1
|
Liu G, Yu X, Cui C, Li X, Wang T, Palade PT, Mehta JL, Wang X. The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism. Acta Physiol (Oxf) 2025; 241:e14272. [PMID: 39797523 DOI: 10.1111/apha.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD. However, the broader clinical impacts of PCSK9 functions beyond cholesterol metabolism, including both desired and undesired effects from therapeutic PCSK9 inhibition, underscore the urgent necessity to elucidate the underlying mechanisms. Recent studies have shown that local PCSK9 in the vascular system can interact with other receptors such as CD36, LRP-1, and ABCA1. This provides new evidence supporting the potential contribution of PCSK9 to CVD through LDLR-independent signaling pathways. Therefore, this review aimed to outline the diverse effects of PCSK9 on CVD and discuss the underlying mechanisms in non-cholesterol-related processes, which will provide a rational basis for its long-term pharmacological inhibition in the clinic.
Collapse
Affiliation(s)
- Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Xiatian Yu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| |
Collapse
|
2
|
Hafiane A, Pisaturo A, Favari E, Bortnick AE. Atherosclerosis, calcific aortic valve disease and mitral annular calcification: same or different? Int J Cardiol 2025; 420:132741. [PMID: 39557087 DOI: 10.1016/j.ijcard.2024.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
There are similarities in the pathophysiologic mechanisms of atherosclerosis, calcific aortic valve disease (CAVD) and mitral annular calcification (MAC), however, medical treatment to slow or stop the progression of CAVD or MAC has been more elusive as compared to atherosclerosis. Atherosclerosis and CAVD share common demographic, clinical, protein, and genetic factors even more so than with MAC, which supports the possibility of shared medical therapies, though abrogating calcific extracellular vesicle shedding could be a common target for all three conditions. Herein, we summarize the overlapping and distinct pathways for further investigation, as well as key areas where additional research is needed.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
| | | | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Anna E Bortnick
- Department of Medicine, Divisions of Cardiology and Geriatrics, and Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
3
|
Fauvel C, Coisne A, Capoulade R, Bourg C, Diakov C, Ribeyrolles S, Jouan J, Folliguet T, Kibler M, Dreyfus J, Magne J, Bohbot Y, Pezel T, Modine T, Donal E. Unmet needs and knowledge gaps in aortic stenosis: A position paper from the Heart Valve Council of the French Society of Cardiology. Arch Cardiovasc Dis 2024; 117:590-600. [PMID: 39353805 DOI: 10.1016/j.acvd.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 10/04/2024]
Abstract
Nowadays, valvular heart disease remains a significant challenge among cardiovascular diseases, affecting millions of people worldwide and exerting substantial pressure on healthcare systems. Within the spectrum of valvular heart disease, aortic stenosis is the most common valvular lesion in developed countries. Despite notable advances in understanding its pathophysiological processes, improved cardiovascular imaging techniques and expanding therapeutic options in recent years, there are still unmet needs and knowledge gaps regarding aortic stenosis pathophysiology, severity assessment, management and decision-making strategy. This review, prepared on behalf of the Heart Valve Council of the French Society of Cardiology, describes these gaps and future research perspectives to improve the outcome of patients with aortic stenosis.
Collapse
Affiliation(s)
- Charles Fauvel
- Cardiology Department, Rouen University Hospital, 76000 Rouen, France
| | - Augustin Coisne
- Institut Pasteur de Lille, CHU Lille, Lille University, INSERM, 59000 Lille, France
| | - Romain Capoulade
- L'Institut du Thorax, CHU Nantes, Nantes University, CNRS, INSERM, 44007 Nantes, France
| | - Corentin Bourg
- Department of Cardiology, CHU Rennes, University of Rennes, INSERM, LTSI - UMR 1099, 35000 Rennes, France
| | | | | | - Jérome Jouan
- Department of Cardiac and Thoracic Surgery, Limoges University Teaching Hospital, 87000 Limoges, France
| | - Thierry Folliguet
- Department of Cardiac Surgery, Henri Mondor University Hospital, AP-HP, 94000 Créteil, France
| | - Marion Kibler
- Department of Cardiovascular Surgery and Medicine, New Civil Hospital, CHU Strasbourg, Strasbourg University, 67000 Strasbourg, France
| | - Julien Dreyfus
- Cardiology Department, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Julien Magne
- Department of Cardiology, Dupuytren Hospital, CHU Limoges, 87000 Limoges, France; INSERM 1094, Limoges Faculty of Medicine, 87025 Limoges, France
| | - Yohann Bohbot
- Department of Cardiology, Amiens University Hospital, 80054 Amiens, France
| | - Théo Pezel
- Department of Radiology and Department of Cardiology, Lariboisière Hospital, AP-HP, Paris Cité University, 75010 Paris, France
| | - Thomas Modine
- Department of Cardiology and Cardiovascular Surgery, Haut-Lévêque Cardiological Hospital, Bordeaux University Hospital, 33604 Pessac, France
| | - Erwan Donal
- Department of Cardiology, CHU Rennes, University of Rennes, INSERM, LTSI - UMR 1099, 35000 Rennes, France.
| |
Collapse
|
4
|
Hou Y, Zhao J, Xu W, Chen L, Yang J, Wang Z, Si K. Genetic proxy of lipid-lowering drugs and calcific aortic valve stenosis: A Mendelian randomization study. Heliyon 2024; 10:e34089. [PMID: 39055828 PMCID: PMC11269895 DOI: 10.1016/j.heliyon.2024.e34089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Background Lipid metabolism plays an important role in the pathogenesis and development of calcific aortic valve stenosis. Our aim was to evaluate the causal effect of lipid-lowering drugs, such as low-density lipoprotein cholesterol (LDL-C) lowering and triglyceride lowering drugs, on the outcome of aortic valve stenosis using a two-sample Mendelian randomization (MR) study. Methods We used two genetic tools to represent the exposure of lipid-lowering drugs, including expression quantitative trait loci for the expression of drug target genes, and genetic variants within or near drug target genes that are associated with LDL-C and triglyceride concentrations from Genome-Wide Association Studies (GWAS). Effect estimates were calculated using summary-data-based MR (SMR) and inverse-variance-weighted MR (IVW-MR) analysis. Results Based on the results of SMR and IVW-MR analysis, LDL-C-lowering PCSK9 inhibitors have potential in reducing the risk of aortic valve stenosis (for SMR, OR: 1.044; 95%CI: 1.002-1.404; P = 0.047; for IVW-MR, OR: 1.647, 95%CI: 1.316-2.062, P < 0.001). However, no significant association was observed between triglyceride target gene expression, as well as triglyceride-lowering drugs, and aortic valve stenosis. Conclusion This two-sample drug-targeted MR study suggests a potential causal relationship between PCSK9 inhibitors and the reduction of calcific aortic valve stenosis risk.
