1
|
Benak D, Holzerova K, Hrdlicka J, Kolar F, Olsen M, Karelson M, Hlavackova M. Epitranscriptomic regulation in fasting hearts: implications for cardiac health. RNA Biol 2024; 21:1-14. [PMID: 38326277 PMCID: PMC10854364 DOI: 10.1080/15476286.2024.2307732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Cardiac tolerance to ischaemia can be increased by dietary interventions such as fasting, which is associated with significant changes in myocardial gene expression. Among the possible mechanisms of how gene expression may be altered are epigenetic modifications of RNA - epitranscriptomics. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are two of the most prevalent modifications in mRNA. These methylations are reversible and regulated by proteins called writers, erasers, readers, and m6A-repelled proteins. We analysed 33 of these epitranscriptomic regulators in rat hearts after cardioprotective 3-day fasting using RT-qPCR, Western blot, and targeted proteomic analysis. We found that the most of these regulators were changed on mRNA or protein levels in fasting hearts, including up-regulation of both demethylases - FTO and ALKBH5. In accordance, decreased methylation (m6A+m6Am) levels were detected in cardiac total RNA after fasting. We also identified altered methylation levels in Nox4 and Hdac1 transcripts, both of which play a role in the cytoprotective action of ketone bodies produced during fasting. Furthermore, we investigated the impact of inhibiting demethylases ALKBH5 and FTO in adult rat primary cardiomyocytes (AVCMs). Our findings indicate that inhibiting these demethylases reduced the hypoxic tolerance of AVCMs isolated from fasting rats. This study showed that the complex epitranscriptomic machinery around m6A and m6Am modifications is regulated in the fasting hearts and might play an important role in cardiac adaptation to fasting, a well-known cardioprotective intervention.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Holzerova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hrdlicka
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, Arizona, USA
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Yang Y, Xu Y, Qian S, Tang T, Wang K, Feng J, Ding R, Yao J, Huang J, Wang J. Systematic investigation of the multi-scale mechanisms of herbal medicine on treating ventricular remodeling: Theoretical and experimental studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154706. [PMID: 36796187 DOI: 10.1016/j.phymed.2023.154706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To explore the underlying molecule mechanism of herbal medicine in preventing ventricular remodeling (VR), we take a herbal formula that is clinically effective for preventing VR as an example, which composed of Pachyma hoelen Rumph, Atractylodes macrocephala Koidz., Cassia Twig and Licorice. Due to multi-components and multi-targets in herbal medicine, it is extremely difficult to systematically explain its mechanisms of action. METHODS An innovative systematic investigation framework which combines with pharmacokinetic screening, target fishing, network pharmacology, DeepDDI algorithm, computational chemistry, molecular thermodynamics, in vivo and in vitro experiments was performed for deciphering the underlying molecular mechanisms of herbal medicine for treating VR. RESULTS ADME screening and SysDT algorithm determined 75 potentially active compounds and 109 corresponding targets. Then, systematic analysis of networks reveals the crucial active ingredients and key targets in herbal medicine. Additionally, transcriptomic analysis identifies 33 key regulators during VR progression. Moreover, PPI network and biological function enrichment present four crucial signaling pathways, i.e. NF-κB and TNF, PI3K-AKT and C-type lectin receptor signaling pathways involved in VR. Besides, both molecular experiments at animal and cell levels reveal the beneficial effect of herbal medicine on preventing VR. Finally, MD simulations and binding free energy validate the reliability of drug-target interactions. CONCLUSION Our novelty is to build a systematic strategy which combines various theoretical methods combined with experimental approaches. This strategy provides a deep understanding for the study of molecular mechanisms of herbal medicine on treating diseases from systematic level, and offers a new idea for modern medicine to explore drug interventions for complex diseases as well.
Collapse
Affiliation(s)
- Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Tongjuan Tang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Kangyong Wang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jie Feng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Juan Yao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
4
|
Liu Q, Sun J, Dong Y, Li P, Wang J, Wang Y, Xu Y, Tian X, Wu B, He P, Yu Q, Lu X, Cao J. Tetramisole is a new I K1 channel agonist and exerts I K1 -dependent cardioprotective effects in rats. Pharmacol Res Perspect 2022; 10:e00992. [PMID: 35880674 PMCID: PMC9316008 DOI: 10.1002/prp2.992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac ischemia, hypoxia, arrhythmias, and heart failure share the common electrophysiological changes featured by the elevation of intracellular Ca2+ (Ca2+ overload) and inhibition of the inward rectifier potassium (IK1 ) channel. IK1 channel agonists have been considered a new type of anti-arrhythmia and cardioprotective agents. We predicted using a drug repurposing strategy that tetramisole (Tet), a known anthelminthic agent, was a new IK1 channel agonist. The present study aimed to experimentally identify the above prediction and further demonstrate that Tet has cardioprotective effects. Results of the whole-cell patch clamp technique showed that Tet at 1-100 μmol/L enhanced IK1 current, hyperpolarized resting potential (RP), and shortened action potential duration (APD) in isolated rat cardiomyocytes, while without effects on other ion channels or transporters. In adult Sprague-Dawley (SD) rats in vivo, Tet showed anti-arrhythmia and anticardiac remodeling effects, respectively, in the coronary ligation-induced myocardial infarction model and isoproterenol (Iso, i.p., 3 mg/kg/day, 10 days) infusion-induced cardiac remodeling model. Tet also showed anticardiomyocyte remodeling effect in Iso (1 μmol/L) infused adult rat ventricular myocytes or cultured H9c2 (2-1) cardiomyocytes. Tet at 0.54 mg/kg in vivo or 30 μmol/L in vitro showed promising protections on acute ischemic arrhythmias, myocardial hypertrophy, and fibrosis. Molecular docking was performed and identified the selective binding of Tet with Kir2.1. The cardioprotection of Tet was associated with the facilitation of IK1 channel forward trafficking, deactivation of PKA signaling, and inhibition of intracellular calcium overload. Enhancing IK1 may play dual roles in anti-arrhythmia and antiventricular remodeling mediated by restoration of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Jiaxing Sun
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Yangdou Dong
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Pan Li
- Department of PathophysiologyShanxi Medical UniversityTaiyuanChina
| | - Jin Wang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yulan Wang
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yanwu Xu
- Department of BiochemistryShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xinrui Tian
- Department of Respiratory and Critical Care MedicineSecond Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Bowei Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Peifeng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, School of ManagementShanxi Medical UniversityTaiyuanChina
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, School of ManagementShanxi Medical UniversityTaiyuanChina
| | - Xuechun Lu
- Department of Hematology, The Second Medical Center, Chinese PLA General HospitalNational clinical research center for geriatric diseaseBeijingChina
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
5
|
Deng HF, Zou J, Wang N, Ma H, Zhu LL, Liu K, Liu MD, Wang KK, Xiao XZ. Nicorandil alleviates cardiac remodeling and dysfunction post -infarction by up-regulating the nucleolin/autophagy axis. Cell Signal 2022; 92:110272. [PMID: 35122988 DOI: 10.1016/j.cellsig.2022.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/14/2022] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The present study aimed to investigate whether the drug nicorandil can improve cardiac remodeling after myocardial infarction (MI) and the underlying mechanisms. METHODS Mouse MI was established by the ligation of the left anterior descending coronary artery and H9C2 cells were cultured to investigate the underlying molecular mechanisms. The degree of myocardial collagen (Col) deposition was evaluated by Masson's staining. The expressions of nucleolin, autophagy and myocardial remodeling-associated genes were measured by Western blotting, qPCR, and immunofluorescence. The apoptosis of myocardial tissue cells and H9C2 cells were detected by TUNEL staining and flow cytometry, respectively. Autophagosomes were observed by transmission electron microscopy. RESULTS Treatment with nicorandil mitigated left ventricular enlargement, improved the capacity of myocardial diastolic-contractility, decreased cardiomyocyte apoptosis, and inhibited myocardial fibrosis development post-MI. Nicorandil up-regulated the expression of nucleolin, promoted autophagic flux, and decreased the expressions of TGF-β1 and phosphorylated Smad2/3, while enhanced the expression of BMP-7 and phosphorylated Smad1 in myocardium. Nicorandil decreased apoptosis and promoted autophagic flux in H2O2-treated H9C2 cells. Autophagy inhibitors 3-methyladenine (3MA) and chloroquine diphosphate salt (CDS) alleviated the effects of nicorandil on apoptosis. Knockdown of nucleolin decreased the effects of nicorandil on apoptosis and nicorandil-promoted autophagic flux of cardiomyocytes treated with H2O2. CONCLUSIONS Treatment with nicorandil alleviated myocardial remodeling post-MI through up-regulating the expression of nucleolin, and subsequently promoting autophagy, followed by regulating TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Hua-Fei Deng
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China; Department of Pathophysiology, School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Jiang Zou
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Heng Ma
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Li-Li Zhu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Mei-Dong Liu
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China
| | - Kang-Kai Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.
