1
|
Jimenez-Alcantara I, Lozano-Velasco E, Caño-Carrillo S, Castillo-Casas JM, Garcia-Ruano AB, Segura-Aumente JM, Urbano-Moral JA, Franco D. LMNA p.Arg624His Variant Reduces Lamin Expression at mRNA Level: Elucidating Molecular Pathways toward Cardiac Involvement in Laminopathies. J Cardiovasc Transl Res 2024; 17:1083-1085. [PMID: 38630155 DOI: 10.1007/s12265-024-10512-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 10/29/2024]
Affiliation(s)
- Isabel Jimenez-Alcantara
- Inherited Cardiac Conditions & Myocardial Diseases Unit; Cardiology Department, University Hospital Jaen, 10 Ejercito Espanol Ave, 23007, Jaen, Spain
| | | | | | | | - Ana Belen Garcia-Ruano
- Inherited Cardiac Conditions & Myocardial Diseases Unit; Genetics Section, Clinical Analysis Department, University Hospital Jaen, Jaen, Spain
| | - Jose Maria Segura-Aumente
- Inherited Cardiac Conditions & Myocardial Diseases Unit; Cardiology Department, University Hospital Jaen, 10 Ejercito Espanol Ave, 23007, Jaen, Spain
| | - Jose Angel Urbano-Moral
- Inherited Cardiac Conditions & Myocardial Diseases Unit; Cardiology Department, University Hospital Jaen, 10 Ejercito Espanol Ave, 23007, Jaen, Spain.
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
2
|
En A, Bogireddi H, Thomas B, Stutzman AV, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. Cell Rep 2024; 43:114284. [PMID: 38814785 PMCID: PMC11290591 DOI: 10.1016/j.celrep.2024.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Briana Thomas
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexis V Stutzman
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Sachie Ikegami
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Brigitte LaForest
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Omar Almakki
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Peter Pytel
- Department of Pathology, the University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA; Department of Pathology, the University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, the University of Chicago, Chicago, IL 60637, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Zuela-Sopilniak N, Morival J, Lammerding J. Multi-level transcriptomic analysis of LMNA -related dilated cardiomyopathy identifies disease-driving processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598511. [PMID: 38915720 PMCID: PMC11195185 DOI: 10.1101/2024.06.11.598511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA- related dilated cardiomyopathy ( LMNA -DCM) is one of the most severe forms of DCM. The incomplete understanding of the molecular disease mechanisms results in lacking treatment options, leading to high mortality amongst patients. Here, using an inducible, cardiomyocyte-specific lamin A/C depletion mouse model, we conducted a comprehensive transcriptomic study, combining both bulk and single nucleus RNA sequencing, and spanning LMNA -DCM disease progression, to identify potential disease drivers. Our refined analysis pipeline identified 496 genes already misregulated early in disease. The expression of these genes was largely driven by disease specific cardiomyocyte sub-populations and involved biological processes mediating cellular response to DNA damage, cytosolic pattern recognition, and innate immunity. Indeed, DNA damage in LMNA -DCM hearts was significantly increased early in disease and correlated with reduced cardiomyocyte lamin A levels. Activation of cytosolic pattern recognition in cardiomyocytes was independent of cGAS, which is rarely expressed in cardiomyocytes, but likely occurred downstream of other pattern recognition sensors such as IFI16. Altered gene expression in cardiac fibroblasts and immune cell infiltration further contributed to tissue-wide changes in gene expression. Our transcriptomic analysis further predicted significant alterations in cell-cell communication between cardiomyocytes, fibroblasts, and immune cells, mediated through early changes in the extracellular matrix (ECM) in the LMNA -DCM hearts. Taken together, our work suggests a model in which nuclear damage in cardiomyocytes leads to activation of DNA damage responses, cytosolic pattern recognition pathway, and other signaling pathways that activate inflammation, immune cell recruitment, and transcriptional changes in cardiac fibroblasts, which collectively drive LMNA -DCM pathogenesis.
