1
|
Nakayama M, Goto S, Goto S. Development of the Integrated Computer Simulation Model of the Intracellular, Transmembrane, and Extracellular Domain of Platelet Integrin α IIb β 3 (Platelet Membrane Glycoprotein: GPIIb-IIIa). TH OPEN 2024; 8:e96-e105. [PMID: 38425453 PMCID: PMC10904213 DOI: 10.1055/a-2247-9438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Background The structure and functions of the extracellular domain of platelet integrin α IIb β 3 (platelet membrane glycoprotein: GPIIb-IIIa) change substantially upon platelet activation. However, the stability of the integrated model of extracellular/transmembrane/intracellular domains of integrin α IIb β 3 with the inactive state of the extracellular domain has not been clarified. Methods The integrated model of integrin α IIb β 3 was developed by combining the extracellular domain adopted from the crystal structure and the transmembrane and intracellular domain obtained by Nuclear Magnetic Resonace (NMR). The transmembrane domain was settled into the phosphatidylcholine (2-oleoyl-1-palmitoyl-sn-glycerol-3-phosphocholine (POPC)) lipid bilayer model. The position coordinates and velocity vectors of all atoms and water molecules around them were calculated by molecular dynamic (MD) simulation with the use of Chemistry at Harvard Macromolecular Mechanics force field in every 2 × 10 -15 seconds. Results The root-mean-square deviations (RMSDs) of atoms constructing the integrated α IIb β 3 model apparently stabilized at approximately 23 Å after 200 ns of calculation. However, minor fluctuation persisted during the entire calculation period of 650 ns. The RMSDs of both α IIb and β 3 showed similar trends before 200 ns. The RMSD of β 3 apparently stabilized approximately at 15 Å at 400 ns with persisting minor fluctuation afterward, while the structural fluctuation in α IIb persisted throughout the 650 ns calculation period. Conclusion In conclusion, the integrated model of the intracellular, transmembrane, and extracellular domain of integrin α IIb β 3 suggested persisting fluctuation even after convergence of MD calculation.
Collapse
Affiliation(s)
- Masamitsu Nakayama
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| | - Shinichi Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| | - Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
2
|
Plášek J, Gumulec J, Máca J, Škarda J, Procházka V, Grézl T, Václavík J. COVID-19 associated coagulopathy: Mechanisms and host-directed treatment. Am J Med Sci 2022; 363:465-475. [PMID: 34752741 PMCID: PMC8576106 DOI: 10.1016/j.amjms.2021.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is associated with specific coagulopathy that frequently occurs during the different phases of coronavirus disease 2019 (COVID-19) and can result in thrombotic complications and/or death. This COVID-19-associated coagulopathy (CAC) exhibits some of the features associated with thrombotic microangiopathy, particularly complement-mediated hemolytic-uremic syndrome. In some cases, due to the anti-phospholipid antibodies, CAC resembles catastrophic anti-phospholipid syndrome. In other patients, it exhibits features of hemophagocytic syndrome. CAC is mainly identified by: increases in fibrinogen, D-dimers, and von Willebrand factor (released from activated endothelial cells), consumption of a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), over activated and dysregulated complement, and elevated plasma cytokine levels. CAC manifests as both major cardiovascular and/or cerebrovascular events and dysfunctional microcirculation, which leads to multiple organ damage. It is not clear whether the mainstay of COVID-19 is complement overactivation, cytokine/chemokine activation, or a combination of these activities. Available data have suggested that non-critically ill hospitalized patients should be administered full-dose heparin. In critically ill, full dose heparin treatment is discouraged due to higher mortality rate. In addition to anti-coagulation, four different host-directed therapeutic pathways have recently emerged that influence CAC: (1) Anti-von Willebrand factor monoclonal antibodies; (2) activated complement C5a inhibitors; (3) recombinant ADAMTS13; and (4) Interleukin (IL)-1 and IL-6 antibodies. Moreover, neutralizing monoclonal antibodies against the virus surface protein have been tested. However, the role of antiplatelet treatment remains unclear for patients with COVID-19.
Collapse
Affiliation(s)
- Jiří Plášek
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - J Gumulec
- Department of Clinical Hematology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - J Máca
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic; Medical Faculty, Institute of Physiology and Pathophysiology, University of Ostrava, Ostrava, Czech Republic
| | - J Škarda
- Institute of Clinical Pathology, University Hospital of Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Procházka
- Institute of Radiology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - T Grézl
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Václavík
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
3
|
Tamura N, Goto S, Yokota H, Goto S. Contributing Role of Mitochondrial Energy Metabolism on Platelet Adhesion, Activation and Thrombus Formation under Blood Flow Conditions. Platelets 2022; 33:1083-1089. [PMID: 35348041 DOI: 10.1080/09537104.2022.2046722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Platelets have an active energy metabolism mediated by mitochondria. However, the role of mitochondria in platelet adhesion, activation, and thrombus formation under blood flow conditions remains to be elucidated. Blood specimens were obtained from healthy adult volunteers. The consumption of glucose molecules by platelets was measured after 24 hours. Platelet adhesion, activation, and thrombus formation on collagen fibrils and immobilized von Willebrand factor (VWF) at a wall shear rate of 1,500 s-1 were detected by fluorescence microscopy with an ultrafast laser confocal unit in the presence or absence of mitochondrial functional inhibitors of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), antimycin A, and oligomycin. Consumption of glucose molecules within the first 24 h of 4.21 × 10-15 ± 4.46 x 10-15 (n = 6) increased to 13.82 × 10-15 ± 3.46 x 10-15 (n = 4) in the presence of FCCP, 12.11 × 10-15 ± 2.33 x 10-15 (n = 4) in the presence of antimycin A, and 11.87 × 10-15 ± 3.56 x 10-15 (n = 4) in the presence of oligomycin (p < .05). These mitochondrial functional blockers did not influence both surface area coverage by platelets and the 3-dimensional size of platelet thrombi formed on the collagen fibrils. However, a rapid increase in the intracellular calcium ion concentration ([Ca2+]i) upon adhering on immobilized VWF decreased significantly from 405.5 ± 86.2 nM in control to 198.0 ± 79.2 nM in the presence of FCCP (p < .005). A similar decrease in the rapid increase in ([Ca2+]i) was observed in the presence of antimycin A and oligomycin. Mitochondrial function is necessary for platelet activation represented by a rapid increase in [Ca2+]i after platelet adhesion on VWF. However, the influence could not be detected as changes in platelet adhesion or 3-dimensional growth of platelet thrombi on collagen fibrils.
Collapse
Affiliation(s)
- Noriko Tamura
- Department of Health and Nutrition, Faculty of Health Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shinichi Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| | - Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
4
|
Crescence L, Kramberg M, Baumann M, Rey M, Roux S, Panicot-Dubois L, Dubois C, Riederer MA. The P2Y12 Receptor Antagonist Selatogrel Dissolves Preformed Platelet Thrombi In Vivo. J Clin Med 2021; 10:jcm10225349. [PMID: 34830631 PMCID: PMC8619398 DOI: 10.3390/jcm10225349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Selatogrel, a potent and reversible antagonist of the P2Y12 receptor, inhibited FeCl3-induced thrombosis in rats. Here, we report the anti-thrombotic effect of selatogrel after subcutaneous applications in guinea pigs and mice. Selatogrel inhibited platelet function only 10 min after subcutaneous application in mice. In addition, in a modified Folts thrombosis model in guinea pigs, selatogrel prevented a decrease in blood-flow, indicative of the inhibition of ongoing thrombosis, approximately 10 min after subcutaneous injection. Selatogrel fully normalised blood flow; therefore, we speculate that it may not only prevent, but also dissolve, platelet thrombi. Thrombus dissolution was investigated using real-time intravital microscopy in mice. The infusion of selatogrel during ongoing platelet thrombus formation stopped growth and induced the dissolution of the preformed platelet thrombus. In addition, platelet-rich thrombi were given 30 min to consolidate in vivo. The infusion of selatogrel dissolved the preformed and consolidated platelet thrombi. Dissolution was limited to the disintegration of the occluding part of the platelet thrombi, leaving small mural platelet aggregates to seal the blood vessel. Therefore, our experiments uncovered a novel advantage of selatogrel: the dissolution of pre-formed thrombi without the disintegration of haemostatic seals, suggesting a bipartite benefit of the early application of selatogrel in patients with acute thrombosis.
