1
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Fernández-Alvarez V, Linares-Sánchez M, Suárez C, López F, Guntinas-Lichius O, Mäkitie AA, Bradley PJ, Ferlito A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023; 13:1236. [PMID: 37627301 PMCID: PMC10452902 DOI: 10.3390/biom13081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Carotid artery disease has traditionally been assessed based on the degree of luminal narrowing. However, this approach, which solely relies on carotid stenosis, is currently being questioned with regard to modern risk stratification approaches. Recent guidelines have introduced the concept of the "vulnerable plaque," emphasizing specific features such as thin fibrous caps, large lipid cores, intraplaque hemorrhage, plaque rupture, macrophage infiltration, and neovascularization. In this context, imaging-based biomarkers have emerged as valuable tools for identifying higher-risk patients. Non-invasive imaging modalities and intravascular techniques, including ultrasound, computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy, have played pivotal roles in characterizing and detecting unstable carotid plaques. The aim of this review is to provide an overview of the evolving understanding of carotid artery disease and highlight the significance of imaging techniques in assessing plaque vulnerability and informing clinical decision-making.
Collapse
Affiliation(s)
- Verónica Fernández-Alvarez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Miriam Linares-Sánchez
- Department of Vascular and Endovascular Surgery, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Carlos Suárez
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
| | - Fernando López
- Instituto de Investigacion Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (C.S.); (F.L.)
- Department of Otorhinolaryngology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncologia del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, P.O. Box 263, 00029 Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Patrick J. Bradley
- Department of ORLHNS, Queens Medical Centre Campus, Nottingham University Hospitals, Derby Road, Nottingham NG7 2UH, UK;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
3
|
Spacek M, Vacha J, Precek J, Hutyra M, Nykl R, Sluka M, Taborsky M. Complete revascularization of multivessel coronary artery disease in patients with ST elevation acute coronary syndrome - for whom and when? A comprehensive review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:16-23. [PMID: 35703363 DOI: 10.5507/bp.2022.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Atherosclerosis is the most common cause of coronary steno-occlusive disease and acute myocardial infarction is the leading cause of death in industrialized countries. In patients with acute ST elevation myocardial infarction (STEMI), there is unquestionable evidence that primary percutaneous coronary intervention providing recanalization of the infarct related artery (IRA) is the preferred reperfusion strategy. Nevertheless, up to 50% of patients with STEMI have multivessel coronary artery disease defined as at least 50% stenosis exclusive of IRA. There is conflicting data regarding the optimal treatment strategy and timing in such patients. Currently, it is assumed that stable patients might benefit from complete revascularization particularly in reducing the need for future unplanned procedures but only culprit lesion should be treated during index procedure in unstable patients. In this article, we provide a comprehensive overview of this important and currently highly debated topic.
Collapse
Affiliation(s)
- Miloslav Spacek
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jan Vacha
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jan Precek
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Martin Hutyra
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Radomir Nykl
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Martin Sluka
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Milos Taborsky
- Department of Internal Medicine I - Cardiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
4
|
Nakahara T, Strauss HW, Narula J, Jinzaki M. Vulnerable Plaque Imaging. Semin Nucl Med 2023; 53:230-240. [PMID: 36333157 DOI: 10.1053/j.semnuclmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022]
Abstract
Atherosclerotic plaques progress as a result of inflammation. Both invasive and noninvasive imaging techniques have been developed to identify and characterize plaque as vulnerable (more likely to rupture and cause a clinical event). Imaging techniques to identify vulnerable include identifying vessels with focal subendothelial collections of I) inflammatory cells; II) lipid/ fatty acid; III) local regions of hypoxia; IV) local expression of angiogenesis factors; V) local expression of protease; VI) intravascular foci of thrombus; hemorrhage (most often seen in the aftermath of a clinical event); VII) apoptosis and VIII) microcalcification. This review provides an overview of atherosclerotic plaque progression and tracers which can visualize specific molecules associated with vulnerability.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - H William Strauss
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mahahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Ma B, Xiao Y, Lv Q, Li G, Wang Y, Fu G. Targeting Theranostics of Atherosclerosis by Dual-Responsive Nanoplatform via Photoacoustic Imaging and Three-In-One Integrated Lipid Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206129. [PMID: 36394179 DOI: 10.1002/adma.202206129] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerosis, as a life-threatening cardiovascular disease with chronic inflammation and abnormal lipid enrichment, is often difficult to treat timely due to the lack of obvious symptoms. In this work, a theranostic nanoplatform is constructed for the noninvasive in vivo diagnosis, plaque-formation inhibition, and the lesion reversal of atherosclerosis. A three-in-one therapeutic complex is constructed and packaged along with a polymeric photoacoustic probe into nanoparticles named as PLCDP@PMH, which indicates an atherosclerosis-targeting accumulation and a reactive oxygen species (ROS)/matrix metalloproteinase (MMP) dual-responsive degradation. The photoacoustic probe suggests a lesion-specific imaging on atherosclerotic mice with an accurate and distinct recognition of plaques. At the same time, the three-in-one complex performs an integrated lipid management through the inhibition of macrophages M1-polarization, liver X receptor (LXR)-mediated up-regulation of ATP-binding cassette transporter A1/G1 (ABCA1/G1) and the cyclodextrin-assisted lipid dissolution, which lead to the reduced lipid uptake, enhanced lipid efflux, and actuated lipid removal. The in vivo evaluations reveal that PLCDP@PMH can suppress the lesion progression and further reverse the formed plaques under a diet without high fat. Hence, PLCDP@PMH provides a candidate for the theranostics of early-stage atherosclerosis and delivers an impressive potential on the reversal of formed atherosclerotic lesions.
Collapse
Affiliation(s)
- Boxuan Ma
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Yun Xiao
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
6
|
Toczek J, Gona K, Liu Y, Ahmad A, Ghim M, Ojha D, Kukreja G, Salarian M, Luehmann H, Heo GS, Guzman RJ, Ochoa Chaar CI, Tellides G, Hassab AH, Ye Y, Shoghi KI, Zayed MA, Gropler RJ, Sadeghi MM. Positron Emission Tomography Imaging of Vessel Wall Matrix Metalloproteinase Activity in Abdominal Aortic Aneurysm. Circ Cardiovasc Imaging 2023; 16:e014615. [PMID: 36649454 PMCID: PMC9858355 DOI: 10.1161/circimaging.122.014615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a key role in the pathogenesis of abdominal aortic aneurysm (AAA). Imaging aortic MMP activity, especially using positron emission tomography to access high sensitivity, quantitative data, could potentially improve AAA risk stratification. Here, we describe the design, synthesis, characterization, and evaluation in murine AAA and human aortic tissue of a first-in-class MMP-targeted positron emission tomography radioligand, 64Cu-RYM2. METHODS The broad spectrum MMP inhibitor, RYM2 was synthetized, and its potency as an MMP inhibitor was evaluated by a competitive inhibition assay. Toxicology studies were performed. Tracer biodistribution was evaluated in a murine model of AAA induced by angiotensin II infusion in Apolipoprotein E-deficient mice. 64Cu-RYM2 binding to normal and aneurysmal human aortic tissues was assessed by autoradiography. RESULTS RYM2 functioned as an MMP inhibitor with nanomolar affinities. Toxicology studies showed no adverse reaction in mice. Upon radiolabeling with Cu-64, the resulting tracer was stable in murine and human blood in vitro. Biodistribution and metabolite analysis in mice showed rapid renal clearance and acceptable in vivo stability. In vivo positron emission tomography/computed tomography in a murine model of AAA showed a specific aortic signal, which correlated with ex vivo measured MMP activity and Cd68 gene expression. 64Cu-RYM2 specifically bound to normal and aneurysmal human aortic tissues in correlation with MMP activity. CONCLUSIONS 64Cu-RYM2 is a first-in-class MMP-targeted positron emission tomography tracer with favorable stability, biodistribution, performance in preclinical AAA, and importantly, specific binding to human tissues. These data set the stage for 64Cu-RYM2-based translational imaging studies of vessel wall MMP activity, and indirectly, inflammation, in AAA.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, MO (USA)
| | - Azmi Ahmad
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mean Ghim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Devi Ojha
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Gunjan Kukreja
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Mani Salarian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | - Hannah Luehmann
- Department of Radiology, Washington University, St. Louis, MO (USA)
| | - Gyu Seong Heo
- Department of Radiology, Washington University, St. Louis, MO (USA)
| | - Raul J. Guzman
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT (USA)
| | - Cassius I. Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale School of Medicine, New Haven, CT (USA)
| | - George Tellides
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
- Department of Surgery, Yale University School of Medicine, New Haven, CT (USA)
| | | | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| | | | - Mohamed A. Zayed
- Department of Surgery, Washington University, St. Louis, MO (USA)
| | | | - Mehran M. Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (USA)
- Veterans Affairs Connecticut Healthcare System, West Haven, CT (USA)
| |
Collapse
|
7
|
Kondakov A, Berdalin A, Beregov M, Lelyuk V. Emerging Nuclear Medicine Imaging of Atherosclerotic Plaque Formation. J Imaging 2022; 8:261. [PMID: 36286355 PMCID: PMC9605050 DOI: 10.3390/jimaging8100261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a chronic widespread cardiovascular disease and a major predisposing factor for cardiovascular events, among which there are myocardial infarction and ischemic stroke. Atherosclerotic plaque formation is a process that involves different mechanisms, of which inflammation is the most common. Plenty of radiopharmaceuticals were developed to elucidate the process of plaque formation at different stages, some of which were highly specific for atherosclerotic plaque. This review summarizes the current nuclear medicine imaging landscape of preclinical and small-scale clinical studies of these specific RPs, which are not as widespread as labeled FDG, sodium fluoride, and choline. These include oxidation-specific epitope imaging, macrophage, and other cell receptors visualization, neoangiogenesis, and macrophage death imaging. It is shown that specific radiopharmaceuticals have strength in pathophysiologically sound imaging of the atherosclerotic plaques at different stages, but this also may induce problems with the signal registration for low-volume plaques in the vascular wall.
