1
|
Werner MH, Olanow CW. Parkinson's Disease Modification through Abl Kinase Inhibition: An Opportunity. Mov Disord 2021; 37:6-15. [PMID: 34816484 PMCID: PMC8770606 DOI: 10.1002/mds.28858] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5 000 000 cases worldwide. Historically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, PD pathology is now known to be widespread and to affect serotonin, cholinergic and norepinephrine neurons as well as nerve cells in the olfactory system, cerebral hemisphere, brain stem, spinal cord, and peripheral autonomic nervous system. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the etiopathogenesis of the disease. Animal models of PD suggest that activation of the Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and neurodegeneration. These studies demonstrate that internalization of misfolded α-synuclein activates c-Abl, which phosphorylates α-synuclein and promotes α-synuclein pathology within the affected neurons. Additionally, c-Abl inactivates parkin, disrupting mitochondrial quality control and biogenesis, promoting neurodegeneration. Post-mortem studies of PD patients demonstrate increased levels of tyrosine phosphorylated α-synuclein, consistent with the activation of c-Abl in human disease. Although the c-Abl inhibitor nilotinib failed to demonstrate clinical benefit in two double-blind trials, novel c-Abl inhibitors have been developed that accumulate in the brain and may inhibit c-Abl at saturating levels. These novel inhibitors have demonstrated benefits in animal models of PD and have now entered clinical development. Here, we review the role of c-Abl in the neurodegenerative disease process and consider the translational potential of c-Abl inhibitors from model studies to disease-modifying therapies for Parkinson's disease. © 2021 Inhibikase Therapeutics, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
| | - C Warren Olanow
- Department of Neurology and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.,Clintrex Research Corporation, Sarasota, Florida, USA
| |
Collapse
|
2
|
c-Kit expression in smooth muscle cells reduces atherosclerosis burden in hyperlipidemic mice. Atherosclerosis 2021; 324:133-140. [PMID: 33781566 DOI: 10.1016/j.atherosclerosis.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Increased receptor tyrosine kinase (RTK) activity has been historically linked to atherosclerosis. Paradoxically, we recently found that global deficiency in c-Kit function increased atherosclerosis in hyperlipidemic mice. This study aimed to investigate if such unusual atheroprotective phenotype depends upon c-Kit's function in smooth muscle cells (SMC). METHODS We studied atherosclerosis in a SMC-specific conditional knockout mice (KitSMC) and control littermate. Tamoxifen (TAM) and vehicle treated mice were fed high fat diet for 16 weeks before atherosclerosis assessment in the whole aorta using oil red staining. Smooth muscle cells were traced within the aortic sinus of conditional c-Kit tracing mice (KitSMC eYFP) and their control littermates (KitWT eYFP) by immunofluorescent confocal microscopy. We then performed RNA sequencing on primary SMC from c-Kit deficient and control mice, and identified significantly altered genes and pathways as a result of c-Kit deficiency in SMC. RESULTS Atherosclerosis significantly increased in KitSMC mice with respect to control groups. In addition, the loss of c-Kit in SMC increased plaque size and necrotic core area in the aortic sinus of hyperlipidemic mice. Smooth muscle cells from KitSMC eYFP mice were more prone to migrate and express foam cell markers (e.g., Mac2 and MCAM) than those from control littermate animals. RNAseq analysis showed a significant upregulation in genes associated with cell proliferation, migration, lipid metabolism, and inflammation secondary to the loss of Kit function in primary SMCs. CONCLUSIONS Loss of c-Kit increases SMC migration, proliferation, and expression of foam cell markers in atherosclerotic plaques from hyperlipidemic mice.