| | - Xian-Zhong Xiao
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Differential Effects of EPA and DHA on PPARγ-mediated Sympathetic Innervation in Infarcted Rat Hearts by GPR120-dependent and -independent Mechanisms. J Nutr Biochem 2022; 103:108950. [PMID: 35121022 DOI: 10.1016/j.jnutbio.2022.108950] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/29/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
The ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been shown to attenuate inflammation processes, whereas, the molecular mechanisms remain unclear. This study was aimed at figuring out the differential effects of EPA and DHA on fatal arrhythmias and whether the signaling pathway could be a target after myocardial infarction, an inflammatory status. Male Wistar rats after ligating coronary artery were randomized to either vehicle, EPA, or DHA for 4 weeks. Postinfarction was associated with increased myocardial norepinephrine levels and sympathetic innervation. Furthermore, infarction was associated with the activation of NLRP3 inflammasomes and increased the protein and expression of IL-1β and nerve growth factor (NGF). These changes were blunted after adding either EPA or DHA with a greater extent of EPA than DHA. Immunoblotting and immunohistochemical analysis showed that EPA had significantly lower phosphorylation of PPARγ at Ser 112 compared with DHA. Arrhythmic severity during programmed stimulation in the infarcted rats treated with EPA was significantly lower than those treated with DHA. Specific inhibition of GPR120 by AH-7614 and PPARγ by T0070907 reduced the EPA-or DHA-related attenuation of IL-1β and NGF release. Besides, AH-7614 treatment partially reduced the PPARγ levels, whereas, T0070907 administration did not affect the GPR120 levels. These results suggest that EPA was more effective than DHA in prevention of fatal arrhythmias by inhibiting NLRP3 inflammasome and sympathetic innervation through activation of PPARγ-mediated GPR120-dependent and -independent signaling pathways in infarcted hearts.
Collapse
|
7
|
Strutynskyi RB, Goncharov SV, Tumanovska LV, Nagibin VS, Dosenko VE. Cardiac dysfunction in spontaneously hypertensive old rats is associated with a significant decrease of SUR2 expression. Mol Cell Biochem 2021; 476:4343-4349. [PMID: 34455535 DOI: 10.1007/s11010-021-04237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (KATP) channels are participants of mechanisms of pathological myocardial remodeling containment. The aim of our work was to find the association of changes in the expression of Kir6.1, Kir6.2, SUR1, and SUR2 subunits of KATP channels with changes in heart function and structure during aging under conditions of the constant increase of vascular pressure. The experiments were carried out on young and old spontaneously hypertensive rats (SHR) and Wistar rats. The expression levels of KATP channels subunits were determined using reverse transcription and quantitative PCR. It is shown that the mRNA expression level of Kir6.1 in young SHR rats is significantly lower (6.3-fold, p = 0.035) than that of young Wistar rats that may be one of the causes of arterial hypertension in SHR. At the same time, mRNA expression of both Kir6.1 and Kir6.2 in old SHR rats was significantly higher (6.8-fold, p = 0.003, and 5.9-fold, p = 0.006, respectively) than in young hypertensive animals. In both groups of old animals, SUR2 expression was significantly reduced compared to young animals, in Wistar rats at 3.87-fold (p = 0.028) and in SHR rats at 48.2-fold (p = 0.033). Changes in SUR1 expression were not significant. Thus, significant changes in the cardiovascular system, including impaired function and structure of the heart in old SHR rats, were associated with a significant decrease in SUR2 expression that may be one of the mechanisms of heart failure decompensation. Therefore, it can be assumed that increased expression of SUR2 may be one of the protective mechanisms against pathological myocardial remodeling.
Collapse
Affiliation(s)
- Ruslan B Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Serhii V Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Lesya V Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| | - Vasyl S Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine.
| | - Victor E Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Address: 4, Bogomoletz str., Kyiv, 01024, Ukraine
| |
Collapse
|
8
|
The expression of ATP-sensitive potassium channels in human umbilical arteries with severe pre-eclampsia. Sci Rep 2021; 11:7955. [PMID: 33846486 PMCID: PMC8041753 DOI: 10.1038/s41598-021-87146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to establish the expression of ATP-sensitive potassium channels(KATP) in human umbilical arteries with severe pre-eclampsia. Real-time quantitative PCR and western blotting were used to detect the mRNA and protein expression levels of KATP channel subunits Kir6.1 and SUR2B in human umbilical arteries from normal pregnant and those with severe pre-eclampsia, early onset severe pre-eclampsia and late onset severe pre-eclampsia. The mRNA and protein levels of SUR2B in the severe pre-eclampsia group were lower than those in the normal group (P < 0.001), and the expression of Kir6.1 was not statistically significant between the two groups (P > 0.05). The mRNA and protein levels of SUR2B in early onset severe pre-eclampsia group were lower than those in late onset severe pre-eclampsia group (P < 0.001). There was no significant difference in expression of Kir6.1 between the two groups (P > 0.05). The mRNA and protein expression levels of SUR2B in pregnant women with severe pre-eclampsia were lower than those in normal pregnant women, suggesting that the expression of the SUR2B of the KATP channel may be related to the occurrence and development of severe pre-eclampsia. Compared with late onset severe pre-eclampsia, the mRNA and protein expression levels of SUR2B were lower in the umbilical arteries of women with early onset severe pre-eclampsia, suggesting that the occurrence time of severe pre-eclampsia may be related to the extent reduced expression of the SUR2B of the KATP channel.
Collapse
|
9
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
10
|
Chen WT, Chen SY, Wu DW, Lee CC, Lee TM. Effect of icosapent ethyl on susceptibility to ventricular arrhythmias in postinfarcted rat hearts: Role of GPR120-mediated connexin43 phosphorylation. J Cell Mol Med 2020; 24:9267-9279. [PMID: 32639107 PMCID: PMC7417730 DOI: 10.1111/jcmm.15575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
The ω‐3 fatty acids exert as an antioxidant via the G protein‐coupled receptor 120 (GPR120). Icosapent ethyl, a purified eicosapentaenoic acid, showed a marked reduction in sudden cardiac death. Connexin43 is sensitive to redox status. We assessed whether icosapent ethyl attenuates fatal arrhythmias after myocardial infarction, a status of high oxidative stress, through increased connexin43 expression and whether the GPR120 signalling is involved in the protection. Male Wistar rats after ligating coronary artery were assigned to either vehicle or icosapent ethyl for 4 weeks. The postinfarction period was associated with increased oxidative‐nitrosative stress. In concert, myocardial connexin43 levels revealed a significant decrease in vehicle‐treated infarcted rats compared with sham. These changes of oxidative‐nitrosative stress and connexin43 levels were blunted after icosapent ethyl administration. Provocative arrhythmias in the infarcted rats treated with icosapent ethyl were significantly improved than vehicle. Icosapent ethyl significantly increased GPR120 compared to vehicle after infarction. The effects of icosapent ethyl on superoxide and connexin43 were similar to GPR120 agonist GW9508. Besides, the effects of icosapent ethyl on oxidative‐nitrosative stress and connexin43 phosphorylation were abolished by administering AH‐7614, an inhibitor of GPR120. SIN‐1 abolished the Cx43 phosphorylation of icosapent ethyl without affecting GPR120 levels. Taken together, chronic use of icosapent ethyl after infarction is associated with up‐regulation of connexin43 phosphorylation through a GPR120‐dependent antioxidant pathway and thus plays a beneficial effect on arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - De-Wei Wu
- Tainan First Senior High School, Tainan, Taiwan
| | | | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Akbari B, Ghaffari S, Aslanabadi N, Sohrabi B, Pourafkari L, Akbarzadeh F, Javadzadegan H, Separham A, Sehati M. The impact of oral nicorandil pre-treatment on ST resolution and clinical outcome of patients with acute ST-segment elevation myocardial infarction undergoing primary coronary angioplasty: A randomized placebo controlled trial. J Cardiovasc Thorac Res 2020; 12:90-96. [PMID: 32626548 PMCID: PMC7321000 DOI: 10.34172/jcvtr.2020.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/24/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction: Literature has shown the effects of intravenous/intracoronary nicorandil on increased myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) treated with mechanical reperfusion. However, the possible cardioprotective effect of oral nicorandil on the clinical outcome prior to primary coronary angioplasty is not well documented. Our aim was to assess the effect of oral nicorandil on primary percutaneous coronary intervention (PPCI).
Methods: A total of 240 patients with acute STEMI undergoing PPCI were randomly assigned to oral nicorandil (Intervention, n=116) and placebo (Control, n=124) groups. The intervention group received 20 mg oral nicorandil at the emergency department and another 20 mg oral nicorandil in the catheterization laboratory just before the procedure. The control group received matched placebo. Our primary outcome was ST-segment resolution ≥50% one hour after primary angioplasty. Secondary outcome was in-hospital major adverse cardiovascular events (MACE), defined as a composite of death, ventricular arrhythmia, heart failure and stroke.
Results: In the patients of intervention and control groups, the occurrence of ST-segment resolution ≥ 50% were 68.1% and 62.9% respectively, (P =0.27). In-hospital MACE occurred less frequently in the intervention group, compared to placebo group (11.2% vs. 22.5%, P =0.012).
Conclusion: Although the administration of oral nicorandil before primary coronary angioplasty did not improve ST-segment resolution in patients with acute STEMI, its promoting effects was remarkable on in-hospital clinical outcomes.