Collapse
Affiliation(s)
- Anton Kondakov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
- Radiology and Radiotherapy Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander Berdalin
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Mikhail Beregov
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| | - Vladimir Lelyuk
- Ultrasound and Functional Diagnostics Department, Federal Center of Brain Research and Neurotechnologies, 117513 Moscow, Russia
| |
Collapse
|
8
|
Impact of Alirocumab on Release Markers of Atherosclerotic Plaque Vulnerability in Patients with Mixed Hyperlipidemia and Vulnerable Atherosclerotic Plaque. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58070969. [PMID: 35888688 PMCID: PMC9316765 DOI: 10.3390/medicina58070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Atherosclerosis is a disease in the pathogenesis of which plasma factors apart from elevated cholesterol levels play a keyrole. Such factors include osteopontin (OPN), osteoprotegerin (OPG), and metalloproteinases (MMPs), which are factors that may be responsible for the stabilization of atherosclerotic plaque. The aim of this study was to assess the effect of modern lipid-lowering therapy by using proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitor on the concentrations of these factors. Materials and Methods: The study included people suffering from dyslipidemia who were eligible to start alirocumab therapy. In this group, the concentrations of OPN, OPG, and MMPs were assessed before the initiation of therapy and after three months of its duration. Results: In the study, we observed a statistically significant reduction in the concentrations of OPN, OPG (p < 0.001), and metalloproteinase 2 (MMP-2) (p < 0.05) after the applied therapy. Moreover, we noticed that in the group of patients soon to start alirocumab therapy, the concentrations of these factors were higher compared to the control group (p < 0.001). Conclusions: The results of our study show that therapy with alirocumab significantly reduces the concentration of factors that affect atherosclerotic plaque vulnerability, which may explain their important role in reducing cardiovascular risk in patients undergoing this therapy.
Collapse
|
9
|
Yang W, Zhong Z, Feng G, Wang Z. Advances in positron emission tomography tracers related to vascular calcification. Ann Nucl Med 2022; 36:787-797. [PMID: 35834116 DOI: 10.1007/s12149-022-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022]
Abstract
Microcalcification, a type of vascular calcification, increases the instability of plaque and easily leads to acute clinical events. Positron emission tomography (PET) is a new examination technology with significant advantages in identifying vascular calcification, especially microcalcification. The use of the 18F-NaF is undoubtedly the benchmark, and other PET tracers related to vascular calcification are also currently in development. Despite all this, a large number of studies are still needed to further clarify the specific mechanisms and characteristics. This review aimed at providing a summary of the application and progress of different PET tracers and also the future development direction.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhiqi Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
10
|
Stendahl JC, Kwan JM, Pucar D, Sadeghi MM. Radiotracers to Address Unmet Clinical Needs in Cardiovascular Imaging, Part 2: Inflammation, Fibrosis, Thrombosis, Calcification, and Amyloidosis Imaging. J Nucl Med 2022; 63:986-994. [PMID: 35772956 PMCID: PMC9258561 DOI: 10.2967/jnumed.121.263507] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular imaging is evolving in response to systemwide trends toward molecular characterization and personalized therapies. The development of new radiotracers for PET and SPECT imaging is central to addressing the numerous unmet diagnostic needs that relate to these changes. In this 2-part review, we discuss select radiotracers that may help address key unmet clinical diagnostic needs in cardiovascular medicine. Part 1 examined key technical considerations pertaining to cardiovascular radiotracer development and reviewed emerging radiotracers for perfusion and neuronal imaging. Part 2 covers radiotracers for imaging cardiovascular inflammation, thrombosis, fibrosis, calcification, and amyloidosis. These radiotracers have the potential to address several unmet needs related to the risk stratification of atheroma, detection of thrombi, and the diagnosis, characterization, and risk stratification of cardiomyopathies. In the first section, we discuss radiotracers targeting various aspects of inflammatory responses in pathologies such as myocardial infarction, myocarditis, sarcoidosis, atherosclerosis, and vasculitis. In a subsequent section, we discuss radiotracers for the detection of systemic and device-related thrombi, such as those targeting fibrin (e.g., 64Cu-labeled fibrin-binding probe 8). We also cover emerging radiotracers for the imaging of cardiovascular fibrosis, such as those targeting fibroblast activation protein (e.g., 68Ga-fibroblast activation protein inhibitor). Lastly, we briefly review radiotracers for imaging of cardiovascular calcification (18F-NaF) and amyloidosis (e.g., 99mTc-pyrophosphate and 18F-florbetapir).
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Darko Pucar
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
11
|
Impact of PCSK9 Inhibition on Proinflammatory Cytokines and Matrix Metalloproteinases Release in Patients with Mixed Hyperlipidemia and Vulnerable Atherosclerotic Plaque. Pharmaceuticals (Basel) 2022; 15:ph15070802. [PMID: 35890100 PMCID: PMC9324132 DOI: 10.3390/ph15070802] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a disorder in which, in addition to high cholesterol levels, several plasma factors play a significant role in its development. Among these cytokines and molecules are interleukin 6 (IL-6), interleukin 18 (IL-18), tumor necrosis factor α (TNF-α), metalloproteinase 2 (MMP-2), and metalloproteinase 9 (MMP-9), all of which may contribute to the stabilization of atherosclerotic plaque. The purpose of this study was to determine the effect of advanced lipid-lowering therapy on the levels of these determinants by utilizing proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors in patients with verified high-risk atherosclerotic plaque. Methods: The study involved patients with dyslipidemia who had the presence of unstable atherosclerotic plaque verified by ultrasonography and who were eligible to begin alirocumab treatment. The levels of IL-6, IL, 18, TNF-α, and MMPs were determined in this group before and after three months of therapy. After treatment, a statistically significant decrease in concentrations of Il-18, Il-6, TNF-α (p < 0.001) and MMP-2 (p < 0.05) was observed. Additionally, we observed that the concentrations of these markers were significantly higher in the group of patients prior to initiating therapy than in the control group. Our study’s results suggest that PCSK-9 inhibitor therapy significantly reduces the concentration of factors influencing the stability of atherosclerotic plaque, which may explain their essential importance in reducing cardiovascular risk in patients receiving this treatment.