Collapse
|
3
|
Miyachi H, Tara S, Otsuru S, Yi T, Lee YU, Drews JD, Nakayama H, Miyamoto S, Sugiura T, Shoji T, Breuer CK, Shinoka T. Imatinib attenuates neotissue formation during vascular remodeling in an arterial bioresorbable vascular graft. JVS Vasc Sci 2020; 1:57-67. [PMID: 34223286 PMCID: PMC8248522 DOI: 10.1016/j.jvssci.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Bioresorbable vascular grafts (BVGs) can transform biologically into active blood vessels and represent an alternative to traditional synthetic conduits, which are prone to complications such as infection and thrombosis. Although platelet-derived growth factors and c-Kit positive cells play an important role in smooth muscle cell (SMC) migration and proliferation in vascular injury, atherosclerosis, or allograft, their roles in the vascular remodeling process of an arterial BVG remains unknown. Thus, we assessed the neottisue formation on arterial BVG remodeling by administrating imatinib, which is both a platelet-derived growth factor receptor kinase inhibitor and c-Kit receptor kinase inhibitor, in a murine model. Methods BVGs were composed of an inner poly(L-lactic-co-ε-caprolactone) copolymer sponge layer and an outer electrospun poly(L-lactic acid) nanofiber layer, which were implanted into the infrarenal abdominal aortas of C57BL/6 mice. After graft implantation, saline or 100 mg/kg of imatinib was administrated intraperitoneally daily for 2 weeks (n = 20 per group). Five mice in each group were scheduled to be humanely killed at 3 weeks and 15 at 8 weeks, and BVGs were explanted for histologic assessments. Results Graft patency during the 8-week observational period was not significantly different between groups (control, 86.7% vs imatinib, 80.0%; P > .999). Neotissue formation consisting of endothelialization, smooth muscle proliferation, and deposition of collagen and elastin was not observed in either group at 3 weeks. Similar endothelialization was achieved in both groups at 8 weeks, but thickness and percent area of neotissue formation were significantly higher in the control group than in the imatinib group, (thickness, 30.1 ± 7.2 μm vs 19.6 ± 4.5 μm [P = .001]; percent area, 9.8 ± 2.7% vs 6.8 ± 1.8% [P = .005]). Furthermore, SMC layer and deposition of collagen and elastin were better organized at 8 weeks in the control group compared with the imatinib group. The thickness of SMC layer and collagen fiber area were significantly greater at 8 weeks in the control group than in the imatinib group (P < .001 and P = .026, respectively). Because there was no difference in the inner diameter of explanted BVGs (831.7 ± 63.4 μm vs 841.8 ± 41.9 μm; P = .689), neotissue formation was thought to advance toward the outer portion of the BVG with degradation of the polymer scaffold. Conclusions Imatinib attenuates neotissue formation during vascular remodeling in arterial bioresorbable vascular grafts (BVGs) by inhibiting SMC layer formation and extracellular matrix deposition. This study demonstrated that imatinib attenuated neotissue formation during vascular remodeling in arterial Bioresorbable vascular graft (BVG) by inhibiting smooth muscle cell formation and extracellular matrix deposition. In addition, as imatinib did not modify the inner diameter of BVG, neotissue advanced circumferentially toward the outer portion of the neovessel. Currently, BVGs have not yet been clinically applied to the arterial circulation. The results of this study are helpful for the design of BVG that can achieve an optimal balance between polymer degradation and neotissue formation.