Collapse
Affiliation(s)
- Yucheng Hou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine & Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Wanchuang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Lei Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyue Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Ziheng Wang
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Ke Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Han D, Zhou T, Li L, Ma Y, Chen S, Yang C, Ma N, Song M, Zhang S, Wu J, Cao F, Wang Y. AVCAPIR: A Novel Procalcific PIWI-Interacting RNA in Calcific Aortic Valve Disease. Circulation 2024; 149:1578-1597. [PMID: 38258575 DOI: 10.1161/circulationaha.123.065213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Calcification of the aortic valve leads to increased leaflet stiffness and consequently results in the development of calcific aortic valve disease (CAVD). However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified a novel aortic valve calcification-associated PIWI-interacting RNA (piRNA; AVCAPIR) that increases valvular calcification and promotes CAVD progression. METHODS Using piRNA sequencing, we identified piRNAs contributing to the pathogenesis of CAVD that we termed AVCAPIRs. High-cholesterol diet-fed ApoE-/- mice with AVCAPIR knockout were used to examine the role of AVCAPIR in aortic valve calcification (AVC). Gain- and loss-of-function assays were conducted to determine the role of AVCAPIR in the induced osteogenic differentiation of human valvular interstitial cells. To dissect the mechanisms underlying AVCAPIR-elicited procalcific effects, we performed various analyses, including an RNA pulldown assay followed by liquid chromatography-tandem mass spectrometry, methylated RNA immunoprecipitation sequencing, and RNA sequencing. RNA pulldown and RNA immunoprecipitation assays were used to study piRNA interactions with proteins. RESULTS We found that AVCAPIR was significantly upregulated during AVC and exhibited potential diagnostic value for CAVD. AVCAPIR deletion markedly ameliorated AVC in high-cholesterol diet-fed ApoE-/- mice, as shown by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and diminished levels of osteogenic markers (Runx2 and Osterix) in aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Using unbiased protein-RNA screening and molecular validation, we found that AVCAPIR directly interacts with FTO (fat mass and obesity-associated protein), subsequently blocking its N6-methyladenosine demethylase activity. Further transcriptomic and N6-methyladenosine modification epitranscriptomic screening followed by molecular validation confirmed that AVCAPIR hindered FTO-mediated demethylation of CD36 mRNA transcripts, thus enhancing CD36 mRNA stability through the N6-methyladenosine reader IGF2BP1 (insulin-like growth factor 2 mRNA binding protein 1). In turn, the AVCAPIR-dependent increase in CD36 stabilizes its binding partner PCSK9 (proprotein convertase subtilisin/kexin type 9), a procalcific gene, at the protein level, which accelerates the progression of AVC. CONCLUSIONS We identified a novel piRNA that induced AVC through an RNA epigenetic mechanism and provide novel insights into piRNA-directed theranostics in CAVD.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Lifu Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou China (L.L.)
| | - Yan Ma
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Shiqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Chunguang Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (C.Y.)
| | - Ning Ma
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, China (N.M.)
| | - Moshi Song
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China (M.S.)
| | - Shaoshao Zhang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (S.Z.)
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China (D.H., Y.M., F.C.)
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (D.H., T.Z., S.C., C.Y., J.W., Y.W.)
| |
Collapse
|
6
|
Poznyak A, Kashirskikh D, Postnov A, Popov M, Sukhorukov V, Orekhov A. Sialic acid as the potential link between lipid metabolism and inflammation in the pathogenesis of atherosclerosis. Braz J Med Biol Res 2023; 56:e12972. [PMID: 38088673 PMCID: PMC10712282 DOI: 10.1590/1414-431x2023e12972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
In the modern world, cardiovascular diseases have a special place among the most common causes of death. Naturally, this widespread problem cannot escape the attention of scientists and researchers. One of the main conditions preceding the development of fatal cardiovascular diseases is atherosclerosis. Despite extensive research into its pathogenesis and possible prevention and treatment strategies, many gaps remain in our understanding of this disease. For example, the concept of multiple low-density lipoprotein modifications was recently stated, in which desialylation is of special importance. Apart from this, sialic acids are known to be important contributors to processes such as endothelial dysfunction and inflammation, which in turn are major components of atherogenesis. In this review, we have collected information on sialic acid metabolism, analyzed various aspects of its implication in atherosclerosis at different stages, and provided an overview of the role of particular groups of enzymes responsible for sialic acid metabolism in the context of atherosclerosis.
Collapse
Affiliation(s)
- A.V. Poznyak
- Institute for Atherosclerosis Research, Moscow, Russia
| | | | - A.Y. Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - M.A. Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - V.N. Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - A.N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
7
|
Neels JG, Leftheriotis G, Chinetti G. Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites 2023; 13:metabo13030457. [PMID: 36984897 PMCID: PMC10056669 DOI: 10.3390/metabo13030457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids in the vessel wall, leading to the formation of an atheroma and eventually to the development of vascular calcification (VC). Lipoproteins play a central role in the development of atherosclerosis and VC. Both low- and very low-density lipoproteins (LDL and VLDL) and lipoprotein (a) (Lp(a)) stimulate, while high-density lipoproteins (HDL) reduce VC. Apolipoproteins, the protein component of lipoproteins, influence the development of VC in multiple ways. Apolipoprotein AI (apoAI), the main protein component of HDL, has anti-calcific properties, while apoB and apoCIII, the main protein components of LDL and VLDL, respectively, promote VC. The role of lipoproteins in VC is also related to their metabolism and modifications. Oxidized LDL (OxLDL) are more pro-calcific than native LDL. Oxidation also converts HDL from anti- to pro-calcific. Additionally, enzymes such as autotaxin (ATX) and proprotein convertase subtilisin/kexin type 9 (PCSK9), involved in lipoprotein metabolism, have a stimulatory role in VC. In summary, a better understanding of the mechanisms by which lipoproteins and apolipoproteins contribute to VC will be crucial in the development of effective preventive and therapeutic strategies for VC and its associated cardiovascular disease.