Collapse
|
12
|
Fan D, Zheng C, Wu W, Chen Y, Chen D, Hu X, Shen C, Chen M, Li R, Chen Y. MMP9 SNP and MMP SNP-SNP interactions increase the risk for ischemic stroke in the Han Hakka population. Brain Behav 2022; 12:e2473. [PMID: 34984852 PMCID: PMC8865147 DOI: 10.1002/brb3.2473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES To investigate the association of eight variants of four matrix metalloproteinase (MMP) genes with ischemic stroke (IS) and whether interactions among these single nucleotide polymorphisms (SNPs) increases the risk of IS. METHODS Among 547 patients with ischemic stroke and 350 controls, matrix-assisted laser desorption/ionization time of flight mass spectrometry was used to examine eight variants arising from four different genes, including MMP-1 (rs1799750), MMP-2 (rs243865, rs2285053, rs2241145), MMP-9 (rs17576), and MMP-12 (rs660599, rs2276109, and rs652438). Gene-gene interactions were employed using generalized multifactor dimensionality reduction (GMDR) methods. RESULTS The frequency of rs17576 was significantly higher in IS patients than in controls (p = .033). Logistic regression analysis revealed the AG and GG genotypes of rs17576 to be associated with a higher risk for IS, with the odds ratio and 95% confidence interval being 2.490 (1.251-4.959) and 2.494 (1.274-4.886), respectively. GMDR analysis showed a significant SNP-SNP interaction between rs17576 and rs660599 (the testing balanced accuracy was 53.70% and cross-validation consistency was 8/10, p = .0107). Logistic regression analysis showed the interaction between rs17576 and rs660599 to be an independent risk factor for IS with an odds ratio of 1.568 and a 95% confidence interval of 1.152-2.135. CONCLUSION An MMP-9 rs17576 polymorphism is associated with increased IS risk in the Han Hakka population and interaction between MMP-9 rs17576 and MMP-12 rs660599 is associated with increased IS risk as well.
Collapse
Affiliation(s)
- Daofeng Fan
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Chong Zheng
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Wenbao Wu
- Department of Acupuncture and Moxibustion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Yinjuan Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Dongping Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Xiaohong Hu
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Chaoxiong Shen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Mingsheng Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Rongtong Li
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| | - Yangui Chen
- Department of Neurology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fijian, China
| |
Collapse
|
13
|
Tiwari A, Elgrably B, Saar G, Vandoorne K. Multi-Scale Imaging of Vascular Pathologies in Cardiovascular Disease. Front Med (Lausanne) 2022; 8:754369. [PMID: 35071257 PMCID: PMC8766766 DOI: 10.3389/fmed.2021.754369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Betsalel Elgrably
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Imaging Inflammation in Patients and Animals: Focus on PET Imaging the Vulnerable Plaque. Cells 2021; 10:cells10102573. [PMID: 34685553 PMCID: PMC8533866 DOI: 10.3390/cells10102573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute coronary syndrome (ACS) describes a range of conditions associated with the rupture of high-risk or vulnerable plaque. Vulnerable atherosclerotic plaque is associated with many changes in its microenvironment which could potentially cause rapid plaque progression. Present-day PET imaging presents a plethora of radiopharmaceuticals designed to image different characteristics throughout plaque progression. Improved knowledge of atherosclerotic disease pathways has facilitated a growing number of pathophysiological targets for more innovative radiotracer design aimed at identifying at-risk vulnerable plaque and earlier intervention opportunity. This paper reviews the efficacy of PET imaging radiotracers 18F-FDG, 18F-NaF, 68Ga-DOTATATE, 64Cu-DOTATATE and 68Ga-pentixafor in plaque characterisation and risk assessment, as well as the translational potential of novel radiotracers in animal studies. Finally, we discuss our murine PET imaging experience and the challenges encountered.
Collapse
|
15
|
Kapelouzou A, Katsimpoulas M, Kontogiannis C, Lidoriki I, Georgiopoulos G, Kourek C, Papageorgiou C, Mylonas KS, Dritsas S, Charalabopoulos A, Cokkinos DV. A High-Cholesterol Diet Increases Toll-like Receptors and Other Harmful Factors in the Rabbit Myocardium: The Beneficial Effect of Statins. Curr Issues Mol Biol 2021; 43:818-830. [PMID: 34449561 PMCID: PMC8928938 DOI: 10.3390/cimb43020059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: A high-cholesterol diet (HCD) induces vascular atherosclerosis through vascular inflammatory and immunological processes via TLRs. The aim of this study is to investigate the mRNA expression of TLRs and other noxious biomarkers expressing inflammation, fibrosis, apoptosis, and cardiac dysfunction in the rabbit myocardium during (a) high-cholesterol diet (HCD), (b) normal diet resumption and (c) fluvastatin or rosuvastatin treatment. Methods: Forty-eight male rabbits were randomly divided into eight groups (n = 6/group). In the first experiment, three groups were fed with HCD for 1, 2 and 3 months. In the second experiment, three groups were fed with HCD for 3 months, followed by normal chow for 1 month and administration of fluvastatin or rosuvastatin for 1 month. Control groups were fed with normal chow for 90 and 120 days. The whole myocardium was removed; total RNA was isolated from acquired samples, and polymerase chain reaction, reverse transcription PCR and quantitative real-time PCR were performed. Results: mRNA of TLRs 2, 3, 4 and 8; interleukin-6; TNF-a; metalloproteinase-2; tissue inhibitor of metalloproteinase-1; tumor protein 53; cysteinyl aspartate specific proteinase-3; and brain natriuretic peptide (BNP) increased in HCD. Statins but not resumption of a normal diet decreased levels of these biomarkers and increased levels of antifibrotic factors. Conclusions: HCD increases the levels of TLRs; inflammatory, fibrotic and apoptotic factors; and BNP in the rabbit myocardium. Atherogenic diets adversely affect the myocardium at a molecular level and are reversed by statins.
Collapse
Affiliation(s)
- Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
| | - Michalis Katsimpoulas
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Attiko Hospital Animal, 19002 Athens, Greece
| | - Christos Kontogiannis
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Irene Lidoriki
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Georgios Georgiopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Kourek
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Papageorgiou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Konstantinos S. Mylonas
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Spyridon Dritsas
- Second Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Charalabopoulos
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Correspondence: ; Tel./Fax: +30-210-6597376
| |
Collapse
|
16
|
Buchler A, Munch M, Farber G, Zhao X, Al-Haddad R, Farber E, Rotstein BH. Selective Imaging of Matrix Metalloproteinase-13 to Detect Extracellular Matrix Remodeling in Atherosclerotic Lesions. Mol Imaging Biol 2021; 24:93-103. [PMID: 34231104 DOI: 10.1007/s11307-021-01626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Overexpression and activation of matrix metalloproteinase-13 (MMP-13) within atheroma increases susceptibility to plaque rupture, a major cause of severe cardiovascular complications. In comparison to pan-MMP targeting [18F]BR-351, we evaluated the potential for [18F]FMBP, a selective PET radiotracer for MMP-13, to detect extracellular matrix (ECM) remodeling in vascular plaques possessing markers of inflammation. PROCEDURES [18F]FMBP and [18F]BR-351 were initially assessed in vitro by incubation with en face aortae from 8 month-old atherogenic ApoE-/- mice. Ex vivo biodistributions, plasma metabolite analyses, and ex vivo autoradiography were analogously performed 30 min after intravenous radiotracer administration in age-matched C57Bl/6 and ApoE-/- mice under baseline or homologous blocking conditions. En face aortae were subsequently stained with Oil Red O (ORO), sectioned, and subject to immunofluorescence staining for Mac-2 and MMP-13. RESULTS High-resolution autoradiographic image analysis demonstrated target specificity and regional concordance to lipid-rich lesions. Biodistribution studies revealed hepatobiliary excretion, low accumulation of radioactivity in non-excretory organs, and few differences between strains and conditions in non-target organs. Plasma metabolite analyses uncovered that [18F]FMBP exhibited excellent in vivo stability (≥74% intact) while [18F]BR-351 was extensively metabolized (≤37% intact). Ex vivo autoradiography and histology of en face aortae revealed that [18F]FMBP, relative to [18F]BR-351, exhibited 2.9-fold greater lesion uptake, substantial specific binding (68%), and improved sensitivity to atherosclerotic tissue (2.9-fold vs 2.1-fold). Immunofluorescent staining of aortic en face cross sections demonstrated elevated Mac-2 and MMP-13-positive areas within atherosclerotic lesions identified by [18F]FMBP ex vivo autoradiography. CONCLUSIONS While both radiotracers successfully identified atherosclerotic plaques, [18F]FMBP showed superior specificity and sensitivity for lesions possessing features of destructive plaque remodeling. The detection of ECM remodeling by selective targeting of MMP-13 may enable characterization of high-risk atherosclerosis featuring elevated collagenase activity.