Clinical Registration:IRCT20140512017666N1
Collapse
Affiliation(s)
- Behnaz Akbari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Sohrabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Pourafkari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariborz Akbarzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Javadzadegan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Separham
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Sehati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Choxi R, Roy S, Stamatouli A, Mayer SB, Jovin IS. Type 2 diabetes mellitus and cardiovascular disease: focus on the effect of antihyperglycemic treatments on cardiovascular outcomes. Expert Rev Cardiovasc Ther 2020; 18:187-199. [PMID: 32306789 DOI: 10.1080/14779072.2020.1756778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Type 2 diabetes mellitus and cardiovascular disease contribute to significant morbidity, mortality, and health-care resource expenditure. The pathophysiological and clinical associations between diabetes and cardiovascular disease have been the subject of multiple studies, most recently culminating in large trials of several new antiglycemic agents being found to confer additional cardiovascular risk reduction. Understanding the potential cardiovascular benefits of antiglycemic medications offers the unique opportunity to reduce the morbidity and mortality presented by both diseases at once.Areas covered: The literature search was comprised of a Pubmed search querying 'cardiovascular outcomes' and 'diabetes'. This article reviews the pathophysiology of cardiovascular complications in type 2 diabetes and the cardiovascular outcome trials related to newer antiglycemic medications.Expert opinion: The treatment of patients with type 2 diabetes mellitus and cardiovascular disease is rapidly advancing. In particular, the sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have demonstrated cardiovascular benefit by reducing major adverse cardiovascular events and cardiovascular mortality. Future directions of the treatment of type 2 diabetes and cardiovascular disease will focus on targeting and preventing diabetic cardiomyopathy and further defining the role of SGLT2 inhibitors and of GLP-1 receptor agonists in additional patient populations.
Collapse
Affiliation(s)
- Ravi Choxi
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| | - Sumon Roy
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| | | | - Stéphanie B Mayer
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| | - Ion S Jovin
- Department of Medicine, Virginia Commonwealth University Health System, USA.,Department of Medicine, Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
13
|
Liu QH, Qiao X, Zhang LJ, Wang J, Zhang L, Zhai XW, Ren XZ, Li Y, Cao XN, Feng QL, Cao JM, Wu BW. I K1 Channel Agonist Zacopride Alleviates Cardiac Hypertrophy and Failure via Alterations in Calcium Dyshomeostasis and Electrical Remodeling in Rats. Front Pharmacol 2019; 10:929. [PMID: 31507422 PMCID: PMC6718093 DOI: 10.3389/fphar.2019.00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 μmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 μg/kg in vivo and 1 μmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li-Jun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Xu-Wen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiao-Ze Ren
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Li
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Xiao-Na Cao
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Qi-Long Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bo-Wei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Chen WT, Shie CB, Yang CC, Lee TM. Blockade of Cardiac Proton Pump Impairs Ventricular Remodeling Through a Superoxide-DDAH-Dependent Pathway in Infarcted Rats. ACTA CARDIOLOGICA SINICA 2019; 35:165-178. [PMID: 30930564 DOI: 10.6515/acs.201903_35(2).20180917a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Proton pump inhibitors (PPIs) are frequently used to prevent or treat peptic ulcers. Recently, PPIs have been shown to increase the risk of myocardial infarction. The purpose of this study was to determine whether PPIs adversely affect ventricular remodeling in infarcted rats. Methods Male Wistar rats were randomly assigned to receive either vehicle, omeprazole, omeprazole + vitamin C, omeprazole + olmesartan, or famotidine treatment for 4 weeks starting 24 hours after inducing myocardial infarction by ligating coronary arteries. Results Compared with vehicle-treated infarcted rats, omeprazole-treated infarcted rats had significant changes with reduced myocardial vitamin C levels, increased oxidant production, and decreased dimethylarginine dimethylaminohydrolase 2 (DDAH2) activity, which in turn increased asymmetric dimethylarginine (ADMA) levels and impaired ventricular remodeling. With gastric protection similar to omeprazole, the H2 blocker famotidine had no effect on ventricular remodeling. In contrast to the in vivo results, the ex vivo study showed similar superoxide and DDAH2 protein levels between vehicle- and omeprazole-treated infarcted rats, suggesting involvement of gastric vitamin C uptake rather than myocardial vitamin C in mediating the impaired axis of vitamin C-superoxide-DDAH2 in the in vivo measurements. The administration of PPIs was associated with impaired DDAH2 expression and increased myocardial ADMA, which impaired ventricular remodeling after infarction. These effects were prevented by the coadministration of vitamin C or olmesartan. Conclusions Our results indicate that the administration of PPIs was associated with impaired DDAH2 expression and increased myocardial ADMA by reducing gastric vitamin C uptake, which impaired ventricular remodeling after infarction.
Collapse
Affiliation(s)
| | - Chang-Bie Shie
- Gastrointestinal Section, Department of Medicine, China Medical University-An Nan Hospital, Tainan
| | | | - Tsung-Ming Lee
- Cardiovascular Institute.,Department of Medicine, School of Medicine, China Medical University, Taichung.,Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vaňourková Z, Vernerová Z, Akat F, Vašinová J, Hammock BD, Hwang SH, Imig JD, Falck JR, Červenka L, Kolář F. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol 2019; 10:159. [PMID: 30881303 PMCID: PMC6406051 DOI: 10.3389/fphar.2019.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
Collapse
Affiliation(s)
- Jaroslav Hrdlička
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Neckář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Papoušek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Firat Akat
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Jana Vašinová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX, United States
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
Xing Y, Liu C, Wang H, Zhang X, Wang Y, Yue X, Li Z, Wang X, Zhang W. Protective Effects of Nicorandil on Cardiac Function and Left Ventricular Remodeling in a Rat Model of Ischemic Heart Failure. Arch Med Res 2018; 49:583-587. [PMID: 30580880 DOI: 10.1016/j.arcmed.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/06/2018] [Indexed: 11/15/2022]
Abstract
Nicorandil, the first clinically applied ATP-sensitive K+ channel (K+ATP) opener with nitrate property, has demonstrated cardioprotective effects in patients with multiples of heart diseases. However, it is unknown whether nicorandil has effects on left ventricular (LV) remodeling in rats with ischemic heart failure and the potential mechanisms remain unclear. In this study, we investigated the effects of nicorandil on cardiac function, LV remodeling, and Bax expression in myocardium of LV in rats with ischemic heart failure. We found that nicorandil could improve not only the general condition, but also the cardiac function in rats with ischemic heart failure. The data also demonstrated that nicorandil reduced the hypertrophy and fibrosis of LV in rats with ischemic heart failure. Furthermore, nicorandil suppressed the protein level of Bax expression in LV myocardium. Taken together, these results suggest that nicorandil exerts its cardioprotective effect and improves LV remodeling in rats with ischemic heart failure. The mechanism might be relative to the inhibitory effect of nicorandil on the protein level of Bax expression in LV myocardium.