Collapse
|
4
|
En A, Bogireddi H, Thomas B, Stutzman A, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555134. [PMID: 37693381 PMCID: PMC10491116 DOI: 10.1101/2023.08.28.555134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we tested a prevailing hypothesis that NE ruptures trigger pathological cGAS-STING cytosolic DNA-sensing pathway, using a mouse model of Lamin-cardiomyopathy. Reduction of Lamin A/C in cardiomyocytes of adult mice caused pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures were followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remained inactive. Deleting cGas or Sting did not rescue cardiomyopathy. The lack of cGAS-STING activation was likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling was activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin-cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Briana Thomas
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexis Stutzman
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Sachie Ikegami
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Brigitte LaForest
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Omar Almakki
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Sengupta D, Sengupta K. Lamin A K97E leads to NF-κB-mediated dysfunction of inflammatory responses in dilated cardiomyopathy. Biol Cell 2024; 116:e2300094. [PMID: 38404031 DOI: 10.1111/boc.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND INFORMATION Lamins are type V intermediate filament proteins underlying the inner nuclear membrane which provide structural rigidity to the nucleus, tether the chromosomes, maintain nuclear homeostasis, and remain dynamically associated with developmentally regulated regions of the genome. A large number of mutations particularly in the LMNA gene encoding lamin A/C results in a wide array of human diseases, collectively termed as laminopathies. Dilated Cardiomyopathy (DCM) is one such laminopathic cardiovascular disease which is associated with systolic dysfunction of left or both ventricles leading to cardiac arrhythmia which ultimately culminates into myocardial infarction. RESULTS In this work, we have unraveled the epigenetic landscape to address the regulation of gene expression in mouse myoblast cell line in the context of the missense mutation LMNA 289A CONCLUSIONS We report here for the first time that there is a significant downregulation of the NF-κB pathway, which has been implicated in cardio-protection elsewhere. SIGNIFICANCE This provides a new pathophysiological explanation that correlates an LMNA mutation and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Duhita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
6
|
Ling X, Hou Y, Jia X, Lan Y, Wu X, Wu J, Jie W, Liu H, Huang S, Wan Z, Li T, Guo J, Liang T. Characterization of cardiac involvement in patients with LMNA splice-site mutation-related dilated cardiomyopathy and sudden cardiac death. Front Genet 2024; 14:1291411. [PMID: 38259623 PMCID: PMC10800368 DOI: 10.3389/fgene.2023.1291411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: LMNA splicing mutations occur in 9.1% of cases with cardiac involvement cases, but the phenotype and severity of disease they cause have not yet been systematically studied. The aim of this study was to understand the clinical and pathogenic characteristics of the LMNA splice-site mutation phenotype in patients with LMNA-related dilated cardiomyopathy (DCM) and sudden cardiac death (SCD). Methods and Results: First, we reported a novel family with LMNA-related DCM and SCD, and the clinical characteristics of all current patients with LMNA splicing mutations were further summarized through the ClinVar database. Seventeen families with a total of 134 individuals, containing a total of 15 LMNA splicing mutation sites, were enrolled. A total of 42 subjects (31.3%) had SCD. Compared without with the non-DCM group (n = 56), the patients within the DCM group (n = 78) presented a lower incidence of atrioventricular block (AVB) (p = 0.015) and a higher incidence rates of non-sustained ventricular tachycardia (p = 0.004),) and implantable cardioverter defibrillator (ICD) implantation (p = 0.005). Kaplan‒Meier survival analysis showed that the patients with pacemaker (PM) implantation had a significantly reduced the occurrence of SCD compared to patientswith those without PM implantation (log-rank p < 0.001), while there was no significant difference in ICD implantation between the two groups (log-rank p = 0.73). Second, we identified the family that we reported with a mutation in an LMNA c.513+1 G>A mutation in the reported family, and pathogenic prediction analysis showed that the mutation site was extremely harmful. Next, we conducted gene expression levels and cardiac pathological biopsy studies on the proband of this family. We found that the expression of normal LMNA mRNA from the proband was significantly downregulated in peripheral blood mononuclear cells than incompared with healthy individuals. Finally, we comprehensively summarized the pathological characteristics of LMNA-related DCM, including hypertrophy, atrophy, fibrosis, white blood cell infiltration, intercalated disc remodeling, and downregulation of desmin and connexin 43 (Cx43) expression. Discussion: Above all, Cardiaccardiac involvement in patients with LMNA splice-site mutation presented with a high rate of SCD. Implanting a pacemaker significantly reduced the SCD rate in non-DCM patients with AVB. The pathogenic characterization was not only haveinvolved suppressed the expression of the healthy LMNA allele, but was also associated with abnormal expression and distribution of desmin and Cx43.
