1
|
Srour MK, Bidzimou MTK, Muralidharan P, Mitchell SM, Moya-Mendez ME, Parker LE, Valenzuela GR, Caraballo R, Garone G, Vigevano F, Weckhuysen S, Millevert C, Troncoso M, Matamala M, Balestrini S, Sisodiya SM, Poole J, Zucca C, Panagiotakaki E, Papadopoulou MT, Tchaicha S, Terzi MAP, Zawadzka M, Mazurkiewicz-Bełdzińska M, Fons C, Anticona J, De Grandis E, Cordani R, Pisciotta L, Groppa S, Paryjas S, Ragona F, Mangia E, Granata T, Megvinov A, Vavassori R, Mikati MA, Landstrom AP. Children and Adolescent Patients with Variants in the ATP1A3 -encoded Sodium-Potassium ATPase Alpha-3 Subunit Demonstrate an Impaired QT Response to Bradycardia and Predisposition to Sinus Node Dysfunction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.31.24312446. [PMID: 39252916 PMCID: PMC11383464 DOI: 10.1101/2024.08.31.24312446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Alternating hemiplegia of childhood (AHC) is a rare disorder with both neurologic and cardiac manifestations. The ATP1A3-D801N variant is associated with a pathologically short QT interval and risk of ventricular arrhythmia following bradycardia; however, the mechanism of this remains unknown. We investigated the relationship between heart rate (HR), QT, and QTc, hypothesizing that individuals with ATP1A3-D801N have abnormal, impaired shortening of QT and QTc at lower HR leading to arrhythmia predisposition. Methods We performed a retrospective observational study of individuals who underwent clinical evaluation, Holter monitoring, and genetic testing for AHC at Duke University Hospitals. We also compiled a group of healthy individuals as a control cohort. A larger, worldwide cohort of individuals with ATP1A3 -related phenotypes was compiled to investigate sinus node dysfunction. Linear regression analysis was then performed. Results The cohort consisted of 44 individuals with ATP1A3 -related phenotypes with 81 Holter recordings (52.27% female; mean age at first Holter 8.04 years, range 0.58 - 33 years), compared to 36 healthy individuals with 57 Holter recordings (52.78% female; mean age at first Holter 9.84 years, range 0.08 - 38 years). Individuals with ATP1A3-D801N had reduced prolongation of QT at lower HR, manifest as a significantly lower slope for HR vs QT compared to healthy (P<0.0001). This resulted in a significantly higher slope of the relationship for HR vs QTc compared to healthy (P<0.0001). Individuals with ATP1A3 -related phenotypes and baseline QTc <350 milliseconds (ms) had increased shortening of QT and QTc at lower HR compared to those with normal QTc (P=0.003; P=0.001). Among worldwide cases, 3 out of 131 individuals with ATP1A3 -related phenotypes required device implantation and/or had sinus pauses >4 seconds. Conclusions Individuals with the ATP1A3-D801N variant exhibit paradoxical shortening of QT and QTc at lower HR, which contributes to an increased risk of arrhythmias during bradycardia. This is exacerbated by an underlying risk of sinus node dysfunction. Clinical Perspective What is Known:Individuals with ATP1A3-D801N have a short baseline QTc.Two individuals with AHC experienced ventricular fibrillation following bradycardia.What the Study Adds:The QT and QTc shorten to a greater extent at lower heart rate in individuals with ATP1A3-D801N than in healthy individuals. Individuals with ATP1A3 -related phenotypes and QTc <350ms show greater impairment of QT and QTc dynamics than those with normal QTc. There is low prevalence of device implantation and significant sinus pauses in individuals with ATP1A3 -related phenotypes, with a relatively greater prevalence in those with ATP1A3-D801N.
Collapse
|
2
|
Lampert R, Chung EH, Ackerman MJ, Arroyo AR, Darden D, Deo R, Dolan J, Etheridge SP, Gray BR, Harmon KG, James CA, Kim JH, Krahn AD, La Gerche A, Link MS, MacIntyre C, Mont L, Salerno JC, Shah MJ. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm 2024; 21:e151-e252. [PMID: 38763377 DOI: 10.1016/j.hrthm.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Youth and adult participation in sports continues to increase, and athletes may be diagnosed with potentially arrhythmogenic cardiac conditions. This international multidisciplinary document is intended to guide electrophysiologists, sports cardiologists, and associated health care team members in the diagnosis, treatment, and management of arrhythmic conditions in the athlete with the goal of facilitating return to sport and avoiding the harm caused by restriction. Expert, disease-specific risk assessment in the context of athlete symptoms and diagnoses is emphasized throughout the document. After appropriate risk assessment, management of arrhythmias geared toward return to play when possible is addressed. Other topics include shared decision-making and emergency action planning. The goal of this document is to provide evidence-based recommendations impacting all areas in the care of athletes with arrhythmic conditions. Areas in need of further study are also discussed.
Collapse
Affiliation(s)
- Rachel Lampert
- Yale University School of Medicine, New Haven, Connecticut
| | - Eugene H Chung
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Rajat Deo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joe Dolan
- University of Utah, Salt Lake City, Utah
| | | | - Belinda R Gray
- University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | | - Andrew D Krahn
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Andre La Gerche
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | | | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jack C Salerno
- University of Washington School of Medicine, Seattle, Washington
| | - Maully J Shah
- Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Van Gelder IC, Rienstra M, Bunting KV, Casado-Arroyo R, Caso V, Crijns HJGM, De Potter TJR, Dwight J, Guasti L, Hanke T, Jaarsma T, Lettino M, Løchen ML, Lumbers RT, Maesen B, Mølgaard I, Rosano GMC, Sanders P, Schnabel RB, Suwalski P, Svennberg E, Tamargo J, Tica O, Traykov V, Tzeis S, Kotecha D. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2024; 45:3314-3414. [PMID: 39210723 DOI: 10.1093/eurheartj/ehae176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
|
4
|
Soroush N, Aarnoudse AJ, Kavousi M, Kors JA, Ikram MA, Stricker BH, Ahmadizar F. The NOS1AP gene rs10494366 common genetic variant does not modify the risk of sudden cardiac death in users of digoxin. Br J Clin Pharmacol 2024; 90:2159-2165. [PMID: 38822495 DOI: 10.1111/bcp.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
AIMS Common genetic variations in the nitric oxide synthase-1 adaptor protein (NOS1AP) gene are associated with QT-interval prolongation. In a previous study, we observed an association between the rs10494366 variant of this gene and an increased QT-interval shortening in digoxin users. As QT-interval shortening is a risk factor for sudden cardiac death (SCD), in this study, we investigated whether the association between digoxin use and risk of SCD differs in participants with different NOS1AP rs10494366 genotypes. METHODS We included 11 377 individuals from the prospective population-based cohort of the Rotterdam Study. We used Cox proportional hazard regression analysis with digoxin as time-dependent exposure to estimate the associations between current digoxin use and the risk of SCD among different rs10494366 genotype groups in the adjusted models. We also studied whether such an association was dose-dependent, comparing high dosage (≥ 0.250 mg), moderate dosage (0.125 mg ≤ dose< 0.250 mg) and low dosage (< 0.125 mg) digoxin users with non-users. RESULTS The median baseline age of the total study population was 62 (interquartile range [IQR] 58-71) years. The cumulative incidence of SCD was 4.1% (469 cases), and among them, 74 (15.7%) individuals were current digoxin users at the time of death, during a median follow-up of 11.5 (IQR 6.5-17) years. Current digoxin users had an increased risk of SCD (multivariable adjusted model hazard ratio [HR]: 3.07; 95% confidence interval [CI]: 2.38-3.98), with no significant differences between the three genotype groups. The adjusted HRs were 4.03 [95% CI: 1.98-8.21] in the minor homozygous GG, 3.46 [95% CI: 2.37-5.04] in the heterozygous TG and 2.56 [95%CI: 1.70-3.86] in the homozygous TT genotype groups. Compared to low- and moderate-dose, high-dose digoxin users with GG genotype had the highest risk of SCD (HR: 5.61 [95% CI: 1.34-23.47]). CONCLUSIONS Current use of digoxin is associated with a significantly increased risk of SCD. The NOS1AP gene rs10494366 variant did not modify the digoxin-associated risk of SCD in a population of European ancestry.