Collapse
Affiliation(s)
- Ariel Buchler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Maxime Munch
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Gedaliah Farber
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Xiaoling Zhao
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Rami Al-Haddad
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Eadan Farber
- University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada
| | - Benjamin H Rotstein
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. .,University of Ottawa Heart Institute, Ottawa, Ontario, K1Y 4W7, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
17
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Gao S, Xue X, Yin J, Gao L, Li Z, Li L, Gao S, Wang S, Liang R, Xu Y, Yu C, Zhu Y. Danlou tablet inhibits the inflammatory reaction of high-fat diet-induced atherosclerosis in ApoE knockout mice with myocardial ischemia via the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113158. [PMID: 32745509 DOI: 10.1016/j.jep.2020.113158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danlou tablet (DLT), a traditional herbal formula, has been used to treat chest discomfort (coronary atherosclerosis) in China. Although the anti-inflammatory activities of DLT have been proposed previously, the mechanisms of DLT in treating atherosclerosis with myocardial ischemia (AWMI) remain unknown. AIM OF THE STUDY Atherosclerosis can result in heart disease caused by stenosis or occlusion of the lumen, resulting in myocardial ischemia, hypoxia, or necrosis. In recent years, changes in people's diets, increased stress, and secondary fatigue and obesity etc. have resulted in increases in the number of patients with atherosclerosis. In cases where the condition has further developed, patients may suffer from myocardial ischemia, hypoxia, or necrosis. Many traditional Chinese medicine compounds have been prescribed for the treatment of AWMI. DLT has been used to treat chest discomfort (coronary atherosclerosis) in China. Based on previous research, the aim of this study was to further investigate the effect of DLT on AWMI, and describe the underlying mechanisms. MATERIALS AND METHODS To achieve this, an animal model of AWMI was established using apolipoprotein E (ApoE-/-) mice fed a high fat diet combined with isoprenaline (ISO) injection. For comparison, mouse models of only atherosclerosis and only myocardial ischemia were included. In the treatment groups, mice were treated daily with DLT at 700 mg/kg for four weeks. Echocardiographic evaluation, hematoxylin and eosin (H&E) staining, oil red O staining, ELISAs, Western blots, and immunohistochemical analyses were subsequently used to investigate the mechanism of DLT based on the NF-κB signaling pathway. RESULTS The results indicate that the use of DLT is effective, to varying degrees, for the treatment of atherosclerosis, myocardial ischemia, and AWMI in mice. After DLT treatment, the left ventricular structure and morphology of the mice, the histopathology of cardiac tissue, and atherosclerotic plaques in the aortas all improved to varying degrees. DLT could play a therapeutic role by regulating the NF-κB signaling pathway related to inflammatory factors, including TNF-α, IL-6, IL-1β, IL-8, MMP-1 and MMP-2, as well as protein expression of NF-κB p-50 and IκB-α, and positive cell expression of NF-κB p-50, IκB-α and phospho-NF-κB p-50 in the model mice. CONCLUSION These preliminary results indicate that the therapeutic efficacy of DLT on high-fat diet-induced atherosclerosis in ApoE-/- mice with myocardial ischemia could be exerted at least in part by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Xiaoxue Xue
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Jia Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lina Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; College of Pharmacy, Jining Medical University, Rizhao, PR China.
| | - Zhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Shuming Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Shuo Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Ru Liang
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yilan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
19
|
Ezeani M, Hagemeyer CE, Lal S, Niego B. Molecular imaging of atrial myopathy: Towards early AF detection and non-invasive disease management. Trends Cardiovasc Med 2020; 32:20-31. [DOI: 10.1016/j.tcm.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
|
20
|
Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A. The Effect of Statins through Mast Cells in the Pathophysiology of Atherosclerosis: a Review. Curr Atheroscler Rep 2020; 22:19. [PMID: 32458165 DOI: 10.1007/s11883-020-00837-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the evidence supporting the effects of statins on mast cells (MCs) in atherosclerosis and their molecular mechanism of action. RECENT FINDINGS Statins or HMG-CoA reductase inhibitors are known for their lipid-lowering properties and are widely used in the prevention and treatment of cardiovascular diseases. There is growing evidence that statins have an inhibitory effect on MCs, which contributes to the pleiotropic effect of statins in various diseases. MCs are one of the crucial effectors of the immune system which play an essential role in the pathogenesis of multiple disorders. Recent studies have shown that MCs are involved in the development of atherosclerotic plaques. MCs secrete various inflammatory cytokines (IL-6, IL4, TNF-α, and IFNγ) and inflammatory mediators (histamine, tryptase, proteoglycans) after activation by various stimulants. This, in turn, will exacerbate atherosclerosis. Statins suppress the activation of MCs via IgE inhibition which leads to inhibition of inflammatory mediators and cytokines which are involved in the development and progression of atherosclerosis. In keeping with this evidence presented here, MCs can be considered as one of the therapeutic targets for statins in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of hematology and blood bank, Tabas school of nursing, Birjand University of Medical Science, Birjand, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | | | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
22
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
23
|
Désogère P, Montesi SB, Caravan P. Molecular Probes for Imaging Fibrosis and Fibrogenesis. Chemistry 2019; 25:1128-1141. [PMID: 30014529 PMCID: PMC6542638 DOI: 10.1002/chem.201801578] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/26/2022]
Abstract
Fibrosis, or the accumulation of extracellular matrix molecules that make up scar tissue, is a common result of chronic tissue injury. Advances in the clinical management of fibrotic diseases have been hampered by the low sensitivity and specificity of noninvasive early diagnostic options, lack of surrogate end points for use in clinical trials, and a paucity of noninvasive tools to assess fibrotic disease activity longitudinally. Hence, the development of new methods to image fibrosis and fibrogenesis is a large unmet clinical need. Herein, an overview of recent and selected molecular probes for imaging of fibrosis and fibrogenesis by magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography is provided.
Collapse
Affiliation(s)
- Pauline Désogère
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| | - Sydney B Montesi
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- The Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02128, USA
| |
Collapse
|
24
|
Kiugel M, Hellberg S, Käkelä M, Liljenbäck H, Saanijoki T, Li XG, Tuomela J, Knuuti J, Saraste A, Roivainen A. Evaluation of [ 68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques. Molecules 2018; 23:molecules23123168. [PMID: 30513758 PMCID: PMC6321344 DOI: 10.3390/molecules23123168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. Methods: We studied sixteen low-density lipoprotein receptor deficient mice (LDLR-/-ApoB100/100) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [68Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. Results: Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall (p = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, p < 0.001), but weakly with MMP-9 staining (R = 0.40, p = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% (p = 0.0020). Conclusions: The MMP-2/9-targeting [68Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo.
Collapse
Affiliation(s)
- Max Kiugel
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Sanna Hellberg
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
| | - Tiina Saanijoki
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Xiang-Guo Li
- Turku PET Centre, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Johanna Tuomela
- Department of Cell Biology and Anatomy, University of Turku, FI-20520 Turku, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
| | - Antti Saraste
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
- Heart Center, Turku University Hospital, FI-20520 Turku, Finland.