Collapse
Affiliation(s)
- Yanqiu Xing
- Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Congcong Liu
- Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong General Police Hospital, Jinan, Shandong, China
| | - Huanliang Wang
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xia Zhang
- Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yan Wang
- Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xizan Yue
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhonggang Li
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Brigham and Woman's Hopspital of Harvard Medical School, Boston, MA, USA
| | - Wenhua Zhang
- Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Lee TM, Chang NC, Lin SZ. Effect of proton pump inhibitors on sympathetic hyperinnervation in infarcted rats: Role of magnesium. PLoS One 2018; 13:e0202979. [PMID: 30153299 PMCID: PMC6112652 DOI: 10.1371/journal.pone.0202979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/13/2018] [Indexed: 11/30/2022] Open
Abstract
The long-term use of proton pump inhibitors (PPIs) has been shown to increase the risk of cardiovascular mortality, however the molecular mechanisms are unknown. Superoxide has been implicated in the regulation of nerve growth factor (NGF), a mediator of sympathetic innervation. The purpose of this study was to determine whether PPIs increase ventricular arrhythmias through magnesium-mediated superoxide production in infarcted rats. Male Wistar rats were randomly assigned to receive vehicle, omeprazole, omeprazole + magnesium sulfate, or famotidine treatment for 4 weeks starting 24 hours after the induction of myocardial infarction by ligating the coronary artery. Increased myocardial superoxide and nitrotyrosine levels were noted post-infarction, in addition to a significant upregulation of NGF expression on mRNA and protein levels. Sympathetic hyperinnervation after infarction was confirmed by measuring myocardial norepinephrine and immunofluorescent analysis. Compared with the vehicle, omeprazole-treated infarcted rats had significantly reduced myocardial magnesium content, increased oxidant production, and increased sympathetic innervation, which in turn increased ventricular arrhythmias. These effects were prevented by the coadministration of magnesium sulfate. In an in vivo study, an omeprazole-induced increase in NGF was associated with a superoxide pathway, which was further confirmed by an ex vivo study showing the attenuation of NGF levels after coadministration of the superoxide scavenger Tiron. Magnesium sulfate did not further attenuate NGF levels compared with omeprazole + Tiron. Our results indicate that the long-term administration of PPIs was associated with reduced tissue magnesium content and increased myocardial superoxide production, which exacerbated ventricular arrhythmias after infarction. Magnesium may be a potential target for PPI-related arrhythmias after infarction.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Buddhist Tzu Chi General hospital, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Strutynskyi RB, Voronkov LG, Nagibin VS, Mazur ID, Stroy D, Dosenko VE. Changes of the echocardiographic parameters in chronic heart failure patients with Ile337val, Glu23lys, and Ser1369ala polymorphisms of genes encoding the ATP‐sensitive potassium channels subunits in the Ukrainian population. Ann Hum Genet 2018; 82:272-279. [DOI: 10.1111/ahg.12250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
Affiliation(s)
- R. B. Strutynskyi
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| | - L. G. Voronkov
- Department of Heart Failure State Institution «National scientific center «M.D. Strazhesko Institute of Cardiology» National Academy of Medical Sciences of Ukraine Kyiv Ukraine
| | - V. S. Nagibin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| | - I. D. Mazur
- Department of Heart Failure State Institution «National scientific center «M.D. Strazhesko Institute of Cardiology» National Academy of Medical Sciences of Ukraine Kyiv Ukraine
| | - D. Stroy
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| | - V. E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine Kyiv Ukraine
| |
Collapse
|
19
|
Lee TM, Lin SZ, Chang NC. Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho-kinase signalling in infarcted rats. J Cell Mol Med 2017; 22:1056-1069. [PMID: 29119680 PMCID: PMC5783972 DOI: 10.1111/jcmm.13130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
We have demonstrated that ATP-sensitive potassium (KATP ) channel agonists attenuated fibrosis; however, the mechanism remained unclear. Since RhoA has been identified as a mediator of cardiac fibrosis, we sought to determine whether the anti-fibrotic effects of KATP channel agonists were mediated via regulating macrophage phenotype and fibroblast differentiation by a RhoA/RhoA-kinase-dependent pathway. Wistar male rats after induction of myocardial infarction were randomized to either vehicle, nicorandil, an antagonist of KATP channel glibenclamide, an antagonist of ROCK fasudil, or a combination of nicorandil and glibenclamide or fasudil and glibenclamide starting 24 hrs after infarction. There were similar infarct sizes among the infarcted groups. At day 3 after infarction, post-infarction was associated with increased RhoA/ROCK activation, which can be inhibited by administering nicorandil. Nicorandil significantly increased myocardial IL-10 levels and the percentage of regulatory M2 macrophages assessed by immunohistochemical staining, Western blot, and RT-PCR compared with vehicle. An IL-10 receptor antibody increased myofibroblast infiltration compared with nicorandil alone. At day 28 after infarction, nicorandil was associated with attenuated cardiac fibrosis. These effects of nicorandil were functionally translated in improved echocardiographically derived cardiac performance. Fasudil showed similarly increased expression of M2 macrophages as nicorandil. The beneficial effects of nicorandil on fibroblast differentiation were blocked by adding glibenclamide. However, glibenclamide cannot abolish the attenuated fibrosis of fasudil, implying that RhoA/RhoA-kinase is a downstream effector of KATP channel activation. Nicorandil polarized macrophages into M2 phenotype by inhibiting RhoA/RhoA-kinase pathway, which leads to attenuated myofibroblast-induced cardiac fibrosis after myocardial infarction.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Medicine, An-Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan.,Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Tzu Chi University Hospital, Hualien, Taiwan.,Bioinnovation Center, Tzu Chi foundation, Hualien, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Ge N, Liu C, Li G, Xie L, Zhang Q, Li L, Hao N, Zhang J. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway. Int J Mol Med 2016; 37:1281-9. [PMID: 27035393 PMCID: PMC4829127 DOI: 10.3892/ijmm.2016.2538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ning Ge
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| | - Chao Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| | - Guofeng Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Lijun Xie
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Qinzeng Zhang
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Liping Li
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Na Hao
- Department of Pharmacology, Hebei Academy of Medical Sciences, Shijiazhuang, Hebei 050021, P.R. China
| | - Jianxin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050021, P.R. China
| |
Collapse
|
21
|
Shalaby SM, El-Shal AS, Zidan HE, Mazen NF, Abd El-Haleem MR, Abd El Motteleb DM. Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction. IUBMB Life 2016; 68:343-54. [DOI: 10.1002/iub.1487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Haidy E. Zidan
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Nehad F. Mazen
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Manal R. Abd El-Haleem
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | | |
Collapse
|
22
|
Lee TM, Chen WT, Chang NC. Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circ J 2015; 79:2461-70. [PMID: 26399925 DOI: 10.1253/circj.cj-15-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The effect of dipeptidyl peptidase-4 (DPP-4) inhibitors on arrhythmias remains unknown. The aim of this study was to investigate whether sitagliptin attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression, focusing on cyclic adenosine monophosphate (cAMP) downstream signaling such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). METHODS AND RESULTS Male Wistar rats were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after ligating the coronary artery. Post-infarction was associated with increased oxidative stress. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats compared with sham. Compared with the vehicle, infarcted rats treated with sitagliptin had significantly increased cAMP levels, decreased DPP-4 activity, oxidative stress, NGF levels and immunofluorescence-stained sympathetic hyperinnervation. Arrhythmic scores were significantly lower in the sitagliptin-treated infarcted rats than in vehicle. Ex vivo studies showed that sitagliptin increased the phosphorylated cAMP response element-binding protein (CREB), which can be reversed by H-89 (a PKA inhibitor), not brefeldin A (an Epac inhibitor).Heme oxygenase-1(HO-1) expression was increased by a PKA agonist but not by an Epac agonist.HO-1expression was attenuated in KG-501 (a CREB inhibitor)-treated infarcted rats in the presence of a PKA agonist. CONCLUSIONS Sitagliptin protects ventricular arrhythmias by attenuating NGF-induced sympathetic innervation via upregulation ofHO-1expression in a cAMP/PKA/CREB-dependent antioxidant pathway in non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital
| | | | | |
Collapse
|
23
|
Endothelin receptor blockade ameliorates renal injury by inhibition of RhoA/Rho-kinase signalling in deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2014; 32:795-805. [PMID: 24463935 DOI: 10.1097/hjh.0000000000000092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Excessive production of fibrosis is a feature of hypertension-induced renal injury. Activation of RhoA/Rho-kinase (ROCK) axis has been shown in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed whether selective endothelin receptor blockers can attenuate renal fibrosis by inhibiting RhoA/ROCK axis in DOCA-salt rats. METHODS At 4 weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were randomized into three groups for 4 weeks: vehicle, ABT-627 (endothelin-A receptor inhibitor) and A192621 (endothelin-B receptor inhibitor). RESULTS DOCA-salt was characterized by increased blood pressure, decreased renal function, increased proteinuria, increased glomerulosclerosis and tubulointerstitial fibrosis with myofibroblast accumulation, increased renal endothelin-1 levels and RhoA activity along with increased expression of connective tissue growth factor at both mRNA and protein levels as compared with uninephrectomized control male Wistar rats. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone, ameliorated proteinuria. Impaired renal function and histological changes were overcome by treatment with ABT-627, but not with A192621. The beneficial effects of bosentan, a nonspecific endothelin receptor blocker, on proteinuria, RhoA activity, and connective tissue growth factor levels were similar to ABT-627. Furthermore, in an isolated perfuse kidney, a RhoA inhibitor, C3 exoenzyme, and two ROCK inhibitors, fasudil and Y-27632, significantly attenuated connective tissue growth factor levels. CONCLUSIONS These results indicate that DOCA-salt elevates renal endothelin-1 levels and RhoA activity via activation of mineralocorticoid receptor, resulting in renal fibrosis and proteinuria. Endothelin-A receptor blockade can attenuate DOCA-salt-induced renal fibrosis probably through the inhibition of RhoA/ROCK activity and connective tissue growth factor expression.
Collapse
|
24
|
SUN JIMIN, WANG CHUNMIAO, GUO ZENG, HAO YUYU, XIE YANGJING, GU JIAN, WANG AILING. Reduction of isoproterenol-induced cardiac hypertrophy and modulation of myocardial connexin43 by a KATP channel agonist. Mol Med Rep 2014; 11:1845-50. [DOI: 10.3892/mmr.2014.2988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 07/21/2014] [Indexed: 11/05/2022] Open
|
25
|
Lee TM, Chen WT, Yang CC, Lin SZ, Chang NC. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts. J Cell Mol Med 2014; 19:418-29. [PMID: 25388908 PMCID: PMC4407589 DOI: 10.1111/jcmm.12465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022] Open
Abstract
We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, China Medical University-An Nan Hospital, Tainan, Taiwan; Department of Medicine, China Medical University, Taichung, Taiwan; Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Activation of IK1 Channel by Zacopride Attenuates Left Ventricular Remodeling in Rats With Myocardial Infarction. J Cardiovasc Pharmacol 2014; 64:345-56. [DOI: 10.1097/fjc.0000000000000127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Variable effects of anti-diabetic drugs in animal models of myocardial ischemia and remodeling: a translational perspective for the cardiologist. Int J Cardiol 2014; 169:385-93. [PMID: 24383120 DOI: 10.1016/j.ijcard.2013.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes and heart failure are very prevalent, and affect each other's incidence and severity. Novel therapies to reduce post-myocardial infarction (MI) remodeling that progresses into heart failure are urgently needed, especially in diabetic patients. Clinical studies have suggested that some oral anti-diabetic agents like metformin exert cardiovascular protective effects in heart failure patients with diabetes, whereas other agents may be deleterious. In the current review, we provide an overview of the cardio-specific effects of oral anti-diabetic drugs in animal models of acute MI, post-MI remodeling, and heart failure. Metformin has consistently been shown to ameliorate cardiac remodeling after ischemia/reperfusion (I/R) injury, as well as in several models of heart failure. Sulfonylurea derivatives are controversial with respect to their direct effects on the cardiovascular system. Thiazolidinediones protect against myocardial I/R injury, but their effects on post-MI remodeling are less clear and clinical studies raised concerns about their cardiovascular safety. Glucagon-like peptide-1 analogs have potential beneficial effects on the cardiovascular system that require further confirmation, whereas the results with dipeptidyl peptidase-4 inhibitors are equivocal. Current clinical guidelines, in the absence of prospective clinical trials that evaluated if certain oral anti-diabetic agents are superior over others, only provide generic recommendations, and do not take into account interesting experimental and mechanistic data. The available experimental evidence indicates that some anti-diabetic agents should be preferred over others if cardioprotective effects are warranted. These experimental clues need to be confirmed by clinical trials.