Collapse
Affiliation(s)
- Negin Soroush
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Fariba Ahmadizar
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Rakza R, Groussin P, Benali K, Behar N, Mabo P, Pavin D, Leclercq C, Liang JJ, Martins RP. Quinidine for ventricular arrhythmias: A comprehensive review. Trends Cardiovasc Med 2024:S1050-1738(24)00061-6. [PMID: 39079606 DOI: 10.1016/j.tcm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/25/2024]
Abstract
Quinidine, the first antiarrhythmic drug, was widely used during the 20th century. Multiple studies have been conducted to provide insights into the pharmacokinetics and pleiotropic effects of Class Ia antiarrhythmic drugs. However, safety concerns and the emergence of new drugs led to a decline in their use during the 1990s. Despite this, recent studies have reignited the interest in quinidine, particularly for ventricular arrhythmias, where other antiarrhythmics have failed. In conditions such as Brugada syndrome, idiopathic ventricular fibrillation, early repolarization syndrome, short QT syndrome, and electrical storms, quinidine remains a valuable asset. Starting from the European and American recommendations, this comprehensive review aimed to explore the various indications for quinidine and the studies that support its use. We also discuss the potential future of quinidine, including the necessary research to optimize its use and patient selection. Additionally, it addresses the imperative task of mitigating the iatrogenic burden associated with quinidine usage and confronts the challenge of ensuring drug accessibility.
Collapse
Affiliation(s)
- Redwane Rakza
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Pierre Groussin
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | | | - Nathalie Behar
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Philippe Mabo
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Dominique Pavin
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | | | - Jackson J Liang
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Raphaël P Martins
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
| |
Collapse
|
6
|
Zhuang Z, Li Y, Zhao Y, Huang N, Wang W, Xiao W, Du J, Dong X, Song Z, Jia J, Liu Z, Clarke R, Qi L, Huang T. Genetically determined blood pressure, antihypertensive drug classes, and frailty: A Mendelian randomization study. Aging Cell 2024; 23:e14173. [PMID: 38725159 PMCID: PMC11258474 DOI: 10.1111/acel.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 07/21/2024] Open
Abstract
Observational studies have suggested that the use of antihypertensive drugs was associated with the risk of frailty; however, these findings may be biased by confounding and reverse causality. This study aimed to explore the effect of genetically predicted lifelong lowering blood pressure (BP) through different antihypertensive medications on frailty. One-sample Mendelian randomization (MR) and summary data-based MR (SMR) were applied. We utilized two kinds of genetic instruments to proxy the antihypertensive medications, including genetic variants within or nearby drugs target genes associated with systolic/diastolic BP, and expression level of the corresponding gene. Among 298,618 UK Biobank participants, one-sample MR analysis observed that genetically proxied BB use (relative risk ratios, 0.76; 95% CI, 0.65-0.90; p = 0.001) and CCB use (0.83; 0.72-0.95; p = 0.007), equivalent to a 10-mm Hg reduction in systolic BP, was significantly associated with lower risk of pre-frailty. In addition, although not statistically significant, the effect directions of systolic BP through ACEi variants (0.72; 0.39-1.33; p = 0.296) or thiazides variants (0.74; 0.53-1.03; p = 0.072) on pre-frailty were also protective. Similar results were obtained in analyses for diastolic BP. SMR of expression in artery showed that decreased expression level of KCNH2, a target gene of BBs, was associated with lower frailty index (beta -0.02, p = 2.87 × 10-4). This MR analysis found evidence that the use of BBs and CCBs was potentially associated with reduced frailty risk in the general population, and identified KCNH2 as a promising target for further clinical trials to prevent manifestations of frailty.
Collapse
Affiliation(s)
- Zhenhuang Zhuang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Yueying Li
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Yimin Zhao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Ninghao Huang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Wenxiu Wang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Wendi Xiao
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Jie Du
- National Institute for Nutrition and HealthChinese Center for Diseases Control and PreventionBeijingChina
| | - Xue Dong
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Zimin Song
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Jinzhu Jia
- Department of Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Zhonghua Liu
- Department of BiostatisticsColumbia UniversityNew YorkNew YorkUSA
| | - Robert Clarke
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical MedicineTulane UniversityNew OrleansLouisianaUSA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases (Peking University)Ministry of EducationBeijingChina
- Center for Intelligent Public Health, Academy for Artificial IntelligencePeking UniversityBeijingChina
| |
Collapse
|
7
|
Gutiérrez LK, Moreno-Manuel AI, Jalife J. Kir2.1-Na V1.5 channelosome and its role in arrhythmias in inheritable cardiac diseases. Heart Rhythm 2024; 21:630-646. [PMID: 38244712 DOI: 10.1016/j.hrthm.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Sudden cardiac death in children and young adults is a relatively rare but tragic event whose pathophysiology is unknown at the molecular level. Evidence indicates that the main cardiac sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) physically interact and form macromolecular complexes (channelosomes) with common partners, including adapter, scaffolding, and regulatory proteins that help them traffic together to their eventual membrane microdomains. Most important, dysfunction of either or both ion channels has direct links to hereditary human diseases. For example, certain mutations in the KCNJ2 gene encoding the Kir2.1 protein result in Andersen-Tawil syndrome type 1 and alter both inward rectifier potassium and sodium inward currents. Similarly, trafficking-deficient mutations in the gene encoding the NaV1.5 protein (SCN5A) result in Brugada syndrome and may also disturb both inward rectifier potassium and sodium inward currents. Moreover, gain-of-function mutations in KCNJ2 result in short QT syndrome type 3, which is extremely rare but highly arrhythmogenic, and can modify Kir2.1-NaV1.5 interactions in a mutation-specific way, further highlighting the relevance of channelosomes in ion channel diseases. By expressing mutant proteins that interrupt or modify Kir2.1 or NaV1.5 function in animal models and patient-specific pluripotent stem cell-derived cardiomyocytes, investigators are defining for the first time the mechanistic framework of how mutation-induced dysregulation of the Kir2.1-NaV1.5 channelosome affects cardiac excitability, resulting in arrhythmias and sudden death in different cardiac diseases.
Collapse
Affiliation(s)
- Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Moreno-Manuel AI, Macías Á, Cruz FM, Gutiérrez LK, Martínez F, González-Guerra A, Martínez Carrascoso I, Bermúdez-Jimenez FJ, Sánchez-Pérez P, Vera-Pedrosa ML, Ruiz-Robles JM, Bernal JA, Jalife J. The Kir2.1E299V mutation increases atrial fibrillation vulnerability while protecting the ventricles against arrhythmias in a mouse model of short QT syndrome type 3. Cardiovasc Res 2024; 120:490-505. [PMID: 38261726 PMCID: PMC11060485 DOI: 10.1093/cvr/cvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
AIMS Short QT syndrome type 3 (SQTS3) is a rare arrhythmogenic disease caused by gain-of-function mutations in KCNJ2, the gene coding the inward rectifier potassium channel Kir2.1. We used a multidisciplinary approach and investigated arrhythmogenic mechanisms in an in-vivo model of de-novo mutation Kir2.1E299V identified in a patient presenting an extremely abbreviated QT interval and paroxysmal atrial fibrillation. METHODS AND RESULTS We used intravenous adeno-associated virus-mediated gene transfer to generate mouse models, and confirmed cardiac-specific expression of Kir2.1WT or Kir2.1E299V. On ECG, the Kir2.1E299V mouse recapitulated the QT interval shortening and the atrial-specific arrhythmia of the patient. The PR interval was also significantly shorter in Kir2.1E299V mice. Patch-clamping showed extremely abbreviated action potentials in both atrial and ventricular Kir2.1E299V cardiomyocytes due to a lack of inward-going rectification and increased IK1 at voltages positive to -80 mV. Relative to Kir2.1WT, atrial Kir2.1E299V cardiomyocytes had a significantly reduced slope conductance at voltages negative to -80 mV. After confirming a higher proportion of heterotetrameric Kir2.x channels containing Kir2.2 subunits in the atria, in-silico 3D simulations predicted an atrial-specific impairment of polyamine block and reduced pore diameter in the Kir2.1E299V-Kir2.2WT channel. In ventricular cardiomyocytes, the mutation increased excitability by shifting INa activation and inactivation in the hyperpolarizing direction, which protected the ventricle against arrhythmia. Moreover, Purkinje myocytes from Kir2.1E299V mice manifested substantially higher INa density than Kir2.1WT, explaining the abbreviation in the PR interval. CONCLUSION The first in-vivo mouse model of cardiac-specific SQTS3 recapitulates the electrophysiological phenotype of a patient with the Kir2.1E299V mutation. Kir2.1E299V eliminates rectification in both cardiac chambers but protects against ventricular arrhythmias by increasing excitability in both Purkinje-fiber network and ventricles. Consequently, the predominant arrhythmias are supraventricular likely due to the lack of inward rectification and atrial-specific reduced pore diameter of the Kir2.1E299V-Kir2.2WT heterotetramer.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Action Potentials
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/metabolism
- Atrial Fibrillation/genetics
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/metabolism
- Disease Models, Animal
- Genetic Predisposition to Disease
- Heart Rate/genetics
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
Collapse
Affiliation(s)
- Ana I Moreno-Manuel
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Fernando Martínez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrés González-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Isabel Martínez Carrascoso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco José Bermúdez-Jimenez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Department of Cardiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Sánchez-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | - Juan Manuel Ruiz-Robles
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 4810, USA
| |
Collapse
|
9
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Lenarczyk R, Zeppenfeld K, Tfelt-Hansen J, Heinzel FR, Deneke T, Ene E, Meyer C, Wilde A, Arbelo E, Jędrzejczyk-Patej E, Sabbag A, Stühlinger M, di Biase L, Vaseghi M, Ziv O, Bautista-Vargas WF, Kumar S, Namboodiri N, Henz BD, Montero-Cabezas J, Dagres N. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 2024; 26:euae049. [PMID: 38584423 PMCID: PMC10999775 DOI: 10.1093/europace/euae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.
