1
|
Moore CM, Thornburg J, Secor EA, Hamlington KL, Schiltz AM, Freeman KL, Everman JL, Fingerlin TE, Liu AH, Seibold MA. Comparative analysis of ambient, in-home, and personal exposures reveals associations between breathing zone pollutant levels and asthma exacerbations in high-risk children. Respir Res 2025; 26:40. [PMID: 39871239 PMCID: PMC11773965 DOI: 10.1186/s12931-025-03114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes. METHODS We measured personal exposures to NO2, O3, PM10 and PM10 constituents, including black carbon (BC), brown carbon (BrC), environmental tobacco smoke (ETS), endotoxins, and 𝛽-glucan, in a cohort of children with exacerbation-prone asthma for 72 h using wearable monitors. Personal exposures were compared to concentrations from in-home monitors in the child's bedroom and ambient EPA air quality monitoring using correlation analyses. Personal exposures were tested for association with lung function and compared between participants with and without well-controlled asthma and signs of exacerbation in the prior 60 days using censored regression with robust standard errors. RESULTS 81 children completed 219 monitoring sessions. Personal NO2, O3, and PM10 exposures ranged from < 2 to 99.1 parts per billion (ppb), < 1.5 to 23.3 ppb, and < 1 to 141.9 𝜇g/m3, respectively. Personal endotoxin ranged from 0.04 to 101.3 EU/m3, 𝛽-glucan from 18.5 to 1,162 pg/m3, BC from < 0.3 to 46.9 𝜇g/m3, BrC from < 0.3 to 6.1 𝜇g/m3, and ETS from < 0.3 to 56.6 𝜇g/m3. Correlations between personal and ambient PM10, NO2, and O3 concentrations were poor, whereas personal PM10 and NO2 correlated with in-home concentrations. In-home monitoring less frequently detected BrC (Personal:79% > lower limit of detection, Home:36.8%) and ETS (Personal:83.7%, Home:4.1%) than personal exposures, and detected BC in participants without personal exposure (Personal: 26.5%, Home: 96%). Personal exposures were not significantly associated with lung function or daily asthma control. Children requiring corticosteroid treatment for asthma exacerbation within 60 days of exposure monitoring had 1.98, 2.21 and 2.04 times higher personal exposures to BrC (p < 0.001; 95% CI: 1.43-2.37), ETS (p = 0.007; 95% CI: 1.25-3.91), and endotoxin (p = 0.012; 95% CI: 1.14-3.68), respectively. CONCLUSIONS Although in-home monitoring was correlated with personal exposure to PM10 and NO2, in-home detection of ETS and BrC was not associated with personal exposures. Personal PM10 exposures in general, as well as BrC, ETS, and endotoxin levels were associated with recent childhood asthma exacerbations. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Biostatistics and Informatics, University of Colorado-AMC, Aurora, CO, USA.
- National Jewish Health, 1400 Jackson St, Denver, CO, 80206, USA.
| | | | - Elizabeth A Secor
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Katharine L Hamlington
- Section of Pediatric Pulmonary and Sleep Medicine, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Allison M Schiltz
- Section of Pediatric Pulmonary and Sleep Medicine, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristy L Freeman
- Section of Pediatric Pulmonary and Sleep Medicine, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Tasha E Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Andrew H Liu
- Section of Pediatric Pulmonary and Sleep Medicine, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-AMC, Aurora, CO, USA
| |
Collapse
|
2
|
Melaram R. Early life exposures of childhood asthma and allergies-an epidemiologic perspective. FRONTIERS IN ALLERGY 2024; 5:1445207. [PMID: 39247214 PMCID: PMC11377413 DOI: 10.3389/falgy.2024.1445207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Children around the world are continuing to develop and suffer from chronic lung diseases such as asthma. Childhood asthma commonly presents with recurrent episodes of cough, shortness of breath, and wheezing, all of which can lead to missed school days and hospitalization admissions. The role of environmental pollutants and aeroallergens has been increasingly recognized in relation to asthma etiology. We showcase the impacts of air pollution and pollen exposures in early life on childhood asthma and allergies through an epidemiologic perspective. We also examine the effects of indoor microbial exposures such as endotoxin and glucan on allergic diseases in schoolchildren as many spend most of their time in a household or classroom setting. Findings of this work can assist in the identification of key environmental factors in critical life periods and improve clinicians' diagnoses of asthma during early childhood.