Collapse
Affiliation(s)
- Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | | | - Giulia Chinetti
- Université Côte d'Azur, CHU, INSERM, C3M, 06200 Nice, France
| |
Collapse
|
8
|
Tissue and Serum Biomarkers in Degenerative Aortic Stenosis-Insights into Pathogenesis, Prevention and Therapy. BIOLOGY 2023; 12:biology12030347. [PMID: 36979039 PMCID: PMC10045285 DOI: 10.3390/biology12030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Background and Aim. Degenerative Aortic Stenosis (DAS) is a common disease that causes substantial morbidity and mortality worldwide, especially in the older population. Our aim was to further investigate novel serum and tissue biomarkers to elucidate biological processes involved in this entity. Material and Methods. We evaluated the expression of six biomarkers significantly involved in cardiovascular pathology, i.e., irisin, periostin, osteoglycin, interleukin 18, high mobility group box 1 and proprotein convertase subtilisin/kexin type 9 in the serum at the protein level, and in the tissue at both the protein and mRNA levels of patients with AS (N = 60). Five normal valves obtained after transplantation from hearts of patients with idiopathic dilated cardiomyopathy were also studied. Serum measurements were also performed in 22 individuals without valvular disease who served as controls (C). Results. Higher levels of all factors were found in DAS patients’ serum than in normal C. IHC and PCR mRNA tissue analysis showed the presence of all biomarkers in the aortic valve cusps with DAS, but no trace of PCR mRNA was found in the five transplantation valves. Moreover, periostin serum levels correlated significantly with IHC and mRNA tissue levels in AS patients. Conclusion. We showed that six widely prevalent biomarkers affecting the atherosclerotic process were also involved in DAS, suggesting a strong osteogenic and pro-inflammatory profile, indicating that aortic valve calcification is a multifactorial biological process.
Collapse
|
9
|
Poznyak AV, Sukhorukov VN, Surkova R, Orekhov NA, Orekhov AN. Glycation of LDL: AGEs, impact on lipoprotein function, and involvement in atherosclerosis. Front Cardiovasc Med 2023; 10:1094188. [PMID: 36760567 PMCID: PMC9904536 DOI: 10.3389/fcvm.2023.1094188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis is a complex disease, and there are many factors that influence its development and the course of the disease. A deep understanding of the pathological mechanisms underlying atherogenesis is needed to develop optimal therapeutic strategies and treatments. In this review, we have focused on low density lipoproteins. According to multiple studies, their atherogenic properties are associated with multiple modifications of lipid particles. One of these modifications is Glycation. We considered aspects related to the formation of modified particles, as well as the influence of modification on their functioning. We paid special attention to atherogenicity and the role of glycated low-density lipoprotein (LDL) in atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Moscow, Russia,*Correspondence: Anastasia V. Poznyak,
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Raisa Surkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Nikolay A. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Moscow, Russia,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
10
|
Tu P, Xu Q, Zhou X, Villa-Roel N, Kumar S, Dong N, Jo H, Ou C, Lin Z. Myeloid CCN3 protects against aortic valve calcification. Cell Commun Signal 2023; 21:14. [PMID: 36670446 PMCID: PMC9854076 DOI: 10.1186/s12964-022-01020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cellular communication network factor 3 (CCN3) has been implicated in the regulation of osteoblast differentiation. However, it is not known if CCN3 can regulate valvular calcification. While macrophages have been shown to regulate valvular calcification, the molecular and cellular mechanisms of this process remain poorly understood. In the present study, we investigated the role of macrophage-derived CCN3 in the progression of calcific aortic valve disease. METHODS Myeloid-specific knockout of CCN3 (Mye-CCN3-KO) and control mice were subjected to a single tail intravenous injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9) to induce hyperlipidemia. AAV-injected mice were then fed a high fat diet for 40 weeks. At the conclusion of high fat diet feeding, tissues were harvested and subjected to histologic and pathologic analyses. In vitro, bone marrow-derived macrophages (BMDM) were obtained from Mye-CCN3-KO and control mice and the expression of bone morphogenic protein signaling related gene were verified via quantitative real-time PCR and Western blotting. The BMDM conditioned medium was cocultured with human valvular intersititial cells which was artificially induced calcification to test the effect of the conditioned medium via Western blotting and Alizarin red staining. RESULTS Echocardiography revealed that both male and female Mye-CCN3-KO mice displayed compromised aortic valvular function accompanied by exacerbated valve thickness and cardiac dysfunction. Histologically, Alizarin-Red staining revealed a marked increase in aortic valve calcification in Mye-CCN3-KO mice when compared to the controls. In vitro, CCN3 deficiency augmented BMP2 production and secretion from bone marrow-derived macrophages. In addition, human valvular interstitial cells cultured with conditioned media from CCN3-deficient BMDMs resulted in exaggerated pro-calcifying gene expression and the consequent calcification. CONCLUSION Our data uncovered a novel role of myeloid CCN3 in the regulation of aortic valve calcification. Modulation of BMP2 production and secretion in macrophages might serve as a key mechanism for macrophage-derived CCN3's anti-calcification function in the development of CAVD. Video Abstract.
Collapse
Affiliation(s)
- Peinan Tu
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.284723.80000 0000 8877 7471Affiliated Dongguan Hospital Southern Medical University (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Qian Xu
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.452223.00000 0004 1757 7615Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xianming Zhou
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.33199.310000 0004 0368 7223Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nicolas Villa-Roel
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Sandeep Kumar
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Nianguo Dong
- grid.33199.310000 0004 0368 7223Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanjoong Jo
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Caiwen Ou
- Affiliated Dongguan Hospital Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China.
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Šuran D, Blažun Vošner H, Završnik J, Kokol P, Sinkovič A, Kanič V, Kokol M, Naji F, Završnik T. Lipoprotein(a) in Cardiovascular Diseases: Insight From a Bibliometric Study. Front Public Health 2022; 10:923797. [PMID: 35865239 PMCID: PMC9294325 DOI: 10.3389/fpubh.2022.923797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein(a) [Lp(a)] is a complex polymorphic lipoprotein comprised of a low-density lipoprotein particle with one molecule of apolipoprotein B100 and an additional apolipoprotein(a) connected through a disulfide bond. The serum concentration is mostly genetically determined and only modestly influenced by diet and other lifestyle modifications. In recent years it has garnered increasing attention due to its causal role in pre-mature atherosclerotic cardiovascular disease and calcific aortic valve stenosis, while novel effective therapeutic options are emerging [apolipoprotein(a) antisense oligonucleotides and ribonucleic acid interference therapy]. Bibliometric descriptive analysis and mapping of the research literature were made using Scopus built-in services. We focused on the distribution of documents, literature production dynamics, most prolific source titles, institutions, and countries. Additionally, we identified historical and influential papers using Reference Publication Year Spectrography (RPYS) and the CRExplorer software. An analysis of author keywords showed that Lp(a) was most intensively studied regarding inflammation, atherosclerosis, cardiovascular risk assessment, treatment options, and hormonal changes in post-menopausal women. The results provide a comprehensive view of the current Lp(a)-related literature with a specific interest in its role in calcific aortic valve stenosis and potential emerging pharmacological interventions. It will help the reader understand broader aspects of Lp(a) research and its translation into clinical practice.