Collapse
Affiliation(s)
- Radosław Lenarczyk
- Medical University of Silesia, Division of Medical Sciences, Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases, Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank R Heinzel
- Cardiology, Angiology, Intensive Care, Städtisches Klinikum Dresden Campus Friedrichstadt, Dresden, Germany
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
- Clinic for Electrophysiology, Klinikum Nuernberg, University Hospital of the Paracelsus Medical University, Nuernberg, Germany
| | - Elena Ene
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Düsseldorf, Germany
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ewa Jędrzejczyk-Patej
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Markus Stühlinger
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luigi di Biase
- Albert Einstein College of Medicine at Montefiore Hospital, New York, NY, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Ohad Ziv
- Case Western Reserve University, Cleveland, OH, USA
- The MetroHealth System Campus, Cleveland, OH, USA
| | | | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Sydney, Australia
| | | | - Benhur Davi Henz
- Instituto Brasilia de Arritmias-Hospital do Coração do Brasil-Rede Dor São Luiz, Brasilia, Brazil
| | - Jose Montero-Cabezas
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Ifedili I, Maturana M, Kayali S, Levine Y, Kabra R, Jha SK. A case of short QT-interval postventricular arrhythmia arrest from Torsade De Pointes, a new phenotype, or the result of tachycardia-mediated imbalance. J Cardiovasc Electrophysiol 2024; 35:501-504. [PMID: 38174843 DOI: 10.1111/jce.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION We report the case of an 18-year-old female with recurrent syncope that was discovered to have congenital long QT syndrome (LQTS) and episodes of a transiently short QT interval after spontaneous termination of polymorphic ventricular tachycardia. METHODS & RESULTS A cardiac event monitor revealed a long QT interval and initiation of polymorphic ventricular tachycardia by a premature ventricular complex on the preceding T-wave. After 1 minute of ventricular fibrillation, her arrhythmia spontaneously terminated with evidence of a short QT interval. CONCLUSIONS A transient, potentially artificial, short QT interval following Torsades de Pointes can occur in patients with LQTS.
Collapse
Affiliation(s)
- Ikechukwu Ifedili
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Miguel Maturana
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sharif Kayali
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Yehoshua Levine
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajesh Kabra
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Kansas City Heart Rhythm Institute, Overland Park, Kansas, USA
| | - Sunil K Jha
- Department of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
13
|
Badura K, Buławska D, Dąbek B, Witkowska A, Lisińska W, Radzioch E, Skwira S, Młynarska E, Rysz J, Franczyk B. Primary Electrical Heart Disease-Principles of Pathophysiology and Genetics. Int J Mol Sci 2024; 25:1826. [PMID: 38339103 PMCID: PMC10855675 DOI: 10.3390/ijms25031826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Primary electrical heart diseases, often considered channelopathies, are inherited genetic abnormalities of cardiomyocyte electrical behavior carrying the risk of malignant arrhythmias leading to sudden cardiac death (SCD). Approximately 54% of sudden, unexpected deaths in individuals under the age of 35 do not exhibit signs of structural heart disease during autopsy, suggesting the potential significance of channelopathies in this group of age. Channelopathies constitute a highly heterogenous group comprising various diseases such as long QT syndrome (LQTS), short QT syndrome (SQTS), idiopathic ventricular fibrillation (IVF), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and early repolarization syndromes (ERS). Although new advances in the diagnostic process of channelopathies have been made, the link between a disease and sudden cardiac death remains not fully explained. Evolving data in electrophysiology and genetic testing suggest previously described diseases as complex with multiple underlying genes and a high variety of factors associated with SCD in channelopathies. This review summarizes available, well-established information about channelopathy pathogenesis, genetic basics, and molecular aspects relative to principles of the pathophysiology of arrhythmia. In addition, general information about diagnostic approaches and management is presented. Analyzing principles of channelopathies and their underlying causes improves the understanding of genetic and molecular basics that may assist general research and improve SCD prevention.
Collapse
Affiliation(s)
- Krzysztof Badura
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Dominika Buławska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Sylwia Skwira
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland (S.S.)
| |
Collapse
|
14
|
Schulze-Bahr E, Dittmann S. Human Genetics of Cardiac Arrhythmias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:1033-1055. [PMID: 38884768 DOI: 10.1007/978-3-031-44087-8_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inherited forms of cardiac arrhythmias mostly are rare diseases (prevalence <1:2000) and considered to be either "primary electrical heart disorders" due to the absence of structural heart abnormalities or "cardiac ion channel disorders" due to the myocellular structures involved. Precise knowledge of the electrocardiographic features of these diseases and their genetic classification will enable early disease recognition and prevention of cardiac events including sudden cardiac death.The genetic background of these diseases is complex and heterogeneous. In addition to the predominant "private character" of a mutation in each family, locus heterogeneity involving many ion channel genes for the same familial arrhythmia syndrome is typical. Founder pathogenic variants or mutational hot spots are uncommon. Moreover, phenotypes may vary and overlap even within the same family and mutation carriers. For the majority of arrhythmias, the clinical phenotype of an ion channel mutation is restricted to cardiac tissue, and therefore, the disease is nonsyndromic.Recent and innovative methods of parallel DNA analysis (so-called next-generation sequencing, NGS) will enhance further mutation and other variant detection as well as arrhythmia gene identification.
Collapse
Affiliation(s)
- Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany.
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Münster, Germany
| |
Collapse
|
15
|
Pupaza A, Cinteza E, Vasile CM, Nicolescu A, Vatasescu R. Assessment of Sudden Cardiac Death Risk in Pediatric Primary Electrical Disorders: A Comprehensive Overview. Diagnostics (Basel) 2023; 13:3551. [PMID: 38066791 PMCID: PMC10706572 DOI: 10.3390/diagnostics13233551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 06/30/2024] Open
Abstract
Sudden cardiac death (SCD) in children is a devastating event, often linked to primary electrical diseases (PED) of the heart. PEDs, often referred to as channelopathies, are a group of genetic disorders that disrupt the normal ion channel function in cardiac cells, leading to arrhythmias and sudden cardiac death. This paper investigates the unique challenges of risk assessment and stratification for channelopathy-related SCD in pediatric patients-Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, long QT syndrome, Anderson-Tawil syndrome, short QT syndrome, and early repolarization syndrome. We explore the intricate interplay of genetic, clinical, and electrophysiological factors that contribute to the complex nature of these conditions. Recognizing the significance of early identification and tailored management, this paper underscores the need for a comprehensive risk stratification approach specifically designed for pediatric populations. By integrating genetic testing, family history, and advanced electrophysiological evaluation, clinicians can enhance their ability to identify children at the highest risk for SCD, ultimately paving the way for more effective preventive strategies and improved outcomes in this vulnerable patient group.
Collapse
Affiliation(s)
- Adelina Pupaza
- Department of Cardiology, Clinic Emergency Hospital Bucharest, 050098 Bucharest, Romania;
| | - Eliza Cinteza
- Department of Pediatrics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania;
| | - Corina Maria Vasile
- Pediatric and Adult Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, 33600 Bordeaux, France;
| | - Alin Nicolescu
- Department of Pediatric Cardiology, “Marie Curie” Emergency Children’s Hospital, 041451 Bucharest, Romania;
| | - Radu Vatasescu
- Department of Cardiology, Clinic Emergency Hospital Bucharest, 050098 Bucharest, Romania;
- Cardio-Thoracic Department, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
16
|
Pasero E, Gaita F, Randazzo V, Meynet P, Cannata S, Maury P, Giustetto C. Artificial Intelligence ECG Analysis in Patients with Short QT Syndrome to Predict Life-Threatening Arrhythmic Events. SENSORS (BASEL, SWITZERLAND) 2023; 23:8900. [PMID: 37960599 PMCID: PMC10649184 DOI: 10.3390/s23218900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Short QT syndrome (SQTS) is an inherited cardiac ion-channel disease related to an increased risk of sudden cardiac death (SCD) in young and otherwise healthy individuals. SCD is often the first clinical presentation in patients with SQTS. However, arrhythmia risk stratification is presently unsatisfactory in asymptomatic patients. In this context, artificial intelligence-based electrocardiogram (ECG) analysis has never been applied to refine risk stratification in patients with SQTS. The purpose of this study was to analyze ECGs from SQTS patients with the aid of different AI algorithms to evaluate their ability to discriminate between subjects with and without documented life-threatening arrhythmic events. The study group included 104 SQTS patients, 37 of whom had a documented major arrhythmic event at presentation and/or during follow-up. Thirteen ECG features were measured independently by three expert cardiologists; then, the dataset was randomly divided into three subsets (training, validation, and testing). Five shallow neural networks were trained, validated, and tested to predict subject-specific class (non-event/event) using different subsets of ECG features. Additionally, several deep learning and machine learning algorithms, such as Vision Transformer, Swin Transformer, MobileNetV3, EfficientNetV2, ConvNextTiny, Capsule Networks, and logistic regression were trained, validated, and tested directly on the scanned ECG images, without any manual feature extraction. Furthermore, a shallow neural network, a 1-D transformer classifier, and a 1-D CNN were trained, validated, and tested on ECG signals extracted from the aforementioned scanned images. Classification metrics were evaluated by means of sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve. Results prove that artificial intelligence can help clinicians in better stratifying risk of arrhythmia in patients with SQTS. In particular, shallow neural networks' processing features showed the best performance in identifying patients that will not suffer from a potentially lethal event. This could pave the way for refined ECG-based risk stratification in this group of patients, potentially helping in saving the lives of young and otherwise healthy individuals.
