1
|
Bello MO, Wadid M, Malode A, Patel V, Shah A, Vyas A, Ahmad HA, Tarun T, Dani S, Ahmad J, Zarwan C, Ganatra S. Atrial Fibrillation in Patients with Breast Cancer: A Literature Review. Cardiol Ther 2024:10.1007/s40119-024-00394-1. [PMID: 39714744 DOI: 10.1007/s40119-024-00394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
In addition to traditional risk factors, patients with breast cancer are at an increased risk of atrial fibrillation due to cancer itself and certain cancer therapies. Atrial fibrillation in these patients adds to their morbidity and mortality. The precise mechanisms leading to the increased atrial fibrillation in patients with breast cancer are not well understood. The main goal of atrial fibrillation management in this population is to facilitate uninterrupted cancer treatment while addressing the arrhythmia and other cardiovascular sequelae of cancer treatment. Rhythm control is often challenging to implement in patients with breast cancer during active antineoplastic therapy because of the need for uninterrupted anticoagulation, potential drug-drug interactions between cancer treatments and antiarrhythmic medications, and the increased likelihood of atrial fibrillation recurrence. Prevention of thromboembolism and anticoagulation can also be challenging in patients with breast cancer as a result of the increased risk of cancer-related procoagulant state and coagulopathies. The integration of a cardio-oncology team and a multidisciplinary approach are crucial for better outcomes. The therapeutic interventions should be tailored toward individual patients' profiles through a shared decision-making approach. The precise mechanisms leading to the increased atrial fibrillation in patients with breast cancer are not well understood, highlighting the gaps in our knowledge. More research is required to reduce these gaps, refine risk stratification, and optimize treatment strategies in these patients.
Collapse
Affiliation(s)
- Mozidat Olamide Bello
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Mark Wadid
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Aishwarya Malode
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Vahin Patel
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Anuj Shah
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Ankit Vyas
- Department of Vascular Medicine, Ochsner Clinic Foundation, New Orleans, LA, USA
| | | | - Tushar Tarun
- Division of Cardiovascular Medicine, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sourbha Dani
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Javaria Ahmad
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA
| | - Corrine Zarwan
- Division of Hematology/Oncology, Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Sarju Ganatra
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Medicine, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01805, USA.
| |
Collapse
|
2
|
Wilcox NS, Amit U, Reibel JB, Berlin E, Howell K, Ky B. Cardiovascular disease and cancer: shared risk factors and mechanisms. Nat Rev Cardiol 2024; 21:617-631. [PMID: 38600368 PMCID: PMC11324377 DOI: 10.1038/s41569-024-01017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular disease (CVD) and cancer are among the leading causes of morbidity and mortality globally, and these conditions are increasingly recognized to be fundamentally interconnected. In this Review, we present the current epidemiological data for each of the modifiable risk factors shared by the two diseases, including hypertension, hyperlipidaemia, diabetes mellitus, obesity, smoking, diet, physical activity and the social determinants of health. We then review the epidemiological data demonstrating the increased risk of CVD in patients with cancer, as well as the increased risk of cancer in patients with CVD. We also discuss the shared mechanisms implicated in the development of these conditions, highlighting their inherent bidirectional relationship. We conclude with a perspective on future research directions for the field of cardio-oncology to advance the care of patients with CVD and cancer.
Collapse
Affiliation(s)
- Nicholas S Wilcox
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Uri Amit
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob B Reibel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eva Berlin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendyl Howell
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie Ky
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Liu AB, Zhang Y, Tian P, Meng TT, Chen JL, Zhang D, Zheng Y, Su GH. Metabolic syndrome and cardiovascular disease among adult cancer patients: results from NHANES 2007-2018. BMC Public Health 2024; 24:2259. [PMID: 39164696 PMCID: PMC11337603 DOI: 10.1186/s12889-024-19659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a risk factor for cardiovascular disease (CVD), and CVD is a major challenge for cancer patients. This study aimed to investigate the prevalence and association of MetS and CVD among adult cancer patients. METHODS This cross-sectional study included cancer patients aged > 18 years from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018. The prevalence of MetS and CVD was calculated using weighted analysis. Multivariable logistic regression was used to assess the association between MetS and CVD. RESULTS The study included 2658 adult cancer patients, of whom 1260 exhibited MetS and 636 had CVD. The weighted prevalence of MetS and CVD in cancer patients was 45.44%, and 19.23%, respectively. Multivariable logistic regression showed a 79% increased risk in higher CVD prevalence in cancer patients with MetS, with the OR (95% CI) of 1.79 (1.31, 2.44). Notably, obesity, elevated blood pressure (BP), high glucose, and low high density lipoprotein cholesterol (HDL-C) in the MetS components were significantly associated with higher CVD prevalence after adjusting for covariates. Moreover, the risk of CVD prevalence in cancer patients increased with more MetS components. Notably, MetS was more strongly linked to CVD in patients aged < 65 and women. CONCLUSIONS Among adult cancer patients, over two-fifths (45.44%) were estimated to have MetS, while about one-fifth (19.23%) were considered to have CVD. Notably, obesity, elevated BP, high glucose, low HDL-C, and higher number of MetS components were found to be significantly associated with higher CVD prevalence among cancer adults. Cancer patients under 65 and women with MetS may be at increased risk of CVD.