Collapse
Affiliation(s)
- David Šuran
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: David Šuran
| | - Helena Blažun Vošner
- Community Healthcare Centre Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Faculty of Health and Social Sciences Slovenj Gradec, Slovenj Gradec, Slovenia
- Alma Mater Europaea, Maribor, Slovenia
| | - Jernej Završnik
- Community Healthcare Centre Dr. Adolf Drolc Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor, Slovenia
| | - Peter Kokol
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Andreja Sinkovič
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Medical Intensive Care, University Medical Centre Maribor, Maribor, Slovenia
| | - Vojko Kanič
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
- Semantika Research, Semantika d.o.o., Maribor, Slovenia
| | - Franjo Naji
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Tadej Završnik
- Department of Cardiology and Angiology, University Medical Centre Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
12
|
Oostveen RF, Kaiser Y, Stroes ES, Verberne HJ. Molecular Imaging of Aortic Valve Stenosis with Positron Emission Tomography. Pharmaceuticals (Basel) 2022; 15:ph15070812. [PMID: 35890111 PMCID: PMC9319069 DOI: 10.3390/ph15070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic valve stenosis (AVS) is an increasingly prevalent disease in our aging population. Although multiple risk factors for AVS have been elucidated, medical therapies capable of slowing down disease progression remain unavailable. Molecular imaging technologies are opening up avenues for the non-invasive assessment of disease progression, allowing the assessment of (early) medical interventions. This review will focus on the role of positron emission tomography of the aortic valve with 18F-fluorodeoxyglucose and 18F-sodium fluoride but will also shed light on novel tracers which have potential in AVS, ranging from the healthy aortic valve to end-stage valvular disease.
Collapse
Affiliation(s)
- Reindert F. Oostveen
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.F.O.); (Y.K.); (E.S.G.S.)
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.F.O.); (Y.K.); (E.S.G.S.)
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.F.O.); (Y.K.); (E.S.G.S.)
| | - Hein J. Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-562-8436
| |
Collapse
|
13
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
14
|
PCSK9 promotes arterial medial calcification. Atherosclerosis 2022; 346:86-97. [DOI: 10.1016/j.atherosclerosis.2022.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
|
15
|
Wen XQ, Huang K, Li J, Wu LX, Gao B. Elevated plasma proprotein convertase subtilisin/kexin type-9 is associated with poor prognosis of acute myocardial infarction in hypertension patients. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Whether serum proprotein convertase subtilisin/kexin type 9 (PCSK9) affects the prognosis of patients after the percutaneous coronary intervention (PCI) in hypertension patients remains unknown. A total of 2350 acute myocardial infarction (AMI) subjects with hypertension after PCI were enrolled. Subjects were under 30-months follow-up and divided into the major cardiovascular adverse event (MACE) Group and the non-MACE Group. Cox regression analysis were performed for the risk factors of occurrence of MACE. The relationship between the level of PCSK9 and Gensin score was analyzed by Pearson correlation. Two hundred and thirty-two patients were divided to the MACE Group. Age over 55 (hazard ratio (HR) = 2.52; p = 0.032), smoking (HR = 1.02; p < 0.001), diabetes mellitus (HR = 1.35; p < 0.001) and PCSK9 levels over 1011.3 ng/mL (HR = 1.05; ptdf < 0.001) were risk factors of occurrence of MACE. Baseline levels of PCSK9 was significantly related with Gensini score in ST segment elevation myocardial infarction (STEMI) patients ( r = 0.51), all patients ( r = 0.37) and non-STEMI patients ( r = 0.34, p < 0.001). A high baseline PCSK9 level was the risk factor of poor prognosis of AMI patients with hypertension after PCI. PCSK9 levels were associated with the Gensini score in STEMI patients. Trial registration: This trial was registered at clinicaltrials.gov as NCT04100434.
Collapse
Affiliation(s)
- Xiao-Qin Wen
- Department of Cardiology, Tianjin Hospital, Tianjin, PR China
| | - Kui Huang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Jie Li
- Department of Cardiology, Tianjin Hospital, Tianjin, PR China
| | - Li-Xue Wu
- Department of Emergency and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Bo Gao
- Department of Cardiology, Tianjin Hospital, Tianjin, PR China
| |
Collapse
|
16
|
Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J 2021; 43:683-697. [PMID: 34849696 DOI: 10.1093/eurheartj/ehab757] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/12/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a highly prevalent condition that comprises a disease continuum, ranging from microscopic changes to profound fibro-calcific leaflet remodelling, culminating in aortic stenosis, heart failure, and ultimately premature death. Traditional risk factors, such as hypercholesterolaemia and (systolic) hypertension, are shared among atherosclerotic cardiovascular disease and CAVD, yet the molecular and cellular mechanisms differ markedly. Statin-induced low-density lipoprotein cholesterol lowering, a remedy highly effective for secondary prevention of atherosclerotic cardiovascular disease, consistently failed to impact CAVD progression or to improve patient outcomes. However, recently completed phase II trials provide hope that pharmaceutical tactics directed at other targets implicated in CAVD pathogenesis offer an avenue to alter the course of the disease non-invasively. Herein, we delineate key players of CAVD pathobiology, outline mechanisms that entail compromised endothelial barrier function, and promote lipid homing, immune-cell infiltration, and deranged phospho-calcium metabolism that collectively perpetuate a pro-inflammatory/pro-osteogenic milieu in which valvular interstitial cells increasingly adopt myofibro-/osteoblast-like properties, thereby fostering fibro-calcific leaflet remodelling and eventually resulting in left ventricular outflow obstruction. We provide a glimpse into the most promising targets on the horizon, including lipoprotein(a), mineral-binding matrix Gla protein, soluble guanylate cyclase, dipeptidyl peptidase-4 as well as candidates involved in regulating phospho-calcium metabolism and valvular angiotensin II synthesis and ultimately discuss their potential for a future therapy of this insidious disease.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Mark C Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB7, Boston, MA 02115, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,University Heart Center, Department of Cardiology, University Hospital, Rämistrasse 100, 8091 Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland.,Heart Division, Royal Brompton & Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Guy Scadding Building, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
17
|
Martinez LO, Perret B, Genoux A. Update on proprotein convertase subtilisin/kexin type 9 inhibitors, lipoprotein(a) and cardiovascular risk. Curr Opin Lipidol 2021; 32:324-327. [PMID: 34472540 DOI: 10.1097/mol.0000000000000771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laurent O Martinez
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS)
| | - Bertrand Perret
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS)
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Annelise Genoux
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS)
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Calcific aortic stenosis (CAVS) is the most common form of valvular heart disease in developed countries, increasing in prevalence with the aging population. Surgical or transcatheter aortic valve replacement is the only treatment available for CAVS. However, these interventions are typically reserved for severe symptomatic aortic stenosis (AS). The purpose of this review is to summarize the recent literature in uncovering the underlying pathophysiology of CAVS in the setting of lipoprotein (a) [Lp(a)] and emerging therapies targeting Lp(a) which may help halt disease progression in CAVS. RECENT FINDINGS Pathophysiologic, epidemiological, and genetic studies over the past two decades have provided strong evidence that Lp(a) is an important mediator of calcific aortic valvular disease (CAVD). Studies suggest that Lp(a) is a key carrier of pro-calcifying oxidized phospholipids (OxPL). The metabolism of OxPL results in a pro-inflammatory state and subsequent valvular thickening and mineralization through pro-osteogenic signaling. The identification of Lp(a) as a causal mediator of CAVD has allowed for opportunities for emerging therapeutic agents which may slow the progression of CAVD (Fig. 1JOURNAL/cocar/04.03/00001573-202109000-00007/figure1/v/2021-08-04T080204Z/r/image-jpeg). SUMMARY This review summarizes the current knowledge on the association of Lp(a) with CAVD and ongoing studies of potential Lp(a)-lowering therapies. Based on the rate-limiting and causal role of Lp(a) in progression of CAVS, these therapies may represent novel pharmacotherapies in AS and inform the developing role of Lp(a) in the clinical management of CAVD.