Collapse
Affiliation(s)
- Lydie Crescence
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, 27 Boulevard Jean Moulin, 13385 Marseille, France; (L.C.); (L.P.-D.); (C.D.)
| | - Markus Kramberg
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., CH-4123 Allschwil, Switzerland; (M.K.); (M.B.); (M.R.); (S.R.)
| | - Martine Baumann
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., CH-4123 Allschwil, Switzerland; (M.K.); (M.B.); (M.R.); (S.R.)
| | - Markus Rey
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., CH-4123 Allschwil, Switzerland; (M.K.); (M.B.); (M.R.); (S.R.)
| | - Sebastien Roux
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., CH-4123 Allschwil, Switzerland; (M.K.); (M.B.); (M.R.); (S.R.)
| | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, 27 Boulevard Jean Moulin, 13385 Marseille, France; (L.C.); (L.P.-D.); (C.D.)
| | - Christophe Dubois
- Aix Marseille Université, INSERM 1263, INRAE 1260, C2VN, 27 Boulevard Jean Moulin, 13385 Marseille, France; (L.C.); (L.P.-D.); (C.D.)
| | - Markus A. Riederer
- Drug Discovery Biology, Idorsia Pharmaceuticals Ltd., CH-4123 Allschwil, Switzerland; (M.K.); (M.B.); (M.R.); (S.R.)
- Correspondence: ; Tel.: +41-588-440-885
| |
Collapse
|
5
|
Tamura N, Shimizu K, Shiozaki S, Sugiyama K, Nakayama M, Goto S, Takagi S, Goto S. Important Regulatory Roles of Erythrocytes on Platelet Adhesion to the von Willebrand Factor on the Wall Under Blood Flow Conditions. Thromb Haemost 2021; 122:974-983. [PMID: 34695874 DOI: 10.1055/a-1677-9499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The roles of erythrocytes on platelet adhesion to von Willebrand factor (VWF) on the vessel wall through their membrane glycoprotein (GP)Ibα under blood flow condition is still to be elucidated. Blood specimens containing fluorescently labeled platelet and native, biochemically fixed, or artificial erythrocytes, at various hematocrits were perfused on a surface of VWF immobilized on the wall at a shear rate of 1,500 s-1. Rates of platelet adhesions were measured in each condition. Computer simulation of platelet adhesion to the VWF on the wall at the same shear rate was conducted by solving governing equations with a finite-difference method on K-computer. The rates of platelet adhesion were calculated at various hematocrits conditions in the computational domain of 100 µm (x-axis) x 400 µm (y-axis) x 100 µm (z-axis). Biological experiments demonstrated the positive correlation between the rates of platelet adhesion and hematocrit values in native, fixed, and artificial erythrocytes. (r=0.992, 0.934, and 0.825 respectively, p<0.05 for all). The computer simulation results supported the hematocrit dependent increase in platelet adhesion rates on VWF (94.3/sec at 10%, 185.2/sec at 20%, and 327.9/sec at 30%, respectively). These results suggest the important contributing role of erythrocytes on platelet adhesion to the VWF. The augmented z-axis fluctuation of flowing platelet caused by the physical presence of erythrocytes is speculated as the cause for hematocrit dependent increase in platelet adhesion.
Collapse
Affiliation(s)
- Noriko Tamura
- Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuya Shimizu
- The University of Tokyo Graduate School of Engineering Faculty of Engineering, Bunkyo-ku, Japan
| | - Seiji Shiozaki
- Tokai University School of Medicine Graduate School of Medicine, Isehara, Japan
| | - Kazuyasu Sugiyama
- Osaka University School of Engineering Graduate School of Engineering, Suita, Japan
| | - Masamitsu Nakayama
- Tokai University School of Medicine Graduate School of Medicine, Isehara, Japan
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Japan
| | - Shu Takagi
- Department of Mechanical Engineering, University of Tokyo, Tokyo, Japan
| | - Shinya Goto
- Department of Medicine, Tokai University, Isehara, Japan
| |
Collapse
|
6
|
DeCortin ME, Brass LF, Diamond SL. Core and shell platelets of a thrombus: A new microfluidic assay to study mechanics and biochemistry. Res Pract Thromb Haemost 2020; 4:1158-1166. [PMID: 33134782 PMCID: PMC7590323 DOI: 10.1002/rth2.12405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 05/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hemostatic clots have a P-selectin positive platelet core covered with a shell of P-selectin negative platelets. OBJECTIVE To develop a new human blood microfluidic assay to interrogate core/shell mechanics. METHODS A 2-stage assay perfused whole blood over collagen/± tissue factor (TF) for 180 seconds at 100 s-1 wall shear rate, followed by buffer perfusion at either 100 s-1 (venous) or 1000 s-1 (arterial). This microfluidic assay used an extended channel height (120 µm), allowing buffer perfusion well before occlusion. RESULTS Clot growth on collagen stopped immediately with buffer exchange, revealing ~10% reduction in platelet fluorescence intensity (at 100 s-1) and ~30% (at 1000 s-1) by 1200 seconds. Thrombin generation (on collagen/TF) reduced erosion at either buffer flow rate. P-selectin-positive platelets were stable (no erosion) against 1000 s-1, in contrast to P-selectin negative platelets. Thrombin inhibition (with D-Phe-Pro-Arg-CMK) reduced the number of P-selectin-positive platelets and lowered thrombus stability through the reduction of P-selectin-positive platelets. Interestingly, fibrin inhibition (with H-Gly-Pro-Arg-Pro-OH acetate salt) increased the number of P-selectin-positive platelets but did not lower stability, suggesting that fibrin was only in the core region. Thromboxane inhibition reduced P-selectin-positive platelets and caused a nearly 60% reduction of the clot at arterial buffer flow. P2Y1 antagonism reduced clot size and the number of P-selectin-positive platelets and reduced the stability of P-selectin-negative platelets. CONCLUSION The 2-stage assay (extended channel height plus buffer exchange) interrogated platelet stability using human blood. Under all conditions, P-selectin-positive platelets never left the clot.
Collapse
Affiliation(s)
- Michael E. DeCortin
- Department of Chemical and Biomolecular EngineeringInstitute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lawrence F. Brass
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Scott L. Diamond
- Department of Chemical and Biomolecular EngineeringInstitute for Medicine and EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Siritapetawee J, Khunkaewla P, Thumanu K. Roles of a protease from Euphorbia resinifera latex in human anticoagulant and antithrombotic activities. Chem Biol Interact 2020; 329:109223. [PMID: 32781033 DOI: 10.1016/j.cbi.2020.109223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Thromboembolism is a major cause of morbidity and mortality worldwide. Most therapeutic drugs for treating thrombosis can cause hemorrhage and have short half-lives within human blood circulation resulting in a need to discover and develop novel anticoagulants/antithrombotics. EuRP-61 has been isolated from a plant latex (Euphorbia resinifera) and characterized as a serine protease. In this study, EuRP-61 was able to hydrolyze all chains of human fibrin clots. The enzyme may have long term stability in blood circulation as its fibrinogenolytic activity was not affected by human blood circulating inhibitors such as α2-macroglobulin and antithrombin III. The enzyme may affect the extrinsic, intrinsic or common pathways of the human blood coagulation cascade as evidenced by its prolonged of both prothrombin (PT) and activated partial thromboplastin (APTT) time. Moreover, the enzyme inhibited platelet aggregation via the ADP-receptor pathway. EuRP-61 was not toxic to human red blood cells in the 4 common blood groups (A, B, O and AB) (all Rh+) or human peripheral blood mononuclear cells (hPBMCs). The enzyme may protect human peripheral blood cells from aggregation without destroying them. This study provides evidence that EuRP-61 may have potential as an agent for the treatment of thrombosis.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Panida Khunkaewla
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
8
|
Oshinowo O, Lambert T, Sakurai Y, Copeland R, Hansen CE, Lam WA, Myers DR. Getting a good view: in vitro imaging of platelets under flow. Platelets 2020; 31:570-579. [PMID: 32106734 PMCID: PMC7332395 DOI: 10.1080/09537104.2020.1732320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Abstract
As the anucleate cells responsible for hemostasis and thrombosis, platelets are exposed to a myriad of biophysical and biochemical stimuli within vasculature and heterogeneous blood clots. Highly controlled, reductionist in vitro imaging studies have been instrumental in providing a detailed and quantitative understanding of platelet biology and behavior, and have helped elucidate some surprising functions of platelets. In this review, we highlight the tools and approaches that enable visualization of platelets in conjunction with precise control over the local biofluidic and biochemical microenvironment. We also discuss next generation tools that add further control over microenvironment cell stiffness or enable visualization of the interactions between platelets and endothelial cells. Throughout the review, we include pragmatic knowledge on imaging systems, experimental conditions, and approaches that have proved to be useful to our in vitro imaging studies of platelets under flow.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Tamara Lambert
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Yumiko Sakurai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Renee Copeland
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Caroline E. Hansen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - Wilbur A. Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Winship Cancer Institute of Emory University, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| | - David R. Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, Georgia
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
9
|
The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any? Neurocrit Care 2020; 31:188-195. [PMID: 29951959 DOI: 10.1007/s12028-018-0564-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke, with a high rate of mortality and morbidity. Even with the best current medical or surgical interventions, outcomes remain poor. The location and initial hematoma volume are strong predictors of mortality. Hematoma expansion (HE) is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for HE have been identified, including baseline ICH volume, anticoagulation, and computed tomography angiography spot signs. Recent studies have shown the correlation of serum calcium (Ca++) levels on admission with HE. Low serum Ca++ level has been associated with larger hematoma volume at the time of presentation, HE, and worse outcome. Although the causal and mechanistic links between low serum Ca++ level and HE are not well understood, several mechanisms have been proposed including coagulopathy, platelet dysfunction, and higher blood pressure (BP) in the context of low serum Ca++ level. However, low serum Ca++ level might be only a biomarker of the adaptive response due to acute inflammatory response following acute ICH. The purpose of the current review is to discuss the evidence regarding the possible role of low serum Ca++ level on HE in acute ICH.