Collapse
Affiliation(s)
- An-Bang Liu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Huaiyin District, No.6699, Qingdao Road, Jinan, 250000, Shandong, China
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
| | - Yu Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
- Jinan Central Hospital, Shandong University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
| | - Peng Tian
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
- Jinan Central Hospital, Shandong University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
| | - Ting-Ting Meng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Huaiyin District, No.6699, Qingdao Road, Jinan, 250000, Shandong, China
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
| | - Jian-Lin Chen
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, No.7166, Baotong West Street, Weifang, 261000, Shandong, China
| | - Dan Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
- Jinan Central Hospital, Shandong University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
| | - Yan Zheng
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China.
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China.
| | - Guo-Hai Su
- Shandong First Medical University & Shandong Academy of Medical Sciences, Huaiyin District, No.6699, Qingdao Road, Jinan, 250000, Shandong, China
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Lixia District, No.105, Jiefang Road, Jinan, 250000, Shandong, China
| |
Collapse
|
4
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Zhu G, Cao L, Wu J, Xu M, Zhang Y, Wu M, Li J. Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed Pharmacother 2024; 176:116875. [PMID: 38850662 DOI: 10.1016/j.biopha.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cancer and cardiovascular diseases are major contributors to global morbidity and mortality, and their seemingly separate pathologies are intricately intertwined. In the context of cancer, the cardiovascular disease encompasses not only the side effects arising from anti-tumor treatments but also the metabolic shifts induced by oncological conditions. A growing body of research indicates that lipid metabolic reprogramming serves as a distinctive hallmark of tumors. Furthermore, anomalies in lipid metabolism play a significant role in the development of cardiovascular disease. This study delves into the cardiac implications of lipid metabolic reprogramming within the cancer context, closely examining abnormalities in lipid metabolism present in tumors, cardiac tissue, and immune cells within the microenvironment. Additionally, we examined risk factors such as obesity and anti-tumor therapy. Despite progress, a gap remains in the availability of drugs targeting lipid metabolism modulation for treating tumors and mitigating cardiac risk, with limited advancement seen in prior studies. Here, we present a review of previous research on natural drugs that exhibit both shared and distinct therapeutic effects on tumors and cardiac health by modulating lipid metabolism. Our aim is to provide insights for potential drug development.
Collapse
Affiliation(s)
- Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Manman Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Taylor LL, Hong AS, Hahm K, Kim D, Smith-Morris C, Zaha VG. Health Literacy, Individual and Community Engagement, and Cardiovascular Risks and Disparities: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:363-380. [PMID: 38983375 PMCID: PMC11229558 DOI: 10.1016/j.jaccao.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/13/2024] [Indexed: 07/11/2024] Open
Abstract
Cardiovascular and cancer outcomes intersect within the realm of cardio-oncology survivorship care, marked by disparities across ethnic, racial, social, and geographical landscapes. Although the clinical community is increasingly aware of this complex issue, effective solutions are trailing. To attain substantial public health impact, examinations of cancer types and cardiovascular risk mitigation require complementary approaches that elicit the patient's perspective, scale it to a population level, and focus on actionable population health interventions. Adopting such a multidisciplinary approach will deepen our understanding of patient awareness, motivation, health literacy, and community resources for addressing the unique challenges of cardio-oncology. Geospatial analysis aids in identifying key communities in need within both granular and broader contexts. In this review, we delineate a pathway that navigates barriers from individual to community levels. Data gleaned from these perspectives are critical in informing interventions that empower individuals within diverse communities and improve cardio-oncology survivorship.