Collapse
Affiliation(s)
- Hideki Miyachi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo
| | - Shuhei Tara
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiovascular Medicine, Nippon Medical School, Tokyo
| | - Satoru Otsuru
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Orthopaedics, University of Maryland School of Medicine, Baltimore
| | - Tai Yi
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Yong-Ung Lee
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Joseph D Drews
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | | | - Shinka Miyamoto
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Tadahisa Sugiura
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Toshihiro Shoji
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus.,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus
| |
Collapse
|
4
|
Song L, Zigmond ZM, Martinez L, Lassance-Soares RM, Macias AE, Velazquez OC, Liu ZJ, Salama A, Webster KA, Vazquez-Padron RI. c-Kit suppresses atherosclerosis in hyperlipidemic mice. Am J Physiol Heart Circ Physiol 2019; 317:H867-H876. [PMID: 31441677 PMCID: PMC6843012 DOI: 10.1152/ajpheart.00062.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is the most common underlying cause of cardiovascular morbidity and mortality worldwide. c-Kit (CD117) is a member of the receptor tyrosine kinase family, which regulates differentiation, proliferation, and survival of multiple cell types. Recent studies have shown that c-Kit and its ligand stem cell factor (SCF) are present in arterial endothelial cells and smooth muscle cells (SMCs). The role of c-Kit in cardiovascular disease remains unclear. The aim of the current study is to determine the role of c-Kit in atherogenesis. For this purpose, atherosclerotic plaques were quantified in c-Kit-deficient mice (KitMut) after they were fed a high-fat diet (HFD) for 16 wk. KitMut mice demonstrated substantially greater atherosclerosis compared with control (KitWT) littermates (P < 0.01). Transplantation of c-Kit-positive bone marrow cells into KitMut mice failed to rescue the atherogenic phenotype, an indication that increased atherosclerosis was associated with reduced arterial c-Kit. To investigate the mechanism, SMC organization and morphology were analyzed in the aorta by histopathology and electron microscopy. SMCs were more abundant, disorganized, and vacuolated in aortas of c-Kit mutant mice compared with controls (P < 0.05). Markers of the "contractile" SMC phenotype (calponin, SM22α) were downregulated with pharmacological and genetic c-Kit inhibition (P < 0.05). The absence of c-Kit increased lipid accumulation and significantly reduced the expression of the ATP-binding cassette transporter G1 (ABCG1) necessary for lipid efflux in SMCs. Reconstitution of c-Kit in cultured KitMut SMCs resulted in increased spindle-shaped morphology, reduced proliferation, and elevated levels of contractile markers, all indicators of their restored contractile phenotype (P < 0.05).NEW & NOTEWORTHY This study describes the novel vasculoprotective role of c-Kit against atherosclerosis and its function in the preservation of the SMC contractile phenotype.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Animals
- Aorta/metabolism
- Aorta/ultrastructure
- Aortic Diseases/etiology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Hyperlipidemias/complications
- Hyperlipidemias/metabolism
- Mice, Knockout, ApoE
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- Phenotype
- Plaque, Atherosclerotic
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- Signal Transduction
- Calponins
Collapse
Affiliation(s)
- Lei Song
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Zachary M Zigmond
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Laisel Martinez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Alejandro E Macias
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Omaida C Velazquez
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Zhao-Jun Liu
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alghidak Salama
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Roberto I Vazquez-Padron
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
5
|
Karolewicz B, Górniak A, Marciniak DM, Mucha I. Molecular Mobility and Stability Studies of Amorphous Imatinib Mesylate. Pharmaceutics 2019; 11:pharmaceutics11070304. [PMID: 31266220 PMCID: PMC6680654 DOI: 10.3390/pharmaceutics11070304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
The proposed study examined the characterization and stability of solid-state amorphous imatinib mesylate (IM) after 15 months under controlled relative humidity (60 ± 5%) and temperature (25 ± 2 °C) conditions. After 2 weeks, and 1, 3, 6, and 15 months, the samples were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray powder diffractometry (XRPD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Additionally, the amorphous form of imatinib mesylate was obtained via supercooling of the melt in a DSC apparatus, and aged at various temperatures (3, 15, 25 and 30 °C) and time periods (1–16 h). Glass transition and enthalpy relaxation were used to calculate molecular-relaxation-time parameters. The Kohlrausch–Williams–Watts (KWW) equation was applied to fit the experimental enthalpy-relaxation data. The mean molecular-relaxation-time constant (τ) increased with decreasing ageing temperature. The results showed a high stability of amorphous imatinib mesylate adequate to enable its use in solid dosage form.
Collapse
Affiliation(s)
- Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Dominik M Marciniak
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Igor Mucha
- Department of Analytical Chemistry, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland.