Collapse
|
10
|
Aliotta A, Bertaggia Calderara D, Alberio L. Flow Cytometric Monitoring of Dynamic Cytosolic Calcium, Sodium, and Potassium Fluxes Following Platelet Activation. Cytometry A 2020; 97:933-944. [DOI: 10.1002/cyto.a.24017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| |
Collapse
|
11
|
Abstract
ST-segment elevation myocardial infarction (STEMI) is the most acute manifestation of coronary artery disease and is associated with great morbidity and mortality. A complete thrombotic occlusion developing from an atherosclerotic plaque in an epicardial coronary vessel is the cause of STEMI in the majority of cases. Early diagnosis and immediate reperfusion are the most effective ways to limit myocardial ischaemia and infarct size and thereby reduce the risk of post-STEMI complications and heart failure. Primary percutaneous coronary intervention (PCI) has become the preferred reperfusion strategy in patients with STEMI; if PCI cannot be performed within 120 minutes of STEMI diagnosis, fibrinolysis therapy should be administered to dissolve the occluding thrombus. The initiation of networks to provide around-the-clock cardiac catheterization availability and the generation of standard operating procedures within hospital systems have helped to reduce the time to reperfusion therapy. Together with new advances in antithrombotic therapy and preventive measures, these developments have resulted in a decrease in mortality from STEMI. However, a substantial amount of patients still experience recurrent cardiovascular events after STEMI. New insights have been gained regarding the pathophysiology of STEMI and feed into the development of new treatment strategies.
Collapse
|
12
|
Potential different impact of inhibition of thrombin function and thrombin generation rate for the growth of thrombi formed at site of endothelial injury under blood flow condition. Thromb Res 2019; 179:121-127. [PMID: 31129447 DOI: 10.1016/j.thromres.2019.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Thrombin inhibitor and anti-Xa are now widely used in clinical practice. However, the difference between thrombin inhibitor and anti-Xa in prevention of thrombosis is still to be elucidated. MATERIALS AND METHODS Computer simulator implementing the function of platelet, coagulation, fibrinolysis and blood flow was developed. The function of thrombin is defined as to activated platelet at the rate of 0.01 s-1 and to produce fibrin at the rate of 0.1 s-1 in control. The effect of thrombin inhibitor was settled to reduce the rate of platelet activation and fibrin generation changed from 10 to 100% as compared to the control. The local thrombin generation rate on activated platelet was settled as 1.0 s-1 as a control. The effect of anti-Xa was settled to reduce to thrombin generation rate on activated platelet from 10% to 100% as compared to the control. The sizes of thrombi formed at site of endothelial injury in the presence and absence of thrombin inhibitor and anti-Xa were compared. RESULTS AND CONCLUSIONS The size of thrombi formed by 30-s perfusion of blood at site of endothelial injury reduced both in the presence of thrombin inhibitor and anti-Xa. There was significant positive relationship between thrombin inhibitor effect and the size of formed thrombi with R value of 0.96. (p < 0.0001) However, the sizes of thrombi were not influence by anti-Xa until it decreased 30% or less as compared to control. There was no significant relationship between anti-Xa effect and the size of formed thrombi. (R = 0.39, p = 0.09) Our results suggest the different dose-dependent effects of thrombin inhibitor and anti-Xa on thrombus formation at least in specific conditions. Computer simulation may help to predict quantitative antithrombotic effects of various antithrombotic agents.
Collapse
|
13
|
Spinthakis N, Farag M, Gue YX, Srinivasan M, Wellsted DM, Gorog DA. Effect of P2Y 12 inhibitors on thrombus stability and endogenous fibrinolysis. Thromb Res 2018; 173:102-108. [PMID: 30500673 DOI: 10.1016/j.thromres.2018.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Although used routinely to reduce thrombotic events in patients with coronary disease, the effects of P2Y12 inhibitors on thrombus stability and endogenous fibrinolysis are largely unknown. Blood taken from patients pre- and post-aspirin (n = 20) and on aspirin alone and on dual antiplatelet therapy comprising aspirin plus clopidogrel (n = 20), ticagrelor (n = 20) or cangrelor (n = 20), was tested using the Global Thrombosis Test. The number of "rebleeds" or drops (D) after early platelet-rich thrombus formation (occlusion time, OT), and before final lasting occlusion, was used as an inverse measure of thrombus stability. Whilst clopidogrel had no effect, ticagrelor and cangrelor both increased D significantly, reflecting increased thrombus instability [D pre- and post-clopidogrel 4.3 ± 1.6 vs. 4.5 ± 1.4, p = 0.833; pre- and post-ticagrelor 4.1 ± 2.4 vs. 6.8 ± 5.1, p = 0.048; pre- and post-cangrelor 3.6 ± 2.0 vs. 7.9 ± 8.9, p = 0.046]. Platelet reactivity was reduced by all P2Y12 inhibitors, demonstrated by OT prolongation (clopidogrel 378 ± 87 s vs. 491 ± 93 s, p < 0.001; ticagrelor 416 ± 122 s vs. 549 ± 121 s, p < 0.001; cangrelor 381 ± 146 s vs. 613 ± 210 s, p < 0.001). The magnitude of OT prolongation compared to baseline (ΔOT) was significantly greater for cangrelor compared to clopidogrel and ticagrelor. Cangrelor was the only agent to enhance fibrinolysis (lysis time pre- and post-cangrelor 1622[1240-2048]s vs. 1388[960-1634]s, p = 0.005). We demonstrate the ability to assess the effect of pharmacotherapy on thrombus stability in vitro and show that P2Y12 inhibitors potentiate thrombus instability at high shear. Cangrelor, and to a lesser extent ticagrelor, de-stabilised thrombus formation and cangrelor also enhanced fibrinolysis. Potentiation of thrombus instability could become a new pharmacological target, that may be particularly important in acute coronary syndromes.
Collapse
Affiliation(s)
- Nikolaos Spinthakis
- Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK; Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Mohamed Farag
- Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK; Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Ying X Gue
- Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK; Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | | | - David M Wellsted
- Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK
| | - Diana A Gorog
- Postgraduate Medical School, University of Hertfordshire, Hertfordshire, UK; Department of Cardiology, East and North Hertfordshire NHS Trust, Hertfordshire, UK; National Heart & Lung Institute, Imperial College, London, UK.
| |
Collapse
|
14
|
Gorog DA. Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications. J Thromb Thrombolysis 2018; 45:593-602. [PMID: 29550950 PMCID: PMC5889774 DOI: 10.1007/s11239-018-1641-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.
Collapse
Affiliation(s)
- Diana A Gorog
- National Heart & Lung Institute, Imperial College, Dovehouse Street, London, SW3 6LY, UK. .,Postgraduate Medical School, University of Hertfordshire, Hatfield, UK.