Collapse
|
28
|
Affiliation(s)
- Friedrich C Luft
- Experimental and Clinical Research Center, Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Lindenbergerweg 80, 13125, Berlin, Germany,
| |
Collapse
|
29
|
Wang Q, Sun Y, Li J, Xing W, Zhang S, Gu X, Feng N, Zhao L, Fan R, Wang Y, Yin W, Pei J. Quaternary ammonium salt of U50488H, a new κ-opioid receptor agonist, protects rat heart against ischemia/reperfusion injury. Eur J Pharmacol 2014; 737:177-84. [DOI: 10.1016/j.ejphar.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 11/15/2022]
|
30
|
Lee TM, Lin SZ, Chang NC. Both PKA and Epac pathways mediate N-acetylcysteine-induced Connexin43 preservation in rats with myocardial infarction. PLoS One 2013; 8:e71878. [PMID: 24015194 PMCID: PMC3756050 DOI: 10.1371/journal.pone.0071878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/11/2013] [Indexed: 12/19/2022] Open
Abstract
Cardiac remodeling was shown to be associated with reduced gap junction expression after myocardial infarction. A reduction in gap junctional proteins between myocytes may trigger ventricular arrhythmia. Therefore, we investigated whether N-acetylcysteine exerted antiarrhythmic effect by preserving connexin43 expression in postinfarcted rats, focusing on cAMP downstream molecules such as protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Male Wistar rats after ligating coronary artery were randomized to either vehicle, or N-acetylcysteine for 4 weeks starting 24 hours after operation. Infarct size was similar between two groups. Compared with vehicle, cAMP levels were increased by N-acetylcysteine treatment after infarction. Myocardial connexin43 expression was significantly decreased in vehicle-treated infarcted rats compared with sham operated rats. Attenuated connexin43 expression and function were blunted after administering N-acetylcysteine, assessed by immunofluorescent analysis, dye coupling, Western blotting, and real-time quantitative RT-PCR of connexin43. Arrhythmic scores during programmed stimulation in the N-acetylcysteine-treated rats were significantly lower than those treated with vehicle. In an ex vivo study, enhanced connexin43 levels afforded by N-acetylcysteine were partially blocked by either H-89 (a PKA inhibitor) or brefeldin A (an Epac-signaling inhibitor) and completely blocked when H-89 and brefeldin A were given in combination. Addition of either the PKA specific activator N6Bz or Epac specific activator 8-CPT did not have additional increased connexin43 levels compared with rats treated with lithium chloride alone. These findings suggest that N-acetylcysteine protects ventricular arrhythmias by attenuating reduced connexin43 expression and function via both PKA- and Epac-dependent pathways, which converge through the inactivation of glycogen synthase kinase-3β.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shinn-Zong Lin
- Neuropsychiatry Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, Taina Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigan Hospital, Yunlin, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
Hirose M, Takeishi Y, Nakada T, Shimojo H, Kashihara T, Nishio A, Suzuki S, Mende U, Matsumoto K, Matsushita N, Taira E, Sato F, Yamada M. Nicorandil prevents Gαq-induced progressive heart failure and ventricular arrhythmias in transgenic mice. PLoS One 2012; 7:e52667. [PMID: 23285142 PMCID: PMC3527603 DOI: 10.1371/journal.pone.0052667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gα(q)) -coupled receptor (GPCR) signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gα(q) (Gα(q)-TG). METHODOLOGY/PRINCIPAL FINDINGS Nicorandil (6 mg/kg/day) or vehicle was chronically administered to Gα(q)-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gα(q)-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gα(q)-TG but not in nicorandil-treated Gα(q)-TG. eNOS gene expression was also increased in nicorandil-treated Gα(q)-TG compared with vehicle-treated Gα(q)-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 7 of 10 vehicle-treated Gα(q)-TG but in none of 10 nicorandil-treated Gα(q)-TG. The QT interval was significantly shorter in nicorandil-treated Gα(q)-TG than vehicle-treated Gα(q)-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gα(q)-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal K(ATP) channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gα(q)-TG heart. CONCLUSIONS/SIGNIFICANCE These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization of SERCA2 gene expression. Nicorandil may also improve the impaired coronary circulation during HF.
Collapse
Affiliation(s)
- Masamichi Hirose
- Department of Molecular and Cellular Pharmacology, Iwate Medical University School of Pharmaceutical Sciences, Shiwa, Iwate, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee TM, Lin CC, Lien HY, Chen CC. K ATP channel agonists preserve connexin43 protein in infarcted rats by a protein kinase C-dependent pathway. J Cell Mol Med 2012; 16:776-88. [PMID: 21692984 PMCID: PMC3822848 DOI: 10.1111/j.1582-4934.2011.01366.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Downward remodelling of gap junctional proteins between myocytes may trigger ventricular arrhythmia after myocardial infarction. We have demonstrated that ATP-sensitive potassium (KATP) channel agonists attenuated post-infarction arrhythmias. However, the involved mechanisms remain unclear. The purpose of this study was to determine whether KATP channel agonists can attenuate arrhythmias through preserving protein kinase C (PKC)-–dependent connexin43 level after myocardial infarction. Male Wistar rats after ligating coronary artery were randomized to either vehicle, nicorandil, pinacidil, glibenclamide or a combination of nicorandil and glibenclamide or pinacidil and glibenclamide for 4 weeks. To elucidate the role of PKC in the modulation of connexin43 level, carbachol and myristoylated PKC V1–2 peptide were also assessed. Myocardial connexin43 level was significantly decreased in vehicle-treated infarcted rats compared with sham. Attenuated connexin43 level was blunted after administering KATP channel agonists, assessed by immunofluorescent analysis, Western blotting, and real-time quantitative reverse transcription-PCR of connexin43. Arrhythmic scores during programmed stimulation in the KATP channel agonists-treated rats were significantly lower than those treated with vehicle. The beneficial effects of KATP channel agonists were blocked by either glibenclamide or 5-hydroxydecanoate. Addition of the PKC activator, phorbol 12-myristate 13-acetate and the specific PKC agonist, carbachol, blocked the effects of nicorandil on connexin43 phosphorylation and dye permeability. The specific PKC antagonist, myristoylated PKC V1–2 peptide, did not have additional beneficial effects on connexin43 phosphorylation compared with rats treated with nicorandil alone. Chronic use of KATP channel agonists after infarction, resulting in enhanced connexin43 level through a PKC-dependent pathway, may attenuate the arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Taipei Medical University and Chi-Mei Medical Center, Tainan, Taiwan.
| | | | | | | |
Collapse
|
33
|
Zuo XR, Wang Q, Cao Q, Yu YZ, Wang H, Bi LQ, Xie WP, Wang H. Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension. PLoS One 2012; 7:e44485. [PMID: 22970229 PMCID: PMC3436887 DOI: 10.1371/journal.pone.0044485] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/08/2012] [Indexed: 11/18/2022] Open
Abstract
Background Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. Methodology/Principal Findings RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats. Conclusions/Significance Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K+ (mitoKATP) channels. The use of a mitoKATP channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during the early stages of PAH.
