand IS, Konstam MA, Klein HU, Mann DL, Ardell JL, Gregory DD, Massaro JM, Libbus I, DiCarlo LA, Udelson JJE, Butler J, Parker JD, Teerlink JR. Comparison of symptomatic and functional responses to vagus nerve stimulation in ANTHEM-HF, INOVATE-HF, and NECTAR-HF. ESC Heart Fail 2020; 7:75-83. [PMID: 31984682 PMCID: PMC7083506 DOI: 10.1002/ehf2.12592] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
AIMS Clinical studies of vagal nerve stimulation (VNS) for heart failure with reduced ejection fraction have had mixed results to date. We sought to compare VNS delivery and associated changes in symptoms and function in autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure (ANTHEM-HF), increase of vagal tone in heart failure (INOVATE-HF), and neural cardiac therapy for heart failure (NECTAR-HF) for hypothesis generation. METHODS AND RESULTS Descriptive statistics were used to analyse data from the public domain for differences in proportions using Pearson's chi-square test, differences in mean values using Student's unpaired t-test, and differences in changes of mean values using two-sample t-tests. Guideline-directed medical therapy recommendations were similar across studies. Fewer patients were in New York Heart Association 3, and baseline heart rate (HR) was higher in ANTHEM-HF. In INOVATE-HF, VNS was aimed at peripheral neural targets, using closed-loop delivery that required synchronization of VNS to R-wave sensing by an intracardiac lead. Pulse frequency was low (1-2 Hz) because of a timing schedule allowing ≤3 pulses of VNS following at most 25% of detected R waves. NECTAR-HF and ANTHEM-HF used open-loop VNS delivery (i.e. independent of any external signal) aimed at both central and peripheral targets. In NECTAR-HF, VNS delivery at 20 Hz caused off-target effects that limited VNS up-titration in a majority of patients. In ANTHEM-HF, VNS delivery at 10 Hz allowed up-titration until changes in HR dynamics were confirmed. Six months after VNS titration, significant improvements in both HR and HR variability occurred only in ANTHEM-HF. When ANTHEM-HF and NECTAR-HF were compared, greater improvements from baseline were observed in ANTHEM-HF in standard deviation in normal-to-normal R-R intervals (94 ± 26 to 111 ± 50 vs. 146 ± 48 to 130 ± 52 ms; P < 0.001), left ventricular ejection fraction (32 ± 7 to 37 ± 0.4 vs. 31 ± 6 to 33 ± 6; P < 0.05), and Minnesota Living with Heart Failure mean score (40 ± 14 to 21 ± 10 vs. 44 ± 22 to 36 ± 21; P < 0.002). When compared with INOVATE-HF, greater improvement in 6-min walk distance was observed in ANTHEM-HF (287 ± 66 to 346 ± 78 vs. 304 ± 111 to 334 ± 111 m; P < 0.04). CONCLUSIONS In this post-hoc analysis, differences in patient demographics were seen and may have caused the differential responses in symptoms and function observed in association with VNS. Major differences in technology platforms, neural targets, VNS delivery, and HR and HR variability responses could have also potentially played a very important role. Further study is underway in a randomized controlled trial with these considerations in mind.