- Institute of Clinical Medicine, University of Turku, FI-20520 Turku, Finland.
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
| |
Collapse
|
25
|
Ye Y, Toczek J, Gona K, Kim HY, Han J, Razavian M, Golestani R, Zhang J, Wu TL, Ghosh M, Jung JJ, Sadeghi MM. Novel Arginine-containing Macrocyclic MMP Inhibitors: Synthesis, 99mTc-labeling, and Evaluation. Sci Rep 2018; 8:11647. [PMID: 30076321 PMCID: PMC6076275 DOI: 10.1038/s41598-018-29941-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in tissue remodeling. Accordingly, MMP inhibitors and related radiolabeled analogs are important tools for MMP-targeted imaging and therapy in a number of diseases. Herein, we report design, synthesis, and evaluation of a new Arginine-containing macrocyclic hydroxamate analog, RYM, its hydrazinonicotinamide conjugate, RYM1 and 99mTc-labeled analog 99mTc-RYM1 for molecular imaging. RYM exhibited potent inhibition against a panel of recombinant human (rh) MMPs in vitro. RYM1 was efficiently labeled with 99mTcO4- to give 99mTc-RYM1 in a high radiochemical yield and high radiochemical purity. RYM1 and its decayed labeling product displayed similar inhibition potencies against rhMMP-12. Furthermore, 99mTc-RYM1 exhibited specific binding with lung tissue from lung-specific interleukin-13 transgenic mice, in which MMP activity is increased in conjunction with tissue remodeling and inflammation. The results support further development of such new water-soluble Arginine-containing macrocyclic hydroxamate MMP inhibitors for targeted imaging and therapy.
Collapse
Affiliation(s)
- Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Reza Golestani
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT, USA
| | - Mousumi Ghosh
- Yale West Campus Analytical Core, Yale University, West Haven, CT, USA
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
26
|
de Haas HJ, Narula J. Playing slot to hitting the jackpot in molecular imaging: On probability of uncovering subcellular pathogenesis vs achieving clinical applicability. J Nucl Cardiol 2018; 25:1124-1127. [PMID: 28353214 DOI: 10.1007/s12350-017-0850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Hans J de Haas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jagat Narula
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, 1190 Fifth Avenue, New York, NY, 10029, USA.
| |
Collapse
|
27
|
Spacek M, Zemanek D, Hutyra M, Sluka M, Taborsky M. Vulnerable atherosclerotic plaque - a review of current concepts and advanced imaging. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:10-17. [DOI: 10.5507/bp.2018.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/06/2018] [Indexed: 01/31/2023] Open
|
28
|
Abstract
Molecular imaging provides multiple imaging techniques to identify characteristics of vulnerable plaque including I) Inflammatory cells (the presence and metabolic activity of macrophages), II) synthesis of lipid and fatty acid in the plaque, III) the presence of hypoxia in severely inflamed lesions, IV) expression of factors stimulating angiogenesis, V) expression of protease enzymes in the lesion, VI) development of microthrombi in late-phase lesions, VII) apoptosis, and VIII) microcalcification.
Collapse
Affiliation(s)
- Takehiro Nakahara
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY.; Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan.
| | - Jagat Narula
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - H William Strauss
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY.; Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
29
|
Spronk HMH, Padro T, Siland JE, Prochaska JH, Winters J, van der Wal AC, Posthuma JJ, Lowe G, d'Alessandro E, Wenzel P, Coenen DM, Reitsma PH, Ruf W, van Gorp RH, Koenen RR, Vajen T, Alshaikh NA, Wolberg AS, Macrae FL, Asquith N, Heemskerk J, Heinzmann A, Moorlag M, Mackman N, van der Meijden P, Meijers JCM, Heestermans M, Renné T, Dólleman S, Chayouâ W, Ariëns RAS, Baaten CC, Nagy M, Kuliopulos A, Posma JJ, Harrison P, Vries MJ, Crijns HJGM, Dudink EAMP, Buller HR, Henskens YMC, Själander A, Zwaveling S, Erküner O, Eikelboom JW, Gulpen A, Peeters FECM, Douxfils J, Olie RH, Baglin T, Leader A, Schotten U, Scaf B, van Beusekom HMM, Mosnier LO, van der Vorm L, Declerck P, Visser M, Dippel DWJ, Strijbis VJ, Pertiwi K, Ten Cate-Hoek AJ, Ten Cate H. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118:229-250. [PMID: 29378352 DOI: 10.1160/th17-07-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
Collapse
Affiliation(s)
- H M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Padro
- Cardiovascular Research Center (ICCC), Hospital Sant Pau, Barcelona, Spain
| | - J E Siland
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - J H Prochaska
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A C van der Wal
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - J J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - E d'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Wenzel
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P H Reitsma
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - W Ruf
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - R H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - T Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N Asquith
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - J Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Moorlag
- Synapse, Maastricht, The Netherlands
| | - N Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States
| | - P van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J C M Meijers
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
| | - M Heestermans
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - T Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Dólleman
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Chayouâ
- Synapse, Maastricht, The Netherlands
| | - R A S Ariëns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - C C Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Kuliopulos
- Tufts University School of Graduate Biomedical Sciences, Biochemistry/Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - J J Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - M J Vries
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E A M P Dudink
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H R Buller
- Department of Vascular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Y M C Henskens
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - S Zwaveling
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse, Maastricht, The Netherlands
| | - O Erküner
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - A Gulpen
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F E C M Peeters
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Douxfils
- Department of Pharmacy, Thrombosis and Hemostasis Center, Faculty of Medicine, Namur University, Namur, Belgium
| | - R H Olie
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Baglin
- Department of Haematology, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - A Leader
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Tel Aviv, Israel
| | - U Schotten
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - B Scaf
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H M M van Beusekom
- Department of Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | | | - P Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | - D W J Dippel
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | - K Pertiwi
- Department of Cardiovascular Pathology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
30
|
Hu C, Zhu K, Li J, Wang C, Lai L. Molecular targets in aortic aneurysm for establishing novel management paradigms. J Thorac Dis 2017; 9:4708-4722. [PMID: 29268541 DOI: 10.21037/jtd.2017.10.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aortic aneurysm (AA) is a lethal disease and presents a large challenge for surgeons in the clinic. Although surgical management remains the major choice of AA, operative mortality remains high. With advances in understanding of the mechanisms of AAs, molecular targets, such as matrix metalloproteinases (MMPs), D-dimer, and inflammation markers, including C-reactive protein, interleukins and phagocytes, are important in the pathology of development of AA. These markers may become important for improving the diagnostic quality and provide more therapeutic choices for treatment of AA. Although these new markers require long-term trials before they can be translated into the clinic, they can still be helpful in determining new directions. The main aim of this review is to discuss the current findings of molecular targets in progression of AA and discuss the potential application of these new targets for managing this disease.
Collapse
Affiliation(s)
- Chengkai Hu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Lao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| |
Collapse
|
31
|
The Difficulty of Determining Disease Activity in Large Artery Vasculitis. JACC Cardiovasc Imaging 2017; 10:1053-1055. [DOI: 10.1016/j.jcmg.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 11/22/2022]
|
32
|
99mTc-labeled bevacizumab for detecting atherosclerotic plaque linked to plaque neovascularization and monitoring antiangiogenic effects of atorvastatin treatment in ApoE -/- mice. Sci Rep 2017; 7:3504. [PMID: 28615707 PMCID: PMC5471207 DOI: 10.1038/s41598-017-03276-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/26/2017] [Indexed: 01/03/2023] Open
Abstract
Atherosclerotic neovascularization plays a significant role in plaque instability as it provides additional lipids and inflammatory mediators to lesions, and resulting in intraplaque hemorrhage. Vascular endothelial growth factor-A (VEGF-A) is considered the predominant proangiogenic factor in angiogenesis. Bevacizumab, a humanized monoclonal antibody, specifically binds to all VEGF-A isoforms with high affinity. Therefore, in this study, we designed 99mTc-MAG3-bevacizumab as a probe, and then investigated its usefulness as a new imaging agent for the detection of plaque neovessels, while also assessing the therapeutic effect of atorvastatin treatment. The ApoE−/− mice treated with atorvastatin were used as the treatment group, and C57BL/6 J mice were selected as the control group. 99mTc-MAG3-bevacizumab uptake was visualized on atherosclerotic lesions by non-invasive in-vivo micro-SPECT/CT and ex-vivo BSGI planar imaging. The value of P/B in each part of the aorta of ApoE−/− mice was higher than in the treatment group and the C57BL/6 J mice, which was confirmed by Oil Red O staining, CD31 staining and VEGF immunohistochemistry staining. 99mTc-MAG3-bevacizumab imaging allowed for the non-invasive diagnosis and assessment of plaque neovascularization. Furthermore, this probe may be used as a new molecular imaging agent to assess the antiangiogenic effect of atorvastatin.