Collapse
Affiliation(s)
| | - Arthur S Hong
- UT Southwestern Medical Center, Dallas, Texas, USA
- UT Southwestern Harold C. Simmons Comprehensive Cancer Center, Dallas, Texas, USA
- UT Southwestern O'Donnell School of Public Health, Dallas, Texas, USA
| | - Kristine Hahm
- University of Texas at Dallas, Richardson, Texas, USA
| | - Dohyeong Kim
- University of Texas at Dallas, Richardson, Texas, USA
| | | | - Vlad G Zaha
- UT Southwestern Medical Center, Dallas, Texas, USA
- UT Southwestern Harold C. Simmons Comprehensive Cancer Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Chen Y, Chen Y, Lin W, Fu L, Liu H, Pu S, Chen H, Yi H, Xue Y. Impact of hyperuricemia and chronic kidney disease on the prevalence and mortality of cardiovascular disease in cancer survivors. Cancer Med 2024; 13:e7180. [PMID: 38686569 PMCID: PMC11058684 DOI: 10.1002/cam4.7180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The risks of cardiovascular disease (CVD) and CVD mortality are prevalent among cancer survivors (CS) population. The 2022 ESC Guidelines on cardio-oncology have recommended that modifying cardiovascular risk factors (CVRF) could potentially improve long-term outcomes in CS. OBJECTIVES To identify the independent and joint chronic kidney disease (CKD) associations of hyperuricemia with the incidence of CVD and mortality outcomes among CS. METHODS Utilizing data from the US National Health and Nutrition Examination Survey spanning 2005-2018, we assessed the risk of CVD through weighted multivariable logistic regression and restricted cubic spline (RCS) regression. Additionally, all-cause and CVD-related mortality were evaluated using weighted multivariable Cox regression and Kaplan-Meier analysis. Subgroup analysis was conducted to further elucidate the interplay between hyperuricemia, CKD, and mortality within the CS population. RESULTS A total of 3276 CS participants were enrolled in this study. Results showed that hyperuricemia was positively related to the incidence of CVD (OR [95% CI] = 1.86 [1.24, 2.81], p = 0.004). RCS analysis further demonstrated that uric acid levels ≥345 μmol/L positively correlated with CVD incidence (p value for nonlinearity = 0.0013). However, the association between hyperuricemia and CVD mortality, as well as all-cause mortality did not reach statistical significance in the fully adjusted model (HR = 1.48, 95% CI: 0.92-2.39, p = 0.11; HR = 1.11, 95% CI:0.92, 1.34, p = 0.28, respectively). Among CS participants with CKD, hyperuricemia could increase risks of all-cause (HR [95% CI] = 1.39 [1.08, 1.11], p = 0.02) and CVD mortality (HR [95% CI] =2.17 [1.29, 3.66], p = 0.004) after adjusting for sex, age, and ethnicity. CONCLUSIONS In the CS population, hyperuricemia was positively associated with the incidence of CVD. In addition, CKD might be an intermediate variable among the CS population that mediated the effects of hyperuricemia on mortality.
Collapse
Affiliation(s)
- Yanlin Chen
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yuhan Chen
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Weidong Lin
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Lu Fu
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Huiyi Liu
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Sijia Pu
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Haowei Chen
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Hong Yi
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Yumei Xue
- Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- School of MedicineSouth China University of TechnologyGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
8
|
Figueiredo JC, Bhowmick NA, Karlstaedt A. Metabolic basis of cardiac dysfunction in cancer patients. Curr Opin Cardiol 2024; 39:138-147. [PMID: 38386340 PMCID: PMC11185275 DOI: 10.1097/hco.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
PURPOSE OF REVIEW The relationship between metabolism and cardiovascular diseases is complex and bidirectional. Cardiac cells must adapt metabolic pathways to meet biosynthetic demands and energy requirements to maintain contractile function. During cancer, this homeostasis is challenged by the increased metabolic demands of proliferating cancer cells. RECENT FINDINGS Tumors have a systemic metabolic impact that extends beyond the tumor microenvironment. Lipid metabolism is critical to cancer cell proliferation, metabolic adaptation, and increased cardiovascular risk. Metabolites serve as signals which provide insights for diagnosis and prognosis in cardio-oncology patients. SUMMARY Metabolic processes demonstrate a complex relationship between cancer cell states and cardiovascular remodeling with potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Neil Adri Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anja Karlstaedt
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
9
|
Wang Y, Yu B, Qu M, Liu F, Wu X. Britannin inhibits cell proliferation, migration and glycolysis by downregulating KLF5 in lung cancer. Exp Ther Med 2024; 27:109. [PMID: 38361511 PMCID: PMC10867720 DOI: 10.3892/etm.2024.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 02/17/2024] Open
Abstract