Collapse
Affiliation(s)
- Inder S. Anand
- Division of CardiologyUniversity of MinnesotaMinneapolisMNUSA
| | | | - Helmut U. Klein
- Division of CardiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Douglas L. Mann
- Center for Cardiovascular ResearchWashington University School of MedicineSaint LouisMOUSA
| | - Jeffrey L. Ardell
- UCLA Neurocardiology Program of ExcellenceUniversity of CaliforniaLos AngelesCAUSA
| | | | - Joseph M. Massaro
- Department of Biostatistics, School of Public HealthBoston UniversityBostonMAUSA
| | | | | | | | - Javed Butler
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMSUSA
| | - John D. Parker
- University of TorontoUniversity Health NetworkTorontoOntarioCanada
| | - John R. Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
27
|
Soucy JR, Bindas AJ, Koppes AN, Koppes RA. Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes. iScience 2019; 21:521-548. [PMID: 31715497 PMCID: PMC6849363 DOI: 10.1016/j.isci.2019.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recent advancements in electronic materials and subsequent surface modifications have facilitated real-time measurements of cellular processes far beyond traditional passive recordings of neurons and muscle cells. Specifically, the functionalization of conductive materials with ligand-binding aptamers has permitted the utilization of traditional electronic materials for bioelectronic sensing. Further, microfabrication techniques have better allowed microfluidic devices to recapitulate the physiological and pathological conditions of complex tissues and organs in vitro or microphysiological systems (MPS). The convergence of these models with advances in biological/biomedical microelectromechanical systems (BioMEMS) instrumentation has rapidly bolstered a wide array of bioelectronic platforms for real-time cellular analytics. In this review, we provide an overview of the sensing techniques that are relevant to MPS development and highlight the different organ systems to integrate instrumentation for measurement and manipulation of cellular function. Special attention is given to how instrumented MPS can disrupt the drug development and fundamental mechanistic discovery processes.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Hype or hope: Vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2019; 30:481-488. [PMID: 31740206 DOI: 10.1016/j.tcm.2019.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of death worldwide. Although timely and successful reperfusion could reduce myocardial ischemia injury, limit infarct size, and improve ventricular dysfunction and reduce acute mortality, restoring blood flow might also lead to unwanted myocardial ischemic-reperfusion (I/R) injury. Pre-clinical studies have demonstrated that multiple approaches are capable of attenuating the myocardial I/R injury. However, there is still no effective therapy for preventing myocardial I/R injury for the clinical setting. It is known that myocardial I/R injury could induce cardiac autonomic imbalance with over-activated sympathetic tone and reduced vagal activity, in turn, contributing to pathogenesis of myocardial I/R injury. Cumulative evidence shows that the enhancement of vagal activity, so called vagus nerve stimulation (VNS), is able to reduce injury and promote recovery of injured myocardium. Therefore, VNS might be a potentially novel strategy choice for preventing/attenuating myocardial I/R injury. In this review, we describe the protective role of VNS in myocardial I/R injury and related potential mechanisms. Then, we discuss the challenge and the opportunity of VNS in the treatment of acute myocardial I/R injury.
Collapse
|
29
|
Konstam MA, Udelson JE, Butler J, Klein HU, Parker JD, Teerlink JR, Wedge PM, Saville BR, Ardell JL, Libbus I, DiCarlo LA. Impact of Autonomic Regulation Therapy in Patients with Heart Failure. Circ Heart Fail 2019; 12:e005879. [DOI: 10.1161/circheartfailure.119.005879] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
The ANTHEM-HFrEF (Autonomic Regulation Therapy to Enhance Myocardial Function and Reduce Progression of Heart Failure with Reduced Ejection Fraction) pivotal study is an adaptive, open-label, randomized, controlled study evaluating whether autonomic regulation therapy will benefit patients with advanced HFrEF. While early-phase studies have supported potential use of vagus nerve stimulation to deliver autonomic regulation therapy for HFrEF, results of larger clinical trials have been inconsistent. The ANTHEM-HFrEF study uses a novel design, with adaptive sample size selection, evaluating effects on morbidity and mortality as well as symptoms and function.
Methods:
The ANTHEM-HFrEF study will randomize patients (2:1) to autonomic regulation therapy plus guideline-directed medical therapy, or guideline-directed medical therapy alone. The morbidity and mortality trial utilizes a conventional frequentist approach for analysis of the primary outcome end point—reduction in the composite of cardiovascular death or first HF hospitalization—and a Bayesian adaptive approach toward sample size selection. Embedded within the ANTHEM-HFrEF study is a second trial evaluating improvement in symptoms and function. Symptom/function success will require meeting 2 risk-related conditions (trend for reduced cardiovascular death/HF hospitalization and sufficient freedom from device-related serious adverse events) and 3 efficacy end point components (changes in left ventricular EF, 6-minute walk distance, and Kansas City Cardiomyopathy Questionnaire overall score).