Collapse
Affiliation(s)
- Xiang-Rong Zuo
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Qiang Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Quan Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yan-Zhe Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hui Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Li-Qing Bi
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei-Ping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (HW); (WX)
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (HW); (WX)
| |
Collapse
|
34
|
Cardiac sympathetic hyperinnervation in deoxycorticosterone acetate-salt hypertensive rats. Clin Sci (Lond) 2012; 123:445-57. [PMID: 22507072 DOI: 10.1042/cs20120080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sympathetic activities are elevated in the central SNSs (sympathetic nervous systems) of hypertensive animals, but it is not known whether sympathetic innervation is also elevated in the heart. Sympathetic hyper-responsiveness in hypertension may result from oxidative stress. The aim of the present study was to investigate sympathetic hyperinnervation in DOCA (deoxycorticosterone acetate)-salt hypertensive rats with established hypertension. At 4 weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were randomized into three groups for 8 weeks: vehicle, NAC (N-acetylcysteine) and triple therapy (hydralazine, hydrochlorothiazide and reserpine). DOCA-salt was associated with increased oxidant release. DOCA-salt produced concentric left ventricular hypertrophy and cardiomyocyte hypertrophy. Sympathetic hyperinnervation was observed in DOCA-salt rats, as assessed by myocardial noradrenaline levels, immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and Western blotting and real-time quantitative RT-PCR (reverse transcription-PCR) of NGF (nerve growth factor). Arrhythmic scores during programmed stimulation in DOCA-salt rats were significantly higher than those in the control rats. Triple therapy, despite being effective on BP (blood pressure), offered neither attenuated cardiomyocyte hypertrophy nor anti-arrhythmia. The effects of DOCA-salt treatment on NGF expression, sympathetic hyperinnervation and arrhythmias were attenuated by NAC. Furthermore, the effects of NAC on NGF were abolished by administering BSO (L-buthionine sulfoximine), an inhibitor of glutamate-cysteine ligase. In conclusion, DOCA-salt treatment contributes to up-regulation of NGF proteins probably through a free radical-dependent pathway in a BP-independent manner. DOCA-salt rats treated with NAC attenuate sympathetic hyperinnervation and thus show a beneficial effect on arrhythmogenic response to programmed electrical stimulation.
Collapse
|
35
|
Tang L, Joung B, Ogawa M, Chen PS, Lin SF. Intracellular calcium dynamics, shortened action potential duration, and late-phase 3 early afterdepolarization in Langendorff-perfused rabbit ventricles. J Cardiovasc Electrophysiol 2012; 23:1364-71. [PMID: 22809087 DOI: 10.1111/j.1540-8167.2012.02400.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION To elucidate the mechanism of late-phase 3 early after depolarization (EAD) in ventricular arrhythmogenesis, we hypothesized that intracellular calcium (Ca(i) ) overloading and action potential duration (APD) shortening may promote late-phase 3 EAD and triggered activity, leading to development of ventricular fibrillation (VF). METHODS AND RESULTS In isolated rabbit hearts, we performed microelectrode recording and simultaneous dual optical mapping of transmembrane potential (V(m) ) and Ca(i) transient on left ventricular endocardium. An I(KATP) channel opener, pinacidil, was used to abbreviate APD. Rapid pacing was then performed. Upon abrupt cessation of rapid pacing with cycle lengths of 60-200 milliseconds, there were APD(90) prolongation and the corresponding Ca(i) overloading in the first postpacing beats. The duration of Ca(i) transient recovered to 50% (DCaT(50) ) and 90% (DCaT(90) ) in the first postpacing beats was significantly longer than baseline. Abnormal Ca(i) elevation coupled with shortened APD produced late-phase 3 EAD induced triggered activity and VF. In additional 6 preparations, the heart tissues were treated with BAPTA-AM, a calcium chelator. BAPTA-AM significantly reduced the maximal Ca(i) amplitude (26.4 ± 3.5% of the control; P < 0.001) and the duration of Ca(i) transients in the mapped region, preventing the development of EAD and triggered activity that initiated VF. CONCLUSIONS I (KATP) channel activation along with Ca(i) overloading are associated with the development of late-phase 3 EAD and VF. Because acute myocardial ischemia activates the I(KATP) channel, late-phase 3 EADs may be a mechanism for VF initiation during acute myocardial ischemia.
Collapse
Affiliation(s)
- Liang Tang
- Department of Biomedical Engineering, University of Texas at San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
36
|
Chen ZC, Cheng YZ, Chen LJ, Cheng KC, Li YX, Cheng JT. Increase of ATP-sensitive potassium (K(ATP)) channels in the heart of type-1 diabetic rats. Cardiovasc Diabetol 2012; 11:8. [PMID: 22257425 PMCID: PMC3274424 DOI: 10.1186/1475-2840-11-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/18/2012] [Indexed: 11/15/2022] Open
Abstract
Background An impairment of cardiovascular function in streptozotocin (STZ)-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP) channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr) were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2) were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.
Collapse
Affiliation(s)
- Zhih-Cherng Chen
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang, Tainan City 73101, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
ATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats. Int J Cell Biol 2011; 2011:838951. [PMID: 21845191 PMCID: PMC3154573 DOI: 10.1155/2011/838951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/24/2011] [Accepted: 05/20/2011] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) protect the myocardium from hypertrophy induced by pressure-overloading. In this study, we determined the effects of these channels in volume-overloading. We compared the effects of a K(ATP) agonist and a K(ATP) antagonist on sarcolemmal transmembrane current density (pA/pF) clamped at 20 mV increments of membrane potential from -80 to +40 mV in ventricular cardiac myocytes. The basal outward potassium pA/pF in myocytes of volume-overloaded animals was significantly smaller than that in the myocytes of sham-operated controls. Treatment of the control myocytes with the K(ATP) agonist cromakalim increased pA/pF significantly. This increase was blocked by the K(ATP) antagonist glibenclamide. Treatment of the hypertrophied myocytes from volume-overloaded animals with cromakalim and in the presence and absence of glibenclamide did not change pA/pF significantly. These findings suggest that eccentrically hypertrophied cardiac myocytes from volume-overloading may be unresponsive to specific activation/inactivation of K(ATP) and that dysfunctional K(ATP) may fail to protect the myocardium from left ventricular hypertrophy associated with volume-overloading.
Collapse
|
38
|
Suto Y, Oshima K, Arakawa K, Sato H, Yamazaki H, Matsumoto K, Takeyoshi I. The effect of nicorandil on small intestinal ischemia-reperfusion injury in a canine model. Dig Dis Sci 2011; 56:2276-82. [PMID: 21360281 DOI: 10.1007/s10620-011-1623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 02/07/2011] [Indexed: 12/09/2022]
Abstract
BACKGROUND It has been shown that nicorandil, which has both ATP-sensitive K+ (KATP) channel opener-like and nitrate-like properties, has an organ-protective effect in ischemia-reperfusion injury in several experimental animal models. AIMS We evaluate the effectiveness of nicorandil on warm ischemia-reperfusion injury of the small intestine in a canine model. METHODS Eighteen beagle dogs were divided into three groups: the control group (n=6); the nicorandil group (n=6), to which nicorandil was injected intravenously before the ischemia; and the glibenclamide group (n=6), to which glibenclamide, which closes the KATP channel and does not suppress the nitrate effect of nicorandil, was orally administered, and then nicorandil was injected in the same manner as in the nicorandil group. Both the superior mesenteric artery and vein were clamped for 2 h. Superior mesenteric artery blood flow, small intestinal mucosal tissue blood flow, intramucosal pH, and histopathological analyses were compared among the three groups. RESULTS Superior mesenteric artery blood flow, mucosal tissue blood flow and pHi after reperfusion were significantly maintained in the nicorandil in comparison with the control and the glibenclamide groups. The histopathological findings showed less severe mucosal damage after reperfusion in the nicorandil group compared with the other two groups. Between the control group and the glibenclamide group, no significant differences were observed in all those parameters. CONCLUSION This study suggests that nicorandil has a protective effect on small intestinal IR injury, and activation of KATP channels plays an important role in inhibiting small intestinal IR injury.
Collapse
Affiliation(s)
- Yujin Suto
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Lee TM, Chen CC, Hsu YJ. Differential effects of NADPH oxidase and xanthine oxidase inhibition on sympathetic reinnervation in postinfarct rat hearts. Free Radic Biol Med 2011; 50:1461-70. [PMID: 21295134 DOI: 10.1016/j.freeradbiomed.2011.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 01/16/2023]
Abstract
Superoxide has been shown to play a major role in ventricular remodeling and arrhythmias after myocardial infarction. However, the source of increased myocardial superoxide production and the role of superoxide in sympathetic innervation remain to be further characterized. Male Wistar rats, after coronary artery ligation, were randomized to vehicle, allopurinol, or apocynin for 4weeks. To determine the role of peroxynitrite in sympathetic reinnervation, we also used 3-morpholinosydnonimine (a peroxynitrite generator). The postinfarction period was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine, xanthine oxidase activity, NADPH oxidase activity, and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Sympathetic hyperinnervation was blunted after administration of allopurinol. Arrhythmic scores in the allopurinol-treated infarcted rats were significantly lower than those in vehicle. For similar levels of ventricular remodeling, apocynin had no beneficial effects on oxidative stress, sympathetic hyperinnervation, or arrhythmia vulnerability. Allopurinol-treated hearts had significantly decreased nerve growth factor expression, which was substantially increased after coadministration of 3-morpholinosydnonimine. These results indicate that xanthine oxidase but not NADPH oxidase largely mediates superoxide production after myocardial infarction. Xanthine oxidase inhibition ameliorates sympathetic innervation and arrhythmias possibly via inhibition of the peroxynitrite-mediated nerve growth factor pathway.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Chi-Mei Medical Center, Tainan, Taiwan.