Lung cancer is a harmful type of malignancy and the leading cause of cancer-associated mortality. It is therefore imperative to develop novel drugs effective for treating this cancer. The Traditional Chinese Medicine compound Britannin has been previously reported to inhibit the development of certain cancers, such as pancreatic, breast and liver cancer. Moreover, Kruppel-like factor 5 (KLF5) has been identified an on oncogene in lung cancer. In the present study, the possible regulatory effects and underlying mechanism of Britannin in lung cancer were investigated. A549 and 16HBE cells were treated with different concentrations of Britannin. Subsequently, Cell counting kit-8, EdU staining and colony formation assays were used to detect the proliferative ability of these cells. Cell migration was detected by wound healing and Transwell assays, respectively. XF96 extracellular flux analyzer was used to analyze the extent of extracellular acidification and oxygen consumption rate in cells, whereas assay kits were used to detect glucose and lactic acid levels in the cell supernatant. The targeting effect between Britannin and the KLF5 protein was investigated using molecular docking technology. The protein expression levels of KLF5 in cells challenged with Britannin was detected by western blotting. Finally, overexpression of KLF5 in A549 cells was performed before cell proliferation, migration and the glycolysis rate were measured to explore the regulatory effects of Britannin. Britannin was found to inhibit the proliferation, migration and glycolysis of lung cancer cells, during which the protein expression levels of KLF5 were decreased. This suggests that Britannin regulated the expression of KLF5 in A549 cells. Overexpression of KLF5 reversed the inhibitory effects of Britannin on the proliferation, migration and glycolysis in lung cancer cells. In conclusion, these results suggest that Britannin can inhibit cell proliferation, migration and glycolysis by downregulating KLF5 expression in lung cancer cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nosocomial Infection, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Botao Yu
- Department of Emergency Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Mengyuan Qu
- Department of Radiophysics, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Fengjuan Liu
- Ward for Phase I Clinical Trial, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| | - Xiao Wu
- Department of Pulmonary and Critical Care Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
10
|
Slart RHJA, Bengel FM, Akincioglu C, Bourque JM, Chen W, Dweck MR, Hacker M, Malhotra S, Miller EJ, Pelletier-Galarneau M, Packard RRS, Schindler TH, Weinberg RL, Saraste A, Slomka PJ. Total-Body PET/CT Applications in Cardiovascular Diseases: A Perspective Document of the SNMMI Cardiovascular Council. J Nucl Med 2024:jnumed.123.266858. [PMID: 38388512 DOI: 10.2967/jnumed.123.266858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Digital PET/CT systems with a long axial field of view have become available and are emerging as the current state of the art. These new camera systems provide wider anatomic coverage, leading to major increases in system sensitivity. Preliminary results have demonstrated improvements in image quality and quantification, as well as substantial advantages in tracer kinetic modeling from dynamic imaging. These systems also potentially allow for low-dose examinations and major reductions in acquisition time. Thereby, they hold great promise to improve PET-based interrogation of cardiac physiology and biology. Additionally, the whole-body coverage enables simultaneous assessment of multiple organs and the large vascular structures of the body, opening new opportunities for imaging systemic mechanisms, disorders, or treatments and their interactions with the cardiovascular system as a whole. The aim of this perspective document is to debate the potential applications, challenges, opportunities, and remaining challenges of applying PET/CT with a long axial field of view to the field of cardiovascular disease.
Collapse
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Centre, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
- Biomedical Photonic Imaging Group, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Cigdem Akincioglu
- Division of Nuclear Medicine, Medical Imaging, Western University, London, Ontario, Canada
| | - Jamieson M Bourque
- Departments of Medicine (Cardiology) and Radiology, University of Virginia, Charlottesville, Virginia
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, and Department of Internal Medicine, Yale University, New Haven, Connecticut
| | | | - René R S Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Weinberg
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Antti Saraste
- Turku PET Centre and Heart Center, Turku University Hospital and University of Turku, Turku, Finland; and
| | - Piotr J Slomka
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
11
|
Kadowaki H, Akazawa H, Shindo A, Ueda T, Ishida J, Komuro I. Shared and Reciprocal Mechanisms Between Heart Failure and Cancer - An Emerging Concept of Heart-Cancer Axis. Circ J 2024; 88:182-188. [PMID: 38092383 DOI: 10.1253/circj.cj-23-0838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Epidemiological evidence of increased risks of cancer in heart failure (HF) patients and HF in cancer patients has suggested close relationships between the pathogenesis of both diseases. Indeed, HF and cancer share common risk factors, including aging and unhealthy lifestyles, and underlying mechanisms, including activation of the sympathetic nervous system and renin-angiotensin-aldosterone system, chronic inflammation, and clonal hematopoiesis of indeterminate potential. Mechanistically, HF accelerates cancer development and progression via secreted factors, so-called cardiokines, and epigenetic remodeling of bone marrow cells into an immunosuppressive phenotype. Reciprocally, cancer promotes HF via cachexia-related wasting and metabolic remodeling in the heart, and possibly via cancer-derived extracellular vesicles influencing myocardial structure and function. The novel concept of the "heart-cancer axis" will help in our understanding of the shared and reciprocal relationships between HF and cancer, and provide innovative diagnostic and therapeutic approaches for both diseases.