| |
Collapse
|
15
|
Swieringa F, Spronk HM, Heemskerk JW, van der Meijden PE. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost 2018; 2:450-460. [PMID: 30046749 PMCID: PMC6046596 DOI: 10.1002/rth2.12107] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets interact with the coagulation system in a multitude of ways, not only during the phases of thrombus formation, but also in specific areas within a formed thrombus. This review discusses current concepts of platelet control of thrombin generation, fibrin formation and structure, and anticoagulation. Indicated are how combined signalling via the platelet receptors for collagen (glycoprotein VI) and thrombin induces the secretion of (anti)coagulation factors, as well as surface exposure of phosphatidylserine, thereby catalysing thrombin generation. This procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein Ib-V-IX and integrin αIIbβ3. In the buildup of a platelet-fibrin thrombus, the extrinsic, tissue factor-driven coagulation pathway is predominant in early stages, while the intrinsic, factor XII pathway seems to promote at later time points. Already early generation of thrombin enforces platelet responses and stimulates intra-thrombus heterogeneity with patches of loosely aggregated, contracted, and phosphatidylserine-exposing platelets. Fibrin actively formed on the surface of activated platelets supports thrombus growth, but also captures thrombin. The fibrin distribution in a thrombus appears to rely on the local procoagulant trigger and the blood flow rate. Clinical studies support the importance of the platelet-coagulation interplay, by showing beneficial effects of combination therapy in the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Leibniz Institute for Analytical SciencesISASDortmundGermany
| | - Henri M.H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
16
|
Alberio L, Ravanat C, Hechler B, Mangin PH, Lanza F, Gachet C. Delayed-onset of procoagulant signalling revealed by kinetic analysis of COAT platelet formation. Thromb Haemost 2017; 117:1101-1114. [DOI: 10.1160/th16-09-0711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/19/2017] [Indexed: 11/05/2022]
Abstract
SummaryThe combined action of collagen and thrombin induces the formation of COAT platelets, which are characterised by a coat of procoagulant and adhesive molecules on their surface. Although recent work has started to highlight their clinical relevance, the exact mechanisms regulating the formation of procoagulant COAT platelets remain unclear. Therefore, we employed flow cytometry in order to visualise in real time surface and intracellular events following simultaneous platelet activation with convulxin and thrombin. After a rapid initial response pattern characterised by the homogenous activation of the fibrinogen receptor glycoprotein IIb/IIIa in all platelets, starting with a delay of about 2 minutes an increasing fraction transforms to procoagulant COAT platelets. Their surface is characterised by progressive loss of PAC-1 binding, expression of negative phospholipids and retention of α-granule von Willebrand factor. Intracellular events in procoagulant COAT platelets are a marked increase of free calcium into the low micromolar range, concomitantly with early depolarisation of the mitochondrial membrane and activation of caspase-3, while non-COAT platelets keep the intracellular free calcium in the nanomolar range and maintain an intact mitochondrial membrane. We show for the first time that the flow-cytometrically distinct fractions of COAT and non-COAT platelets differentially phosphorylate two signalling proteins, PKCα and p38MAPK, which may be involved in the regulation of the different calcium fluxes observed in COAT versus non-COAT platelets. This study demonstrates the utility of concomitant cellular and signalling evaluation using flow cytometry in order to further dissect the mechanisms underlying the dichotomous platelet response observed after collagen/thrombin stimulation.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
17
|
Gorog DA, Fayad ZA, Fuster V. Arterial Thrombus Stability. J Am Coll Cardiol 2017; 70:2036-2047. [DOI: 10.1016/j.jacc.2017.08.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023]
|
18
|
Pugh N, Maddox BD, Bihan D, Taylor KA, Mahaut-Smith MP, Farndale RW. Differential integrin activity mediated by platelet collagen receptor engagement under flow conditions. Thromb Haemost 2017; 117:1588-1600. [PMID: 28536721 PMCID: PMC6291897 DOI: 10.1160/th16-12-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/22/2017] [Indexed: 11/15/2022]
Abstract
The platelet receptors glycoprotein (Gp)VI, integrin α
2
β
1
and GpIb/V/IX mediate platelet adhesion and activation during thrombogenesis. Increases of intracellular Ca
2+
([Ca
2+
]
i
) are key signals during platelet activation; however, their relative importance in coupling different collagen receptors to functional responses under shear conditions remains unclear. To study shear-dependent, receptor-specific platelet responses, we used collagen or combinations of receptor-specific collagen-mimetic peptides as substrates for platelet adhesion and activation in whole human blood under arterial flow conditions and compared real-time and endpoint parameters of thrombus formation alongside [Ca
2+
]
i
measurements using confocal imaging. All three collagen receptors coupled to [Ca
2+
]
i
signals, but these varied in amplitude and temporal pattern alongside variable integrin activation. GpVI engagement produced large, sustained [Ca
2+
]
i
signals leading to realtime increases in integrins α
2
β
1
− and α
IIb
β
3
-mediated platelet adhesion. α
IIb
β
3
-dependent platelet aggregation was dependent on P
2
Y
12
signalling. Co-engagement of α
2
β
1
and GpIb/V/IX generated transient [Ca
2+
]
i
spikes and low amplitude [Ca
2+
]
i
responses that potentiated GpVI-dependent [Ca
2+
]
i
signalling. Therefore α
2
β
1
GpIb/V/IX and GpVI synergise to generate [Ca
2+
]
i
signals that regulate platelet behaviour and thrombus formation. Antagonism of secondary signalling pathways reveals distinct, separate roles for α
IIb
β
3
in stable platelet adhesion and aggregation.
Supplementary Material to this article is available online at
www.thrombosis-online.com
.
Collapse
Affiliation(s)
- Nicholas Pugh
- Nicholas Pugh, Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK, Tel.: +44 8451962661, E-mail:
| | | | | | | | | | | |
Collapse
|
19
|
Terada C, Shiba M, Nagai T, Satake M. Effects of riboflavin and ultraviolet light treatment on platelet thrombus formation and thrombus stability on collagen. Transfusion 2017; 57:1772-1780. [DOI: 10.1111/trf.14114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Chikahiro Terada
- Department of Research and Development; Central Blood Institute, Japanese Red Cross Society; Tokyo Japan
| | - Masayuki Shiba
- Department of Research and Development; Central Blood Institute, Japanese Red Cross Society; Tokyo Japan
| | - Tadashi Nagai
- Department of Research and Development; Central Blood Institute, Japanese Red Cross Society; Tokyo Japan
| | - Masahiro Satake
- Department of Research and Development; Central Blood Institute, Japanese Red Cross Society; Tokyo Japan
| |
Collapse
|
20
|
Siritapetawee J, Talabnin C, Vanichtanankul J, Songsiriritthigul C, Thumanu K, Chen CJ, Komanasin N. Characterization of the binding of a glycosylated serine protease from Euphorbia cf. lactea latex to human fibrinogen. Biotechnol Appl Biochem 2017; 64:862-870. [PMID: 28150441 DOI: 10.1002/bab.1555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
In this study, the binding of a glycosylated serine protease (EuP-82) with human fibrinogen was investigated by isothermal titration calorimetry (ITC). ITC analysis indicated that the binding of EuP-82 to fibrinogen in the conditions with or without the activator (Ca2+ ) was an exothermic reaction (dominant negative enthalpy), which tended to be driven by hydrogen bonding and van der Waals interactions. In contrast, the binding of fibrinogen-EuP-82 in the condition with the inhibitor (Zn2+ ) was an unfavorable endothermic reaction. EuP-82 could not inhibit the platelet activity in citrated whole blood via the ADP-receptor pathways (mainly, P2Y1 and P2Y12), but it could enhance the platelet aggregation. The ITC together with whole blood platelet aggregation suggested that EuP-82 provided multiple fibrinogen-binding sites that were not related to the arginine-glycine-aspartate (RGD) and the dodecapeptide sequences of fibrinogen. In addition, EuP-82 had neither thrombin-like activity nor anticoagulant activity. The SR-FTIR spectra revealed that EuP-82 was a glycoprotein. Deglycosylation of EuP-82 did not affect its proteolytic activity. Moreover, EuP-82 did not exhibit any toxicity to the living cells (NIH-3T3). This study supports that EuP-82 may be useful for wound-healing material through stabilizing the clot via the platelet induction for the first process.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Khlong Luang, Pathum Thani, Thailand
| | | | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Nantarat Komanasin
- Department of Clinical Microscopy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cardiovascular Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
21
|
Grambow E, Leppin C, Leppin K, Kundt G, Klar E, Frank M, Vollmar B. The effects of hydrogen sulfide on platelet-leukocyte aggregation and microvascular thrombolysis. Platelets 2016; 28:509-517. [PMID: 27819526 DOI: 10.1080/09537104.2016.1235693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The volatile transmitter hydrogen sulfide (H2S) is known for its various functions in vascular biology. This study evaluates the effect of the H2S-donor GYY4137 (GYY) on thrombus stability and microvascular thrombolysis. Human whole blood served for all in vitro studies and was analyzed in a resting state, after stimulation with thrombin-receptor activating peptide (TRAP) and after incubation with 10 or 30 mM GYY or its vehicle DMSO following TRAP-activation, respectively. As a marker for thrombus stability, platelet-leukocyte aggregation was assessed using flow cytometry after staining of human whole blood against CD62P and CD45, respectively. Furthermore, morphology and quantity of platelet-leukocyte aggregation were studied by means of scanning electron microscopy (scanning EM). Therefore, platelets were stained for CD62P followed by immuno gold labeling. In vivo, the dorsal skinfold chamber preparation was performed for light/dye induction of thrombi in arterioles and venules using intravital fluorescence microscopy. Thrombolysis was assessed 10 and 22 h after thrombus induction and treatment with the vehicle, GYY, or recombinant tissue plasminogen activator (rtPA). Flow cytometry revealed an increase of CD62P/CD45 positive aggregates after TRAP stimulation of human whole blood, which was significantly reduced by preincubation with 30 mM GYY. Scanning EM additionally showed a reduced platelet-leukocyte aggregation and a decreased leukocyte count within the aggregates after preincubation with GYY compared to TRAP stimulation alone. Further on, morphological signs of platelet activation were found markedly reduced upon treatment with GYY. In mice, both GYY and rtPA significantly accelerated arteriolar and venular thrombolysis compared to the vehicle control. In conclusion, GYY impairs thrombus stability by reducing platelet-leukocyte aggregation and thereby facilitates endogenous thrombolysis.