| | | | | |
Collapse
|
40
|
Chen CC, Hsu YJ, Lee TM. Impact of elevated uric acid on ventricular remodeling in infarcted rats with experimental hyperuricemia. Am J Physiol Heart Circ Physiol 2011; 301:H1107-17. [PMID: 21622823 DOI: 10.1152/ajpheart.01071.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperuricemia is associated with cardiovascular disease, but it is usually considered a marker rather than a risk factor. Previous studies using uric acid-lowering drugs in normouricemic animals are not suitable to answer the effect of hyperuricemia on ventricular remodeling after myocardial infarction. The purpose of this study was to determine whether hyperuricemia adversely affects ventricular remodeling in infarcted rats with elevated uric acid. Male Wistar rats aged 8 wk were randomly assigned into either vehicle, oxonic acid, oxonic acid + allopurinol, oxonic acid + benzbromarone, oxonic acid + ABT-627, or oxonic acid + tempol for 4 wk starting 24 h after ligation. Postinfarction was associated with increased oxidant production, as measured by myocardial superoxide, isoprostane, xanthine oxidase activity, and dihydroethidium staining. Compared with normouricemic infarcted rats, hyperuricemic infarcted rats had a significant increase of superoxide production (1.7×) and endothelin-1 protein (1.2×) and mRNA (1.4×) expression, which was associated with increased left ventricular dysfunction and enhanced myocardial hypertrophy and fibrosis. These changes were all prevented by treatment with allopurinol. For similar levels of urate lowering, the uricosuric agent benzbromarone had no effect on ventricular remodeling. In spite of equivalent hyperuricemia, the ability of both ABT-627 and tempol to attenuate ventricular remodeling suggested involvement of endothelin-1 and redox pathways. Hyperuricemia is associated with unfavorable ventricular remodeling probably through a superoxide and endothelin-1-dependent pathway. Uric acid lowering without inhibition of superoxide and endothelin-1 may not have an effect on remodeling. Chronic administration of allopurinol, ABT-627, and tempol is associated with attenuated ventricular remodeling.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Institute of Biomedical Engineering, National Cheng-Kung University, and Divison of Cardiovascular Surgery, Chia-yi Christian Hospital, Chia-yi City, Taiwan
| | | | | |
Collapse
|
41
|
Fedorov VV, Glukhov AV, Ambrosi CM, Kostecki G, Chang R, Janks D, Schuessler RB, Moazami N, Nichols CG, Efimov IR. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol 2011; 51:215-25. [PMID: 21586291 DOI: 10.1016/j.yjmcc.2011.04.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/08/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
This study compared the effects of ATP-regulated potassium channel (K(ATP)) openers, diazoxide and pinacidil, on diseased and normal human atria and ventricles. We optically mapped the endocardium of coronary-perfused right (n=11) or left (n=2) posterior atrial-ventricular free wall preparations from human hearts with congestive heart failure (CHF, n=8) and non-failing human hearts without (NF, n=3) or with (INF, n=2) infarction. We also analyzed the mRNA expression of the K(ATP) targets K(ir)6.1, K(ir)6.2, SUR1, and SUR2 in the left atria and ventricles of NF (n=8) and CHF (n=4) hearts. In both CHF and INF hearts, diazoxide significantly decreased action potential durations (APDs) in atria (by -21±3% and -27±13%, p<0.01) and ventricles (by -28±7% and -28±4%, p<0.01). Diazoxide did not change APD (0±5%) in NF atria. Pinacidil significantly decreased APDs in both atria (-46 to -80%, p<0.01) and ventricles (-65 to -93%, p<0.01) in all hearts studied. The effect of pinacidil on APD was significantly higher than that of diazoxide in both atria and ventricles of all groups (p<0.05). During pinacidil perfusion, burst pacing induced flutter/fibrillation in all atrial and ventricular preparations with dominant frequencies of 14.4±6.1 Hz and 17.5±5.1 Hz, respectively. Glibenclamide (10 μM) terminated these arrhythmias and restored APDs to control values. Relative mRNA expression levels of K(ATP) targets were correlated to functional observations. Remodeling in response to CHF and/or previous infarct potentiated diazoxide-induced APD shortening. The activation of atrial and ventricular K(ATP) channels enhances arrhythmogenicity, suggesting that such activation may contribute to reentrant arrhythmias in ischemic hearts.
Collapse
Affiliation(s)
- Vadim V Fedorov
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yamazaki H, Oshima K, Sato H, Kobayashi K, Suto Y, Hirai K, Odawara H, Matsumoto K, Takeyoshi I. The Effect of Nicorandil on Ischemia-Reperfusion Injury in a Porcine Total Hepatic Vascular Exclusion Model. J Surg Res 2011; 167:49-55. [DOI: 10.1016/j.jss.2009.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 09/17/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
|
43
|
Liu CP, Yeh JL, Wu BN, Chai CY, Chen IJ, Lai WT. KMUP-3 attenuates ventricular remodelling after myocardial infarction through eNOS enhancement and restoration of MMP-9/TIMP-1 balance. Br J Pharmacol 2011; 162:126-35. [PMID: 20840538 DOI: 10.1111/j.1476-5381.2010.01024.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Previously, 7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1, 3-dimethylxanthine (KMUP-3) has been shown to induce aortic smooth muscle relaxation through K(ATP) channel opening and endothelial nitric oxide synthase (eNOS) enhancement. We further investigated whether KMUP-3 protects against myocardial remodelling after myocardial infarction (MI), and whether KMUP-3 increases the expression of eNOS in MI rats. EXPERIMENTAL APPROACH Wistar rats were randomly allocated into three groups: MI (n= 10), MI + KMUP-3 group (n= 10) and sham group (n= 10). MI was induced by ligation of the left anterior descending coronary artery. After recovery, the MI + KMUP-3 group received KMUP-3 (0.3 mg·kg(-1) ·day(-1) ) infusion for 4 weeks, while the MI and sham group received vehicle only. To further confirm that the effect of KMUP-3 is dependent on eNOS, KMUP-3 was applied in the culture of transforming growth factor-β-stimulated human cardiac fibroblasts. KEY RESULTS KMUP-3 treatment attenuated cardiac hypertrophy post-MI and improved cardiac function. The fibrotic area was reduced by KMUP-3 both in central-, peri- and non-infarction areas. KMUP-3 enhanced the expression of eNOS and tissue inhibitor of metalloproteinase-1 (TIMP-1), but reduced matrix metalloproteinase-9 (MMP-9) expression. In vitro, the activities of KMUP-3 were blocked by pretreatment with the eNOS inhibitor N(ω) -nitro-L-arginine methyl ester. CONCLUSIONS AND IMPLICATIONS The K(ATP) channel opener KMUP-3 preserved cardiac function after MI by enhancing the expression of eNOS. In addition, KMUP-3 restored the myocardial MMP-9/TIMP-1 balance and attenuated ventricular remodelling by an eNOS-dependent mechanism.
Collapse
Affiliation(s)
- Chung-Pin Liu
- Depart of Internal Medicine, Yuan's General hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Effect of pravastatin on nephroprotection in deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 2010; 27:2232-43. [PMID: 19812503 DOI: 10.1097/hjh.0b013e32833097bb] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Endothelin-1 (ET-1) has been implicated in the pathogenesis of renal impairment. The current study was undertaken to assess the effect of pravastatin on the progression of renal impairment in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS Four weeks after the start of DOCA-salt treatment and uninephrectomization, male Wistar rats were treated with one of the following therapies for 8 weeks: vehicle; a nonselective endothelin receptor antagonist bosentan; pravastatin; or hydralazine. RESULTS Treatment with bosentan or pravastatin was associated with reductions in blood pressure and renal medullary hydroxyproline content, and improvement in glomerular filtration rate, urinary protein excretion, macrophage infiltration, tubular injury, and vascular injury, but not glomerulosclerosis. The renal medullary ET-1 protein levels and preproET-1 mRNA assessed by western blotting and real-time quantitative reverse transcription-PCR were significantly decreased (both P < 0.001) in the pravastatin-treated rats compared with vehicle, which was also confirmed by immunohistochemical analysis. However, there were no significant differences of ET-1 levels in the renal cortex among the DOCA-salt groups. The nephroprotective effects of pravastatin were not associated with its antihypertensive action because hydralazine despite reducing blood pressure failed to improve renal function and disorder. CONCLUSION These results suggest a crucial role of renal endothelin system in the pathogenesis of renal functional and structural alterations in the DOCA-salt hypertensive rats. Pravastatin administration ameliorates the impairment of renal function and structures by attenuating medullary ET-1 expression, independent of systemic blood pressure.