Collapse
Affiliation(s)
- Xuebin Ling
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanjun Hou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xingyu Jia
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Youling Lan
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaoping Wu
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Julan Wu
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Wei Jie
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Hui Liu
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shan Huang
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhenling Wan
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junli Guo
- Department of Cardiovascular Medicine and Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tiebiao Liang
- Department of Cardiovascular Medicine, People’s Hospital of Wanning, Wanning, China
| |
Collapse
|
7
|
Wang G, Hou Y, Lv X, Yan C, Lin P. Somatic and germinal mosaicism in a Han Chinese family with laminopathies. Eur J Hum Genet 2023; 31:1073-1077. [PMID: 36526864 PMCID: PMC10474091 DOI: 10.1038/s41431-022-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
"Laminopathies" refers to a wide spectrum of myopathies caused by mutations in the LMNA gene. These myopathies include limb girdle muscular dystrophy type 1B (LGMD1B) and dilated cardiomyopathy 1 A (DCM1A), which are both autosomal dominant neurogenetic diseases. There have been few studies on mosaicism in laminopathies. Herein, a Han Chinese family with laminopathies was enrolled in our study. Genetic analysis revealed that the proband carried a novel splice site mutation, c. 1158-3 C > T, in the LMNA gene due to her mother having de novo somatic and gonadal mosaicism. Reverse-transcription polymerase chain reaction (RT-PCR) analysis revealed reduced levels of LMNA mRNA in the proband, which were probably due to nonsense-mediated mRNA decay (NMD). Western blotting revealed reduced lamin A/C protein levels in the skeletal muscle tissue of the proband. In this family, the clinical phenotypes of the proband's mother were normal, and the c. 1158-3 C > T splicing mutation was identified in the blood sample of the proband's mother. Thus, the mutation could be easily considered to be nonpathogenic. Our study emphasizes the importance of mosaicism in the identification of pathogenic variants and genetic counseling.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Ying Hou
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Arbustini E, Behr ER, Carrier L, van Duijn C, Evans P, Favalli V, van der Harst P, Haugaa KH, Jondeau G, Kääb S, Kaski JP, Kavousi M, Loeys B, Pantazis A, Pinto Y, Schunkert H, Di Toro A, Thum T, Urtis M, Waltenberger J, Elliott P. Interpretation and actionability of genetic variants in cardiomyopathies: a position statement from the European Society of Cardiology Council on cardiovascular genomics. Eur Heart J 2022; 43:1901-1916. [PMID: 35089333 DOI: 10.1093/eurheartj/ehab895] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
This document describes the contribution of clinical criteria to the interpretation of genetic variants using heritable Mendelian cardiomyopathies as an example. The aim is to assist cardiologists in defining the clinical contribution to a genetic diagnosis and the interpretation of molecular genetic reports. The identification of a genetic variant of unknown or uncertain significance is a limitation of genetic testing, but current guidelines for the interpretation of genetic variants include essential contributions from clinical family screening that can establish a de novo assignment of the variant or its segregation with the phenotype in the family. A partnership between clinicians and patients helps to solve major uncertainties and provides reliable and clinically actionable information.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elijah R Behr
- Cardiology Research Section and Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St George's, University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, and INSIGNEO Institute, University of Sheffield, Sheffield S10 2RX, UK
| | | | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristina Hermann Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Postboks 4950 Nydalen, Oslo 0424, Norway
- University of Oslo, Boks 1072 Blindern, Oslo 0316, Norway
| | - Guillaume Jondeau
- CNMR Syndrome de Marfan et apparentés, Member of VASCERN, AP-HP Hopital Bichat, Service de Cardiologie, 46 rue Henri Huchard, Paris 75018, France
- INSERM LVTS U1148, Paris 75018, France
- Université de Paris, Paris, France
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, LMU University Hospital Munich, Munich, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Juan Pablo Kaski
- Institute of Cardiovascular Science, University College London, London, UK
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bart Loeys
- Cardiogenomics, Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonis Pantazis
- The Royal Brompton and Harefield Hospitals, Part of Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Yigal Pinto
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Center, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, München, Germany
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK), Munich Heart Alliance, Munich, Germany
| | - Alessandro Di Toro
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Mario Urtis
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Johannes Waltenberger
- Department of Cardiology and Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Medicine, Hirslanden Klinik Im Park, Seestrasse 220, Zürich 8027, Switzerland
| | - Perry Elliott
- Barts Heart Centre St Bartholomew's Hospital, London, UK
- Institute for Cardiovascular Science, University College London, London, UK
| |
Collapse
|
9
|