| |
Collapse
|
6
|
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62:75-88. [DOI: 10.1016/j.mam.2017.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
7
|
Heldin CH, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med 2018; 283:16-44. [PMID: 28940884 DOI: 10.1111/joim.12690] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Platelet-derived growth factor (PDGF) isoforms and their receptors have important roles during embryogenesis, particularly in the development of various mesenchymal cell types in different organs. In the adult, PDGF stimulates wound healing and regulates tissue homeostasis. However, overactivity of PDGF signalling is associated with malignancies and other diseases characterized by excessive cell proliferation, such as fibrotic conditions and atherosclerosis. In certain tumours, genetic or epigenetic alterations of the genes for PDGF ligands and receptors drive tumour cell proliferation and survival. Examples include the rare skin tumour dermatofibrosarcoma protuberance, which is driven by autocrine PDGF stimulation due to translocation of a PDGF gene, and certain gastrointestinal stromal tumours and leukaemias, which are driven by constitute activation of PDGF receptors due to point mutations and formation of fusion proteins of the receptors, respectively. Moreover, PDGF stimulates cells in tumour stroma and promotes angiogenesis as well as the development of cancer-associated fibroblasts, both of which promote tumour progression. Inhibitors of PDGF signalling may thus be of clinical usefulness in the treatment of certain tumours.
Collapse
Affiliation(s)
- C-H Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J Lennartsson
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - B Westermark
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Huang C, Mei H, Zhou M, Zheng X. A novel PDGF receptor inhibitor-eluting stent attenuates in-stent neointima formation in a rabbit carotid model. Mol Med Rep 2016; 15:21-28. [PMID: 27922693 PMCID: PMC5355735 DOI: 10.3892/mmr.2016.5986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
A novel drug-eluting stent (DES) is required to target vascular smooth muscle cells (SMCs) without harming endothelial cells (ECs). Platelet-derived growth factor (PDGF) is critical for the proliferation and migration of SMCs. Sunitinib [a PDGF receptor (PDGFR) tyrosine kinase inhibitor]‑eluting stents may therefore inhibit neointimal formation. The aim of the present study was to examine the stent‑based delivery of sunitinib in a rabbit carotid model; in addition, the effects of sunitinib were evaluated in vitro. Local administration of sunitinib markedly reduced neointimal formation without delaying re-endothelialization in the carotid artery model. In vitro, sunitinib inhibited SMC proliferation; however, no effects were observed on ECs. Sunitinib caused necrosis of SMCs. In addition, sunitinib attenuated PDGF-stimulated SMC migration in a scratch wound assay and inhibited α‑SMA cytoskeleton polymerization. Furthermore, sunitinib inhibited PDGF-induced phosphorylation of extracellular signal-regulated kinase in vitro and in vivo. Therefore, this novel DES may be a potential strategy for the treatment of vascular disorders.
Collapse
Affiliation(s)
- Chen Huang
- Division of Vascular Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haijun Mei
- Division of Vascular Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaobing Zheng
- Division of Vascular Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
9
|
Cai X. Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Rev Cardiovasc Ther 2014; 4:789-800. [PMID: 17173496 DOI: 10.1586/14779072.4.6.789] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) exhibit extensive phenotypic diversity and rapid growth during embryonic development, but maintain a quiescent, differentiated state in adult. The pathogenesis of vascular proliferative diseases involves the proliferation and migration of medial vascular SMCs into the vessel intima, possibly reinstating their embryonic gene expression programs. Multiple mitogenic stimuli induce vascular SMC proliferation through cell cycle progression. Therapeutic strategies targeting cell cycle progression and mitogenic stimuli have been developed and evaluated in animal models of atherosclerosis and vascular injury, and several clinical studies. Recent discoveries on the recruitment of vascular progenitor cells to the sites of vascular injury suggest new therapeutic potentials of progenitor cell-based therapies to accelerate re-endothelialization and prevent engraftment of SMC-lineage progenitor cells. Owing to the complex and multifactorial nature of SMC regulation, combinatorial antiproliferative approaches are likely to be used in the future in order to achieve maximal efficacy and reduce toxicity.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cellular Senescence
- Clinical Trials as Topic
- Disease Progression
- Drug Delivery Systems
- Gene Expression
- Genetic Therapy
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Stents
- Vascular Diseases/drug therapy
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Xinjiang Cai
- Duke University Medical Center, Departments of Medicine (Cardiology) & Cell Biology, Durham, North Carolina 27710, USA.