Conclusions:
Vagus nerve stimulation remains a promising, yet unproven treatment in HFrEF. A successful ANTHEM-HFrEF pivotal study would provide an important advance in HFrEF treatment and offer a model for expediting evaluation of new therapies.
Clinical Trial Registration:
URL:
http://www.clinicaltrials.gov
. Unique identifier: NCT03425422.
Collapse
Affiliation(s)
- Marvin A. Konstam
- The CardioVascular Center at Tufts Medical Center, Boston, MA (M.A.K., J.E.U.)
| | - James E. Udelson
- The CardioVascular Center at Tufts Medical Center, Boston, MA (M.A.K., J.E.U.)
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS (J.B.)
| | - Helmut U. Klein
- Department of Medicine, University of Rochester Medical Center, NY (H.U.K.)
| | - John D. Parker
- University of Toronto, Mount Sinai Hospital, Division of Cardiology, Sinai Health Systems and University Health Network, Toronto, Canada (J.D.P.)
| | - John R. Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California (J.R.T.)
| | | | - Benjamin R. Saville
- Berry Consultants LLC, Austin TX and Department of Biostatistics, Vanderbilt University, Nashville TN (B.R.S.)
| | - Jeffrey L. Ardell
- Neurocardiology Center, University of California, Los Angeles (J.L.A.)
| | - Imad Libbus
- LivaNova USA Incorporated, Houston, TX (I.L., L.A.D.)
| | | | | |
Collapse
|
30
|
Sohinki D, Stavrakis S. New approaches for treating atrial fibrillation: Focus on autonomic modulation. Trends Cardiovasc Med 2019; 30:433-439. [PMID: 31708408 DOI: 10.1016/j.tcm.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Atrial fibrillation (AF) is a rapidly growing clinical problem in routine practice, both for cardiologists as well as general practitioners. Current therapies aimed at the management of AF include anti-arrhythmic drug therapy and catheter ablation. These therapies have a number of limitations and risks, and have disappointing long-term efficacy in maintaining sinus rhythm and improving hard clinical outcomes. Because of this, there is growing interest in pursuing alternative management strategies in patients with AF. This review seeks to highlight emerging AF therapies, with a specific focus on several modalities aimed at modulation of the autonomic nervous system. These therapies have shown promise in early pre-clinical and clinical trials, and represent exciting alternatives to standard AF treatment.
Collapse
Affiliation(s)
- Daniel Sohinki
- Department of Cardiology, Augusta University Medical Center, Augusta, GA, United States
| | - Stavros Stavrakis
- Department of Cardiology, University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd., Suite 5400, Oklahoma, OK, United States; Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States.
| |
Collapse
|
31
|
Neuromodulation for Ventricular Tachycardia and Atrial Fibrillation: A Clinical Scenario-Based Review. JACC Clin Electrophysiol 2019; 5:881-896. [PMID: 31439288 DOI: 10.1016/j.jacep.2019.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Autonomic dysregulation in cardiovascular disease plays a major role in the pathogenesis of arrhythmias. Cardiac neural control relies on complex feedback loops consisting of efferent and afferent limbs, which carry sympathetic and parasympathetic signals from the brain to the heart and sensory signals from the heart to the brain. Cardiac disease leads to neural remodeling and sympathovagal imbalances with arrhythmogenic effects. Preclinical studies of modulation at central and peripheral levels of the cardiac autonomic nervous system have yielded promising results, leading to early stage clinical studies of these techniques in atrial fibrillation and refractory ventricular arrhythmias, particularly in patients with inherited primary arrhythmia syndromes and structural heart disease. However, significant knowledge gaps in basic cardiac neurophysiology limit the success of these neuromodulatory therapies. This review discusses the recent advances in neuromodulation for cardiac arrhythmia management, with a clinical scenario-based approach aimed at bringing neurocardiology closer to the realm of the clinical electrophysiologist.