Widyastuti HP, Norden-Krichmar TM, Grosberg A, Zaragoza MV. Gene expression profiling of fibroblasts in a family with LMNA-related cardiomyopathy reveals molecular pathways implicated in disease pathogenesis. BMC MEDICAL GENETICS 2020; 21:152. [PMID: 32698886 PMCID: PMC7374820 DOI: 10.1186/s12881-020-01088-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Background Intermediate filament proteins that construct the nuclear lamina of a cell include the Lamin A/C proteins encoded by the LMNA gene, and are implicated in fundamental processes such as nuclear structure, gene expression, and signal transduction. LMNA mutations predominantly affect mesoderm-derived cell lineages in diseases collectively termed as laminopathies that include dilated cardiomyopathy with conduction defects, different forms of muscular dystrophies, and premature aging syndromes as Hutchinson-Gilford Progeria Syndrome. At present, our understanding of the molecular mechanisms regulating tissue-specific manifestations of laminopathies are still limited. Methods To gain deeper insight into the molecular mechanism of a novel LMNA splice-site mutation (c.357-2A > G) in an affected family with cardiac disease, we conducted deep RNA sequencing and pathway analysis for nine fibroblast samples obtained from three patients with cardiomyopathy, three unaffected family members, and three unrelated, unaffected individuals. We validated our findings by quantitative PCR and protein studies. Results We identified eight significantly differentially expressed genes between the mutant and non-mutant fibroblasts, that included downregulated insulin growth factor binding factor protein 5 (IGFBP5) in patient samples. Pathway analysis showed involvement of the ERK/MAPK signaling pathway consistent with previous studies. We found no significant differences in gene expression for Lamin A/C and B-type lamins between the groups. In mutant fibroblasts, RNA-seq confirmed that only the LMNA wild type allele predominately was expressed, and Western Blot showed normal Lamin A/C protein levels. Conclusions IGFBP5 may contribute in maintaining signaling pathway homeostasis, which may lead to the absence of notable molecular and structural abnormalities in unaffected tissues such as fibroblasts. Compensatory mechanisms from other nuclear membrane proteins were not found. Our results also demonstrate that only one copy of the wild type allele is sufficient for normal levels of Lamin A/C protein to maintain physiological function in an unaffected cell type. This suggests that affected cell types such as cardiac tissues may be more sensitive to haploinsufficiency of Lamin A/C. These results provide insight into the molecular mechanism of disease with a possible explanation for the tissue specificity of LMNA-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Halida P Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology, University of California, Irvine, School of Medicine, 3062 Anteater Instruction and Research Building, Irvine, CA, 92697-7550, USA.
| | - Anna Grosberg
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - Michael V Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Marina C Costa
- Instituto de Medicina Molecular João Lobo Antunes & Centro Cardiovascular Universidade de Lisboa (CCUL), Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
11
|
Genomic characterization in dilated cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Hasebe Y, Fukuda K, Nakano M, Kumagai K, Karibe A, Fujishima F, Satake H, Kondo M, Wakayama Y, Shimokawa H. Characteristics of ventricular tachycardia and long-term treatment outcome in patients with dilated cardiomyopathy complicated by lamin A/C gene mutations. J Cardiol 2019; 74:451-459. [PMID: 31060954 DOI: 10.1016/j.jjcc.2019.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/09/2019] [Accepted: 03/25/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Dilated cardiomyopathy caused by lamin A/C gene (LMNA) mutation is complicated with atrioventricular (AV) conduction disturbances, malignant ventricular arrhythmias, and progressive severe heart failure. Radiofrequency catheter ablation (RFCA) of ventricular tachycardia (VT) has been reported to be challenging due to the high recurrence rate in patients with LMNA-related cardiomyopathy. However, electrophysiological and histopathological characteristics of VT substrate remain to be fully elucidated. METHODS AND RESULTS We experienced 6 familial patients with LMNA-related cardiomyopathy in 3 pedigrees (6 males, 43.7±4.5 [SD] years). All patients had first VT attack at 50±6.6 [SD] years of age, and 4 underwent RFCA for incessant VT. Their electrocardiograms during VT showed similar QRS morphologies, characterized by an inferior axis, SR pattern in aVR, and QS pattern in aVL, suggesting the origin of the basal anterior ventricle. Indeed, the VTs had multiple exits around the basal anterior ventricular septum in all RFCA cases. Although we performed multiple RFCA procedures including epicardial ablation and surgical cryoablation, all cases experienced VT recurrences in 4.5±6.4 [SD] months after last procedure. All patients developed end-stage heart failure with frequent VT events, and died at 59.5±3.6 years of age (severe heart failure in 5 and lung disease in 1). In three autopsy cases with RFCA, fibrofatty degeneration was noted in the AV node. In addition, in the deep basal ventricular septum, inhomogenous fibrotic degenerated tissue was noted beyond the reach of RF lesions. CONCLUSIONS These results demonstrate that patients with LMNA-related cardiomyopathy are characterized by VTs refractory to RFCA probably because of the deep intramural focus at the basal ventricular septum, resulting in poor prognosis with progressive severe heart failure despite all available optimized therapies. Thus, we should consider heart transplantation in their early 50s when several VT events begin to occur.