Collapse
|
19
|
Plasmatic PCSK9 Levels Are Associated with Very Fast Progression of Asymptomatic Degenerative Aortic Stenosis. J Cardiovasc Transl Res 2021; 15:5-14. [PMID: 34341879 DOI: 10.1007/s12265-021-10138-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
The aim of this work was to study the association of potential biomarkers with fast aortic stenosis (AS) progression. Patients with moderate-to-severe AS were classified as very fast progressors (VFP) if exhibited an annualized change in peak velocity (aΔVmax) ≥0.45m/s/year and/or in aortic valve area (aΔAVA) ≥-0.2cm2/year. Respective cut-off values of ≥0.3m/s/year and ≥-0.1cm2/year defined fast progressors (FP), whereas the remaining patients were non-fast progressors (non-FP). Baseline markers of lipid metabolism, inflammation, and cardiac overload were determined. Two hundred and nine patients (97 non-FP, 38 FP, and 74 VFP) were included. PCSK9 levels were significantly associated with VFP (OR 1.014 [95%CI 1.005-1.024], for every 10 ng/mL), as were active smoking (OR 3.48) and body mass index (BMI, OR 1.09), with an AUC of 0.704 for the model. PCSK9 levels, active smoking, and BMI were associated with very fast AS progression in our series, suggesting that inflammation and calcification participate in disease progression.
Collapse
|
20
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
21
|
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
PCSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys 2020; 704:108717. [PMID: 33307067 DOI: 10.1016/j.abb.2020.108717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022]
Abstract
PCSK9 plays a critical role in cholesterol metabolism via the PCSK9-LDLR axis. Liver-derived, circulating PCSK9 has become a novel drug target in lipid-lowering therapy. Accumulative evidence supports the possible association between PCSK9 and cardiac diseases and their risk factors. PCSK9 exerts various effects in the heart independently of LDL-cholesterol regulation. Acute myocardial infarction (AMI) induces local and systemic inflammation and reactive oxygen species generation, resulting in increased PCSK9 expression in hepatocytes and cardiomyocytes. PCSK9 upregulation promotes excessive autophagy and apoptosis in cardiomyocytes, thereby contributing to cardiac insufficiency. PCSK9 might also participate in the pathophysiology of heart failure by regulating fatty acid metabolism and cardiomyocyte contractility. It also promotes platelet activation and coagulation in patients with atrial fibrillation. PCSK9 is an independent predictor of aortic valve calcification and accelerates calcific aortic valve disease by regulating lipoprotein(a) catabolism. Accordingly, the use of PCSK9 inhibitors significantly reduced infarct sizes and arrhythmia and improves cardiac contractile function in a rat model of AMI. Circulating PCSK9 levels are positively correlated with age, diabetes mellitus, obesity, and hypertension. Here, we reviewed recent clinical and experimental studies exploring the association between PCSK9, cardiac diseases, and their related risk factors and aiming to identify possible underlying mechanisms.
Collapse
|
23
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
24
|
Capoulade R, Cariou B. Editorial commentary: Lp(a) and calcific aortic valve stenosis: Direct LPA targeting or PCSK9-Lowering therapy? Trends Cardiovasc Med 2020; 31:312-314. [PMID: 32623063 DOI: 10.1016/j.tcm.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Romain Capoulade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France.
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes F-44000, France
| |
Collapse
|
25
|
Perrot N, Valerio V, Moschetta D, Boekholdt SM, Dina C, Chen HY, Abner E, Martinsson A, Manikpurage HD, Rigade S, Capoulade R, Mass E, Clavel MA, Le Tourneau T, Messika-Zeitoun D, Wareham NJ, Engert JC, Polvani G, Pibarot P, Esko T, Smith JG, Mathieu P, Thanassoulis G, Schott JJ, Bossé Y, Camera M, Thériault S, Poggio P, Arsenault BJ. Genetic and In Vitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis. JACC Basic Transl Sci 2020; 5:649-661. [PMID: 32760854 PMCID: PMC7393433 DOI: 10.1016/j.jacbts.2020.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
The authors investigated whether PCSK9 inhibition could represent a therapeutic strategy in calcific aortic valve stenosis (CAVS). A meta-analysis of 10 studies was performed to determine the impact of the PCSK9 R46L variant on CAVS, and the authors found that CAVS was less prevalent in carriers of this variant (odds ratio: 0.80 [95% confidence interval: 0.70 to 0.91]; p = 0.0011) compared with noncarriers. PCSK9 expression was higher in the aortic valves of patients CAVS compared with control patients. In human valve interstitials cells submitted to a pro-osteogenic medium, PCSK9 levels increased and a PCSK9 neutralizing antibody significantly reduced calcium accumulation.