Collapse
Affiliation(s)
- Rajesh Melaram
- College of Nursing and Health Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
3
|
Zhang T, Lui KH, Ho SSH, Chen J, Chuang HC, Ho KF. Characterization of airborne endotoxin in personal exposure to fine particulate matter (PM 2.5) and bioreactivity for elderly residents in Hong Kong. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116530. [PMID: 38833976 DOI: 10.1016/j.ecoenv.2024.116530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
The heavy metals and bioreactivity properties of endotoxin in personal exposure to fine particulate matter (PM2.5) were characterized in the analysis. The average personal exposure concentrations to PM2.5 were ranged from 6.8 to 96.6 μg/m3. The mean personal PM2.5 concentrations in spring, summer, autumn, and winter were 32.1±15.8, 22.4±11.8, 35.3±11.9, and 50.2±19.9 μg/m3, respectively. There were 85 % of study targets exceeded the World Health Organization (WHO) PM2.5 threshold (24 hours). The mean endotoxin concentrations ranged from 1.086 ± 0.384-1.912 ± 0.419 EU/m3, with a geometric mean (GM) varied from 1.034 to 1.869. The concentration of iron (Fe) (0.008-1.16 μg/m3) was one of the most abundant transition metals in the samples that could affect endotoxin toxicity under Toll-Like Receptor 4 (TLR4) stimulation. In summer, the interleukin 6 (IL-6) levels showed statistically significant differences compared to other seasons. Spearman correlation analysis showed endotoxin concentrations were positively correlated with chromium (Cr) and nickel (Ni), implying possible roles as nutrients and further transport via adhering to the surface of fine inorganic particles. Mixed-effects model analysis demonstrated that Tumor necrosis factor-α (TNF-α) production was positively associated with endotoxin concentration and Cr as a combined exposure factor. The Cr contained the highest combined effect (0.205-0.262), suggesting that Cr can potentially exacerbate the effect of endotoxin on inflammation and oxidative stress. The findings will be useful for practical policies for mitigating air pollution to protect the public health of the citizens.
Collapse
Affiliation(s)
- Tianhang Zhang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Hei Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Steven Sai Hang Ho
- Division of Atmosphere Sciences, Desert Research Institute, Reno, NV 89512, United States; Hong Kong Premium Services and Research Laboratory, Cheung Sha Wan, Kowloon, Hong Kong, China
| | - Jiayao Chen
- School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin, Ireland
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Moore CM, Thornburg J, Secor EA, Hamlington KL, Schiltz AM, Freeman KL, Everman JL, Fingerlin TE, Liu AH, Seibold MA. Breathing zone pollutant levels are associated with asthma exacerbations in high-risk children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.22.23295971. [PMID: 37790375 PMCID: PMC10543064 DOI: 10.1101/2023.09.22.23295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Indoor and outdoor air pollution levels are associated with poor asthma outcomes in children. However, few studies have evaluated whether breathing zone pollutant levels associate with asthma outcomes. Objective Determine breathing zone exposure levels of NO 2 , O 3 , total PM 10 and PM 10 constituents among children with exacerbation-prone asthma, and examine correspondence with in-home and community measurements and associations with outcomes. Methods We assessed children's personal breathing zone exposures using wearable monitors. Personal exposures were compared to in-home and community measurements and tested for association with lung function, asthma control, and asthma exacerbations. Results 81 children completed 219 monitoring sessions. Correlations between personal and community levels of PM 10 , NO 2 , and O 3 were poor, whereas personal PM 10 and NO 2 levels correlated with in-home measurements. However, in-home monitoring underdetected brown carbon (Personal:79%, Home:36.8%) and ETS (Personal:83.7%, Home:4.1%) personal exposures, and detected black carbon in participants without these personal exposures (Personal: 26.5%, Home: 96%). Personal exposures were not associated with lung function or asthma control. Children experiencing an asthma exacerbation within 60 days of personal exposure monitoring had 1.98, 2.21 and 2.04 times higher brown carbon (p<0.001), ETS (p=0.007), and endotoxin (p=0.012), respectively. These outcomes were not associated with community or in-home exposure levels. Conclusions Monitoring pollutant levels in the breathing zone is essential to understand how exposures influence asthma outcomes, as agreement between personal and in-home monitors is limited. Inhaled exposure to PM 10 constituents modifies asthma exacerbation risk, suggesting efforts to limit these exposures among high-risk children may decrease their asthma burden. CLINICAL IMPLICATIONS In-home and community monitoring of environmental pollutants may underestimate personal exposures. Levels of inhaled exposure to PM 10 constituents appear to strongly influence asthma exacerbation risk. Therefore, efforts should be made to mitigate these exposures. CAPSULE SUMMARY Leveraging wearable, breathing-zone monitors, we show exposures to inhaled pollutants are poorly proxied by in-home and community monitors, among children with exacerbation-prone asthma. Inhaled exposure to multiple PM 10 constituents is associated with asthma exacerbation risk.