Collapse
|
32
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
33
|
Premchand RK, Sharma K, Mittal S, Monteiro R, Libbus I, Ardell JL, Gregory DD, KenKnight BH, Amurthur B, DiCarlo LA, Anand IS. Background pharmacological therapy in the ANTHEM-HF: comparison to contemporary trials of novel heart failure therapies. ESC Heart Fail 2019; 6:1052-1056. [PMID: 31339232 PMCID: PMC6816059 DOI: 10.1002/ehf2.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/06/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS Clinical trials of new heart failure (HF) therapies administer guideline-directed medical therapy (GDMT) as background pharmacologic treatment (BPT). In the ANTHEM-HF Pilot Study, addition of autonomic regulation therapy to GDMT significantly improved left ventricular function, New York Heart Association (NYHA) class, 6 min walk distance, and quality of life in patients with HF with reduced ejection fraction (HFrEF). A post hoc analysis was performed to compare BPT in ANTHEM-HF with two other trials of novel HF therapies: the PARADIGM-HF study of sacubitril-valsartan and the SHIFT study of ivadrabine. All three studies evaluated patients with HFrEF, and the recommendations for use of GDMT were similar. A left ventricular ejection fraction ≤40% was required for entry into ANTHEM-HF and PARADIGM-HF and ≤35% for SHIFT. NYHA 2 or 3 symptoms were required for entry into ANTHEM-HF, and patients with predominantly NYHA 2 or 3 symptoms were enrolled in PARADIGM-HF and SHIFT. METHODS AND RESULTS Data on BPT were obtained from peer-reviewed publications and the public domain. Pearson's χ2 test was used to evaluate differences in proportions, and Student's unpaired t-test was used to evaluate differences in mean values. The minimum period of stable GDMT required before randomization was longer in ANTHEM-HF: 3 months vs. 1 month in PARADIGM-HF and SHIFT, respectively. When compared with PARADIGM-HF and SHIFT, more patients in ANTHEM-HF received beta-blockers (100% vs. 93% and 89%, P < 0.04 and P < 0.007) and mineralocorticoid receptor antagonists (75% vs. 55% and 61%, P < 0.002 and P < 0.03). More patients in PARADIGM-HF received an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker than in ANTHEM-HF or SHIFT (100% vs. 85%, P < 0.0001, and 100% vs. 91%, P < 0.001), which was related to PARADIGM's design. When beta-blocker doses in ANTHEM-HF and SHIFT were compared, significantly fewer patients in ANTHEM-HF received doses ≥100% of target (10% vs. 23%, P < 0.02), and fewer patients tended to receive doses ≥50% of target (17% vs. 26%, P = 0.11). When ANTHEM-HF and PARADIGM-HF were compared, more patients in ANTHEM-HF tended to receive doses ≥100% of target (10% vs. 7%, P = 0.36), and fewer patients tended to receive doses ≥50% of target (17% vs. 20%, P = 0.56). CONCLUSIONS Background treatment with GDMT in ANTHEM-HF compared favourably with that in two other contemporary trials of new HF therapies. The minimum period of stable GDMT required before randomization was longer, and GDMT remained unchanged for the study's duration. These findings serve to further support the potential role of autonomic regulation therapy as an adjunct to GDMT for patients with HFrEF.