Collapse
Affiliation(s)
- Eberhard Grambow
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany.,b Department of General , Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center , Rostock , Germany
| | - Christian Leppin
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| | - Katja Leppin
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| | - Günther Kundt
- c Institute for Biostatistics and Informatics in Medicine and Aging Research, Rostock University Medical Center , Rostock , Germany
| | - Ernst Klar
- b Department of General , Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center , Rostock , Germany
| | - Marcus Frank
- d Medical Biology and Electron Microscopy Centre, Rostock University Medical Center , Rostock , Germany
| | - Brigitte Vollmar
- a Institute for Experimental Surgery, Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
22
|
Goto S, Goto S. What is the meaning of P2Y12 reaction units in patients with essential thrombocythemia? J Cardiol Cases 2015; 12:205-207. [PMID: 30546596 PMCID: PMC6281844 DOI: 10.1016/j.jccase.2015.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 10/29/2022] Open
Affiliation(s)
- Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine, Kanagawa, Japan
| | | |
Collapse
|
23
|
Ahmadsei M, Lievens D, Weber C, von Hundelshausen P, Gerdes N. Immune-mediated and lipid-mediated platelet function in atherosclerosis. Curr Opin Lipidol 2015; 26:438-48. [PMID: 26270811 DOI: 10.1097/mol.0000000000000212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is the leading cause of death and morbidity worldwide. Detailed knowledge of the mechanisms of atherosclerosis, the main underlying disease of CVD, will enable improved preventive and therapeutic options, thus potentially limiting the burden of vascular disease in aging societies. A large body of evidence illustrates the contribution of platelets to processes beyond their traditionally recognized role as mediators in thrombosis and hemostasis. Recent advances in molecular biology help to understand the complexity of atherosclerosis. RECENT FINDINGS This article outlines the role of platelets as modulators of immune responses in the context of atherosclerosis. It provides a short overview of interactions between platelets and endothelial cells or immune cells via direct cell contact or soluble factors during atherogenesis. By means of some well examined, exemplary pathways (e.g. CD40/CD40L dyad), this article will discuss recent discoveries in immune-related function of platelets. We also focus on the relationship between platelets and the lipid metabolism highlighting potential consequences to atherosclerosis and dyslipidemia. SUMMARY A better understanding of the molecular mechanisms of platelet-related immune activity allows their utilization as powerful diagnostic tools or targets of therapeutic intervention. Those findings might help to develop new classes of drugs which may supplement or replace classical anticoagulants and help clinicians to tackle CVD more efficiently.
Collapse
Affiliation(s)
- Maiwand Ahmadsei
- aInstitute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany bDZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | | | | | | | |
Collapse
|
24
|
Blair TA, Moore SF, Hers I. Circulating primers enhance platelet function and induce resistance to antiplatelet therapy. J Thromb Haemost 2015; 13:1479-93. [PMID: 26039631 PMCID: PMC4599128 DOI: 10.1111/jth.13022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/08/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Aspirin and P2Y12 antagonists are antiplatelet compounds that are used clinically in patients with thrombosis. However, some patients are 'resistant' to antiplatelet therapy, which increases their risk of developing acute coronary syndromes. These patients often present with an underlying condition that is associated with altered levels of circulating platelet primers and platelet hyperactivity. Platelet primers cannot stimulate platelet activation, but, in combination with physiologic stimuli, significantly enhance platelet function. OBJECTIVES To explore the role of platelet primers in resistance to antiplatelet therapy, and to evaluate whether phosphoinositide 3-kinase (PI3K) contributes to this process. METHODS AND RESULTS We used platelet aggregation, thromboxane A2 production and ex vivo thrombus formation as functional readouts of platelet activity. Platelets were treated with the potent P2Y12 inhibitor AR-C66096, aspirin, or a combination of both, in the presence or absence of the platelet primers insulin-like growth factor-1 (IGF-1) and thrombopoietin (TPO), or the Gz-coupled receptor ligand epinephrine. We found that platelet primers largely overcame the inhibitory effects of antiplatelet compounds on platelet functional responses. IGF-1-mediated and TPO-mediated, but not epinephrine-mediated, enhancements in the presence of antiplatelet drugs were blocked by the PI3K inhibitors wortmannin and LY294002. CONCLUSIONS These results demonstrate that platelet primers can contribute to antiplatelet resistance. Furthermore, our data demonstrate that there are PI3K-dependent and PI3K-independent mechanisms driving primer-mediated resistance to antiplatelet therapy.
Collapse
Affiliation(s)
- T A Blair
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - S F Moore
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - I Hers
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Abstract
P2Y(12) receptor antagonism inhibits platelet aggregation by preventing adenosine diphosphate (ADP)-mediated amplification of activation pathways downstream of primary agonists, such as thrombin and collagen. However, the role of ADP signaling in maintaining aggregate stability and the effects of P2Y(12) antagonists on preestablished aggregates in vitro and arterial thrombus in vivo are not well understood. This study evaluated the impact of P2Y(12) signaling on platelet aggregate stability and early thrombotic occlusion using a reversible P2Y(12) antagonist, ticagrelor. There were 2 study objectives: (1) to determine if there was a time-dependent factor on the capacity of a P2Y(12) antagonist to affect human platelet aggregate stability in vitro using light transmission aggregometry and (2) to evaluate the extent of arterial thrombus reversal in a preclinical model upon administration of ticagrelor in vivo. Platelet aggregates were exposed to ticagrelor after ADP or collagen activation, monitored for stability by aggregometry, and visualized by microscopy. Freshly formed ADP- and collagen-induced platelet aggregates were more rapidly dispersed by a P2Y(12) antagonist than drug carrier control at clinically relevant concentrations (P < 0.05). However, stable aggregates were not noticeably affected. A murine arterial thrombosis model was used to evaluate thrombus stability in an in vivo mouse model. Thrombotic occlusion was induced by FeCl(3), followed by a bolus intravenous administration of ticagrelor or vehicle control. Doppler blood flow was monitored before injury and 30 minutes after bolus administration. Arteries were retrieved for inspection for residual thrombus. Early arterial thrombotic occlusion in vivo was partially reversed by ticagrelor administration. Blood flow through the injured artery increased, and thrombus size within the artery decreased (P < 0.05, n = 3). In conclusion, P2Y(12) antagonism disrupts the stability of newly formed platelet aggregates, promoting disaggregation, and reverses thrombotic vascular occlusion. Thus, in addition to activating platelets, signaling via P2Y(12) seems to be required for stabilizing platelet thrombi.
Collapse
|
26
|
Goto S, Hasebe T, Takagi S. Platelets: Small in Size But Essential in the Regulation of Vascular Homeostasis – Translation From Basic Science to Clinical Medicine –. Circ J 2015; 79:1871-81. [DOI: 10.1253/circj.cj-14-1434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shinya Goto
- Department of Medicine (Cardiology), Tokai University School of Medicine
- Department of Metabolic Disease Research Center, Tokai University Graduate School of Medicine
| | - Terumitsu Hasebe
- Department of Radiology, Tokai University Hachioji Hospital, Tokai University School of Medicine
| | - Shu Takagi
- Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
27
|
Tomita A, Tamura N, Nanazawa Y, Shiozaki S, Goto S. Development of virtual platelets implementing the functions of three platelet membrane proteins with different adhesive characteristics. J Atheroscler Thromb 2014; 22:201-10. [PMID: 25284441 DOI: 10.5551/jat.26203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Computer simulation is a new method for understanding biological phenomena. In this report, we developed a simple platelet simulator representing platelet adhesion under blood flow conditions. METHODS We generated virtual platelets based on the functions of three key adhesive proteins: glycoprotein (GP) Ibα, GPIIb/IIIa and collagen receptors. The adhesive force between GPIbα and von Willebrand factor (VWF) was set to increase in association with increments in the fluid shear stress. GPIIb/IIIa acquires an adhesive force to bind with ligands only when platelets are activated following multiple GPIbα stimulation by VWF or collagen receptors. RESULTS Upon perfusion over the area of virtual endothelial injury, the virtual platelets adhered and became activated to form platelet thrombi. A total of 286/mm(2) of activated platelets was found to have accumulated downstream of the flow obstacle within 30 seconds, with 59/mm(2) platelets adhering upstream. The results obtained with the virtual model were consistent with those for real platelets in human blood in the presence of similarly shaped flow obstacles. CONCLUSIONS Our computer platelet simulator, which employs the functions of three key platelet membrane proteins, shows similar findings for adhesion in the presence and absence of blood flow obstacles.