Collapse
Affiliation(s)
- Hiroshi Kadowaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Akito Shindo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Tomomi Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Junichi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Issei Komuro
- Department of Frontier Cardiovascular Science, Graduate School of Medicine, The University of Tokyo
- International University of Health and Welfare
| |
Collapse
|
12
|
Li X, Rui J, Yang Z, Shang-Guan F, Shi H, Wang D, Sun J. Cuproptosis Related Gene DLD Associated with Poor Prognosis and Malignant Biological Characteristics in Lung Adenocarcinoma. Curr Cancer Drug Targets 2024; 24:867-880. [PMID: 38310466 DOI: 10.2174/0115680096271679231213060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE Cuproptosis plays a crucial role in the biological function of cells. The subject of this work was to analyze the effects of cuproptosis-related genes (CRGs) on the prognosis and biological function in lung adenocarcinoma (LUAD). METHODS In this study, RNA sequencing and clinical data of LUAD samples were screened from public databases and our institution. A CRG signature was identified by least absolute shrinkage and selection operator and Cox regression. In addition, this study analyzed the correlation between prognostic CRGs and clinicopathological features. Finally, this study studied the effect of inhibiting dihydrolipoamide dehydrogenase (DLD) expression on cell biological function. RESULTS There were 10 CRGs that showed differential expression between LUAD and normal tissues (p<0.05). A prognostic signature (DLD and lipoyltransferase 1 [LIPT1]) was constructed. Survival analysis suggested that patients with LUAD in the high-risk group had shorter overall survival (OS) (p<0.05). High expression of DLD and low expression of LIPT1 were significantly associated with shorter OS (p<0.05). Immunohistochemical analysis revealed that, in LUAD tissues, DLD was highly expressed, whereas LIPT1 was not detected. Finally, inhibition of DLD expression could significantly restrain cell proliferation, invasion and migration. CONCLUSION Overall, this prognostic CRG signature may play a pivotal role in LUAD outcome, while oncogene DLD may be a future therapeutic candidate for LUAD.
Collapse
Affiliation(s)
- Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junshuai Rui
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Zihan Yang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Feng Shang-Guan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Haolin Shi
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dengkui Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
13
|
Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med 2023; 12:17706-17717. [PMID: 37654192 PMCID: PMC10524052 DOI: 10.1002/cam4.6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
SIGNIFICANCE Two of the leading causes of death worldwide are cancer and cardiovascular diseases. Most cancer patients suffer from a metabolic wasting syndrome known as cancer-induced cardiac cachexia, resulting in death in up to 30% of cancer patients. Main symptoms of this disease are severe cardiac muscle wasting, cardiac remodeling, and cardiac dysfunction. Metabolic alterations, increased inflammation, and imbalance of protein homeostasis contribute to the progression of this multifactorial syndrome, ultimately resulting in heart failure and death. Cancer-induced cardiac cachexia is associated with decreased quality of life, increased fatiguability, and decreased tolerance to therapeutic interventions. RECENT ADVANCES While molecular mechanisms of this disease are not fully understood, researchers have identified different stages of progression of this disease, as well as potential biomarkers to detect and monitor the development. Preclinical and clinical studies have shown positive results when implementing certain pharmacological and non-pharmacological therapy interventions. CRITICAL ISSUES There are still no clear diagnostic criteria for cancer-mediated cardiac cachexia and the condition remains untreated, leaving cancer patients with irreversible effects of this syndrome. While traditional cardiovascular therapy interventions, such as beta-blockers, have shown some positive results in preclinical and clinical research studies, recent preclinical studies have shown more successful results with certain non-traditional treatment options that have not been further evaluated yet. There is still no clinical standard of care or approved FDA drug to aid in the prevention or treatment of cancer-induced cardiac cachexia. This review aims to revisit the still not fully understood pathophysiological mechanisms of cancer-induced cardiac cachexia and explore recent studies using novel treatment strategies. FUTURE DIRECTIONS While research has progressed, further investigations might provide novel diagnostic techniques, potential biomarkers to monitor the progression of the disease, as well as viable pharmacological and non-pharmacological treatment options to increase quality of life and reduce cancer-induced cardiac cachexia-related mortality.