Collapse
Affiliation(s)
| | - Kamal Sharma
- Sanjivani Super Specialty Hospitals, Ahmedabad, India
| | | | | | | | | | | | | | | | | | - Inder S Anand
- University of Minnesota (Emeritus), Minneapolis, MN, USA
| |
Collapse
|
34
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
35
|
Rocha-Resende C, Weinheimer C, Bajpai G, Adamo L, Matkovich SJ, Schilling J, Barger PM, Lavine KJ, Mann DL. Immunomodulatory role of non-neuronal cholinergic signaling in myocardial injury. JCI Insight 2019; 5:128961. [PMID: 31162139 DOI: 10.1172/jci.insight.128961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Whereas prior studies have demonstrated an important immunomodulatory role for the neuronal cholinergic system in the heart, the role of the non-neuronal cholinergic system is not well understood. To address the immunomodulatory role of the non-neuronal cholinergic system in the heart we used a previously validated diphtheria toxin (DT)-induced cardiomyocyte ablation model (Rosa26-DTMlc2v-Cre mice). DT-injected Rosa26-DTMlc2v-Cre mice were treated with diluent or Pyridostigmine Bromide (PYR), a reversible cholinesterase inhibitor. PYR treatment resulted in increased survival and decreased numbers of MHC-IIlowCCR2+ macrophages in DT-injected Rosa26-DTMlc2v-Cre mice compared to diluent treated Rosa26-DTMlc2v-Cre mice. Importantly, the expression of CCL2/7 mRNA and protein was reduced in the hearts of PYR-treated mice. Backcrossing Rosa26-DTMlc2v-Cre mice with a transgenic mouse line (Chat-ChR2) that constitutively overexpresses the vesicular acetylcholine transporter (VAChT) resulted in decreased expression of Ccl2/7 mRNA and decreased numbers of CD68+ cells in DT-injured Rosa26-DTMlc2v-Cre/Chat-ChR2 mouse hearts, consistent with the pharmacologic studies with PYR. In vitro studies with cultures of LPS-stimulated peritoneal macrophages revealed a concentration-dependent reduction in CCL2 secretion following stimulation with ACh, nicotine and muscarine. Viewed together, these findings reveal a previously unappreciated immunomodulatory role for the non-neuronal cholinergic system in regulating homeostatic responses in the heart following tissue injury.
Collapse
|
36
|
Abstract
Heart failure (HF) is one of the most prevalent cardiovascular diseases and is associated with high morbidity and mortality. Mechanistically, HF is characterized by an overactive sympathetic nervous system and parasympathetic withdrawal, and this autonomic imbalance contributes to the progression of the disease. As such, modulation of autonomic nervous system by device-based therapy is an attractive treatment target. In this review, we discuss the role of autonomic nervous system dysfunction in the pathogenesis of HF and present the available evidence regarding vagus nerve stimulation for HF, with special emphasis on optimization of stimulation parameters. Finally, we discuss future avenues of research for neuromodulation in patients with HF.
Collapse
Affiliation(s)
- Zain UA Asad
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stavros Stavrakis
- University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
37
|
Deuchars SA, Lall VK, Clancy J, Mahadi M, Murray A, Peers L, Deuchars J. Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp Physiol 2018; 103:326-331. [PMID: 29205954 PMCID: PMC5887928 DOI: 10.1113/ep086433] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review briefly considers what modulates sympathetic nerve activity and how it may change as we age or in pathological conditions. It then focuses on transcutaneous vagus nerve stimulation, a method of neuromodulation in autonomic cardiovascular control. What advances does it highlight? The review considers the pathways involved in eliciting the changes in autonomic balance seen with transcutaneous vagus nerve stimulation in relationship to other neuromodulatory techniques. The autonomic nervous system, consisting of the sympathetic and parasympathetic branches, is a major contributor to the maintenance of cardiovascular variables within homeostatic limits. As we age or in certain pathological conditions, the balance between the two branches changes such that sympathetic activity is more dominant, and this change in dominance is negatively correlated with prognosis in conditions such as heart failure. We have shown that non-invasive stimulation of the tragus of the ear increases parasympathetic activity and reduces sympathetic activity and that the extent of this effect is correlated with the baseline cardiovascular parameters of different subjects. The effects could be attributable to activation of the afferent branch of the vagus and, potentially, other sensory nerves in that region. This indicates that tragus stimulation may be a viable treatment in disorders where autonomic activity to the heart is compromised.