Collapse
Affiliation(s)
- Aiko Tomita
- Department of Medicine (Cardiology), Tokai University School of Medicine
| | | | | | | | | |
Collapse
|
28
|
de Witt SM, Verdoold R, Cosemans JM, Heemskerk JW. Insights into platelet-based control of coagulation. Thromb Res 2014; 133 Suppl 2:S139-48. [DOI: 10.1016/s0049-3848(14)50024-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Pharmacodynamic effects of cangrelor on platelet P2Y12 receptor-mediated signaling in prasugrel-treated patients. JACC Cardiovasc Interv 2014; 7:426-34. [PMID: 24630878 DOI: 10.1016/j.jcin.2013.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/26/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The purpose of this study was to assess the in vitro P2Y12 receptor inhibitory effects of cangrelor on platelets from patients on maintenance prasugrel therapy treated with 2 reloading dose regimens. BACKGROUND Despite its more potent and rapid antiplatelet effects compared with clopidogrel, recent studies have shown variability in prasugrel-mediated P2Y12 receptor inhibition, particularly in high-risk settings. Cangrelor is a potent intravenous P2Y12 receptor inhibitor. METHODS A total of 60 patients with coronary artery disease on maintenance prasugrel (10 mg/day) therapy were randomized to a 30- or 60-mg reload of prasugrel. The platelet reactivity index (PRI), as assessed by whole-blood vasodilator-stimulated phosphoprotein, was measured with and without in vitro incubation of cangrelor (500 nM) at baseline, and at 1 and 4 h after reload. RESULTS In the absence of cangrelor, prasugrel reloading reduced PRI (p < 0.001 for both doses), although a 60-mg reload had greater platelet inhibition compared with a 30-mg reload at 4 h (p = 0.001). Cangrelor was associated with a reduction in PRI values during the overall study time course in patients reloaded with 30 mg (p = 0.001) and 60 mg (p < 0.001) of prasugrel. In patients reloaded with 30 mg prasugrel, cangrelor decreased PRI at each time point (baseline, p < 0.001; 1 h, p = 0.013; 4 h, p = 0.001). In patients reloaded with 60 mg prasugrel, cangrelor decreased PRI at baseline (p < 0.001) and 1 h (p = 0.002); levels of platelet reactivity comparable to those achieved with cangrelor were observed only at 4 h (p = 0.325). The intergroup comparisons with cangrelor were not significant at any time point. CONCLUSIONS In patients on maintenance prasugrel therapy exposed to a reloading dose (30 or 60 mg) of prasugrel, in vitro cangrelor is associated with further platelet P2Y12 receptor inhibitory effects.
Collapse
|
30
|
Goto S, Tomita A. Antithrombotic Therapy for Prevention of Various Thrombotic Diseases. Drug Dev Res 2013. [DOI: 10.1002/ddr.21116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shinya Goto
- Department of Medicine (Cardiology); Tokai University School of Medicine; Kanagawa Japan
| | - Aiko Tomita
- Department of Medicine (Cardiology); Tokai University School of Medicine; Kanagawa Japan
| |
Collapse
|
31
|
Cosemans JMEM, Angelillo-Scherrer A, Mattheij NJA, Heemskerk JWM. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res 2013; 99:342-52. [PMID: 23667186 DOI: 10.1093/cvr/cvt110] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Collapse
Affiliation(s)
- Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht , Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | | | | | | |
Collapse
|
32
|
Serebruany VL, DiNicolantonio JJ, Can MM, Goto S. Unclassified Pleomorphic and Spindle Cell Pulmonary Neoplasm with Brain Metastases after Prasugrel. Cardiology 2013; 124:85-90. [DOI: 10.1159/000346382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 11/19/2022]
|
33
|
|
34
|
Affiliation(s)
- Holger K Eltzschig
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
35
|
Rowley JW, Finn AV, French PA, Jennings LK, Bluestein D, Gross PL, Freedman JE, Steinhubl SR, Zimmerman GA, Becker RC, Dauerman HL, Smyth SS. Cardiovascular devices and platelet interactions: understanding the role of injury, flow, and cellular responses. Circ Cardiovasc Interv 2012; 5:296-304. [PMID: 22511738 DOI: 10.1161/circinterventions.111.965426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Van Kruchten R, Cosemans JMEM, Heemskerk JWM. Measurement of whole blood thrombus formation using parallel-plate flow chambers - a practical guide. Platelets 2012; 23:229-42. [PMID: 22502645 DOI: 10.3109/09537104.2011.630848] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Custom-made and commercial parallel-plate flow chambers are widely used for studies of platelet activation and thrombus formation in whole blood at defined shear rates. When used in a reproducible way, such flow chamber devices give valuable information on the thrombogenic potential of human, mouse, or rat blood. This article aims to provide a practical guide for the use of parallel-plate flow chambers in combination with routine microscopic imaging techniques. The following methodological aspects are addressed: preparation of surface coatings, calculation of blood flow and shear rate, control of pre-analytical variables, protocols for routine performing of flow chamber tests with non-coagulating or coagulating blood, and procedures for real-time and end-point analysis of thrombus formation. Frequently encountered experimental problems and artifacts are discussed, as well as possibilities for using flow chamber devices as a diagnostic tool to test antithrombotic medication.
Collapse
Affiliation(s)
- Roger Van Kruchten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
37
|
Kanamarlapudi V, Owens SE, Saha K, Pope RJ, Mundell SJ. ARF6-dependent regulation of P2Y receptor traffic and function in human platelets. PLoS One 2012; 7:e43532. [PMID: 22916275 PMCID: PMC3420901 DOI: 10.1371/journal.pone.0043532] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023] Open
Abstract
Adenosine diphosphate (ADP) is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors, the P2Y1 and P2Y12 purinoceptors. Recently, we demonstrated that P2Y1 and P2Y12 purinoceptor activities are rapidly and reversibly modulated in human platelets, revealing that the underlying mechanism requires receptor internalization and subsequent trafficking as an essential part of this process. In this study we investigated the role of the small GTP-binding protein ADP ribosylation factor 6 (ARF6) in the internalization and function of P2Y1 and P2Y12 purinoceptors in human platelets. ARF6 has been implicated in the internalization of a number of GPCRs, although its precise molecular mechanism in this process remains unclear. In this study we show that activation of either P2Y1 or P2Y12 purinoceptors can stimulate ARF6 activity. Further blockade of ARF6 function either in cell lines or human platelets blocks P2Y purinoceptor internalization. This blockade of receptor internalization attenuates receptor resensitization. Furthermore, we demonstrate that Nm23-H1, a nucleoside diphosphate (NDP) kinase regulated by ARF6 which facilitates dynamin-dependent fission of coated vesicles during endocytosis, is also required for P2Y purinoceptor internalization. These data describe a novel function of ARF6 in the internalization of P2Y purinoceptors and demonstrate the integral importance of this small GTPase upon platelet ADP receptor function.
Collapse
Affiliation(s)
| | - Sian E. Owens
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Keya Saha
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom
| | - Robert J. Pope
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Stuart J. Mundell
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Stephens G, He M, Wong C, Jurek M, Luedemann HC, Shapurian G, Munnelly K, Muir C, Conley PB, Phillips DR, Andre P. Development of a perfusion chamber assay to study in real time the kinetics of thrombosis and the antithrombotic characteristics of antiplatelet drugs. Thromb J 2012; 10:11. [PMID: 22852789 PMCID: PMC3502277 DOI: 10.1186/1477-9560-10-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/18/2012] [Indexed: 11/13/2022] Open
Abstract
Background Arterial thrombosis triggered by vascular injury is a balance between thrombus growth and thrombus fragmentation (dethrombosis). Unbalance towards thrombus growth can lead to vascular occlusion, downstream ischemia and tissue damage. Here we describe the development of a simple methodology that allows for continuous real time monitoring and quantification of both processes during perfusion of human blood under arterial shear rate conditions. Using this methodology, we have studied the effects of antiplatelet agents targeting COX-1 (aspirin), P2Y12 (2-MeSAMP, clopidogrel), GP IIb-IIIa (eptifibatide) and their combinations on the kinetics of thrombosis over time. Results Untreated samples of blood perfused over type III collagen at arterial rates of shear promoted the growth of stable thrombi. Modulation by eptifibatide affected thrombus growth, while that mediated by 2-MeSAMP and aspirin affected thrombus stability. Using this technique, we confirmed the primacy of continuous signaling by the ADP autocrine loop acting on P2Y12 in the maintenance of thrombus stability. Analysis of the kinetics of thrombosis revealed that continuous and prolonged analysis of thrombosis is required to capture the role of platelet signaling pathways in their entirety. Furthermore, studies evaluating the thrombotic profiles of 20 healthy volunteers treated with aspirin, clopidogrel or their combination indicated that while three individuals did not benefits from either aspirin or clopidogrel treatments, all individuals displayed marked destabilization profiles when treated with the combination regimen. Conclusions These results show the utility of a simple perfusion chamber technology to assess in real time the activity of antiplatelet drugs and their combinations. It offers the opportunity to perform pharmacodynamic monitoring of arterial thrombosis in clinical trials and to investigate novel strategies directed at inhibiting thrombus stability in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Gillian Stephens
- Portola Pharmaceuticals Inc, 270 E, Grand Avenue, Ste 22, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huttinger ZM, Milks MW, Nickoli MS, Aurand WL, Long LC, Wheeler DG, Dwyer KM, d'Apice AJF, Robson SC, Cowan PJ, Gumina RJ. Ectonucleotide triphosphate diphosphohydrolase-1 (CD39) mediates resistance to occlusive arterial thrombus formation after vascular injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:322-33. [PMID: 22613024 DOI: 10.1016/j.ajpath.2012.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 02/09/2012] [Accepted: 03/08/2012] [Indexed: 12/26/2022]
Abstract
Modulation of purinergic signaling, which is critical for vascular homeostasis and the response to vascular injury, is regulated by hydrolysis of proinflammatory ATP and/or ADP by ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) to AMP, which then is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. We report here that compared with littermate controls (wild type), transgenic mice expressing human ENTPDase-1 were resistant to the formation of an occlusive thrombus after FeCl(3)-induced carotid artery injury. Treatment of mice with the nonhydrolyzable ADP analog, adenosine-5'-0-(2-thiodiphosphate) trilithium salt, Ado-5'-PP[S], negated the protection from thrombosis, consistent with a role for ADP in platelet recruitment and thrombus formation. ENTPD-1 expression decreased whole-blood aggregation after stimulation by ADP, an effect negated by adenosine-5'-0-(2-thiodiphosphate) trilithium salt, Ado-5'-PP[S] stimulation, and limited the ability to maintain the platelet fibrinogen receptor, glycoprotein α(IIb)/β(3), in a fully activated state, which is critical for thrombus formation. In vivo treatment with a CD73 antagonist, a nonselective adenosine-receptor antagonist, or a selective A(2A) or A(2B) adenosine-receptor antagonist, negated the resistance to thrombosis in transgenic mice expressing human ENTPD-1, suggesting a role for adenosine generation and engagement of adenosine receptors in conferring in vivo resistance to occlusive thrombosis in this model. In summary, our findings identify ENTPDase-1 modulation of purinergic signaling as a key determinant of the formation of an occlusive thrombus after vascular injury.