Collapse
Affiliation(s)
- Eros Pasero
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Fiorenzo Gaita
- Cardiology Unit, J Medical, 1015 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Vincenzo Randazzo
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Pierre Meynet
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
- Division of Cardiology, Città della Salute e della Scienza Hospital, 10126 Turin, Italy
| | - Sergio Cannata
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Philippe Maury
- Department of Cardiology, University Hospital Rangueil, 31400 Toulouse, France;
| | - Carla Giustetto
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
- Division of Cardiology, Città della Salute e della Scienza Hospital, 10126 Turin, Italy
| |
Collapse
|
17
|
Hansom S, Laksman Z. Implantable Devices in Genetic Heart Disease: Disease-Specific Device Selection and Programming. Card Electrophysiol Clin 2023; 15:249-260. [PMID: 37558296 DOI: 10.1016/j.ccep.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Diagnosis and risk stratification of rare genetic heart diseases remains clinically challenging. In many cases, there are few data and insufficient numbers to support randomized controlled trials. While implantable cardioverter defibrillator (ICD) use is vital to protect higher-risk individuals from life-threatening ventricular arrhythmias, low-risk individuals also require protection from unnecessary ICDs and their associated complications. Once an ICD has been implanted, appropriate device programming is essential to ensure maximal protection while balancing the risks of inappropriate therapy.
Collapse
Affiliation(s)
- Simon Hansom
- Division of Cardiology, Arrhythmia Service, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Zachary Laksman
- Department of Medicine and the School of Biomedical Engineering, Room 211 - 1033 Davie Street, Vancouver, British Columbia V6E 1M7, Canada.
| |
Collapse
|
18
|
Christiansen MK, Kjær-Sørensen K, Clavsen NC, Dittmann S, Jensen MF, Guldbrandsen HØ, Pedersen LN, Sørensen RH, Lildballe DL, Müller K, Müller P, Vogel K, Rudic B, Borggrefe M, Oxvig C, Aalkjær C, Schulze-Bahr E, Matchkov V, Bundgaard H, Jensen HK. Genetic analysis identifies the SLC4A3 anion exchanger as a major gene for short QT syndrome. Heart Rhythm 2023; 20:1136-1143. [PMID: 36806574 DOI: 10.1016/j.hrthm.2023.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND A variant in the SLC4A3 anion exchanger has been identified as a novel cause of short QT syndrome (SQTS), but the clinical importance of SLC4A3 as a cause of SQTS or sudden cardiac death remains unknown. OBJECTIVE The purpose of this study was to investigate the prevalence of potential disease-causing variants in SQTS patients using gene panels including SLC4A3. METHODS In this multicenter study, genetic testing was performed in 34 index patients with SQTS. The pathogenicity of novel SLC4A3variants was validated in a zebrafish embryo heart model. RESULTS Potentially disease-causing variants were identified in 9 (26%) patients and were mainly (15%) located in SLC4A3: 4 patients heterozygous for novel nonsynonymous SLC4A3 variants-p.Arg600Cys, p.Arg621Trp, p.Glu852Asp, and p.Arg952His-and 1 patient with the known p.Arg370His variant. In other SQTS genes, potentially disease-causing variants were less frequent (2× in KCNQ1, 1× in KCNJ2, and CACNA1C each). SLC4A3 variant carriers (n = 5) had a similar heart rate but shorter QT and J point to T wave peak intervals than did noncarriers (n = 29). Knockdown of slc4a3 in zebrafish resulted in shortened heart rate-corrected QT intervals (calculated using the Bazett formula) that could be rescued by overexpression of the native human SLC4A3-encoded protein (AE3), but neither by the mutated AE3 variants p.Arg600Cys, p.Arg621Trp, p.Glu852Asp nor by p.Arg952His, suggesting pathogenicity of these variants. Dysfunction in slc4a3/AE3 was associated with alkaline cytosol and shortened action potential of cardiomyocytes. CONCLUSION In about a quarter of patients with SQTS, a potentially disease-causing variant can be identified. Nonsynonymous variants in SLC4A3 represent the most common cause of SQTS, underscoring the importance of including SLC4A3 in the genetic screening of patients with SQTS or sudden cardiac death.
Collapse
Affiliation(s)
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Natacha C Clavsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sven Dittmann
- Institut für Genetik von Herzerkrankungen (IfGH), Universitätsklinikum Münster, Münster, Germany
| | - Maja Fuhlendorff Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark
| | | | | | | | | | - Klara Müller
- Institut für Genetik von Herzerkrankungen (IfGH), Universitätsklinikum Münster, Münster, Germany
| | - Patrick Müller
- Institut für Genetik von Herzerkrankungen (IfGH), Universitätsklinikum Münster, Münster, Germany
| | - Kira Vogel
- Institut für Genetik von Herzerkrankungen (IfGH), Universitätsklinikum Münster, Münster, Germany
| | - Boris Rudic
- First Department of Medicine, University Medical Centre Mannheim (UMM), Faculty of Medicine Mannheim, University of Heidelberg, European Center for AngioScience (ECAS), and DZHK (German Center for Cardiovascular Research) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, University Medical Centre Mannheim (UMM), Faculty of Medicine Mannheim, University of Heidelberg, European Center for AngioScience (ECAS), and DZHK (German Center for Cardiovascular Research) partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Eric Schulze-Bahr
- Institut für Genetik von Herzerkrankungen (IfGH), Universitätsklinikum Münster, Münster, Germany; ERN Reference Center GUARD-Heart, Münster, Germany
| | | | - Henning Bundgaard
- Unit for Inherited Cardiovascular Diseases, The Heart Centre, National University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Kjærulf Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Health, Aarhus University, Aarhus N, Denmark; ERN Reference Center GUARD-Heart, Aarhus, Denmark
| |
Collapse
|
19
|
Lee CH, Scheinman MM. "Short" also matters. Heart Rhythm 2023; 20:1197-1198. [PMID: 37517862 DOI: 10.1016/j.hrthm.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Chan-Hee Lee
- Division of Cardiology, Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea; Division of Cardiology, Section of Electrophysiology, University of California San Francisco, San Francisco, California
| | - Melvin M Scheinman
- Division of Cardiology, Section of Electrophysiology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
20
|
Aweimer A, Mügge A, Akin I, El-Battrawy I. [Asymptomatic channelopathies : Risk stratification and primary prophylaxis]. Herzschrittmacherther Elektrophysiol 2023; 34:101-108. [PMID: 37103573 DOI: 10.1007/s00399-023-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 04/28/2023]
Abstract
In general, asymptomatic patients with channelopathies are at increased risk of sudden cardiac death (SCD), due to pathogenic variants in genes encoding ion channels that result in pathological ion currents. Channelopathies include long-QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and short-QT syndrome (SQTS). In addition to the patient's clinical presentation, history and clinical tests, the main diagnostic tools are electrocardiography and genetic testing to identify known gene mutations. Early and correct diagnosis as well as further risk stratification of affected individuals and their relatives are paramount for prognosis. The recent availability of risk score calculators for LQTS and BrS allows SCD risk to be accurately estimated. The extent to which these improve patient selection for treatment with an implantable cardioverter-defibrillator (ICD) system is currently unknown. In most cases, initiation of basic therapy in asymptomatic patients in the form of avoidance of triggers, which are usually medication or stressful situations, is sufficient and contributes to risk reduction. In addition, there are other risk-reducing prophylactic measures, such as permanent medication with nonselective β‑ blockers (for LQTS and CPVT) or mexiletine for LQTS3. Patients and their family members should be referred to specialized outpatient clinics for individual risk stratification in the sense of primary prophylaxis.