Collapse
Affiliation(s)
- Louisa Tichy
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Traci L. Parry
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
14
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
15
|
Shi Y, Qiu Z, Yu J, Li Z, Hua S, Chen Y, Chen X, Shen K, Jin W. Association between insulin resistance and cardiac remodeling in HER2-positive breast cancer patients: a real-world study. BMC Cancer 2023; 23:615. [PMID: 37400804 DOI: 10.1186/s12885-023-11102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Insulin resistance is an overlapping risk factor for both heart and breast cancer, while its interaction with cardiotoxicity in breast cancer (BC) patients is not clear. This study investigated the impact of insulin resistance on cardiac remodeling in patients with human epidermal growth factor receptor 2 (HER2)-positive BC during and after trastuzumab therapy in real-world clinical practice. METHODS HER2-positive BC patients who received trastuzumab treatment between December 2012 and December 2017 were reviewed and 441 patients with baseline metabolic indices and serial echocardiographic measurements (baseline, 6, 12, and 18 months) after trastuzumab therapy initiation were included. Repeated measurement analysis of variance was used to evaluate temporal trends in multiparameter echocardiography. Linear mixed model was applied to further evaluate the role of insulin resistance in forementioned changes. Correlation of homeostasis model assessment-estimated insulin resistance (HOMA-IR) and triglyceride-glucose index (TyG) levels to changes in echocardiography parameters was explored. RESULTS Of 441 patients (mean age 54 ± 10 [SD] years), 61.8% received anthracycline-based chemotherapy, 33.5% received left-sided radiotherapy, 46% received endocrine therapy. No symptomatic cardiac dysfunction was observed over the therapy course. A total of 19 (4.3%) participants experienced asymptomatic cancer therapy-related cardiac dysfunction (CTRCD), and the peak onset time was 12 months after the initiation of trastuzumab. Albeit relatively low CTRCD incidence, cardiac geometry remodeling, especially left atrial (LA) dilation over therapy was notable and was more severe in high HOMA-IR and TyG level groups (P < 0.01). Noteworthy, a partial reversibility of cardiac remodeling was observed with treatment cessation. Additionally, HOMA-IR level positively correlated to changes in LA diameter from baseline to 12 months (r = 0.178, P = 0.003). No significant association (all P > 0.10) was detected between HOMA-IR or TyG level and dynamic left ventricular parameter evaluation. Multivariate linear regression analysis demonstrated that higher HOMA-IR level was an independent determinant for LA enlargement in BC patients during anti-HER2 targeted therapy course after adjusting for confounding risk factors (P = 0.006). CONCLUSION Insulin resistance was associated with left atrial adverse remodeling (LAAR) in HER2-positive BC patients that received standard trastuzumab therapy, indicating that insulin resistance could be a supplementation to baseline cardiovascular risk stratification proforma for HER2-targeted antitumor therapies.
Collapse
Affiliation(s)
- Yunjing Shi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Zeping Qiu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jing Yu
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Zhuojin Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Sha Hua
- Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, 149 S. Chongqing Road, Shanghai, 200020, P. R. China
| | - Yanjia Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Wei Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
- Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, 149 S. Chongqing Road, Shanghai, 200020, P. R. China.
| |
Collapse
|
16
|
Zong Y, Wang X, Cui B, Xiong X, Wu A, Lin C, Zhang Y. Decoding the regulatory roles of non-coding RNAs in cellular metabolism and disease. Mol Ther 2023; 31:1562-1576. [PMID: 37113055 PMCID: PMC10277898 DOI: 10.1016/j.ymthe.2023.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are being studied extensively in a variety of fields. Their roles in metabolism have received increasing attention in recent years but are not yet clear. The regulation of glucose, fatty acid, and amino acid metabolism is an imperative physiological process that occurs in living organisms and takes part in cancer and cardiovascular diseases. Here, we summarize the important roles played by non-coding RNAs in glucose metabolism, fatty acid metabolism, and amino acid metabolism, as well as the mechanisms involved. We also summarize the therapeutic advances for non-coding RNAs in diseases such as obesity, cardiovascular disease, and some metabolic diseases. Overall, non-coding RNAs are indispensable factors in metabolism and have a significant role in the three major metabolisms, which may be exploited as therapeutic targets in the future.
Collapse
Affiliation(s)
- Yuru Zong
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xuliang Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Bing Cui
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiaowei Xiong
- Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yaohua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
18
|
Safabakhsh S, Ma WF, Miller CL, Laksman Z. Cardiovascular utility of single cell RNA-Seq. Curr Opin Cardiol 2023; 38:193-200. [PMID: 36728943 DOI: 10.1097/hco.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases remain the leading causes of morbidity and mortality globally. Single-cell RNA sequencing has the potential to improve diagnostics, risk stratification, and provide novel therapeutic targets that have the potential to improve patient outcomes. RECENT FINDINGS Here, we provide an overview of the basic processes underlying single-cell RNA sequencing, including library preparation, data processing, and downstream analyses. We briefly discuss how the technique has been adapted to related medical disciplines, including hematology and oncology, with short term translational impact. We discuss potential applications of this technology within cardiology as well as recent innovative research within the field. We also discuss future directions to translate this technology to other high impact clinical areas. SUMMARY The use of single-cell RNA sequencing technology has made significant advancements in the field of cardiology, with ongoing growth in terms of applications and uptake. Most of the current research has focused on structural or atherosclerotic heart disease. Future areas that stand to benefit from this technology include cardiac electrophysiology and cardio-oncology.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology
- Centre for Heart Lung Innovation
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Wei Feng Ma
- Center for Public Health Genomics, Department of Public Health Sciences
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences
| | - Zachary Laksman
- Division of Cardiology
- Centre for Heart Lung Innovation
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Imaging glucose metabolism to reveal tumor progression. Front Physiol 2023; 14:1103354. [PMID: 36818450 PMCID: PMC9932271 DOI: 10.3389/fphys.2023.1103354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose: To analyze and review the progress of glucose metabolism-based molecular imaging in detecting tumors to guide clinicians for new management strategies. Summary: When metabolic abnormalities occur, termed the Warburg effect, it simultaneously enables excessive cell proliferation and inhibits cell apoptosis. Molecular imaging technology combines molecular biology and cell probe technology to visualize, characterize, and quantify processes at cellular and subcellular levels in vivo. Modern instruments, including molecular biochemistry, data processing, nanotechnology, and image processing, use molecular probes to perform real-time, non-invasive imaging of molecular and cellular events in living organisms. Conclusion: Molecular imaging is a non-invasive method for live detection, dynamic observation, and quantitative assessment of tumor glucose metabolism. It enables in-depth examination of the connection between the tumor microenvironment and tumor growth, providing a reliable assessment technique for scientific and clinical research. This new technique will facilitate the translation of fundamental research into clinical practice.