| |
Collapse
|
10
|
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2013; 9:69-79. [PMID: 23793451 DOI: 10.1007/s11481-013-9484-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases. Different types of PDGF antagonists have been developed, including inhibitory monoclonal antibodies and DNA aptamers against PDGF isoforms and receptors, and receptor tyrosine kinase inhibitors. Beneficial effects have been recorded using such inhibitors in preclinical models and in patients with certain malignant as well as non-malignant diseases. The present communication summarizes the use of PDGF antagonists in the treatment of non-malignant diseases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden,
| |
Collapse
|
11
|
Abstract
Mast cells are increasingly being recognized as effector cells in many cardiovascular conditions. Many mast-cell-derived products such as tryptase and chymase can, through their enzymic action, have detrimental effects on blood vessel structure while mast cell-derived mediators such as cytokines and chemokines can perpetuate vascular inflammation. Mice lacking mast cells have been developed and these are providing an insight into how mast cells are involved in cardiovascular diseases and, as knowledge increase, mast cells may become a viable therapeutic target to slow progression of cardiovascular disease.
Collapse
|
12
|
Baughman RP, Meyer KC, Nathanson I, Angel L, Bhorade SM, Chan KM, Culver D, Harrod CG, Hayney MS, Highland KB, Limper AH, Patrick H, Strange C, Whelan T. Monitoring of nonsteroidal immunosuppressive drugs in patients with lung disease and lung transplant recipients: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2012; 142:e1S-e111S. [PMID: 23131960 PMCID: PMC3610695 DOI: 10.1378/chest.12-1044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2012] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Immunosuppressive pharmacologic agents prescribed to patients with diffuse interstitial and inflammatory lung disease and lung transplant recipients are associated with potential risks for adverse reactions. Strategies for minimizing such risks include administering these drugs according to established, safe protocols; monitoring to detect manifestations of toxicity; and patient education. Hence, an evidence-based guideline for physicians can improve safety and optimize the likelihood of a successful outcome. To maximize the likelihood that these agents will be used safely, the American College of Chest Physicians established a committee to examine the clinical evidence for the administration and monitoring of immunosuppressive drugs (with the exception of corticosteroids) to identify associated toxicities associated with each drug and appropriate protocols for monitoring these agents. METHODS Committee members developed and refined a series of questions about toxicities of immunosuppressives and current approaches to administration and monitoring. A systematic review was carried out by the American College of Chest Physicians. Committee members were supplied with this information and created this evidence-based guideline. CONCLUSIONS It is hoped that these guidelines will improve patient safety when immunosuppressive drugs are given to lung transplant recipients and to patients with diffuse interstitial lung disease.
Collapse
Affiliation(s)
| | - Keith C Meyer
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Luis Angel
- University of Texas Health Sciences, San Antonio, TX
| | | | - Kevin M Chan
- University of Michigan Health Systems, Ann Arbor, MI
| | | | | | - Mary S Hayney
- University of Wisconsin School of Pharmacy, Madison, WI
| | | | | | | | | | | |
Collapse
|
13
|
[Non oncologic applications of molecular targeted therapies]. Bull Cancer 2012; 99:953-62. [PMID: 23092598 DOI: 10.1684/bdc.2012.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Significant improvements in the knowledge of cancer biology have permitted the development of new molecular targeted therapies. Meanwhile, a better understanding of the physiology of various non-cancerous diseases has allowed developing these agents in other areas. This review intends to illustrate these perspectives through examples corresponding to different strategies of molecular-targeted therapies : use of a monoclonal antibody binding a receptor (rituximab and rheumatoid arthritis) or a ligand (bevacizumab and age-related macular degeneration), tyrosine kinase inhibitor (imatinib and systemic sclerosis) or inhibitor of cytoplasmic signal transduction pathways (immunosuppressive and antiproliferative effects of mammalian target of rapamycin [mTOR] inhibitors). Clinical results can draw today what could become molecular medicine of tomorrow.
Collapse
|
14
|
Bowen-Pope DF, Raines EW. History of discovery: platelet-derived growth factor. Arterioscler Thromb Vasc Biol 2012; 31:2397-401. [PMID: 22011752 DOI: 10.1161/atvbaha.108.179556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A growth-promoting activity released from activated platelets, the platelet-derived growth factor, was discovered and characterized while the cellular and molecular mechanisms underlying the formation of the lesions of atherosclerosis were being investigated. This review provides a personal account of the different challenges we faced 3 decades ago in this undertaking and describes how our path was influenced by our focus on a disease process and by the evolving general understanding of the molecular effectors of cell proliferation.