Collapse
Affiliation(s)
- Yuhi Hasebe
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Fukuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Nakano
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Koji Kumagai
- Division of Cardiology, Gunma Prefectural Cardiovascular Center, Maebashi, Japan
| | - Akihiko Karibe
- Office for Clinical Research, National Hospital Organization Sendai Nishitaga National Hospital, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Satake
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masateru Kondo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Wakayama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Asatryan B, Medeiros-Domingo A. Molecular and genetic insights into progressive cardiac conduction disease. Europace 2019; 21:1145-1158. [DOI: 10.1093/europace/euz109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Abstract
Progressive cardiac conduction disease (PCCD) is often a primarily genetic disorder, with clinical and genetic overlaps with other inherited cardiac and metabolic diseases. A number of genes have been implicated in PCCD pathogenesis with or without structural heart disease or systemic manifestations. Precise genetic diagnosis contributes to risk stratification, better selection of specific therapy and allows familiar cascade screening. Cardiologists should be aware of the different phenotypes emerging from different gene-mutations and the potential risk of sudden cardiac death. Genetic forms of PCCD often overlap or coexist with other inherited heart diseases or manifest in the context of multisystem syndromes. Despite the significant advances in the knowledge of the genetic architecture of PCCD and overlapping diseases, in a measurable fraction of PCCD cases, including in familial clustering of disease, investigations of known cardiac disease-associated genes fail to reveal the underlying substrate, suggesting that new causal genes are yet to be discovered. Here, we provide insight into genetics and molecular mechanisms of PCCD and related diseases. We also highlight the phenotypic overlaps of PCCD with other inherited cardiac and metabolic diseases, present unmet challenges in clinical practice, and summarize the available therapeutic options for affected patients.
Collapse
Affiliation(s)
- Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, Freiburgstrasse 8, Bern, Switzerland
| | | |
Collapse
|
14
|
Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet 2018; 9:231. [PMID: 30050558 PMCID: PMC6052891 DOI: 10.3389/fgene.2018.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the LMNA gene, which encodes for the nuclear lamina proteins lamins A and C, are responsible for a diverse group of diseases known as laminopathies. One type of laminopathy is Dilated Cardiomyopathy (DCM), a heart muscle disease characterized by dilation of the left ventricle and impaired systolic function, often leading to heart failure and sudden cardiac death. LMNA is the second most commonly mutated gene in DCM. In addition to LMNA, mutations in more than 60 genes have been associated with DCM. The DCM-associated genes encode a variety of proteins including transcription factors, cytoskeletal, Ca2+-regulating, ion-channel, desmosomal, sarcomeric, and nuclear-membrane proteins. Another important category among DCM-causing genes emerged upon the identification of DCM-causing mutations in RNA binding motif protein 20 (RBM20), an alternative splicing factor that is chiefly expressed in the heart. In addition to RBM20, several essential splicing factors were validated, by employing mouse knock out models, to be embryonically lethal due to aberrant cardiogenesis. Furthermore, heart-specific deletion of some of these splicing factors was found to result in aberrant splicing of their targets and DCM development. In addition to splicing alterations, advances in next generation sequencing highlighted the association between splice-site mutations in several genes and DCM. This review summarizes LMNA mutations and splicing alterations in DCM and discusses how the interaction between LMNA and splicing regulators could possibly explain DCM disease mechanisms.
Collapse
Affiliation(s)
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
15
|
Al-Saaidi RA, Rasmussen TB, Birkler RID, Palmfeldt J, Beqqali A, Pinto YM, Nissen PH, Baandrup U, Mølgaard H, Hey TM, Eiskjaer H, Bross P, Mogensen J. The clinical outcome of LMNA missense mutations can be associated with the amount of mutated protein in the nuclear envelope. Eur J Heart Fail 2018; 20:1404-1412. [PMID: 29943882 DOI: 10.1002/ejhf.1241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS Lamin A/C mutations are generally believed to be associated with a severe prognosis. The aim of this study was to investigate disease expression in three affected families carrying different LMNA missense mutations. Furthermore, the potential molecular disease mechanisms of the mutations were investigated in fibroblasts obtained from mutation carriers. METHODS AND RESULTS A LMNA-p.Arg216Cys missense mutation was identified in a large family with 36 mutation carriers. Disease expression was unusual with a late onset and a favourable prognosis. Two smaller families with severe disease expression were shown to carry a LMNA-p.Arg471Cys and LMNA-p.Arg471His mutation, respectively. LMNA gene and protein expression was investigated in eight different mutation carriers by quantitative reverse transcriptase polymerase chain reaction, Western blotting, immunohistochemistry, and protein mass spectrometry. The results showed that all mutation carriers incorporated mutated lamin protein into the nuclear envelope. Interestingly, the ratio of mutated to wild-type protein was only 30:70 in LMNA-p.Arg216Cys carriers with a favourable prognosis while LMNA-p.Arg471Cys and LMNA-p.Arg471His carriers with a more severe outcome expressed significantly more of the mutated protein by a ratio of 50:50. CONCLUSION The clinical findings indicated that some LMNA mutations may be associated with a favourable prognosis and a low risk of sudden death. Protein expression studies suggested that a severe outcome was associated with the expression of high amounts of mutated protein. These findings may prove to be helpful in counselling and risk assessment of LMNA families.