Collapse
Affiliation(s)
- Assem Aweimer
- Klinik für Kardiologie und Angiologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Deutschland.
| | - Andreas Mügge
- Klinik für Kardiologie und Angiologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Deutschland
| | - Ibrahim Akin
- I. Medizinische Klinik, Universitätsklinikum Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Ibrahim El-Battrawy
- Klinik für Kardiologie und Angiologie, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil Bochum, Ruhr Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Deutschland
| |
Collapse
|
21
|
Chousou PA, Chattopadhyay R, Tsampasian V, Vassiliou VS, Pugh PJ. Electrocardiographic Predictors of Atrial Fibrillation. Med Sci (Basel) 2023; 11:medsci11020030. [PMID: 37092499 PMCID: PMC10123668 DOI: 10.3390/medsci11020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common pathological arrhythmia, and its complications lead to significant morbidity and mortality. However, patients with AF can often go undetected, especially if they are asymptomatic or have a low burden of paroxysms. Identification of those at high risk of AF development may help refine screening and management strategies. METHODS PubMed and Embase databases were systematically searched for studies looking at electrocardiographic predictors of AF from inception to August 2021. RESULTS A total of 115 studies were reported which examined a combination of atrial and ventricular parameters that could be electrocardiographic predictors of AF. Atrial predictors include conduction parameters, such as the PR interval, p-wave index and dispersion, and partial interatrial or advanced interatrial block, or morphological parameters, such as p-wave axis, amplitude and terminal force. Ventricular predictors include abnormalities in QRS amplitude, morphology or duration, QT interval duration, r-wave progression and ST segment, i.e., t-wave abnormalities. CONCLUSIONS There has been significant interest in electrocardiographic prediction of AF, especially in populations at high risk of atrial AF, such as those with an embolic stroke of undetermined source. This review highlights the breadth of possible predictive parameters, and possible pathological bases for the predictive role of each parameter are proposed.
Collapse
Affiliation(s)
- Panagiota Anna Chousou
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Rahul Chattopadhyay
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Peter John Pugh
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1550] [Impact Index Per Article: 1550.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
23
|
Genome Editing and Myocardial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1396:53-73. [PMID: 36454459 DOI: 10.1007/978-981-19-5642-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.
Collapse
|
24
|
Ono K, Iwasaki Y, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y, Koretsune Y, Sasano T, Sumitomo N, Takahashi N, Niwano S, Hagiwara N, Hisatome I, Furukawa T, Honjo H, Maruyama T, Murakawa Y, Yasaka M, Watanabe E, Aiba T, Amino M, Itoh H, Ogawa H, Okumura Y, Aoki‐Kamiya C, Kishihara J, Kodani E, Komatsu T, Sakamoto Y, Satomi K, Shiga T, Shinohara T, Suzuki A, Suzuki S, Sekiguchi Y, Nagase S, Hayami N, Harada M, Fujino T, Makiyama T, Maruyama M, Miake J, Muraji S, Murata H, Morita N, Yokoshiki H, Yoshioka K, Yodogawa K, Inoue H, Okumura K, Kimura T, Tsutsui H, Shimizu W. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. J Arrhythm 2022; 38:833-973. [PMID: 36524037 PMCID: PMC9745564 DOI: 10.1002/joa3.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
25
|
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022; 43:3997-4126. [PMID: 36017572 DOI: 10.1093/eurheartj/ehac262] [Citation(s) in RCA: 933] [Impact Index Per Article: 466.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
26
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
27
|
Corrado D, Link MS, Schwartz PJ. Implantable defibrillators in primary prevention of genetic arrhythmias. A shocking choice? Eur Heart J 2022; 43:3029-3040. [PMID: 35725934 PMCID: PMC9443985 DOI: 10.1093/eurheartj/ehac298] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022] Open
Abstract
Many previously unexplained life-threatening ventricular arrhythmias and sudden cardiac deaths (SCDs) in young individuals are now recognized to be genetic in nature and are ascribed to a growing number of distinct inherited arrhythmogenic diseases. These include hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia (VT), and short QT syndrome. Because of their lower frequency compared to coronary disease, risk factors for SCD are not very precise in patients with inherited arrhythmogenic diseases. As randomized studies are generally non-feasible and may even be ethically unjustifiable, especially in the presence of effective therapies, the risk assessment of malignant arrhythmic events such as SCD, cardiac arrest due to ventricular fibrillation (VF), appropriate implantable cardioverter defibrillator (ICD) interventions, or ICD therapy on fast VT/VF to guide ICD implantation is based on observational data and expert consensus. In this document, we review risk factors for SCD and indications for ICD implantation and additional therapies. What emerges is that, allowing for some important differences between cardiomyopathies and channelopathies, there is a growing and disquieting trend to create, and then use, semi-automated systems (risk scores, risk calculators, and, to some extent, even guidelines) which then dictate therapeutic choices. Their common denominator is a tendency to favour ICD implantation, sometime with reason, sometime without it. This contrasts with the time-honoured approach of selecting, among the available therapies, the best option (ICDs included) based on the clinical judgement for the specific patient and after having assessed the protection provided by optimal medical treatment.
Collapse
Affiliation(s)
- Domenico Corrado
- Inherited Arrhythmogenic Cardiomyopathies and Sports Cardiology Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Padova, Italy
| | - Mark S Link
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| |
Collapse
|
28
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
29
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
30
|
Mareddy C, ScM MT, McDaniel G, Monfredi O. Exercise in the Genetic Arrhythmia Syndromes - A Review. Clin Sports Med 2022; 41:485-510. [PMID: 35710274 DOI: 10.1016/j.csm.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Provide a brief summary of your article (100-150 words; no references or figures/tables). The synopsis appears only in the table of contents and is often used by indexing services such as PubMed. Genetic arrhythmia syndromes are rare, yet harbor the potential for highly consequential, often unpredictable arrhythmias or sudden death events. There has been historical uncertainty regarding the correct advice to offer to affected patients who are reasonably wanting to participate in sporting and athletic endeavors. In some cases, this had led to abundantly cautious disqualifications, depriving individuals from participation unnecessarily. Societal guidance and expert opinion has evolved significantly over the last decade or 2, along with our understanding of the genetics and natural history of these conditions, and the emphasis has switched toward shared decision making with respect to the decision to participate or not, with patients and families becoming better informed, and willing participants in the decision making process. This review aims to give a brief update of the salient issues for the busy physician concerning these syndromes and to provide a framework for approaching their management in the otherwise aspirational or keen sports participant.
Collapse
Affiliation(s)
- Chinmaya Mareddy
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, 1215 Lee St, Charlottesville, VA 22908, USA
| | - Matthew Thomas ScM
- Department of Pediatrics, P.O. Box 800386, Charlottesville, VA 22908, USA
| | - George McDaniel
- Department of Pediatric Cardiology, Battle Building 6th Floor, 1204 W. Main St, Charlottesville, VA 22903, USA
| | - Oliver Monfredi
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, 1215 Lee St, Charlottesville, VA 22908, USA.
| |
Collapse
|
31
|
Xu Q, Huang X, Meng Z, Li Y, Zhong R, Li X, Cyganek L, El-Battrawy I, Akin I, Zhou X, Lan H. Antiarrhythmic Effects of Vernakalant in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with Short QT Syndrome Type 1. J Cardiovasc Dev Dis 2022; 9:jcdd9040112. [PMID: 35448088 PMCID: PMC9032933 DOI: 10.3390/jcdd9040112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Short QT syndrome (SQTS) may result in sudden cardiac death. So far, no drugs, except quinidine, have been demonstrated to be effective in some patients with SQTS type 1 (SQTS1). This study was designed to examine the potential effectiveness of vernakalant for treating SQTS1 patients, using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with SQTS1. (2) Methods: Patch clamp and calcium imaging techniques were used to examine the drug effects. (3) Results: Vernakalant prolonged the action potential duration (APD) in hiPSC-CMs from a SQTS1-patient (SQTS1-hiPSC-CMs). In spontaneously beating SQTS1-hiPSC-CMs, vernakalant reduced the arrhythmia-like events induced by carbachol plus epinephrine. Vernakalant failed to suppress the hERG channel currents but reduced the outward small-conductance calcium-activated potassium channel current. In addition, it enhanced Na/Ca exchanger currents and late sodium currents, in agreement with its APD-prolonging effect. (4) Conclusions: The results demonstrated that vernakalant can prolong APD and reduce arrhythmia-like events in SQTS1-hiPSC-CMs and may be a candidate drug for treating arrhythmias in SQTS1-patients.