Collapse
Affiliation(s)
- Daniel F Bowen-Pope
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | | |
Collapse
|
15
|
Disruption of platelet-derived growth factor-dependent phosphatidylinositol 3-kinase and phospholipase Cγ 1 activity abolishes vascular smooth muscle cell proliferation and migration and attenuates neointima formation in vivo. J Am Coll Cardiol 2011; 57:2527-38. [PMID: 21679854 DOI: 10.1016/j.jacc.2011.02.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 02/07/2011] [Accepted: 02/15/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVES We tested the hypothesis whether selective blunting of platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell (VSMC) proliferation and migration is sufficient to prevent neointima formation after vascular injury. BACKGROUND To prevent neointima formation and stent thrombosis after coronary interventions, it is essential to inhibit VSMC proliferation and migration without harming endothelial cell function. The role of PDGF-a potent mitogen and chemoattractant for VSMC that does not affect endothelial cells-for neointima formation remains controversial. METHODS To decipher the signaling pathways that control PDGF beta receptor (βPDGFR)-driven VSMC proliferation and migration, we characterized 2 panels of chimeric CSF1R/βPDGFR mutants in which the binding sites for βPDGFR-associated signaling molecules (Src, phosphatidylinositol 3-kinase [PI3K], GTPase activating protein of ras, SHP-2, phospholipase Cγ 1 [PLCγ]) were individually mutated. Based on in vitro results, the importance of PDGF-initiated signals for neointima formation was investigated in genetically modified mice. RESULTS Our results indicate that the chemotactic response to PDGF requires the activation of Src, PI3K, and PLCγ, whereas PDGF-dependent cell cycle progression is exclusively mediated by PI3K and PLCγ. These 2 signaling molecules contribute to signal relay of the βPDGFR by differentially regulating cyclin D1 and p27(kip1). Blunting of βPDGFR-induced PI3K and PLCγ signaling by a combination mutant (F3) completely abolished the mitogenic and chemotactic response to PDGF. Disruption of PDGF-dependent PI3K and PLCγ signaling in mice expressing the F3 receptor led to a profound reduction of neointima formation after balloon injury. CONCLUSIONS Signaling by the activated βPDGFR, particularly through PI3K and PLCγ, is crucial for neointima formation after vascular injury. Disruption of these specific signaling pathways is sufficient to attenuate pathogenic processes such as vascular remodeling in vivo.
Collapse
|
16
|
Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 2011; 9:956-70. [PMID: 21119733 DOI: 10.1038/nrd3297] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor and non-receptor tyrosine kinases are involved in multiple proliferative signalling pathways. Imatinib, one of the first tyrosine kinase inhibitors (TKIs) to be approved, revolutionized the treatment of chronic myelogenous leukaemia, and other TKIs with different spectra of kinase inhibition are used to treat renal cell carcinoma, non-small-cell lung cancer and colon cancer. Studies also support the potential use of TKIs as anti-proliferative agents in non-malignant disorders such as cardiac hypertrophy, and in benign-proliferative disorders including pulmonary hypertension, lung fibrosis, rheumatoid disorders, atherosclerosis, in-stent restenosis and glomerulonephritis. In this Review, we provide an overview of the most recent developments--both experimental as well as clinical--regarding the therapeutic potential of TKIs in non-malignant disorders.