Collapse
Affiliation(s)
- Zachary M Huttinger
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210-1252, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu Y, Jennings NL, Dart AM, Du XJ. Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice. World J Exp Med 2012; 2:30-6. [PMID: 24520531 PMCID: PMC3905578 DOI: 10.5493/wjem.v2.i2.30] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/25/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To optimize the experimental protocols for a simple, sensitive and accurate bleeding assay.
METHODS: Bleeding assay was performed in mice by tail tip amputation, immersing the tail in saline at 37 °C, continuously monitoring bleeding patterns and measuring bleeding volume from changes in the body weight. Sensitivity and extent of variation of bleeding time and bleeding volume were compared in mice treated with the P2Y receptor inhibitor prasugrel at various doses or in mice deficient of FcRγ, a signaling protein of the glycoprotein VI receptor.
RESULTS: We described details of the bleeding assay with the aim of standardizing this commonly used assay. The bleeding assay detailed here was simple to operate and permitted continuous monitoring of bleeding pattern and detection of re-bleeding. We also reported a simple and accurate way of quantifying bleeding volume from changes in the body weight, which correlated well with chemical assay of hemoglobin levels (r2 = 0.990, P < 0.0001). We determined by tail bleeding assay the dose-effect relation of the anti-platelet drug prasugrel from 0.015 to 5 mg/kg. Our results showed that the correlation of bleeding time and volume was unsatisfactory and that compared with the bleeding time, bleeding volume was more sensitive in detecting a partial inhibition of platelet’s haemostatic activity (P < 0.01). Similarly, in mice with genetic disruption of FcRγ as a signaling molecule of P-selectin glycoprotein ligand-1 leading to platelet dysfunction, both increased bleeding volume and repeated bleeding pattern defined the phenotype of the knockout mice better than that of a prolonged bleeding time.
CONCLUSION: Determination of bleeding pattern and bleeding volume, in addition to bleeding time, improved the sensitivity and accuracy of this assay, particularly when platelet function is partially inhibited.
Collapse
Affiliation(s)
- Yang Liu
- Yang Liu, Nicole L Jennings, Xiao-Jun Du, Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Monash University, Melbourne, Victoria 3004, Australia
| | - Nicole L Jennings
- Yang Liu, Nicole L Jennings, Xiao-Jun Du, Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Monash University, Melbourne, Victoria 3004, Australia
| | - Anthony M Dart
- Yang Liu, Nicole L Jennings, Xiao-Jun Du, Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Monash University, Melbourne, Victoria 3004, Australia
| | - Xiao-Jun Du
- Yang Liu, Nicole L Jennings, Xiao-Jun Du, Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
41
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
42
|
Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106:827-38. [PMID: 22012554 DOI: 10.1160/th11-08-0592] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/03/2011] [Indexed: 01/04/2023]
Abstract
Beyond obvious functions in haemostasis and thrombosis, platelets are considered to be essential in proinflammatory surroundings such as atherosclerosis, allergy, rheumatoid arthritis and even cancer. In atherosclerosis, platelets facilitate the recruitment of inflammatory cells towards the lesion sites and release a plethora of inflammatory mediators, thereby enriching and boosting the inflammatory milieu. Platelets do so by interacting with endothelial cells, circulating leukocytes (monocytes, neutrophils, dendritic cells, T-cells) and progenitor cells. This cross-talk enforces leukocyte activation, adhesion and transmigration. Furthermore, platelets are known to function in innate host defense through the release of antimicrobial peptides and the expression of pattern recognition receptors. In severe sepsis, platelets are able to trigger the formation of neutrophil extracellular traps (NETs), which bind and clear pathogens. The present antiplatelet therapies that target key pathways of platelet activation and aggregation therefore hold the potential to modulate platelet-derived immune functions by reducing cellular interactions of platelets with other immune components and by reducing the secretion of inflammatory proteins into the milieu. The objective of this review is to update and discuss the current perceptions of the platelet immune constituents and their prospect as therapeutic targets in an atherosclerotic setting.
Collapse
Affiliation(s)
- D Lievens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University Munich, Munich, Germany.
| | | |
Collapse
|
43
|
An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets. Blood 2011; 118:5641-51. [PMID: 21937696 DOI: 10.1182/blood-2011-02-336826] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet P2Y(12) purinoceptor (P2Y(12)R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y(12)R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)-binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y(12)R (P341A) that is associated with reduced expression of the P2Y(12)R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y(12)R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic.
Collapse
|
44
|
Abstract
Although current antiplatelet therapies provide potent antithrombotic effects, their efficacy is limited by a heightened risk of bleeding and failure to affect vascular remodeling after injury. New lines of research suggest that thrombosis and hemorrhage may be uncoupled at the interface of pathways controlling thrombosis and inflammation. Here, as one remarkable example, studies using a novel and highly selective pharmacologic inhibitor of the spleen tyrosine kinase Syk [PRT060318; 2-((1R,2S)-2-aminocyclohexylamino)-4-(m-tolylamino)pyrimidine-5-carboxamide] coupled with genetic experiments, demonstrate that Syk inhibition ameliorates both the acute and chronic responses to vascular injury without affecting hemostasis. Specifically, lack of Syk (murine radiation chimeras) attenuated shear-induced thrombus formation ex vivo, and PRT060318 strongly inhibited arterial thrombosis in vivo in multiple animal species while having minimal impact on bleeding. Furthermore, leukocyte-platelet-dependent responses to vascular injury, including inflammatory cell recruitment and neointima formation, were markedly inhibited by PRT060318. Thus, Syk controls acute and long-term responses to arterial vascular injury. The therapeutic potential of Syk may be exemplary of a new class of antiatherothrombotic agents that target the interface between thrombosis and inflammation.
Collapse
|
45
|
Storey RF. Pharmacology and clinical trials of reversibly-binding P2Y12 inhibitors. Thromb Haemost 2011; 105 Suppl 1:S75-81. [PMID: 21479343 DOI: 10.1160/ths10-12-0769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/07/2011] [Indexed: 01/05/2023]
Abstract
The important role of the P2Y12 receptor in amplification of platelet activation and associated responses and the limitations associated with clopidogrel therapy have led to the development of novel inhibitors of this receptor. Three reversibly-binding P2Y12 inhibitors are in phase 3 development, ticagrelor, cangrelor and elinogrel. The pharmacology and clinical trial data for each of these inhibitors are discussed and compared with relevant data for the thienopyridines clopidogrel and prasugrel.