Collapse
|
33
|
Wang X, Peter K. Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing. Arterioscler Thromb Vasc Biol 2017; 37:1029-1040. [PMID: 28450298 DOI: 10.1161/atvbaha.116.306483] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
Abstract
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute (X.W., K.P.), Departments of Medicine (X.W., K.P.), and Immunology (K.P.), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
Reimann C, Brangsch J, Colletini F, Walter T, Hamm B, Botnar RM, Makowski MR. Molecular imaging of the extracellular matrix in the context of atherosclerosis. Adv Drug Deliv Rev 2017; 113:49-60. [PMID: 27639968 DOI: 10.1016/j.addr.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/25/2022]
Abstract
This review summarizes the current status of molecular imaging of the extracellular matrix (ECM) in the context of atherosclerosis. Apart from cellular components, the ECM of the atherosclerotic plaque plays a relevant role during the initiation of atherosclerosis and its' subsequent progression. Important structural and signaling components of the ECM include elastin, collagen and fibrin. However, the ECM not only plays a structural role in the arterial wall but also interacts with different cell types and has important biological signaling functions. Molecular imaging of the ECM has emerged as a new diagnostic tool to characterize biological aspects of atherosclerotic plaques, which cannot be characterized by current clinically established imaging techniques, such as X-ray angiography. Different types of molecular probes can be detected in vivo by imaging modalities such as magnetic resonance imaging (MRI), positron emission tomography (PET) and single photon emission computed tomography (SPECT). The modality specific signaling component of the molecular probe provides information about its spatial location and local concentration. The successful introduction of molecular imaging into clinical practice and guidelines could open new pathways for an earlier detection of disease processes and a better understanding of the disease state on a biological level. Quantitative in vivo molecular parameters could also contribute to the development and evaluation of novel cardiovascular therapeutic interventions and the assessment of response to treatment.
Collapse
Affiliation(s)
| | | | | | - Thula Walter
- Department of Radiology, Charité, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité, Berlin, Germany
| | - Rene M Botnar
- King's College London, Division of Imaging Sciences, United Kingdom; Wellcome Trust and EPSRC Medical Engineering Center, United Kingdom; BHF Centre of Excellence, King's College London, London, United Kingdom; NIHR Biomedical Research Centre, King's College London, London, United Kingdom
| | - Marcus R Makowski
- Department of Radiology, Charité, Berlin, Germany; King's College London, Division of Imaging Sciences, United Kingdom.
| |
Collapse
|
35
|
Noninvasive detection of matrix metalloproteinase-9 in atherosclerotic lesions using technetium-99m-labeled single-photon emission computed tomography in vivo. Nucl Med Commun 2017; 38:299-305. [DOI: 10.1097/mnm.0000000000000651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Toczek J, Ye Y, Gona K, Kim HY, Han J, Razavian M, Golestani R, Zhang J, Wu TL, Jung JJ, Sadeghi MM. Preclinical Evaluation of RYM1, a Matrix Metalloproteinase-Targeted Tracer for Imaging Aneurysm. J Nucl Med 2017; 58:1318-1323. [PMID: 28360209 DOI: 10.2967/jnumed.116.188656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, on the basis of which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1, was synthesized and labeled with 99mTc. Radiochemical stability of 99mTc-RYM1 was evaluated by radio-high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with 99mTc-RP805 in C57BL/6J mice (n = 10). 99mTc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E-deficient (apoE-/-) mice with CaCl2-induced carotid aneurysm (n = 11). Angiotensin II-infused apoE-/- (n = 16) mice were used for small-animal SPECT/CT imaging. Aortic tissue MMP activity and macrophage marker CD68 expression were assessed by zymography and reverse-transcription polymerase chain reaction. Results: RYM1 showed nanomolar range inhibition constants for several MMPs. 99mTc-RYM1 was radiochemically stable in mouse blood for 5 h and demonstrated rapid renal clearance and lower blood levels in vivo compared with 99mTc-RP805. 99mTc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Angiotensin II infusion in apoE-/- mice for 4 wk resulted in AAA formation in 36% (4/11) of surviving animals. In vivo 99mTc-RYM1 small-animal SPECT/CT images showed higher uptake of the tracer in AAA than nondilated aortae. Finally, aortic uptake of 99mTc-RYM1 in vivo correlated with aortic MMP activity and CD68 expression. Conclusion: The newly developed pan-MMP inhibitor-based tracer 99mTc-RYM1 displays favorable pharmacokinetics for early vascular imaging and enables specific detection of inflammation and MMP activity in aneurysm.
Collapse
Affiliation(s)
- Jakub Toczek
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Yunpeng Ye
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Kiran Gona
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Jinah Han
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Mahmoud Razavian
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Reza Golestani
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Jiasheng Zhang
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, Connecticut
| | - Jae-Joon Jung
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| | - Mehran M Sadeghi
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut .,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; and
| |
Collapse
|
37
|
Okubo R, Nakanishi R, Toda M, Saito D, Watanabe I, Yabe T, Amano H, Hirai T, Ikeda T. Pericoronary adipose tissue ratio is a stronger associated factor of plaque vulnerability than epicardial adipose tissue on coronary computed tomography angiography. Heart Vessels 2017; 32:813-822. [PMID: 28229226 DOI: 10.1007/s00380-017-0943-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
This study was designed to clarify the influence of pericoronary adipose tissue (PAT) on plaque vulnerability using coronary computed tomography angiography (CCTA). A total of 103 consecutive patients who underwent CCTA and subsequent percutaneous coronary intervention (PCI) using intravascular ultrasound (IVUS) for coronary artery disease were enrolled. The PAT ratio was calculated as the sum of the perpendicular thickness of the visceral layer between the coronary artery and the pericardium, or the coronary artery and the surface of the heart at the PCI site, divided by the PAT thickness without a plaque in the same vessel. PAT ratios were divided into low, mid and high tertile groups. Epicardial adipose tissue (EAT) thickness was measured at the eight points surrounding the heart. Multivariate logistic analysis was performed to determine whether the PAT ratio is predictive of vulnerable plaques (positive remodeling, low attenuation and/or spotty calcification) on CCTA or echo-attenuated plaque on IVUS. The Hounsfield unit of obstructive plaques >50% was lower in the high PAT group than in the mid and low PAT groups (47.5 ± 28.8 vs. 53.1 ± 29.7 vs. 64.7 ± 27.0, p = 0.04). In multivariate logistic analysis, a high PAT ratio was an independent, associated factor of vulnerable plaques on CCTA (OR: 3.55, 95% CI: 1.20-10.49), whereas mean EAT thickness was not (OR: 1.22, 95% CI: 0.82-1.83). We observed a similar result in predicting echo-attenuated plaque on IVUS. PAT ratio on CCTA was an associated factor of vulnerable plaques, while EAT was not. These results support the important concept of local effects of cardiac adipose tissue on plaque vulnerability.