Collapse
Affiliation(s)
- Qiang Xu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China;
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
| | - Xuemei Huang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China;
| | - Zenghui Meng
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
| | - Yingrui Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
| | - Rujia Zhong
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
| | - Xin Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site, 37073 Göttingen, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site, 68229 Heidelberg-Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
- DZHK (German Center for Cardiovascular Research), Partner Site, 68229 Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, 68167 Mannheim, Germany; (Z.M.); (Y.L.); (R.Z.); (X.L.); (I.E.-B.); (I.A.)
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China;
- DZHK (German Center for Cardiovascular Research), Partner Site, 68229 Heidelberg-Mannheim, Germany
- Correspondence: (X.Z.); (H.L.)
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China;
- Correspondence: (X.Z.); (H.L.)
| |
Collapse
|
32
|
Ono K, Iwasaki YK, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y, Koretsune Y, Sasano T, Sumitomo N, Takahashi N, Niwano S, Hagiwara N, Hisatome I, Furukawa T, Honjo H, Maruyama T, Murakawa Y, Yasaka M, Watanabe E, Aiba T, Amino M, Itoh H, Ogawa H, Okumura Y, Aoki-Kamiya C, Kishihara J, Kodani E, Komatsu T, Sakamoto Y, Satomi K, Shiga T, Shinohara T, Suzuki A, Suzuki S, Sekiguchi Y, Nagase S, Hayami N, Harada M, Fujino T, Makiyama T, Maruyama M, Miake J, Muraji S, Murata H, Morita N, Yokoshiki H, Yoshioka K, Yodogawa K, Inoue H, Okumura K, Kimura T, Tsutsui H, Shimizu W. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. Circ J 2022; 86:1790-1924. [DOI: 10.1253/circj.cj-20-1212] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yu-ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Masaharu Akao
- Department of Cardiovascular Medicine, National Hospital Organization Kyoto Medical Center
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yoshinori Kobayashi
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital
| | | | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | | | | | - Tetsushi Furukawa
- Department of Bio-information Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Haruo Honjo
- Research Institute of Environmental Medicine, Nagoya University
| | - Toru Maruyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital
| | - Yuji Murakawa
- The 4th Department of Internal Medicine, Teikyo University School of Medicine, Mizonokuchi Hospital
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center
| | - Eiichi Watanabe
- Department of Cardiology, Fujita Health University School of Medicine
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Mari Amino
- Department of Cardiovascular Medicine, Tokai University School of Medicine
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital
| | - Hisashi Ogawa
- Department of Cardiology, National Hospital Organisation Kyoto Medical Center
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Chizuko Aoki-Kamiya
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Jun Kishihara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Eitaro Kodani
- Department of Cardiovascular Medicine, Nippon Medical School Tama Nagayama Hospital
| | - Takashi Komatsu
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine
| | | | | | - Tsuyoshi Shiga
- Department of Clinical Pharmacology and Therapeutics, The Jikei University School of Medicine
| | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Atsushi Suzuki
- Department of Cardiology, Tokyo Women's Medical University
| | - Shinya Suzuki
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Yukio Sekiguchi
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Noriyuki Hayami
- Department of Fourth Internal Medicine, Teikyo University Mizonokuchi Hospital
| | | | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University, Faculty of Medicine
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Mitsunori Maruyama
- Department of Cardiovascular Medicine, Nippon Medical School Musashi Kosugi Hospital
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine
| | - Shota Muraji
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | | | - Norishige Morita
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital
| | - Hisashi Yokoshiki
- Department of Cardiovascular Medicine, Sapporo City General Hospital
| | - Koichiro Yoshioka
- Division of Cardiology, Department of Internal Medicine, Tokai University School of Medicine
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | | | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | | |
Collapse
|
33
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2700] [Impact Index Per Article: 1350.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
34
|
A descriptive report on short QT interval in Kherameh branch of the PERSIAN cohort study. Sci Rep 2022; 12:2898. [PMID: 35190598 PMCID: PMC8861052 DOI: 10.1038/s41598-022-06835-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Short QT-interval is a condition that bear the suspicion of short QT syndrome (SQTS). SQTS is known to increase risk of life-threatening arrythmias and sudden cardiac death (SCD). Due to the insufficient population-based studies and use of various QT cut-off values, it accounts for as an undiagnosed condition. In this study, we sought for prevalence of short QT interval in Kherameh cohort study, one of the southern branches of the Prospective Epidemiological Research Studies in Iran (PERSIAN). Data of 4363 adult subjects were analyzed from phase 1 of the cohort during 2014–2017. The corrected QT (QTc) intervals were calculated and electrocardiograms (ECGs) with QTc of less than 370 ms (msec) were reanalyzed for bradycardia, early repolarization, atrial fibrillation (AF), arrhythmias, and other electrical conduction abnormalities. Seventy-two subjects (1.65%) had a QTc of less than 370 ms (mean QTc of 360.72 ± 11.72). A male predominance and a lower mean heart rate observed in SQTS susceptible group (M/F of 1/0.26 vs. 1/1.145, p-value < 0.0001; 58.389 ± 9.787 vs. 70.899 ± 11.775; p-value < 0.0001) compare to the subjects with normal QTc. At least, 2 subjects with high-probability SQTS and 3 with intermediate-probability SQTS identified. The frequency of AF, syncope, bradycardia, early repolarization, low voltage ECG, and infantile SCD in first- and second-degree relatives were 16.67, 4.17, 33.33, 11.11, 11.11, 11.11%, respectively. The prevalence of short QT interval in our cohort was in line with previous studies. The incidence of cardiac symptoms/events, familial SCDs and ECG derived specific findings were high amongst SQTS-susceptible index persons. However, these variables could not predict the symptomatic subjects, which emphasizes gene studies and family screening.
Collapse
|
35
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
36
|
Fan X, Yang G, Kowitz J, Duru F, Saguner AM, Akin I, Zhou X, El-Battrawy I. Preclinical short QT syndrome models: studying the phenotype and drug-screening. Europace 2021; 24:481-493. [PMID: 34516623 DOI: 10.1093/europace/euab214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5-10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype-phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype-phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome.
Collapse
Affiliation(s)
- Xuehui Fan
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Guoqiang Yang
- Department of Acupuncture and Rehabilitation, Hospital (T.CM.) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.,Research Unit of Molecular Imaging Probes, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Firat Duru
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Ibrahim Akin
- University of Mannheim, University of Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Xiaobo Zhou
- University of Mannheim, University of Heidelberg, Germany.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.,DZHK (German Center for Cardiovascular Research) Partner Site, Heidelberg-Mannheim, Germany
| | - Ibrahim El-Battrawy
- University of Mannheim, University of Heidelberg, Germany.,Department of Cardiology, University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Affiliation(s)
- Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mihail G Chelu
- Section of Cardiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Heidbuchel H, Arbelo E, D'Ascenzi F, Borjesson M, Boveda S, Castelletti S, Miljoen H, Mont L, Niebauer J, Papadakis M, Pelliccia A, Saenen J, Sanz de la Garza M, Schwartz PJ, Sharma S, Zeppenfeld K, Corrado D. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace 2021; 23:147-148. [PMID: 32596731 DOI: 10.1093/europace/euaa106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This paper belongs to a series of recommendation documents for participation in leisure-time physical activity and competitive sports by the European Association of Preventive Cardiology (EAPC). Together with an accompanying paper on supraventricular arrhythmias, this second text deals specifically with those participants in whom some form of ventricular rhythm disorder is documented, who are diagnosed with an inherited arrhythmogenic condition, and/or who have an implanted pacemaker or cardioverter defibrillator. A companion text on recommendations in athletes with supraventricular arrhythmias is published in the European Journal of Preventive Cardiology. Since both texts focus on arrhythmias, they are the result of a collaboration between EAPC and the European Heart Rhythm Association (EHRA). The documents provide a framework for evaluating eligibility to perform sports, based on three elements, i.e. the prognostic risk of the arrhythmias when performing sports, the symptomatic impact of arrhythmias while performing sports, and the potential progression of underlying structural problems as the result of sports.