Collapse
|
5
|
Yang S, Muthalagu A, Serrano VG, Licina D. Human personal air pollution clouds in a naturally ventilated office during the COVID-19 pandemic. BUILDING AND ENVIRONMENT 2023; 236:110280. [PMID: 37064616 PMCID: PMC10080864 DOI: 10.1016/j.buildenv.2023.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 μg/m3), CO2 (630 ppm), and PM10 (14 μg/m3) were below the recommended limits, except for formaldehyde (58 μg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 μg/m3, 32-120 ppm, and 4-9 μg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akila Muthalagu
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Systems Group, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Farooq S, Khatri S. Life Course of Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:43-76. [PMID: 37464116 DOI: 10.1007/978-3-031-32259-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is a heterogeneous chronic airway disease that can vary over a lifetime. Although broad categories of asthma by severity and type have been constructed, there remains a tremendous opportunity to discover an approach to managing asthma with additional factors in mind. Many in the field have suggested and are pursuing a novel paradigm shift in how asthma might be better managed, considering the life course of exposures, management priorities, and predicted trajectory of lung function growth. This approach will require a more holistic view of prenatal, postnatal, adolescence, hormonal and gender aspects, and the aging process. In addition, the environment, externally and internally, including in one's genetic code and epigenetic changes, are factors that affect how asthma progresses or becomes more stable in individuals. This chapter focuses on the various influences that may, to differing degrees, affect people with asthma, which can develop at any time in their lives. Shifting the paradigm of thought and strategies for care and advocating for public policies and health delivery that focus on this philosophy is paramount to advance asthma care for all.
Collapse
Affiliation(s)
- Sobia Farooq
- National Heart, Lung, and Blood Institute, CMO Division of Lung Diseases, Bethesda, MD, USA
| | - Sumita Khatri
- National Heart, Lung, and Blood Institute, CMO Division of Lung Diseases, Bethesda, MD, USA.
| |
Collapse
|
7
|
Hosseini B, Berthon BS, Jensen ME, McLoughlin RF, Wark PAB, Nichol K, Williams EJ, Baines KJ, Collison A, Starkey MR, Mattes J, Wood LG. The Effects of Increasing Fruit and Vegetable Intake in Children with Asthma on the Modulation of Innate Immune Responses. Nutrients 2022; 14:nu14153087. [PMID: 35956264 PMCID: PMC9370535 DOI: 10.3390/nu14153087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Children with asthma are at risk of acute exacerbations triggered mainly by viral infections. A diet high in fruit and vegetables (F&V), a rich source of carotenoids, may improve innate immune responses in children with asthma. Children with asthma (3−11 years) with a history of exacerbations and low F&V intake (≤3 serves/d) were randomly assigned to a high F&V diet or control (usual diet) for 6 months. Outcomes included respiratory-related adverse events and in-vitro cytokine production in peripheral blood mononuclear cells (PBMCs), treated with rhinovirus-1B (RV1B), house dust mite (HDM) and lipopolysaccharide (LPS). During the trial, there were fewer subjects with ≥2 asthma exacerbations in the high F&V diet group (n = 22) compared to the control group (n = 25) (63.6% vs. 88.0%, p = 0.049). Duration and severity of exacerbations were similar between groups. LPS-induced interferon (IFN)-γ and IFN-λ production showed a small but significant increase in the high F&V group after 3 months compared to baseline (p < 0.05). Additionally, RV1B-induced IFN-λ production in PBMCs was positively associated with the change in plasma lycopene at 6 months (rs = 0.35, p = 0.015). A high F&V diet reduced asthma-related illness and modulated in vitro PBMC cytokine production in young children with asthma. Improving diet quality by increasing F&V intake could be an effective non-pharmacological strategy for preventing asthma-related illness by enhancing children’s innate immune responses.