Collapse
Affiliation(s)
- Rasha A Al-Saaidi
- Research Unit for Molecular Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | | | - Rune I D Birkler
- Research Unit for Molecular Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Yigal M Pinto
- Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter H Nissen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Ulrik Baandrup
- Centre for Clinical Research, North Denmark Regional Hospital/Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Henning Mølgaard
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas M Hey
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Hans Eiskjaer
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and University Hospital, Aarhus, Denmark
| | - Jens Mogensen
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Captur G, Arbustini E, Bonne G, Syrris P, Mills K, Wahbi K, Mohiddin SA, McKenna WJ, Pettit S, Ho CY, Muchir A, Gissen P, Elliott PM, Moon JC. Lamin and the heart. Heart 2017; 104:468-479. [DOI: 10.1136/heartjnl-2017-312338] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/04/2022] Open
Abstract
Lamins A and C are intermediate filament nuclear envelope proteins encoded by the LMNA gene. Mutations in LMNA cause autosomal dominant severe heart disease, accounting for 10% of dilated cardiomyopathy (DCM). Characterised by progressive conduction system disease, arrhythmia and systolic impairment, lamin A/C heart disease is more malignant than other common DCMs due to high event rates even when the left ventricular impairment is mild. It has several phenotypic mimics, but overall it is likely to be an under-recognised cause of DCM. In certain clinical scenarios, particularly familial DCM with early conduction disease, the pretest probability of finding an LMNA mutation may be quite high.Recognising lamin A/C heart disease is important because implantable cardioverter defibrillators need to be implanted early. Promising oral drug therapies are within reach thanks to research into the mitogen-activated protein kinase (MAPK) and affiliated pathways. Personalised heart failure therapy may soon become feasible for LMNA, alongside personalised risk stratification, as variant-related differences in phenotype severity and clinical course are being steadily elucidated.Genotyping and family screening are clinically important both to confirm and to exclude LMNA mutations, but it is the three-pronged integration of such genetic information with functional data from in vivo cardiomyocyte mechanics, and pathological data from microscopy of the nuclear envelope, that is properly reshaping our LMNA knowledge base, one variant at a time. This review explains the biology of lamin A/C heart disease (genetics, structure and function of lamins), clinical presentation (diagnostic pointers, electrocardiographic and imaging features), aspects of screening and management, including current uncertainties, and future directions.
Collapse
|
17
|
Zaragoza MV, Nguyen CHH, Widyastuti HP, McCarthy LA, Grosberg A. Dupuytren's and Ledderhose Diseases in a Family with LMNA-Related Cardiomyopathy and a Novel Variant in the ASTE1 Gene. Cells 2017; 6:E40. [PMID: 29104234 PMCID: PMC5753070 DOI: 10.3390/cells6040040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/07/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022] Open
Abstract
Dupuytren's disease (palmar fibromatosis) involves nodules in fascia of the hand that leads to flexion contractures. Ledderhose disease (plantar fibromatosis) is similar with nodules of the foot. While clinical aspects are well-described, genetic mechanisms are unknown. We report a family with cardiac disease due to a heterozygous LMNA mutation (c.736C>T, p.Gln246Stop) with palmar/plantar fibromatosis and investigate the hypothesis that a second rare DNA variant increases the risk for fibrotic disease in LMNA mutation carriers. The proband and six family members were evaluated for the cardiac and hand/feet phenotypes and tested for the LMNA mutation. Fibroblast RNA studies revealed monoallelic expression of the normal LMNA allele and reduced lamin A/C mRNAs consistent with LMNA haploinsufficiency. A novel, heterozygous missense variant (c.230T>C, p.Val77Ala) in the Asteroid Homolog 1 (ASTE1) gene was identified as a potential risk factor in fibrotic disease using exome sequencing and family studies of five family members: four LMNA mutation carriers with fibromatosis and one individual without the LMNA mutation and no fibromatosis. With a possible role in epidermal growth factor receptor signaling, ASTE1 may contribute to the increased risk for palmar/plantar fibromatosis in patients with Lamin A/C haploinsufficiency.
Collapse
Affiliation(s)
- Michael V Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
- Department of Biological Sciences, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Cecilia H H Nguyen
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Halida P Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
- Department of Biological Sciences, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| | - Linda A McCarthy
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.
| | - Anna Grosberg
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
18
|
Abstract
Nonischemic dilated cardiomyopathy (DCM) often has a genetic pathogenesis. Because of the large number of genes and alleles attributed to DCM, comprehensive genetic testing encompasses ever-increasing gene panels. Genetic diagnosis can help predict prognosis, especially with regard to arrhythmia risk for certain subtypes. Moreover, cascade genetic testing in family members can identify those who are at risk or with early stage disease, offering the opportunity for early intervention. This review will address diagnosis and management of DCM, including the role of genetic evaluation. We will also overview distinct genetic pathways linked to DCM and their pathogenetic mechanisms. Historically, cardiac morphology has been used to classify cardiomyopathy subtypes. Determining genetic variants is emerging as an additional adjunct to help further refine subtypes of DCM, especially where arrhythmia risk is increased, and ultimately contribute to clinical management.