Collapse
|
45
|
Chen CC, Lien HY, Hsu YJ, Lin CC, Shih CM, Lee TM. Effect of pravastatin on ventricular arrhythmias in infarcted rats: role of connexin43. J Appl Physiol (1985) 2010; 109:541-52. [DOI: 10.1152/japplphysiol.01070.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiologic studies showed that men treated with statins appear to have a lower incidence of sudden death than men without statins. However, the specific factor for this remained disappointingly elusive. We assessed whether pravastatin enhanced connexin43 expression after myocardial infarction through attenuation of endothelin-1. Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to vehicle, pravastatin, mevalonate, bosentan, or a combination of pravastatin and mevalonate or pravastatin and bosentan for 4 wk. Myocardial endothelin-1 levels were significantly elevated in vehicle-treated rats at the border zone compared with sham-operated rats. Myocardial connexin43 expression at the border zone was significantly decreased in vehicle-treated infarcted rats compared with sham-operated rats. Attenuated connexin43 expression was blunted after administration of pravastatin, as assessed by immunofluorescence analysis, Western blotting, and real-time quantitative RT-PCR of connexin43. Bosentan enhanced connexin43 amount in infarcted rats and did not have additional beneficial effects on pravastatin-treated rats. Arrhythmic scores during programmed stimulation in vehicle-treated rats were significantly higher than scores in those treated with pravastatin. In contrast, the beneficial effects of pravastatin-induced connexin43 were abolished by the addition of mevalonate and a protein kinase C inducer. In addition, the amount of connexin43 showed significant increase after addition of bisindolylmaleimide, implicating that protein kinase C is a relevant target in endothelin-1-mediated connexin43 expression. Thus chronic use of pravastatin after infarction, resulting in enhanced connexin43 amount by attenuation of mevalonate-dependent endothelin-1 through a protein kinase C-dependent pathway, may attenuate the arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy Science, Tainan County, and Department of Surgery, Cardiology Section, Chi-Mei Medical Center, Tainan
| | - Hsiao-Yin Lien
- Department of Pharmacy, Yongkang Veterans Hospital, Tainan
- Department of Cosmetic Application and Management, Tung Fang Institute of Technology, Kaohsiung
| | - Yu-Jung Hsu
- Department of Medical Research, Chi-Mei Medical Center, Tainan
| | - Chih-Chan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan
| | - Chun-Ming Shih
- Department of Medicine, Cardiology Section, Taipei Medical University Hospital, Taipei; and
| | - Tsung-Ming Lee
- Department of Medicine, Cardiology Section, Taipei Medical University and Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
46
|
Chen CC, Lin CC, Lee TM. 17beta-Estradiol decreases vulnerability to ventricular arrhythmias by preserving connexin43 protein in infarcted rats. Eur J Pharmacol 2009; 629:73-81. [PMID: 20004189 DOI: 10.1016/j.ejphar.2009.11.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/11/2009] [Accepted: 11/23/2009] [Indexed: 11/19/2022]
Abstract
Epidemiological studies showed that a lower mortality rate of sudden cardiac death among women than among men may depend on the action of female sex hormones. This study assessed whether 17beta-estradiol exerts anti-arrhythmic effects through enhanced Connexin43 (Cx43) expression after infarction. Two weeks after ovariectomy, female Wistar rats were randomly assigned to coronary artery ligation or sham-operation. Twenty-four hours after coronary ligation, ovariectomized rats were randomized into vehicle, subcutaneous estradiol treatment, tamoxifen, or subcutaneous estradiol treatment+tamoxifen and followed for 4weeks. To verify the role of estradiol-related nitric oxide in modulating the expression of Cx43, N-nitro-L-arginine methyl ester was also assessed in an in vitro study. Myocardial Cx43 expression revealed a significant decrease in vehicle-treated infarcted rats compared with sham-operated rats at 24h and 4weeks after infarction. Attenuated Cx43 expression was blunted after administering estradiol, assessed by immunofluorescent analysis, Western blotting, and real-time quantitative RT-PCR of Cx43. The vulnerability for ventricular arrhythmia during programmed stimulation in estradiol-treated infarcted rats was significantly lower than in vehicle-treated infarcted rats. The beneficial effect of estradiol on Cx43 was abolished by tamoxifen. In addition, the invitro study demonstrated that the amount of Cx43 showed significant reduction after adding N-nitro-L-arginine methyl ester. Chronic administration of estradiol after infarction is associated with attenuated reduction of gap junction proteins probably through a nitric oxide-dependent pathway via the estrogen receptor and thus plays a critical role in the beneficial effect on arrhythmic vulnerability response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Cardiology Section, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | | | | |
Collapse
|
47
|
Lee TM, Lai PY, Chang NC. Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovasc Res 2009; 85:137-46. [DOI: 10.1093/cvr/cvp286] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
48
|
Abstract
OBJECTIVE Proteinuria is an important risk factor for cardiovascular and renal morbidity and mortality. The effect of nicorandil on proteinuria in hypertensive patients well controlled by antihypertensive agents containing a low dose of valsartan has not been studied. PATIENTS AND METHODS A total of 136 proteinuric (300-3000 mg/day), valsartan-treated hypertensive patients with blood pressure less than 140/90 mmHg were randomized into three groups to receive placebo, isosorbide dinitrate (30 mg/day), or nicorandil (15 mg/day) for 6 months. RESULTS The average dose of valsartan given to the patients was similar in the three groups. Creatinine clearance remained stable throughout the study in the three groups. Nicorandil, but not isosorbide dinitrate, significantly reduced proteinuria by 44% after 6 months (P < 0.0001). Urinary endothelin-1 levels significantly decreased after administration of nicorandil (P = 0.002), whereas placebo and isosorbide dinitrate had no effect. Urinary excretion of endothelin-1 was significantly correlated with improvement in urinary protein excretion in nicorandil-treated patients (r = 0.69, P < 0.0001). The urinary excretion of retinol-binding protein decreased after nicorandil administration, probably reflecting an improvement in tubular function. In contrast, the urinary excretion of immunoglobulin G did not change significantly throughout the study in the three groups. Multivariate analysis revealed that proteinuria was only significantly correlated with the use of nicorandil (model adjusted r = 0.35, P < 0.0001). CONCLUSION The addition of nicorandil to treatment for patients with well controlled hypertension may have an additive effect on reducing proteinuria independent of hemodynamics and nitric oxide effects, possibly through inhibiting renal endothelin-1 synthesis and improving tubular function.
Collapse
|
49
|
Lee TM, Chen CC, Chang NC. Granulocyte colony-stimulating factor increases sympathetic reinnervation and the arrhythmogenic response to programmed electrical stimulation after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 2009; 297:H512-22. [PMID: 19502563 DOI: 10.1152/ajpheart.00077.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been used for the repair of infarcted myocardium, but concerns have been raised regarding its proarrhythmic potential. We analyzed the influence of G-CSF treatment on sympathetic nerve remodeling and the expression of nestin in a rat model of experimental myocardial infarction (MI). Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to receive either saline (MI/C) or G-CSF (MI/G) for 5 days. At 56 days after infarction, MI/G rats had a significantly higher left ventricular ejection fraction accompanied by a significant decrease in the left ventricular end-diastolic dimension than the MI/C group. Myocardial norepinephrine levels revealed a significant elevation in MI/G rats in the border zone compared with MI/C rats. Immunohistochemical analysis for tyrosine hydroxylase, growth-associated protein 43, and neurofilament also confirmed the changes of myocardial norepinephrine. At 5 days after infarction, MI/G rats had increased numbers of tissue-infiltrated CD34(+) cells, although a similar increase in circulating neutrophil counts between sham-operated rats treated with G-CSF and MI/G rats was observed. Compared with MI/C rats, MI/G rats showed an increase of nestin and nerve growth factor expression, as assessed by protein expression and mRNA levels. The arrhythmia scores during programmed stimulation were significantly higher in MI/G rats than in MI/C rats, suggesting proarrhythmic potential. These findings suggest that, although G-CSF administration after infarction improved myocardial function, it resulted in the activation of nestin and nerve growth factor expression and increased sympathetic reinnervation, which may increase the arrhythmogenic response to programmed electrical stimulation.
Collapse
Affiliation(s)
- Tsung-Ming Lee
- Cardiology Section, Department of Medicine, Taipei Medical University and Chi-Mei Medical Center, Tainan, Taiwan
| | | | | |
Collapse
|
50
|
Kang CS, Chen CC, Lin CC, Chang NC, Lee TM. Effect of ATP-sensitive potassium channel agonists on sympathetic hyperinnervation in postinfarcted rat hearts. Am J Physiol Heart Circ Physiol 2009; 296:H1949-59. [DOI: 10.1152/ajpheart.00903.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the acute administration of ATP-sensitive potassium (KATP) channel agonists provides a neuroprotection, it is unclear whether similar benefits are found by modulating sympathetic innervation in chronic settings after myocardial infarction. We assessed whether KATP channel agonists can attenuate the sprouting of cardiac sympathetic nerves after infarction. Male Wistar rats after ligating coronary artery were randomized to either saline, nicorandil, pinacidil, glibenclamide, or a combination of 1) nicorandil and glibenclamide or 2) pinacidil and glibenclamide for 4 wk. To elucidate the role of mitochondrial KATP channels in modulating nerve growth factor, 5-hydroxydecanoate was assessed in an in vitro model. The measurement of myocardial norepinephrine levels revealed a significant elevation in saline-treated infarcted rats compared with sham-operated rats, consistent with excessive sympathetic innervation. Excessive sympathetic innervation was blunted after giving the rats either nicorandil or pinacidil, compared with saline, as assessed by the immunohistochemical analysis of tyrosine hydroxylase, growth associated protein-43, and neurofilament and Western blot analysis and real-time quantitative RT-PCR of nerve growth factor. The arrhythmic scores during programmed stimulation in the saline- or glibenclamide-treated infarcted rats were significantly higher than those of rats treated with KATP channel agonists. In contrast, the beneficial effects of nicorandil and pinacidil were abolished by administering either glibenclamide or 5-hydroxydecanoate. The sympathetic hyperinnervation after infarction is attenuated by the activation of mitochondrial KATP channels. The chronic use of mitochondrial KATP channel agonists after infarction may attenuate the arrhythmogenic response to programmed electrical stimulation.
Collapse
|