Collapse
Key Words
- Ad DMEM, advanced Dulbecco’s modified Eagle’s medium
- CAD, coronary artery disease
- CAVS, calcific aortic valve stenosis
- HDL-C, high-density lipoprotein cholesterol
- IQR, interquartile range
- LDL cholesterol
- LDL-C, low-density lipoprotein cholesterol
- Lp(a), lipoprotein(a)
- PBS, phosphate-buffered saline
- PBST, 1× phosphate-buffered saline with 0.1% Triton
- PCSK9, proprotein convertase subtilisin/kexin type 9
- SNP, single nucleotide polymorphism
- TC, total cholesterol
- VIC, valve interstitial cell
- VLDL-C, very-low-density lipoprotein cholesterol
- aortic valve interstitial cell
- apoB, apolipoprotein B
- apolipoprotein B
- calcific aortic valve stenosis
- lipoprotein(a)
- proprotein convertase subtilisin/kexin type 9
- wGRS, weighted genetic risk score
Collapse
Affiliation(s)
- Nicolas Perrot
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Vincenza Valerio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Clinica e Chirurgia, Naples, Italy
| | - Donato Moschetta
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Christian Dina
- l'Institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Hao Yu Chen
- McGill University Health Center Research Institute, Montreal, Québec, Canada
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andreas Martinsson
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Hasanga D. Manikpurage
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Sidwell Rigade
- l'Institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Romain Capoulade
- l'Institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Elvira Mass
- University of Bonn, Developmental Biology of the Innate Immune System, Life & Medical Sciences Institute (LIMES), Bonn, Germany
| | - Marie-Annick Clavel
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | | | - David Messika-Zeitoun
- Department of Cardiology, Assistance Publique – Hôpitaux de Paris, Bichat Hospital, Paris, France
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Nicholas J. Wareham
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - James C. Engert
- McGill University Health Center Research Institute, Montreal, Québec, Canada
| | - Gianluca Polvani
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Sciences and Community Health, University of Milan, Milan, Italy
| | - Philippe Pibarot
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - J. Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Patrick Mathieu
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - George Thanassoulis
- McGill University Health Center Research Institute, Montreal, Québec, Canada
| | | | - Yohan Bossé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sébastien Thériault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | | | - Benoit J. Arsenault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
26
|
Leopold JA. PCSK9 and Calcific Aortic Valve Stenosis: Moving Beyond Lipids. JACC Basic Transl Sci 2020; 5:662-664. [PMID: 32760918 PMCID: PMC7393421 DOI: 10.1016/j.jacbts.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jane A. Leopold
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
PCSK9 and HS-CRP Predict Progression of Aortic Stenosis in Patients with Stable Coronary Artery Disease. J Cardiovasc Transl Res 2020; 14:238-245. [PMID: 32577988 DOI: 10.1007/s12265-020-10050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/14/2020] [Indexed: 02/02/2023]
Abstract
It is essential to study the factors associated with the evolution of aortic stenosis progression (ASP) to develop therapies that could reduce it. We studied 283 patients 6 months after acute coronary syndrome (ACS). ASP was defined as an increase in the maximum aortic velocity of at least 0.5 m/s between the echocardiogram performed during ACS hospitalization and the last one recorded in the electronic medical registry. The median follow-up was 72.4 months. Twenty patients (7%) had ASP. A multivariate binary logistic regression analysis was performed showing that PCSK9 plasma levels (OR, 0.668 CI (0.457-0.977); p = 0.038), HS-CRP (OR, 1.034 CI (1.005-1.063); p = 0.022), the presence of dyslipidemia (OR, 4.622 CI (1.285-16.618); p = 0.019), the history of PAD (OR, 9.453 CI (1.703-52.452); p = 0.010), and GFR (OR, 0.962 CI (0.939-0.986); p = 0.002) were independent predicting factors of ASP. In patients with ischemic heart disease, low plasma levels of PCSK9 and elevated levels of HS-CRP are independent predictors of ASP.
Collapse
|
28
|
Ferri N, Greco MF, Corsini A, Ruscica M. Proprotein convertase subtilisin/kexin type 9: an update on the cardiovascular outcome studies. Eur Heart J Suppl 2020; 22:E64-E67. [PMID: 32523442 PMCID: PMC7270917 DOI: 10.1093/eurheartj/suaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A reductase enzyme, statins, are powerful cholesterol-lowering medications and have provided outstanding contributions to the primary and secondary prevention of coronary heart disease. Low-density lipoprotein cholesterol (LDL-C) is one of the major modifiable cardiovascular risk factors, indeed, every 1.0 mmol/L (38.7 mg/dL) reduction in LDL cholesterolaemia corresponds to a 21% lowering in the risk of major vascular events. In this context, the pharmacological approach with PCSK9 monoclonal antibodies is considered a promising non-statin therapeutic option for the management of lipid disorders in patients with persistent cardiovascular risk, including patients with diabetes mellitus. Data from two large clinical trials have indisputably demonstrated the efficacy of alirocumab and evolocumab in preventive major adverse cardiovascular events in high risk, secondary-prevention patients with clinical manifestation of atherosclerotic cardiovascular diseases. Finally, PCSK9 monoclonal antibodies did not increase the risk of serious adverse events, neurocognitive events, new-onset of diabetes, muscle-related events, or myalgia.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Maria Francesca Greco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Multimedica IRCCS, Milano, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Lindman BR, Arnold SV, Bagur R, Clarke L, Coylewright M, Evans F, Hung J, Lauck SB, Peschin S, Sachdev V, Tate LM, Wasfy JH, Otto CM. Priorities for Patient-Centered Research in Valvular Heart Disease: A Report From the National Heart, Lung, and Blood Institute Working Group. J Am Heart Assoc 2020; 9:e015975. [PMID: 32326818 PMCID: PMC7428554 DOI: 10.1161/jaha.119.015975] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past decade, the field of valvular heart disease (VHD) has rapidly transformed, largely as a result of the development and improvement of less invasive transcatheter approaches to valve repair or replacement. This transformation has been supported by numerous well-designed randomized trials, but they have centered almost entirely on devices and procedures. Outside this scope of focus, however, myriad aspects of therapy and management for patients with VHD have either no guidelines or recommendations based only on expert opinion and observational studies. Further, research in VHD has often failed to engage patients to inform study design and identify research questions of greatest importance and relevance from a patient perspective. Accordingly, the National Heart, Lung, and Blood Institute convened a Working Group on Patient-Centered Research in Valvular Heart Disease, composed of clinician and research experts and patient advocacy experts to identify gaps and barriers to research in VHD and identify research priorities. While recognizing that important research remains to be done to test the safety and efficacy of devices and procedures to treat VHD, we intentionally focused less attention on these areas of research as they are more commonly pursued and supported by industry. Herein, we present the patient-centered research gaps, barriers, and priorities in VHD and organized our report according to the "patient journey," including access to care, screening and diagnosis, preprocedure therapy and management, decision making when a procedure is contemplated (clinician and patient perspectives), and postprocedure therapy and management. It is hoped that this report will foster collaboration among diverse stakeholders and highlight for funding bodies the pressing patient-centered research gaps, opportunities, and priorities in VHD in order to produce impactful patient-centered research that will inform and improve patient-centered policy and care.