Collapse
Affiliation(s)
- Elizabeth M McNally
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| | - Luisa Mestroni
- From the Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL (E.M.M.); and Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora (L.M.).
| |
Collapse
|
19
|
Should Identifying a Titin Truncating Variant Change the Management of Patients With Dilated Cardiomyopathy? J Am Coll Cardiol 2017; 70:2275-2277. [DOI: 10.1016/j.jacc.2017.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
20
|
Arbustini E, Favalli V, Narula N. LMNA
Mutations Associated With Mild and Late-Onset Phenotype. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001816. [DOI: 10.1161/circgenetics.117.001816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eloisa Arbustini
- From the Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy (E.A., V.F., N.N.); and Icahn School of Medicine at Mount Sinai, New York, NY (N.N.)
| | - Valentina Favalli
- From the Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy (E.A., V.F., N.N.); and Icahn School of Medicine at Mount Sinai, New York, NY (N.N.)
| | - Nupoor Narula
- From the Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy (E.A., V.F., N.N.); and Icahn School of Medicine at Mount Sinai, New York, NY (N.N.)
| |
Collapse
|
21
|
Cho S, Irianto J, Discher DE. Mechanosensing by the nucleus: From pathways to scaling relationships. J Cell Biol 2017; 216:305-315. [PMID: 28043971 PMCID: PMC5294790 DOI: 10.1083/jcb.201610042] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/01/2023] Open
Abstract
The nucleus is linked mechanically to the extracellular matrix via multiple polymers that transmit forces to the nuclear envelope and into the nuclear interior. Here, we review some of the emerging mechanisms of nuclear mechanosensing, which range from changes in protein conformation and transcription factor localization to chromosome reorganization and membrane dilation up to rupture. Nuclear mechanosensing encompasses biophysically complex pathways that often converge on the main structural proteins of the nucleus, the lamins. We also perform meta-analyses of public transcriptomics and proteomics data, which indicate that some of the mechanosensing pathways relaying signals from the collagen matrix to the nucleus apply to a broad range of species, tissues, and diseases.
Collapse
Affiliation(s)
- Sangkyun Cho
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Jerome Irianto
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
22
|
Genetic basis of dilated cardiomyopathy. Int J Cardiol 2016; 224:461-472. [PMID: 27736720 DOI: 10.1016/j.ijcard.2016.09.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/19/2023]
|
23
|
Affiliation(s)
- Valentina Favalli
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital, Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
24
|
Zaragoza MV, Fung L, Jensen E, Oh F, Cung K, McCarthy LA, Tran CK, Hoang V, Hakim SA, Grosberg A. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death. PLoS One 2016; 11:e0155421. [PMID: 27182706 PMCID: PMC4868298 DOI: 10.1371/journal.pone.0155421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022] Open
Abstract
The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10) with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85%) located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51%) variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies <1% for family studies. The results identified LMNA c.357-2A>G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.
Collapse
Affiliation(s)
- Michael V. Zaragoza
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Lianna Fung
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Ember Jensen
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Frances Oh
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Katherine Cung
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Linda A. McCarthy
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California, United States of America
| | - Christine K. Tran
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Van Hoang
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Simin A. Hakim
- UC Irvine Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Anna Grosberg
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
25
|
Abstract
Lamins are intermediate filament proteins able to polymerise and form an organised meshwork underlying the inner nuclear membrane in most differentiated somatic cells. Mutations in the LMNA gene, which encodes the two major lamin A and C isoforms, cause a diverse range of diseases, called laminopathies, including dilated cardiomyopathy, associated with a poor prognosis and high rate of sudden death due to conduction defect and early ventricular arrhythmia. Identification of mutations in LMNA gene in clinical practice is rapidly increasing, as well as comprehensive cardiac and genetic family screening. As a consequence, cardiologists are more and more frequently faced to difficult questions regarding optimal management of patients and relatives, especially timing for prophylactic cardioverter defibrillator. This review focuses on recent data useful for the clinician, as well as therapeutic perspectives both in human and animal models.