Collapse
Affiliation(s)
- Hein Heidbuchel
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mats Borjesson
- Centre for Health and Performance (CHP), Department of Food, Nutrition and Sport Sciences, Gothenburg University, Sweden.,Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Serge Boveda
- Cardiology Department, Clinique Pasteur, 45 Avenue de Lombez, 31076 Toulouse, France
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Hielko Miljoen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Josef Niebauer
- Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Antonio Pelliccia
- National Institute of Sports Medicine, Italian National Olympic Committee, Via dei Campi Sportivi 46, Rome, Italy
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, University Antwerp, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | | | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's University of London, London, UK.,St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Domenico Corrado
- Department of Cardiology, University of Padova, Padova, Italy.,Department of Pathology, University of Padova, Padova, Italy
| |
Collapse
|
39
|
Suzuki H, Horie M, Ozawa J, Sumitomo N, Ohno S, Hoshino K, Ehara E, Takahashi K, Maeda Y, Yoshinaga M, Tateno S, Takagi J, Doi S, Hoshina S, Sato I, Ishikawa T, Makita N, Chinushi M, Akazawa K, Nagashima M. Novel electrocardiographic criteria for short QT syndrome in children and adolescents. Europace 2021; 23:2029-2038. [PMID: 34179980 DOI: 10.1093/europace/euab097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/25/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Although shortening of the corrected QT interval (QTc) is a key finding in the diagnosis of short QT syndrome (SQTS), there may be overlap of the QTc between SQTS patients and normal subjects in childhood and adolescence. We aimed to investigate electrocardiographic findings for differentiation of SQTS patients. METHODS AND RESULTS The SQTS group comprised 34 SQTS patients <20 years old, including 9 from our institutions and 25 from previous reports. The control group comprised 61 apparently healthy subjects with an QTc of <360 ms who were selected from 13 314 participants in a school-based screening programme. We compared electrocardiographic findings, including QT and Jpoint-Tpeak intervals (QT and J-Tpeak, respectively), those corrected by using the Bazett's and Fridericia's formulae (cB and cF, respectively) and early repolarization (ER) between the groups. QT, QTc by using Bazett's formula (QTcB), QTc by using Fridericia's formula (QTcF), J-Tpeak, J-Tpeak cB, and J-Tpeak cF were significantly shorter in the SQTS group than in the control group. On receiver operating characteristic curve analysis, the area under the curve (AUC) was largest for QTcB (0.888) among QT, QTcB, and QTcF, with a cut-off value of 316 ms (sensitivity: 79.4% and specificity: 96.7%). The AUC was largest for J-Tpeak cB (0.848) among J-Tpeak, J-Tpeak cB, and J-Tpeak cF, with a cut-off value of 181 ms (sensitivity: 80.8% and specificity: 91.8%). Early repolarization was found more frequently in the SQTS group than in the control group (67% vs. 23%, P = 0.001). CONCLUSION A QTcB <316 ms, J-Tpeak cB < 181 ms, and the presence of ER may indicate SQTS patients in childhood and adolescence.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Niigata 951-8520, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Junichi Ozawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
| | - Seiko Ohno
- Center of Epidemiologic Research in Asia, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,Department of Bioscience and Genetics, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Kenji Hoshino
- Department of Pediatric Cardiology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama 330-8777, Japan
| | - Eiji Ehara
- Department of Pediatric Cardiology, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori Miyakojima-ku, Osaka 531-0021, Japan
| | - Kazuhiro Takahashi
- Department of Pediatric Cardiology, Okinawa Nanbu and Children's Medical Center, 118-1 Arakawa, Haebaru-chou, Okinawa 901-1193, Japan
| | - Yoshichika Maeda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masao Yoshinaga
- Department of Pediatrics, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyamacho, Kagoshima 892-0853, Japan
| | - Shigeru Tateno
- Department of Pediatrics, Chiba Kaihin Municipal Hospital, 3-31-1 Isobe, Mihama-ku, Chiba 261-0012, Japan
| | - Junichi Takagi
- Division of Pediatrics, Developmental and Urological-Reproductive Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Shozaburo Doi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Hoshina
- Department of Pediatrics, Niigata City General Hospital, 463-7 Shumoku, Chuo-ku, Niigata 950-1197, Japan
| | - Isamu Sato
- Yoikono-shounika-Sato, 1-5-47 Kandoji, Chuuou-ku, Niigata 950-0983, Japan
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Naomasa Makita
- Omics Research Center, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka 564-8565, Japan
| | - Masaomi Chinushi
- Graduate School of Health Sciences, Niigata University School of Medicine, 2-746 Asahimachi-dori, Niigata 951-8518, Japan
| | - Kohei Akazawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Niigata 951-8520, Japan
| | - Masami Nagashima
- Aichi Children's Health and Medical Center, 7-426 Morioka-cho, Ohfu, Aichi 474-8710, Japan
| |
Collapse
|
40
|
Gnecchi M, Sala L, Schwartz PJ. Precision Medicine and cardiac channelopathies: when dreams meet reality. Eur Heart J 2021; 42:1661-1675. [PMID: 33686390 PMCID: PMC8088342 DOI: 10.1093/eurheartj/ehab007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Precision Medicine (PM) is an innovative approach that, by relying on large populations’ datasets, patients’ genetics and characteristics, and advanced technologies, aims at improving risk stratification and at identifying patient-specific management through targeted diagnostic and therapeutic strategies. Cardiac channelopathies are being progressively involved in the evolution brought by PM and some of them are benefiting from these novel approaches, especially the long QT syndrome. Here, we have explored the main layers that should be considered when developing a PM approach for cardiac channelopathies, with a focus on modern in vitro strategies based on patient-specific human-induced pluripotent stem cells and on in silico models. PM is where scientists and clinicians must meet and integrate their expertise to improve medical care in an innovative way but without losing common sense. We have indeed tried to provide the cardiologist’s point of view by comparing state-of-the-art techniques and approaches, including revolutionary discoveries, to current practice. This point matters because the new approaches may, or may not, exceed the efficacy and safety of established therapies. Thus, our own eagerness to implement the most recent translational strategies for cardiac channelopathies must be tempered by an objective assessment to verify whether the PM approaches are indeed making a difference for the patients. We believe that PM may shape the diagnosis and treatment of cardiac channelopathies for years to come. Nonetheless, its potential superiority over standard therapies should be constantly monitored and assessed before translating intellectually rewarding new discoveries into clinical practice.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy.,Department of Medicine, University of Cape Town, J-Floor, Old Main Building, Groote Schuur Hospital, Observatory, 7925 Cape Town, South Africa
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22 - 20135 Milan, Italy
| | - Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo 22 - 20135 Milan, Italy
| |
Collapse
|
41
|
Huang M, Liao Z, Li X, Yang Z, Fan X, Li Y, Zhao Z, Lang S, Cyganek L, Zhou X, Akin I, Borggrefe M, El-Battrawy I. Effects of Antiarrhythmic Drugs on hERG Gating in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front Pharmacol 2021; 12:675003. [PMID: 34025432 PMCID: PMC8138577 DOI: 10.3389/fphar.2021.675003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Aims: The short QT syndrome type 1 (SQT1) is linked to hERG channel mutations (e.g., N588K). Drug effects on hERG channel gating kinetics in SQT1-cells have not been investigated. Methods: This study used hiPSC-CMs of a healthy donor and a SQT1-patient carrying the N588K mutation and patch clamp to examine the drug effects on hERG channel gating kinetics. Results: Ajmaline, amiodarone, ivabradine, flecainide, quinidine, mexiletine and ranolazine inhibited the hERG channel current (IKr) less strongly in hiPSC-CMs from the SQTS1-patient (SQT1-hiPSC-CMs) comparing with cells from the healthy donor (donor-hiPSC-CMs). Quinidine and mexiletine reduced, but ajmaline, amiodarone, ivabradine and ranolazine increased the time to peak of IKr similarly in SQT1-hiPSC-CMs and donor-hiPSC-CMs. Although regarding the shift of activation and inactivation curves, tested drugs showed differential effects in donor- and SQT1-hiPSC-CMs, quinidine, ajmaline, ivabradine and mexiletine but not amiodarone, flecainide and ranolazine reduced the window current in SQT1-hiPSC-CMs. Quinidine, ajmaline, ivabradine and mexiletine differentially changed the time constant of recovery from inactivation, but all of them increased the time constant of deactivation in SQT1-hiPSC-CMs. Conclusion: The window current-reducing and deactivation-slowing effects may be important for the antiarrhythmic effect of ajmaline, ivabradine, quinidine and mexiletine in SQT1-cells. This information may be helpful for selecting drugs for treating SQT1-patients with hERG channel mutation.