Collapse
|
17
|
Masuda S, Nakano K, Funakoshi K, Zhao G, Meng W, Kimura S, Matoba T, Miyagawa M, Iwata E, Sunagawa K, Egashira K. Imatinib Mesylate-Incorporated Nanoparticle-Eluting Stent Attenuates In-Stent Neointimal Formation in Porcine Coronary Arteries. J Atheroscler Thromb 2011; 18:1043-53. [DOI: 10.5551/jat.8730] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Cai X, Freedman NJ. New therapeutic possibilities for vein graft disease in the post-edifoligide era. Future Cardiol 2009; 2:493-501. [PMID: 19804184 DOI: 10.2217/14796678.2.4.493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vein graft neointimal hyperplasia involves proliferation and migration of vascular smooth muscle cells into the vessel intima, and ultimately engenders accelerated atherosclerosis and vein graft failure. Since a myriad of stimuli provoke smooth muscle cell proliferation, molecular therapies for vein graft disease have targeted mechanisms fundamental to all cell proliferation - the 'cell-cycle' machinery. Preclinically, the most successful of these therapies has been edifoligide (E2F decoy), a double-stranded oligodeoxynucleotide that binds to the transcription factor known as E2F. Recently, PRoject of Ex vivo vein GRaft Engineering via Transfection (PREVENT) III and IV demonstrated that edifoligide failed to benefit human vein grafts employed to treat lower-extremity ischemia and coronary heart disease, respectively. The clinical failure of edifoligide calls into question previous models of vein graft disease and lends credence to recent animal studies demonstrating that vein graft arterialization substantially involves the immigration into the vein graft of a variety of vascular progenitor cells. Future vein graft disease therapies will likely target not only proliferation of graft-intrinsic cells, but also immigration of graft-extrinsic cells.
Collapse
Affiliation(s)
- Xinjiang Cai
- Duke University Medical Center, Departments of Medicine (Cardiology) & Cell Biology, Durham, NC 27710, USA.
| | | |
Collapse
|
19
|
Jandt E, Mutschke O, Mahboobi S, Uecker A, Platz R, Berndt A, Böhmer FD, Figulla HR, Werner GS. Stent-based release of a selective PDGF-receptor blocker from the bis-indolylmethanon class inhibits restenosis in the rabbit animal model. Vascul Pharmacol 2009; 52:55-62. [PMID: 19951743 DOI: 10.1016/j.vph.2009.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 11/19/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022]
Abstract
Long-term success of modern therapies for myocardial ischemia is limited by restenosis, with proliferation and migration of vascular smooth muscle cells (VSMC) as key events. Since findings in recent years indicate, that the Platelet Derived Growth Factor (PDGF) is an important selective factor in mitogenic and motogenic pathways of VSMC, different concepts for reducing restenosis by inhibiting PDGF signaling have been investigated, with local delivery of small receptor kinase inhibitors looking most promising. We tested the stent-based delivery of the PDGF-receptor inhibitor D-65495, a bis(1H-2-indolyl)methanone, in the rabbit iliac artery model of restenosis. New Zealand white rabbits underwent balloon dilation of iliac arteries for implantation of D-65495-coated or non-coated (solvent, either DMSO or 90%THF / 10% DMSO) coronary stents. After 4 weeks stents were removed and neointima formation in medial and proximal/ distal stent sections was histomorphometrically and immunohistochemically analyzed. Arteries with D-65495 eluting stents showed an up to 50% reduced restenosis compared to control stents. Also, the neointimal area was reduced, but there were no significant differences in injury score. Importantly, endothelialization was similar for control stents as well as for D-65495-coated stents, suggesting absence of a general cytostatic effect of the inhibitor. The impact of D-65495 on PDGF-receptor signaling in the vessel wall was indirectly assessed by immunohistochemical staining for activated protein kinase Akt, and PCNA as a proliferation marker and revealed some reduction for the inhibitor-treated vessels. In conclusion, the application of D-65495 caused a significant decrease in neointima formation, further supporting the concept of using locally released PDGF-receptor kinase inhibitors as anti-restenotic agents.
Collapse
Affiliation(s)
- Enrico Jandt
- Clinic for Internal Medicine III, Friedrich-Schiller-University Jena, Erlanger Alle 101, D-07747 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dixon SR, Grines CL, O'Neill WW. The Year in Interventional Cardiology. J Am Coll Cardiol 2006; 47:1689-706. [PMID: 16631010 DOI: 10.1016/j.jacc.2006.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 01/23/2006] [Accepted: 02/08/2006] [Indexed: 01/14/2023]
Affiliation(s)
- Simon R Dixon
- William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | |
Collapse
|