Collapse
Affiliation(s)
- Philippe Charron
- AP-HP, Hôpital Pitié-Salpêtrière, Centre de référence maladies cardiaques héréditaires, Paris, France; 2. UPMC Université Paris VI, INSERM UMR-S956.,Paris, France
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gisèle Bonne
- INSERM U974; UPMC Université Paris 6; CNRS UMR 7215; Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| |
Collapse
|
26
|
Banerjee A, Ghoshal PK, Sengupta K. Novel linkage of LMNA Single Nucleotide Polymorphism with Dilated Cardiomyopathy in an Indian case study. IJC HEART & VASCULATURE 2015; 7:99-105. [PMID: 28785654 PMCID: PMC5497236 DOI: 10.1016/j.ijcha.2015.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dilated Cardiomyopathy (DCM) is one of the most commonly encountered heart diseases reported globally. It is characterized by enlarged ventricles with impaired systolic and diastolic functions. Mutations in LMNA gene are one of the causative factors to precipitate the disease. However, association of SNPs of LMNA with DCM in particular has not been well documented. METHOD Here we present a limited and restricted case study of patients from south eastern part of India afflicted with idiopathic DCM and conduction defects. By using next generation sequencing we have sequenced the exons of LMNA gene from genomic DNA isolated from patients. RESULT We have identified the linkage of 8 different LMNA SNPs with idiopathic DCM viz. rs121117552, rs538089, rs505058, rs4641, rs646840, rs534807, rs80356803 and rs7339. These SNPs are scattered throughout the gene with prevalence for the region encoding the central rod domain of lamin A/C. CONCLUSION Most of these SNPs in LMNA were previously reported to be involved in various disorders other than DCM. We conclude that, variation in LMNA is one of the major underlying genetic causes for the pathogenesis of DCM, as observed in few Indian populations.
Collapse
Affiliation(s)
- Avinanda Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Pradip K. Ghoshal
- Department of Cardiology & Medicine, N.R.S. Medical College & Hospital, 138 A. J. C Bose Road, Kolkata 700014, India
| | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
27
|
Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:76-92. [PMID: 25008017 PMCID: PMC4252489 DOI: 10.1016/j.pbiomolbio.2014.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating 'mechanosensing' remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins.
Collapse
Affiliation(s)
- Gregory R Fedorchak
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley Kaminski
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW LMNA gene encodes the nuclear A-type lamins. LMNA mutations are associated with more than 10 clinical entities and represent one of the first causes of inherited dilated cardiomyopathy. LMNA-dilated cardiomyopathy is associated with conduction disease (DCM-CD) and is a severe and aggressive form of DCM. However, pathogenesis remains largely unknown and no specific treatment is currently available for the patients. In this review, we present recent discoveries that improve the understanding of the cardiac pathophysiological roles of A-type lamins and shed light on potential therapeutic targets. RECENT FINDINGS In the last decade, many efforts have been made to elucidate how mutations in A-type lamins, ubiquitous proteins, lead to DCM-CD. No clear genotype/phenotype correlations have been found to help in elucidating those mechanisms. Analysis of several mouse models has helped in deciphering critical pathomechanisms. Among those, Mitogen-activated protein kinases (MAPK) and Akt/mTOR appear to be key early-activated signaling pathways in LMNA DCM-CD in both humans and mice. Inhibition of these signaling pathways has shown encouraging beneficial effects upon cardiac evolution of DCM-CD. SUMMARY These recent findings suggest that targeting MAPK and Akt/mTOR pathways with potent and specific compounds represents a promising intervention for the treatment of LMNA DCM-CD.
Collapse
|
29
|
Hasselberg NE, Edvardsen T, Petri H, Berge KE, Leren TP, Bundgaard H, Haugaa KH. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects. Europace 2013; 16:563-71. [PMID: 24058181 DOI: 10.1093/europace/eut291] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects. METHODS AND RESULTS We included 41 Lamin A/C mutation-positive subjects. PR-interval and occurrence of VA were recorded. Left ventricular (LV) myocardial function was assessed as ejection fraction and speckle tracking longitudinal strain by echocardiography. Magnetic resonance imaging was performed to assess fibrosis in a selection of subjects. Ventricular arrhythmias were documented in 21 patients (51%). Prolonged PR-interval was the best predictor of VA (P < 0.001). Myocardial function by strain was reduced in the interventricular septum compared with the rest of the LV segments (-16.7% vs. -18.7%, P = 0.001) and correlated to PR-interval (R = 0.41, P = 0.03). Myocardial fibrosis was found exclusively in the interventricular septum and only in patients with VA (P = 0.007). PR-interval was longer in patients with septal fibrosis compared with those without (320 ± 66 vs. 177 ± 40 ms, P < 0.001). CONCLUSION Prolonged PR-interval was the best predictor of VA in Lamin A/C mutation-positive subjects. Electrical, mechanical, and structural cardiac properties were related in these subjects. Myocardial function was most reduced in the interventricular septum and correlated to prolonged PR-interval. Myocardial septal fibrosis was associated with prolonged PR-interval and VA. Localized fibrosis in the interventricular septum may be the mechanism behind reduced septal function, atrioventricular block and VA in Lamin A/C mutation-positive subjects.
Collapse
Affiliation(s)
- Nina E Hasselberg
- Dept of Cardiology and Center for Cardiological Innovation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|