Collapse
Affiliation(s)
- Ryo Okubo
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Rine Nakanishi
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Mikihito Toda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Daiga Saito
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ippei Watanabe
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Takayuki Yabe
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hideo Amano
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Tatsushi Hirai
- Gunma Cardiovascular Hospital, 1230 Nakao-machi, Takasaki, Gunma, 370-0001, Japan
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| |
Collapse
|
38
|
Krishnan S, Otaki Y, Doris M, Slipczuk L, Arnson Y, Rubeaux M, Dey D, Slomka P, Berman DS, Tamarappoo B. Molecular Imaging of Vulnerable Coronary Plaque: A Pathophysiologic Perspective. J Nucl Med 2017; 58:359-364. [DOI: 10.2967/jnumed.116.187906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 12/13/2022] Open
|
39
|
Qin H, Zhao Y, Zhang J, Pan X, Yang S, Xing D. Inflammation-targeted gold nanorods for intravascular photoacoustic imaging detection of matrix metalloproteinase-2 (MMP 2 ) in atherosclerotic plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1765-1774. [DOI: 10.1016/j.nano.2016.02.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 12/29/2022]
|
40
|
Lebel R, Lepage M. A comprehensive review on controls in molecular imaging: lessons from MMP-2 imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:187-210. [PMID: 24700747 DOI: 10.1002/cmmi.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
Metalloproteinases (MMPs), including MMP-2, play critical roles in tissue remodeling and are involved in a large array of pathologies, including cancer, arthritis and atherosclerosis. Their prognostic value warranted a large investment or resources in the development of noninvasive detection methods, based on probes for many current clinical and pre-clinical imaging modalities. However, the potential of imaging techniques is only matched by the complexity of the data they generate. This complexity must be properly assessed and accounted for in the early steps of probe design and testing in order to accurately determine the efficacy and efficiency of an imaging strategy. This review proposes basic rules for the evaluation of novel probes by addressing the specific case of MMP targeted probes.
Collapse
Affiliation(s)
- Réjean Lebel
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
41
|
Lee SJ, Paeng JC. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques. Korean J Radiol 2015; 16:955-66. [PMID: 26357491 PMCID: PMC4559792 DOI: 10.3348/kjr.2015.16.5.955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea. ; Department of Nuclear Medicine, National Cancer Center, Goyang 10408, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
42
|
Pu Z, Wang Y, Zhang Y, Huang J, Hong Y, He H, Liu C, Chen S, Grayburn PA, Huang P. The therapeuatic effect of Endostar on soft carotid plaque neovascularization in patients with non-small cell lung cancer. Sci Rep 2015; 5:8956. [PMID: 25753083 PMCID: PMC4354169 DOI: 10.1038/srep08956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/12/2015] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to investigate the effect of the angiogenesis inhibitor Endostar on carotid plaque neovascularization in patients with non-small cell lung cancer (NSCLC) using contrast-enhanced ultrasound (CEUS). Ninety-one patients who had NSCLC with soft carotid plaques were selected for treatment either with the NP regimen (vinorelbine + cisplatin) (43 patients) or with the ENP regimen (Endostar + NP) (48 patients). Plaque thickness and neovascularization of the plaque were assessed before and at 1 month after treatment using CEUS. Enhanced intensity (EI) of CEUS was used for quantification of plaque neovascularization. There was no significant changes in any group in thickness of plaque between recruitment and 1 month after treatment (P > 0.05 for all). There was no significant change in the EI of plaque in the controls or NP groups at 1 month after treatment (P > 0.05), while EI in the ENP group was significantly reduced at 1 month after treatment (P < 0.01) and significantly lower than that in the controls or NP group at 1 month after treatment (P < 0.001 both). This study indicates that carotid soft plaque neovascularization in patients with NSCLC can be reduced by anti-angiogenesis treatment.
Collapse
Affiliation(s)
- Zhaoxia Pu
- Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Yao Wang
- Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Ying Zhang
- Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Jing Huang
- Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Yurong Hong
- Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Huiliao He
- Department of Ultrasound, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| | - Chunmei Liu
- Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Shuyuan Chen
- Baylor Heart &Vascular Institute, Baylor University Medical Center, 621 N. Hall St., Suite H030 Dallas, Texas 75226, USA
| | - Paul A Grayburn
- Baylor Heart &Vascular Institute, Baylor University Medical Center, 621 N. Hall St., Suite H030 Dallas, Texas 75226, USA
| | - Pintong Huang
- 1] Department of Ultrasound, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China [2] Department of Ultrasound, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang 325027, China
| |
Collapse
|
43
|
Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol 2014; 21:1112-28; quiz 1129. [PMID: 25124827 PMCID: PMC4229449 DOI: 10.1007/s12350-014-9959-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/08/2014] [Indexed: 01/24/2023]
Abstract
Over the past decade, significant progress has been made in the development of novel imaging strategies focusing on the biology of the vessel wall for identification of vulnerable plaques. While the majority of these studies are still in the pre-clinical stage, few techniques (e.g., (18)F-FDG and (18)F-NaF PET imaging) have already been evaluated in clinical studies with promising results. Here, we will briefly review the pathobiology of atherosclerosis and discuss molecular imaging strategies that have been developed to target these events, with an emphasis on mechanisms that are associated with atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Sina Tavakoli
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Aseem Vashist
- Section of Cardiology, University of Connecticut School of Medicine, Farmington, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| | - Mehran M. Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States
- VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
44
|
Carnevale R, Bartimoccia S, Nocella C, Di Santo S, Loffredo L, Illuminati G, Lombardi E, Boz V, Del Ben M, De Marco L, Pignatelli P, Violi F. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. Atherosclerosis 2014; 237:108-16. [DOI: 10.1016/j.atherosclerosis.2014.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
45
|
Moustardas P, Kadoglou NPE, Katsimpoulas M, Kapelouzou A, Kostomitsopoulos N, Karayannacos PE, Kostakis A, Liapis CD. The complementary effects of atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in ApoE knockout mice. PLoS One 2014; 9:e108240. [PMID: 25264981 PMCID: PMC4180453 DOI: 10.1371/journal.pone.0108240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/26/2014] [Indexed: 12/02/2022] Open
Abstract
Aim This study aimed to investigate the effects of combined atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in apolipoproteinE (apoE) knockout mice. Methods Forty male, apoE−/− mice were fed a high-fat diet for 16 weeks. Thereafter, while maintained on high-fat diet, they were randomized into four (n = 10) groups for 8 additional weeks: Group CO: Control. Group AT: Atorvastatin treatment (10 mg/Kg/day). Group EX: Exercise-training on treadmill. Group AT+EX: Atorvastatin and simultaneous exercise training. At the study’s end, plasma cholesterol levels, lipids and triglycerides were measured, along with the circulating concentrations of matrix-metalloproteinases (MMP-2,3,8,9) and their inhibitors (TIMP-1,2,3). Plaque area and the relative concentrations of collagen, elastin, macrophages, smooth muscle cells, MMP-2,3,8,9 and TIMP-1,2,3 within plaques were determined. Lastly, MMP activity was assessed in the aortic arch. Results All intervention groups showed a lower degree of lumen stenosis, with atheromatous plaques containing more collagen and elastin. AT+EX group had less stenosis and more elastin compared to single intervention groups. MMP-3,-8 -9 and macrophage intra-plaque levels were reduced in all intervention groups. EX group had increased TIMP-1 levels within the lesions, while TIMP-2 was decreased in all intervention groups. The blood levels of the above molecules increased during atherosclerosis development, but they did not change after the therapeutic interventions in accordance to their intra-plaque levels. Conclusion The two therapeutic strategies act with synergy regarding the extent of the lesions and lumen stenosis. They stabilize the plaque, increasing its content in elastin and collagen, by influencing the MMP/TIMP equilibrium, which is mainly associated with the macrophage amount. While the increased MMP-2,-3,-8 -9, as well as TIMP-1 and TIMP-2 circulating levels are markers of atherosclerosis, they are not correlated with their corresponding concentrations within the lesions after the therapeutic interventions, and cannot serve as markers for the disease development/amelioration.