Collapse
Affiliation(s)
- Brian R Lindman
- Cardiovascular Medicine Division Structural Heart and Valve Center Vanderbilt University Medical Center Nashville TN
| | | | - Rodrigo Bagur
- Division of Cardiology University Hospital London Health Sciences Centre London Ontario Canada
| | | | - Megan Coylewright
- Heart and Vascular Center Dartmouth-Hitchcock Medical Center Lebanon NH
| | - Frank Evans
- National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda MD
| | - Judy Hung
- Cardiology Division Massachusetts General Hospital Harvard Medical School Boston MA
| | - Sandra B Lauck
- Centre for Heart Valve Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
| | | | - Vandana Sachdev
- National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda MD
| | | | - Jason H Wasfy
- Cardiology Division Massachusetts General Hospital Harvard Medical School Boston MA
| | | |
Collapse
|
30
|
Passos LSA, Lupieri A, Becker-Greene D, Aikawa E. Innate and adaptive immunity in cardiovascular calcification. Atherosclerosis 2020; 306:59-67. [PMID: 32222287 DOI: 10.1016/j.atherosclerosis.2020.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
Despite the focus placed on cardiovascular research, the prevalence of vascular and valvular calcification is increasing and remains a leading contributor of cardiovascular morbidity and mortality. Accumulating studies provide evidence that cardiovascular calcification is an inflammatory disease in which innate immune signaling becomes sustained and/or excessive, shaping a deleterious adaptive response. The triggering immune factors and subsequent inflammatory events surrounding cardiovascular calcification remain poorly understood, despite sustained significant research interest and support in the field. Most studies on cardiovascular calcification focus on innate cells, particularly macrophages' ability to release pro-osteogenic cytokines and calcification-prone extracellular vesicles and apoptotic bodies. Even though substantial evidence demonstrates that macrophages are key components in triggering cardiovascular calcification, the crosstalk between innate and adaptive immune cell components has not been adequately addressed. The only therapeutic options currently used are invasive procedures by surgery or transcatheter intervention. However, no approved drug has shown prophylactic or therapeutic effectiveness. Conventional diagnostic imaging is currently the best method for detecting, measuring, and assisting in the treatment of calcification. However, these common imaging modalities are unable to detect early subclinical stages of disease at the level of microcalcifications; therefore, the vast majority of patients are diagnosed when macrocalcifications are already established. In this review, we unravel the current knowledge of how innate and adaptive immunity regulate cardiovascular calcification; and put forward differences and similarities between vascular and valvular disease. Additionally, we highlight potential immunomodulatory drugs with the potential to target calcification and propose avenues in need of further translational inquiry.
Collapse
Affiliation(s)
- Livia S A Passos
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dakota Becker-Greene
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Pathology, Sechenov First Moscow State Medical University, Moscow, 119992, Russia.
| |
Collapse
|
31
|
Fauvel C, Capoulade R, Durand E, Béziau DM, Schott JJ, Le Tourneau T, Eltchaninoff H. Durability of transcatheter aortic valve implantation: A translational review. Arch Cardiovasc Dis 2020; 113:209-221. [PMID: 32113816 DOI: 10.1016/j.acvd.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 10/24/2022]
Abstract
Until recently, transcatheter aortic valve implantation was restricted to high-risk and inoperable patients. The updated 2017 European Society of Cardiology Guidelines has widened the indication to include intermediate-risk patients, based on two recently published trials (PARTNER 2 and SURTAVI). Moreover, two other recent trials (PARTNER 3 and EVOLUT LOW RISK) have demonstrated similar results with transcatheter aortic valve implantation in low-risk patients. Thus, extension of transcatheter aortic valve implantation to younger patients, who are currently treated by surgical aortic valve replacement, raises the crucial question of bioprosthesis durability. In this translational review, we propose to produce a state-of-the-art overview of the durability of transcatheter aortic valve implantation by integrating knowledge of the basic science of bioprosthesis degeneration (pathophysiology and biomarkers). After summarising the new definition of structural valve deterioration, we will present what is known about the pathophysiology of aortic stenosis and bioprosthesis degeneration. Next, we will consider how to identify a population at risk of early degeneration, and how basic science with the help of biomarkers could identify and predict structural valve deterioration. Finally, we will present data on the differences in durability of transcatheter aortic valve implantation compared with surgical aortic valve replacement.
Collapse
Affiliation(s)
- Charles Fauvel
- Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, 76000 Rouen, France
| | - Romain Capoulade
- L'institut du Thorax, INSERM 1087, CNRS, CHU de Nantes, Université de Nantes, 44007 Nantes, France
| | - Eric Durand
- Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, 76000 Rouen, France; Normandie université, UNIROUEN, INSERM U1096, 76000 Rouen, France
| | - Delphine M Béziau
- Normandie Université, UNIROUEN, INSERM U1096, Rouen University Hospital, Department of Cardiology, FHU REMOD-VHF, 76000 Rouen, France
| | - Jean-Jacques Schott
- L'institut du Thorax, INSERM 1087, CNRS, CHU de Nantes, Université de Nantes, 44007 Nantes, France
| | - Thierry Le Tourneau
- L'institut du Thorax, INSERM 1087, CNRS, CHU de Nantes, Université de Nantes, 44007 Nantes, France
| | - Hélène Eltchaninoff
- Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, 76000 Rouen, France; Normandie université, UNIROUEN, INSERM U1096, 76000 Rouen, France.
| |
Collapse
|
32
|
Zheng KH, Tzolos E, Dweck MR. Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy. Cardiol Clin 2020; 38:1-12. [DOI: 10.1016/j.ccl.2019.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Hwang HS, Kim JS, Kim YG, Lee SY, Ahn SY, Lee HJ, Lee DY, Lee SH, Moon JY, Jeong KH. Circulating PCSK9 Level and Risk of Cardiovascular Events and Death in Hemodialysis Patients. J Clin Med 2020; 9:jcm9010244. [PMID: 31963408 PMCID: PMC7019341 DOI: 10.3390/jcm9010244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising new target for the prevention of cardiovascular (CV) events. However, the clinical significance of circulating PCSK9 is unclear in hemodialysis (HD) patients. A total of 353 HD patients were prospectively enrolled from June 2016 to August 2019 in a K-cohort. Plasma PCSK9 level was measured at the time of study enrollment. The primary endpoint was defined as a composite of CV event and death. Plasma PCSK9 level was positively correlated with total cholesterol level in patients with statin treatment. Multivariate linear regression analysis revealed that baseline serum glucose, albumin, total cholesterol, and statin treatment were independent determinants of circulating PCSK9 levels. Cumulative rates of composite and CV events were significantly higher in patients with tertile 3 PCSK9 (p = 0.017 and p = 0.010, respectively). In multivariate Cox-regression analysis, PCSK9 tertile 3 was associated with a 1.97-fold risk of composite events (95% CI, 1.13–3.45), and it was associated with a 2.31-fold risk of CV events (95% CI, 1.17–4.59). In conclusion, a higher circulating PCSK9 level was independently associated with incident CV events and death in HD patients. These results suggest the importance of future studies regarding the effect of PCSK9 inhibition.
Collapse
Affiliation(s)
- Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea; (H.S.H.); (J.S.K.); (Y.G.K.); (S.H.L.)
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea; (H.S.H.); (J.S.K.); (Y.G.K.); (S.H.L.)
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea; (H.S.H.); (J.S.K.); (Y.G.K.); (S.H.L.)