Collapse
Affiliation(s)
- Yiming Meng
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Sun
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Guirong Zhang
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Department of Medical Image, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| |
Collapse
|
20
|
Nunes KZ, Grassi J, Lopes AB, Rezende LDA, Cavalcanti JA, Gomes KN, Silva JADD, Lopes-Júnior LC. Clinical Indicators of Cardiovascular Risk in Adult Patients Undergoing Chemotherapy: A Protocol for Scoping Review. PHARMACOEPIDEMIOLOGY 2023; 2:35-41. [DOI: 10.3390/pharma2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2024]
Abstract
Heart disease and cancer are the main causes of morbidity and mortality worldwide. As the number of cancer survivors increases, cardiotoxicity associated with cancer treatment has become a major concern as it presents a substantial challenge in the follow-up of these patients. Here, we aimed to map the clinical indicators for cardiovascular risk in adult patients undergoing chemotherapy. A scoping review protocol adhering to the PRISMA-P statement and in accordance with the JBI guidelines will be conducted. Cochrane Library, MEDLINE/PubMed, Cochrane Library, EMBASE, Scopus, Web of Science, and PsycINFO as well as register sites such as ClinicalTrials.gov and WHO-ICTRP will be searched. Additional sources, including Google Scholar, The British Library, and medRXiv, will also be searched, with no date or idiom restrictions. A combination of subject headings, MeSH terms, Emtree terms, CINAHL Headings, and APA Thesaurus, using the Boolean terms AND/OR, will be performed. In addition, two independent researchers will conduct the overall steps of this review. The results will be presented via narrative summaries, considering the types of clinical indicators. To the best of our knowledge, this will be the first scoping review in the cardio-oncology field to map, via a rigorous review method, the clinical indicators for cardiovascular risk in adult cancer patients receiving chemotherapy.
Collapse
Affiliation(s)
- Karolini Zuqui Nunes
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29043-213, ES, Brazil
| | - Jonathan Grassi
- Graduate Program in Public Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil
| | - Andressa Bolsoni Lopes
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29043-213, ES, Brazil
| | - Lucas Dalvi Armond Rezende
- Nursing Department, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil
| | - Julia Anhoque Cavalcanti
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29043-213, ES, Brazil
| | - Karoline Neumann Gomes
- Nursing Department, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil
| | - Julia Antonietta Dantas da Silva
- Graduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil
| | - Luís Carlos Lopes-Júnior
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29043-213, ES, Brazil
- Graduate Program in Public Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil
| |
Collapse
|
21
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
22
|
Karlstaedt A, Taegtmeyer H. Cardio-Onco-Metabolism - Metabolic vulnerabilities in cancer and the heart. J Mol Cell Cardiol 2022; 171:71-80. [PMID: 35777454 PMCID: PMC10193535 DOI: 10.1016/j.yjmcc.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Cancer and cardiovascular diseases (CVDs) are the leading cause of death worldwide. Metabolic remodeling is a hallmark of both cancer and the failing heart. Tumors reprogram metabolism to optimize nutrient utilization and meet increased demands for energy provision, biosynthetic pathways, and proliferation. Shared risk factors for cancer and CVDs suggest intersecting mechanisms for disease pathogenesis and progression. In this review, we aim to highlight the role of metabolic remodeling in cancer and its potential to impair cardiac function. Understanding these mechanisms will help us develop biomarkers, better therapies, and identify patients at risk of developing heart disease after surviving cancer.
Collapse
Affiliation(s)
- Anja Karlstaedt
- Smidt Heart Institute, Department of Cardiology, Cedars Sinai Medical Center, Los Angeles, California, USA.