Collapse
Affiliation(s)
- Petros Moustardas
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- * E-mail:
| | - Nikolaos P. E. Kadoglou
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Michalis Katsimpoulas
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Alkiviadis Kostakis
- Center for Experimental Surgery, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Christos D. Liapis
- Department of Vascular Surgery, «Attikon» Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
46
|
Narula J, Roberts WC. Jagat Narula, MD, PhD: A conversation with the editor. Am J Cardiol 2014; 113:2070-85. [PMID: 24878131 DOI: 10.1016/j.amjcard.2014.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 11/16/2022]
|
47
|
Li X, Bauer W, Israel I, Kreissl MC, Weirather J, Richter D, Bauer E, Herold V, Jakob P, Buck A, Frantz S, Samnick S. Targeting P-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: correlation with in vivo 17.6T MRI. Arterioscler Thromb Vasc Biol 2014; 34:1661-7. [PMID: 24903095 DOI: 10.1161/atvbaha.114.303485] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Nuclear imaging of active plaques still remains challenging. Advanced atherosclerotic plaques have a strong expression of P-selectin by the endothelium overlying active atherosclerotic plaques, but not on the endothelium overlying inactive fibrous plaques. We proposed a new approach for noninvasive in vivo characterization of P-selectin on active plaques based on (68)Ga-Fucoidan, which is a polysaccharidic ligand of P-selectin with a nanomolar affinity. APPROACH AND RESULTS (68)Ga-Fucoidan was tested for its potential to discriminate vulnerable plaques on apolipoprotein E-deficient mice receiving a high cholesterol diet by positron emission tomography and in correlation with 17.6T MRI. Furthermore, (68)Ga-Fucoidan was evaluated on endothelial cells in vitro and ex vivo on active plaques using autoradiography. The cellular uptake rate was increased ≈2-fold by lipopolysaccharide induction. Interestingly, on autoradiography, more intensive tracer accumulation at active plaques with thin fibrous caps and high-density foam cells were observed in comparison with a weaker focal uptake in inactive fibrous plaque segments (R=1.7±0.3; P<0.05) and fatty streaks (R=2.4±0.4; P<0.01). Strong uptake of radiotracer colocalized with increased P-selectin expression and high-density macrophage. Focal vascular uptake (mean of target to background ratio=5.1±0.8) of (68)Ga-Fucoidan was detected in all apolipoprotein E-deficient mice. Anatomic structures of plaque were confirmed by 17.6T MRI. The autoradiography showed a good agreement of (68)Ga-Fucoidan uptake with positron emission tomography. CONCLUSIONS Our data suggest that (68)Ga-Fucoidan represents a versatile imaging biomarker for P-selectin with the potential to specifically detect P-selectin expression using positron emission tomography and to discriminate vulnerable plaques in vivo.
Collapse
Affiliation(s)
- Xiang Li
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Wolfgang Bauer
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Ina Israel
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Michael C Kreissl
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Johannes Weirather
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Dominik Richter
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Elisabeth Bauer
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Volker Herold
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Peter Jakob
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Buck
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Frantz
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| | - Samuel Samnick
- From the Department of Nuclear Medicine (X.L., I.I., M.C.K., D.R., A.B., S.S.), Medizinische Klinik und Poliklinik I (W.B., J.W., E.B., S.F.), IFB CHFC Wuerzburg (X.L., W.B., E.B., S.F., S.S.), and Department of Experimental Physics 5 (V.H., P.J.), University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Functional and molecular aortic imaging has shown great promise for evaluation of aortic disease, and may soon augment conventional assessment of aortic dimensions for the clinical management of patients. RECENT FINDINGS A range of imaging techniques is available for evaluation of patients with aortic disease. Magnetic resonance blood flow imaging can identify atherosclerosis prone aortic regions and may be useful for predicting aneurysm growth. Computational modeling can demonstrate significant differences in wall stress between abdominal aortic aneurysms of similar size and may better predict rupture than diameter alone. Metabolic imaging with fluorodeoxyglucose-PET [(FDG)-PET] can identify focal aortic wall inflammation that may portend rapid progression of disease. Molecular imaging with probes that target collagen and elastin can directly exhibit changes in the vessel wall associated with disease. SUMMARY The complexity of aortic disease is more fully revealed with new functional imaging techniques than with conventional anatomic analysis alone. This may better inform surveillance imaging regimens, medical management and decisions regarding early intervention for aortic disease.
Collapse
|
49
|
Stacy MR, Naito Y, Maxfield MW, Kurobe H, Tara S, Chan C, Rocco KA, Shinoka T, Sinusas AJ, Breuer CK. Targeted imaging of matrix metalloproteinase activity in the evaluation of remodeling tissue-engineered vascular grafts implanted in a growing lamb model. J Thorac Cardiovasc Surg 2014; 148:2227-33. [PMID: 24952823 DOI: 10.1016/j.jtcvs.2014.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/23/2014] [Accepted: 05/16/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The clinical translation of tissue-engineered vascular grafts has been demonstrated in children. The remodeling of biodegradable, cell-seeded scaffolds to functional neovessels has been partially attributed to matrix metalloproteinases. Noninvasive assessment of matrix metalloproteinase activity can indicate graft remodeling and elucidate the progression of neovessel formation. Therefore, matrix metalloproteinase activity was evaluated in grafts implanted in lambs using in vivo and ex vivo hybrid imaging. Graft growth and remodeling was quantified using in vivo x-ray computed tomography angiography. METHODS Cell-seeded and unseeded scaffolds were implanted in 5 lambs as inferior vena cava interposition grafts. At 2 and 6 months after implantation, in vivo angiography was used to assess graft morphology. In vivo and ex vivo single photon emission tomography/computed tomography imaging was performed with a radiolabeled compound targeting matrix metalloproteinase activity at 6 months. The neotissue was examined at 6 months using qualitative histologic and immunohistochemical staining and quantitative biochemical analysis. RESULTS The seeded grafts demonstrated significant luminal and longitudinal growth from 2 to 6 months. In vivo imaging revealed subjectively greater matrix metalloproteinase activity in grafts versus native tissue. Ex vivo imaging confirmed a quantitative increase in matrix metalloproteinase activity and demonstrated greater activity in unseeded versus seeded grafts. The glycosaminoglycan content was increased in seeded grafts versus unseeded grafts, without significant differences in collagen content. CONCLUSIONS Matrix metalloproteinase activity remained elevated in tissue-engineered grafts 6 months after implantation and could indicate remodeling. Optimization of in vivo imaging to noninvasively evaluate matrix metalloproteinase activity could assist in the serial assessment of vascular graft remodeling.
Collapse
Affiliation(s)
| | - Yuji Naito
- University of California, San Francisco, Benioff Children's Hospital, San Francisco, Calif
| | | | | | - Shuhei Tara
- Nationwide Children's Hospital, Columbus, Ohio
| | - Chung Chan
- Yale University School of Medicine, New Haven, Conn
| | | | | | | | | |
Collapse
|
50
|
Abstract
The extracellular matrix (ECM) is an essential component of the human body that is responsible for the proper function of various organs. Changes in the ECM have been implicated in the pathogenesis of several cardiovascular conditions including atherosclerosis, restenosis, and heart failure. Matrix components, such as collagens and noncollagenous proteins, influence the function and activity of vascular cells, particularly vascular smooth muscle cells and macrophages. Matrix proteins have been shown to be implicated in the development of atherosclerotic complications, such as plaque rupture, aneurysm formation, and calcification. ECM proteins control ECM remodeling through feedback signaling to matrix metalloproteinases (MMPs), which are the key players of ECM remodeling in both normal and pathological conditions. The production of MMPs is closely related to the development of an inflammatory response and is subjected to significant changes at different stages of atherosclerosis. Indeed, blood levels of circulating MMPs may be useful for the assessment of the inflammatory activity in atherosclerosis and the prediction of cardiovascular risk. The availability of a wide variety of low-molecular MMP inhibitors that can be conjugated with various labels provides a good perspective for specific targeting of MMPs and implementation of imaging techniques to visualize MMP activity in atherosclerotic plaques and, most interestingly, to monitor responses to antiatheroslerosis therapies. Finally, because of the crucial role of ECM in cardiovascular repair, the regenerative potential of ECM could be successfully used in constructing engineered scaffolds and vessels that mimic properties of the natural ECM and consist of the native ECM components or composite biomaterials. These scaffolds possess a great promise in vascular tissue engineering.
Collapse
|