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea;
| | - Shin Young Ahn
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Korea University, Seoul 08308, Korea;
| | - Hong Joo Lee
- Division of Nephrology, Department of Internal Medicine, Seoul Red Cross Hospital, Seoul 03181, Korea;
| | - Dong-Young Lee
- Division of Nephrology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea;
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea; (H.S.H.); (J.S.K.); (Y.G.K.); (S.H.L.)
| | - Ju Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea; (H.S.H.); (J.S.K.); (Y.G.K.); (S.H.L.)
- Correspondence: (J.Y.M.); (K.H.J.); Tel.: +82-2-440-6121 (J.Y.M.); +82-2-958-8200 (K.H.J.)
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul 02447, Korea; (H.S.H.); (J.S.K.); (Y.G.K.); (S.H.L.)
- Correspondence: (J.Y.M.); (K.H.J.); Tel.: +82-2-440-6121 (J.Y.M.); +82-2-958-8200 (K.H.J.)
| |
Collapse
|
34
|
Lipoprotein(a) as Orchestrator of Calcific Aortic Valve Stenosis. Biomolecules 2019; 9:biom9120760. [PMID: 31766423 PMCID: PMC6995555 DOI: 10.3390/biom9120760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Aortic valve stenosis (AVS) is the most prevalent valvular heart disease in the Western World with exponentially increased incidence with age. If left untreated, the yearly mortality rates increase up to 25%. Currently, no effective pharmacological interventions have been established to treat or prevent AVS. The only treatment modality so far is surgical or transcatheter aortic valve replacement (AVR). Lipoprotein(a) [Lp(a)] has been implicated as a pivotal player in the pathophysiology of calcification of the valves. Patients with elevated levels of Lp(a) have a higher risk of hospitalization or mortality due to the presence of AVS. Multiple studies indicated Lp(a) as a likely causal and independent risk factor for AVS. This review discusses the most important findings and mechanisms related to Lp(a) and AVS in detail. During the progression of AVS, Lp(a) enters the aortic valve tissue at damaged sites of the valves. Subsequently, autotaxin converts lysophosphatidylcholine in lysophosphatidic acid (LysoPA) which in turn acts as a ligand for the LysoPA receptor. This triggers a nuclear factor-κB cascade leading to increased transcripts of interleukin 6, bone morphogenetic protein 2, and runt-related transcription factor 2. This progresses to the actual calcification of the valves through production of alkaline phosphatase and calcium depositions. Furthermore, this review briefly mentions potentially interesting therapies that may play a role in the treatment or prevention of AVS in the near future.
Collapse
|
35
|
Cokkinos DV, Cokkinos P, Kolovou G. Proprotein convertase subtilisin/kexin type 9 inhibitors: New insights into cardiovascular atherosclerotic pathophysiology with therapeutic implications. Arch Cardiovasc Dis 2019; 112:455-458. [PMID: 31495741 DOI: 10.1016/j.acvd.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Dennis V Cokkinos
- BRFAA (Biomedical Research Foundation Academy of Athens), Heart and Vessel Department, 4, Soranou Ephessiou Street, 11527 Athens, Greece.
| | - Philip Cokkinos
- Cardiology Department, Onassis Cardiac Surgery Center, Sygrou 376, Kallithea, Athens, Greece
| | - Genovefa Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Sygrou 376, Kallithea, Athens, Greece
| |
Collapse
|
36
|
Zheng KH, Arsenault BJ, Kaiser Y, Khaw KT, Wareham NJ, Stroes ESG, Boekholdt SM. apoB/apoA-I Ratio and Lp(a) Associations With Aortic Valve Stenosis Incidence: Insights From the EPIC-Norfolk Prospective Population Study. J Am Heart Assoc 2019; 8:e013020. [PMID: 31407609 PMCID: PMC6759902 DOI: 10.1161/jaha.119.013020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Apolipoprotein B/apolipoprotein A‐I (apoB/apoA‐I) ratio and lipoprotein(a) (Lp[a]) are associated with aortic valve stenosis (AVS) disease progression. Clinical characteristics such as age, sex, and presence of concomitant coronary artery disease may strongly modify these associations; however, these effects have not been well defined in longitudinal studies. We set out to assess these associations between apoB/apoA‐I ratio, Lp(a), and AVS incidence in a large population study. Methods and Results We analyzed data from 17 745 participants (mean age, 59.2±9.1 years; men, 44.9%) in the EPIC‐Norfolk (European Prospective Investigation Into Cancer in Norfolk Prospective Population Study) population study in whom apoB/apoA‐I and Lp(a) levels were measured. Participants were identified as having incident AVS if they were hospitalized or died with AVS as an underlying cause. After a median follow‐up of 19.8 years (17.9–21.0 years) there were 403 (2.2%) incident cases of AVS. The hazard ratio for AVS risk was 1.30 (95% CI, 1.19–1.41; P<0.001) per SD increase in apoB/apoA‐I. Adjusting for age, sex, and coronary artery disease, there was no significant association between apoB/apoA‐I and AVS incidence (hazard ratio, 1.06; 95% CI, 0.97–1.17 [P=0.215]). Elevated Lp(a) (>50 mg/dL) remained an independent risk factor for AVS after adjustment for age, sex, low‐density lipoprotein cholesterol, and concomitant coronary artery disease (hazard ratio, 1.70; 95% CI, 1.33–2.19 [P<0.001]). Conclusions In this population study, apoB/apoA‐I ratio was associated with risk of AVS incidence, especially in younger and female participants and those without concomitant coronary artery disease. Lp(a) was an independent risk factor for AVS incidence. Interventional trials are needed to investigate whether modulating apoB/apoA‐I or lowering Lp(a) can prevent or slow down AVS.
Collapse
Affiliation(s)
- Kang H Zheng
- Department of Vascular Medicine Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval Québec Canada
| | - Yannick Kaiser
- Department of Vascular Medicine Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care University of Cambridge United Kingdom
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit University of Cambridge Cambridge United Kingdom
| | - Erik S G Stroes
- Department of Vascular Medicine Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - S Matthijs Boekholdt
- Department of Cardiology Amsterdam Cardiovascular Sciences Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
37
|
Gallo G, Presta V, Volpe M, Rubattu S. Molecular and clinical implications of natriuretic peptides in aortic valve stenosis. J Mol Cell Cardiol 2019; 129:266-271. [DOI: 10.1016/j.yjmcc.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
|
38
|
Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol 2019; 26:930-949. [PMID: 30776916 DOI: 10.1177/2047487319831500] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.
Collapse
Affiliation(s)
- C Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - M Banach
- 2 Department of Hypertension, Medical University of Lodz, Poland.,3 Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland.,4 Cardiovascular Research Centre, University of Zielona Gora, Poland
| | - A Corsini
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.,5 Multimedica IRCCS, Italy
| | - C R Sirtori
- 6 Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
| | - N Ferri
- 7 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - M Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|