Collapse
Affiliation(s)
- Mengying Huang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhenxing Liao
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,North Sichuan Medical College, Nanchong, China
| | - Xin Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Yang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,North Sichuan Medical College, Nanchong, China
| | - Xuehui Fan
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yingrui Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Zhihan Zhao
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany.,Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Sites, Heidelberg-Mannheim and Göttingen, Mannheim, Germany
| |
Collapse
|
42
|
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, Meir ML, Lane DA, Lebeau JP, Lettino M, Lip GY, Pinto FJ, Neil Thomas G, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. Guía ESC 2020 sobre el diagnóstico y tratamiento de la fibrilación auricular, desarrollada en colaboración de la European Association of Cardio-Thoracic Surgery (EACTS). Rev Esp Cardiol 2021. [DOI: 10.1016/j.recesp.2020.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Fadel S, Walker AE. The Postmortem Interpretation of Cardiac Genetic Variants of Unknown Significance in Sudden Death in the Young: A Case Report and Review of the Literature. Acad Forensic Pathol 2021; 10:166-175. [PMID: 33815637 DOI: 10.1177/1925362120984868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
Sudden cardiac death (SCD) in adolescents and young adults is a major traumatic event for families and communities. In these cases, it is not uncommon to have a negative autopsy with structurally and histologically normal heart. Such SCD cases are generally attributed to channelopathies, which include long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Our understanding of the causes for SCDs has changed significantly with the advancements in molecular and genetic studies, where many mutations are now known to be associated with certain channelopathies. Postmortem analysis provides great value in informing decision-making with regard to screening tests and prophylactic measures that should be taken to prevent sudden death in first degree relatives of the decedent. As this is a rapidly advancing field, our ability to identify genetic mutations has surpassed our ability to interpret them. This led to a unique challenge in genetic testing called variants of unknown significance (VUS). VUSs present a diagnostic dilemma and uncertainty for clinicians and patients with regard to next steps. Caution should be exercised when interpreting VUSs since misinterpretation can result in mismanagement of patients and their families. A case of a young adult man with drowning as his proximate cause of death is presented in circumstances where cardiac genetic testing was indicated and undertaken. Eight VUSs in genes implicated in inheritable cardiac dysfunction were identified and the interpretation of VUSs in this scenario is discussed.
Collapse
|
44
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3220] [Impact Index Per Article: 1073.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
45
|
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 2021; 42:373-498. [PMID: 32860505 DOI: 10.1093/eurheartj/ehaa612] [Citation(s) in RCA: 5588] [Impact Index Per Article: 1862.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
46
|
Kim DY, Uhm JS, Kim M, Kim IS, Jin MN, Yu HT, Kim TH, Kim JY, Joung B, Pak HN, Lee MH. Long-term prognosis of short QT interval in Korean patients: a multicenter retrospective cohort study. BMC Cardiovasc Disord 2021; 21:17. [PMID: 33407155 PMCID: PMC7788900 DOI: 10.1186/s12872-020-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Background Short QT syndrome is a rare, inherited channelopathy associated with sudden cardiac arrest (SCA) but the characteristics and prognosis of short QT interval (SQTI) in Korean patients remain unclear. This study aimed to determine the clinical characteristics and outcomes of SQTI in a Korean population. Methods Consecutive patients with SQTI from January 1999 to March 2019 in three university hospitals in South Korea were recruited.
SQTI was defined as a Bazett’s formula-corrected QT interval (QTc) ≤ 340 ms in serial electrocardiograms. Age- and sex-matched patients with a normal QTc and without overt cardiovascular disease were included in a 1:4 ratio. Clinical and ECG features and outcomes were compared between patients with and without SQTI. Results 34 patients with SQTI [age, 23.5 (21–30.5) years; 31 male] were followed up for 4.8 (2.0–7.8) years. Early repolarization, tall T wave, and U wave were significantly more frequent in patients with SQTI than in those without SQTI. QT dispersion [44.0 (28.0–73.0) vs. 20.0 (12.0–35.0) ms, P < 0.001] was significantly wider and heart rate [52.0 (47.0–58.0) vs. 70.0 (62.3–84.0)/min, P < 0.001] was significantly slower in patients with SQTI than in those without. Atrial fibrillation (AF, 11.8% vs. 2.2%, P = 0.030) and ventricular arrhythmia (VA)/SCA (8.7% vs. 0%, P = 0.007) were significantly more frequent in patients with SQTI than in those without. SQTI was significantly associated with AF [odds ratio, 5.911; 95% confidence interval, 1.257–27.808; P = 0.025] and VA/SCA. Conclusions In this subset of Korean population, SQTI was associated with AF and VA/SCA.
Collapse
Affiliation(s)
- Dae-Young Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyunggi-do, Republic of Korea
| | - Min Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - In-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moo-Nyun Jin
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong-Youn Kim
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
47
|
Piccirillo G, Moscucci F, Bertani G, Lospinuso I, Sabatino T, Zaccagnini G, Crapanzano D, Diego ID, Corrao A, Rossi P, Magrì D. Short-period temporal repolarization dispersion in subjects with atrial fibrillation and decompensated heart failure. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:327-333. [PMID: 33382121 DOI: 10.1111/pace.14158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND/OBJECTIVES The association between chronic heart failure (CHF) and permanent atrial fibrillation is very frequent. The repolarization duration was already found predictive for atrial fibrillation. Aim of this study was to evaluate the influence of atrial fibrillation on short period repolarization variables in decompensated CHF patients. METHOD We used 5 min ECG recordings to assess the mean, standard deviation (SD), and normalized variance (NV) of the following variables: QT end (QTe), QT peak (QTp), and T peak to T end (Te) in 121 decompensated CHF, of whom 40 had permanent atrial fibrillation, too. We reported also the 30-day mortality. RESULTS QTpSD (p < .01), TeSD (p < .01), QTpVN (p < .01), and TeVN (p < .01) were higher in the atrial fibrillation than among sinus rhythm CHF subjects. Multivariable logistic analysis selected only TeSD (odd ratio, o.r.: 1.32, 95% confidence interval, c.i.: 1.06-1.65, p: .015) associated with atrial fibrillation. A total of 27 patients died during the 30-days follow-up (overall mortality rate 22%), 7 (18%), and 20 (25%) respectively in the atrial fibrillation and sinus rhythm patients. Furthermore, the following variables were associated to the morality risk: NT-pro Brain Natriuretic Peptide (o.r.: 1.00, 95% c.i.: 1.00-1.00, p: .041), left ventricular end diastolic diameter (o.r.: 0.81, 95% c.i.: 0.67-0.96, p: .010), and Te mean (o.r.: 1.04, 95% c.i.: 1.02-1.09, p: .012). CONCLUSION In decompensated CHF subjects, Te mean seems be associated to mortality and TeSD to the permanent atrial fibrillation. We could hypothesize that, during severe CHF, the multi-level ionic CHF channel derangement could be critical in influencing these non-invasive markers. (ClinicalTrials.gov number, NCT04127162).
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Federica Moscucci
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Gaetano Bertani
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Ilaria Lospinuso
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Teresa Sabatino
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Giulia Zaccagnini
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Davide Crapanzano
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Ilaria Di Diego
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Andrea Corrao
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, Policlinico Umberto I, "Sapienza", University of Rome, Rome, Italy
| | - Pietro Rossi
- Cardiology Division, Arrhytmology Unit, S. Giovanni Calibita, Isola Tiberina, Rome, Italy
| | - Damiano Magrì
- Dipartimento di Medicina Clinica e Molecolare, S. Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
48
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
49
|
Lan H, Xu Q, El-Battrawy I, Zhong R, Li X, Lang S, Cyganek L, Borggrefe M, Zhou X, Akin I. Ionic Mechanisms of Disopyramide Prolonging Action Potential Duration in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Front Pharmacol 2020; 11:554422. [PMID: 33154722 PMCID: PMC7586889 DOI: 10.3389/fphar.2020.554422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022] Open
Abstract
Short QT syndrome (SQTS) is associated with tachyarrhythmias and sudden cardiac death. So far, only quinidine has been demonstrated to be effective in patients with SQTS type 1(SQTS1). The aim of this study was to investigate the mechanisms of disopyramide underlying its antiarrhythmic effects in SQTS1 with the N588K mutation in HERG channel. Human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) from a patient with SQTS1 and a healthy donor, patch clamp, and calcium imaging measurements were employed to assess the drug effects. Disopyramide prolonged the action potential duration (APD) in hiPSC-CMs from a SQTS1-patient (SQTS1-hiPSC-CMs). In spontaneously beating SQTS1-hiPSC-CMs challenged by carbachol plus epinephrine, disopyramide reduced the arrhythmic events. Disopyramide enhanced the inward L-type calcium channel current (ICa-L), the late sodium channel current (late INa) and the Na/Ca exchanger current (INCX), but it reduced the outward small-conductance calcium-activated potassium channel current (ISK), leading to APD-prolongation. Disopyramide displayed no effects on the rapidly and slowly activating delayed rectifier and ATP-sensitive potassium channel currents. In hiPSC-CMs from the healthy donor, disopyramide reduced peak INa, ICa-L, IKr, and ISK but enhanced late INa and INCX. The results demonstrated that disopyramide may be effective for preventing tachyarrhythmias in SQTS1-patients carrying the N588K mutation in HERG channel by APD-prolongation via enhancing ICa-L, late INa, INCX, and reducing ISK.
Collapse
Affiliation(s)
- Huan Lan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Qiang Xu
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,Department of Histology and Embryology, Southwest Medical University, Luzhou, China
| | - Ibrahim El-Battrawy
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Rujia Zhong
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Xin Li
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Borggrefe
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Xiaobo Zhou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Mannheim, Germany
| |
Collapse
|
50
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|