Collapse
Affiliation(s)
- Susan A. Deuchars
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
| | - Varinder K. Lall
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
| | - Jennifer Clancy
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
| | - Mohd Mahadi
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
- Faculty of PharmacyUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Aaron Murray
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
| | - Lucy Peers
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
| | - Jim Deuchars
- School of Biomedical Science, Faculty of Biological ScienceUniversity of LeedsLeedsUK
| |
Collapse
|
38
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Chronic Neuropathic Pain Protects the Heart from Ischemia-Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:101-114. [DOI: 10.1007/978-981-13-1756-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Carlson GM, Libbus I, Amurthur B, KenKnight BH, Verrier RL. Novel method to assess intrinsic heart rate recovery in ambulatory ECG recordings tracks cardioprotective effects of chronic autonomic regulation therapy in patients enrolled in the ANTHEM-HF study. Ann Noninvasive Electrocardiol 2017; 22:e12436. [PMID: 28213914 PMCID: PMC6931843 DOI: 10.1111/anec.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Postexercise heart rate recovery (HRR) is a powerful and independent predictor of mortality. Autonomic regulation therapy (ART) with chronic vagus nerve stimulation (VNS) has been shown to improve ventricular function in patients with chronic heart failure. However, the effect of ART on HRR in patients with heart failure remains unknown. METHODS A new measure involving quantification of intrinsic HRR was developed for 24-hr ambulatory ECG (AECG) recordings based on spontaneous heart rate changes observed during daily activity in patients with symptomatic heart failure and reduced ejection fraction. Intrinsic HRR values were compared in 21 patients enrolled in the ANTHEM-HF study (NCT01823887) before and after 12 months of chronic ART (10 Hz, 250 μs pulse width, 18% duty cycle, maximum tolerable current amplitude after 10 weeks of titration) and to values from normal subjects (PhysioNet database, n = 54). RESULTS With chronic ART, average intrinsic HRR was improved as indicated by a shortening of the rate-recovery time constant by 8.9% (from 12.3 ± 0.1 at baseline to 11.2 ± 0.1 s, p < .0001) among patients receiving high-intensity stimuli (≥2 mA). In addition, mean heart rate decreased by 8.5 bpm (from 75.9 ± 2.6 to 67.4 ± 2.9 bpm, p = .005) and left ventricular ejection fraction (LVEF) increased by 4.7% (from 32.6 ± 2.0% to 37.3 ± 1.9%, p < .005). CONCLUSION Using a new technique adapted for 24-hr AECG recordings, intrinsic HRR was found to be impaired in patients with symptomatic HF compared to normal subjects. Chronic ART significantly improved intrinsic HRR, indicating an improvement in autonomic function.
Collapse
|
41
|
Gussak G, Trivedi A, Arora R. Charge balanced direct current carousel-A gentler yet targeted approach to modulate sympathetic signaling in the heart. Heart Rhythm 2017; 14:1673-1674. [PMID: 28705735 DOI: 10.1016/j.hrthm.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Georg Gussak
- Feinberg Cardiovascular Research Institute, Northwestern University - Feinberg School of Medicine, Chicago, Illinois
| | - Amar Trivedi
- Feinberg Cardiovascular Research Institute, Northwestern University - Feinberg School of Medicine, Chicago, Illinois
| | - Rishi Arora
- Feinberg Cardiovascular Research Institute, Northwestern University - Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
42
|
Beaumont E, Campbell RP, Andresen MC, Scofield S, Singh K, Libbus I, KenKnight BH, Snyder L, Cantrell N. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 2017; 313:H354-H367. [PMID: 28476920 DOI: 10.1152/ajpheart.00070.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts.NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents but indirectly activated a subpopulation of second- and higher-order neurons, suggesting that afferent mechanisms and central neuron activation may be responsible for vagus nerve stimulation efficacy.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee;
| | - Regenia P Campbell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - Stephanie Scofield
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Krishna Singh
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,James H. Quillen Veterans Affairs Medical Center, Johnson City, Tennessee; and
| | | | | | - Logan Snyder
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Nathan Cantrell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|