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
23
|
Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260243. [PMID: 35993025 PMCID: PMC9388240 DOI: 10.1155/2022/6260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022]
Abstract
Anthracyclines constitute the cornerstone of numerous chemotherapy regimens for various cancers. However, the clinical application of anthracyclines is significantly limited to their dose-dependent cardiotoxicity. A comprehensive understanding of the current status of anthracycline-induced cardiotoxicity is necessary for in-depth research and optimal clinical protocols. Bibliometric analysis is widely applied in depicting development trends and tracking frontiers of a specific field. The present study is aimed at revealing the status and trends of anthracycline-induced cardiotoxicity during the past two decades by employing bibliometric software including R-bibliometric, VOSviewer, and CiteSpace. A total of 3504 publications concerning anthracycline-induced cardiotoxicity from 2002 to 2021 were collected from the Web of Science Core Collection database. Results showed significant growth in annual yields from 90 records in 2002 to 304 papers in 2021. The United States was the most productive country with the strongest collaboration worldwide in the field. Charles University in the Czech Republic was the institution that contributed the most papers, while 7 of the top 10 productive institutions were from the United States. The United States Department of Health and Human Services and the National Institutes of Health are the two agencies that provide financial support for more than 50% of sponsored publications. The research categories of included publications mainly belong to Oncology and Cardiac Cardiovascular Systems. The Journal of Clinical Oncology had a comprehensive impact on this research field with the highest IF value and many publications. Simunek Tomas from Charles University contributed the most publications, while Lipshultz Steven E. from the State University of New York possessed the highest H-index. In addition, the future research frontiers of anthracycline-induced cardiotoxicity might include early detection, pharmacogenomics, molecular mechanism, and cardiooncology. The present bibliometric analysis may provide a valuable reference for researchers and practitioners in future research directions.
Collapse
|
24
|
Liu J, Chen ZZ, Patel J, Asnani A. Understanding Myocardial Metabolism in the Context of Cardio-Oncology. Heart Fail Clin 2022; 18:415-424. [PMID: 35718416 DOI: 10.1016/j.hfc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiovascular events, ranging from arrhythmias to decompensated heart failure, are common during and after cancer therapy. Cardiovascular complications can be life-threatening, and from the oncologist's perspective, could limit the use of first-line cancer therapeutics. Moreover, an aging population increases the risk for comorbidities and medical complexity among patients who undergo cancer therapy. Many have established cardiovascular diagnoses or risk factors before starting these therapies. Therefore, it is essential to understand the molecular mechanisms that drive cardiovascular events in patients with cancer and to identify new therapeutic targets that may prevent and treat these 2 diseases. This review will discuss the metabolic interaction between cancer and the heart and will highlight current strategies of targeting metabolic pathways for cancer treatment. Finally, this review highlights opportunities and challenges in advancing our understanding of myocardial metabolism in the context of cancer and cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Jagvi Patel
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
25
|
Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol 2022; 19:414-425. [PMID: 35440740 PMCID: PMC10112835 DOI: 10.1038/s41569-022-00698-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology has revealed that these seemingly disparate disease processes are intertwined, owing to the cardiovascular sequelae of anticancer therapies, shared risk factors that predispose individuals to both cardiovascular disease and cancer, as well the possible potentiation of cancer growth by cardiac dysfunction. As a result, interest has increased in understanding the fundamental biological mechanisms that are central to the relationship between cardiovascular disease and cancer. Metabolism, appropriate regulation of energy, energy substrate utilization, and macromolecular synthesis and breakdown are fundamental processes for cellular and organismal survival. In this Review, we explore the emerging data identifying metabolic dysregulation as an important theme in cardio-oncology. We discuss the growing recognition of metabolic reprogramming in cardiovascular disease and cancer and view the novel area of cardio-oncology through the lens of metabolism.
Collapse
|
26
|
Izumida T, Imamura T, Ueno Y, Fukahara K, Kinugawa K. Acute Heart Failure in a Patient with Occult Barlow's Disease Receiving Bevacizumab. MEDICINA-LITHUANIA 2021; 57:medicina57100998. [PMID: 34684038 PMCID: PMC8539381 DOI: 10.3390/medicina57100998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
Bevacizumab is a recombinant humanized monoclonal antibody and a key drug for treatment of various types of cancer. Bevacizumab is associated with the occurrence of heart failure, but its risk factors remain unknown. A 55-year-old woman was diagnosed with cervical cancer, which was completely treated by bevacizumab-incorporated chemotherapy. During the 9-month bevacizumab therapy, she suffered from hypertension requiring multiple antihypertensive agents. She was admitted to our hospital due to acute heart failure with afterload mismatch and severe mitral regurgitation. A transesophageal echocardiography showed Barlow's disease with a degenerated and widely prolapsed mitral valve. She received a scheduled surgical mitral valve repair. Post-operative cause was uneventful, but metastatic dissemination developed later. The existence of mitral valve regurgitation, even when sub-clinical, might be a risk of worsening heart failure during bevacizumab therapy. Careful follow-up at an onco-cardiology clinic is highly encouraged particularly for such a cohort during bevacizumab therapy.
Collapse
Affiliation(s)
- Toshihide Izumida
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
| | - Teruhiko Imamura
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
- Correspondence:
| | - Yohei Ueno
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
| | - Kazuaki Fukahara
- Department of Surgery 1, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Koichiro Kinugawa
- Second Department of Medicine, University of Toyama, Toyama 930-0194, Japan; (T.I.); (Y.U.); (K.K.)
| |
Collapse
|