Collapse
Affiliation(s)
- Robert F Storey
- Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield, UK.
| |
Collapse
|
46
|
Mendolicchio GL, Zavalloni D, Bacci M, Corrada E, Marconi M, Lodigiani C, Presbitero P, Rota L, Ruggeri ZM. Variable effect of P2Y12 inhibition on platelet thrombus volume in flowing blood. J Thromb Haemost 2011; 9:373-82. [PMID: 21083646 PMCID: PMC3030676 DOI: 10.1111/j.1538-7836.2010.04144.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Patients treated with percutaneous coronary intervention receive aspirin and P2Y12 ADP receptor inhibitors to reduce thrombotic complications. The choice of methodology for monitoring the effects of treatment and assessing its efficacy is still a topic of debate. We evaluated how decreased P2Y12 function influences platelet aggregate (thrombus) size measured ex vivo. METHODS AND RESULTS We used confocal videomicroscopy to measure in real time the volume of platelet thrombi forming upon blood perfusion over fibrillar collagen type I at a wall shear rate of 1500 s(-1). The average volume was significantly smaller in 31 patients receiving aspirin and clopidogrel (19) or ticlopidine (12) than in 21 controls, but individual values were above the lower limit of the normal distribution, albeit mostly within the lower quartile, in 61.3% of cases. Disaggregation of platelet thrombi at later perfusion times occurred frequently in the patients. Vasodilator-stimulated phosphoprotein phosphorylation, reflecting P2Y12 inhibition, was also decreased in the patient group, and only 22.6% of individual values were above the lower normal limit. We found no correlation between volume of thrombus formed on collagen fibrils and level of P2Y12 inhibition, suggesting that additional and individually variable factors can influence the inhibitory effect of treatment on platelet function. CONCLUSIONS Measurements of platelet thrombus formation in flowing blood reflects the consequences of antiplatelet therapy in a manner that is not proportional to P2Y12 inhibition. Combining the results of the two assays may improve the assessment of thrombotic risk.
Collapse
Affiliation(s)
- G L Mendolicchio
- Thrombosis Center, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bioequivalence of two tablet formulations of clopidogrel in healthy Argentinian volunteers: a single-dose, randomized-sequence, open-label crossover study. Clin Ther 2010; 32:161-70. [PMID: 20171421 DOI: 10.1016/j.clinthera.2010.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Platelet activation is a major component in the pathogenesis of coronary thrombosis and myocardial infarction. Thienopyridines, particularly clopidogrel, are highly effective in reducing in-stent thrombosis and functional inhibition of adenosine diphosphate-induced platelet activation. OBJECTIVE The aim of this study was to evaluate the bioequivalence of a new generic formulation of clopidogrel 75-mg tablets (test) and the available branded formulation (reference) to meet regulatory criteria for marketing the test product in Argentina. METHODS This was a randomized-sequence, open-label, 2-period crossover study conducted in healthy white volunteers in the fasted state. A single oral dose of the test or reference formulation was followed by a 7-day washout period, after which subjects received the alternative formulation. Blood samples were collected at baseline and at 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 6, 8, and 12 hours after dosing. Clopidogrel concentrations were determined using an LC-MS/MS method. The formulations were considered bioequivalent if the 90% CI of the geometric mean ratios (test:reference) for C(max) and AUC(0-last) were within the range from 80% to 125%. Adverse events were monitored throughout the study based on clinical parameters and patient reports. RESULTS Twenty-four volunteers (13 male, 11 female; mean [SD] age, 33.7 [5.2] years [range, 21-42 years]; weight, 72.4 [6.83] kg [range, 59-82 kg]) were enrolled in and completed the study. The geometric mean C(max) for the test and reference formulations was 877.76 and 913.49 pg/mL, respectively. The geometric mean AUC(0-t) was 1911.53 and 2053.09 pg . h/mL, and the geometric mean AUC(0-infinity)) was 2021.33 and 2188.25 pg . h/mL. The geometric mean ratios (test:reference) for C(max), AUC(0-t), and AUC(0-infinity)) were 96.09% (90% CI, 90.71-101.78), 93.10% (90% CI, 85.57-101.3), and 92.37% (90% CI, 85.06-100.31), respectively. There were no significant differences in pharmacokinetic parameters between groups. No adverse events were reported. CONCLUSION In this single-dose study in healthy fasted volunteers, the test formulation of clopidogrel tablets met the US and Argentinian regulatory criterion for bioequivalence to the reference formulation.
Collapse
|
48
|
Nergiz-Unal R, Cosemans JMEM, Feijge MAH, van der Meijden PEJ, Storey RF, van Giezen JJJ, oude Egbrink MGA, Heemskerk JWM, Kuijpers MJE. Stabilizing role of platelet P2Y(12) receptors in shear-dependent thrombus formation on ruptured plaques. PLoS One 2010; 5:e10130. [PMID: 20405028 PMCID: PMC2853564 DOI: 10.1371/journal.pone.0010130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 03/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In most models of experimental thrombosis, healthy blood vessels are damaged. This results in the formation of a platelet thrombus that is stabilized by ADP signaling via P2Y(12) receptors. However, such models do not predict involvement of P2Y(12) in the clinically relevant situation of thrombosis upon rupture of atherosclerotic plaques. We investigated the role of P2Y(12) in thrombus formation on (collagen-containing) atherosclerotic plaques in vitro and in vivo, by using a novel mouse model of atherothrombosis. METHODOLOGY Plaques in the carotid arteries from Apoe(-/-) mice were acutely ruptured by ultrasound treatment, and the thrombotic process was monitored via intravital fluorescence microscopy. Thrombus formation in vitro was assessed in mouse and human blood perfused over collagen or plaque material under variable conditions of shear rate and coagulation. Effects of two reversible P2Y(12) blockers, ticagrelor (AZD6140) and cangrelor (AR-C69931MX), were investigated. PRINCIPAL FINDINGS Acute plaque rupture by ultrasound treatment provoked rapid formation of non-occlusive thrombi, which were smaller in size and unstable in the presence of P2Y(12) blockers. In vitro, when mouse or human blood was perfused over collagen or atherosclerotic plaque material, blockage or deficiency of P2Y(12) reduced the thrombi and increased embolization events. These P2Y(12) effects were present at shear rates >500 s(-1), and they persisted in the presence of coagulation. P2Y(12)-dependent thrombus stabilization was accompanied by increased fibrin(ogen) binding. CONCLUSIONS/SIGNIFICANCE Platelet P2Y(12) receptors play a crucial role in the stabilization of thrombi formed on atherosclerotic plaques. This P2Y(12) function is restricted to high shear flow conditions, and is preserved in the presence of coagulation.
Collapse
Affiliation(s)
- Reyhan Nergiz-Unal
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Judith M. E. M. Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marion A. H. Feijge
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Paola E. J. van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Robert F. Storey
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Mirjam G. A. oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Bouman HJ, Parlak E, van Werkum JW, Breet NJ, ten Cate H, Hackeng CM, ten Berg JM, Taubert D. Which platelet function test is suitable to monitor clopidogrel responsiveness? A pharmacokinetic analysis on the active metabolite of clopidogrel. J Thromb Haemost 2010; 8:482-8. [PMID: 20040042 DOI: 10.1111/j.1538-7836.2009.03733.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Multiple platelet function tests claim to be P2Y12-pathway specific and capable of capturing the biological activity of clopidogrel. OBJECTIVES The aim of the present study was to determine which platelet function test provides the best reflection of the in vivo plasma levels of the active metabolite of clopidogrel (AMC). PATIENTS/METHODS Clopidogrel-naive patients scheduled for elective percutaneous coronary intervention (PCI) received a 600 mg loading dose of clopidogrel and 100 mg of aspirin. For pharmacokinetic analysis, blood was drawn at 0, 20, 40, 60, 90, 120, 180, 240 and 360 min after clopidogrel loading and peak plasma concentrations (C(max)) of the AMC were quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Platelet function testing was performed at baseline and 360 min after the clopidogrel loading. RESULTS The VASP-assay, the VerifyNow P2Y12-assay and 20 micromol L(-1) adenosine diphosphate (ADP)-induced light transmittance aggregometry (LTA) showed strong correlations with C(max) of the AMC (VASP: R(2) = 0.56, P < 0.001; VerifyNow platelet reactivity units (PRU): R(2) = 0.48, P < 0.001; VerifyNow %inhibition: R(2) = 0.59, P < 0.001; 20 micromol L(-1) ADP-induced LTA: R(2) = 0.47, P < 0.001). Agreement with C(max) of the AMC was less evident for 5 micromol L(-1) ADP-induced LTA or whole blood aggregometry (WBA), whereas the IMPACT-R ADP test did not show any correlation with plasma levels of the AMC. CONCLUSION The flow cytometric VASP-assay, the VerifyNow P2Y12 assay and, although to a lesser extent, 20 micromol L(-1) ADP-induced LTA correlate best with the maximal plasma level of the AMC, suggesting these may be the preferred platelet function tests for monitoring the responsiveness to clopidogrel.
Collapse
Affiliation(s)
- H J Bouman
- Department of Cardiology, St Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nisar S, Kelly E, Cullen PJ, Mundell SJ. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent. Traffic 2010; 11:508-19. [PMID: 20070609 DOI: 10.1111/j.1600-0854.2010.01035.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.
Collapse
Affiliation(s)
- Shaista Nisar
- Department of Physiology and Pharmacology, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|