Collapse
Affiliation(s)
- Banafsheh Hosseini
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
| | - Bronwyn S. Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
| | - Megan E. Jensen
- Priority Research Centre Grow Up Well, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (M.E.J.); (J.M.)
| | - Rebecca F. McLoughlin
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
| | - Peter A. B. Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
| | - Evan J. Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
| | - Katherine J. Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
| | - Adam Collison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
- Priority Research Centre Grow Up Well, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (M.E.J.); (J.M.)
| | - Malcolm R. Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
- Priority Research Centre Grow Up Well, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (M.E.J.); (J.M.)
- Department of Immunology and Pathology, Central Clinical School, Sub-Faculty of Translational Medicine and Public Health, Monash University, Melbourne, VIC 3004, Australia
| | - Joerg Mattes
- Priority Research Centre Grow Up Well, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (M.E.J.); (J.M.)
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Lisa G. Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (B.H.); (B.S.B.); (R.F.M.); (P.A.B.W.); (K.N.); (E.J.W.); (K.J.B.); (A.C.); (M.R.S.)
- Priority Research Centre Grow Up Well, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia; (M.E.J.); (J.M.)
- Correspondence:
| |
Collapse
|
8
|
Sun L, Miller JD, Van Ryswyk K, Wheeler AJ, Héroux M, Goldberg MS, Mallach G. Household determinants of biocontaminant exposures in Canadian homes. INDOOR AIR 2022; 32:e12933. [PMID: 34561903 PMCID: PMC9293439 DOI: 10.1111/ina.12933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Exposure to biocontaminants, such as dust mites, animal dander, bacteria, and mold, is associated with a range of health effects. This study identified household characteristics associated with indoor biocontaminant loadings in four Canadian cities. Floor dust was collected in 290 Canadian homes in Edmonton, Halifax, Montreal, and Windsor. The dust samples were analyzed for house dust mite allergens (Der f 1 and Der p 1), cat allergen (Fel d 1), cockroach allergen (Bla g 1), beta-(1,3)-D-glucan, and endotoxin. Household information was obtained through questionnaires and home inspections. We performed univariate and multivariate analyses to identify household determinants of biocontaminant loadings and mold odor presence. We observed large regional variations for all biocontaminants, except for cockroach allergen. The ranges of the contaminants measured in loadings and concentrations were similar to that of previous Canadian studies. Household characteristics including presence of carpeting, low floor cleaning frequency, older home age, presence of pets, and indoor relative humidity above 45% were positively associated with the presence of multiple indoor biocontaminants. High floor cleaning frequency and use of dehumidifiers were negatively associated with the presence of multiple indoor biocontaminants. Mold odor was positively associated with older home age, past water damage, and visible mold growth.
Collapse
Affiliation(s)
- Liu Sun
- Air Health Effects Assessment Division, Water and Air Quality BureauHealth CanadaOttawaOntarioCanada
| | - J. David Miller
- Department of ChemistryCarleton UniversityOttawaOntarioCanada
| | - Keith Van Ryswyk
- Air Health Effects Assessment Division, Water and Air Quality BureauHealth CanadaOttawaOntarioCanada
| | - Amanda J. Wheeler
- Behaviour, Environment, and Cognition Research Program, Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Marie‐Eve Héroux
- Air Health Effects Assessment Division, Water and Air Quality BureauHealth CanadaOttawaOntarioCanada
| | - Mark S. Goldberg
- Department of MedicineMcGill UniversityMontrealQuébecCanada
- Department of Epidemiology, Biostatistics and Occupational HealthMcGill UniversityMontrealQuébecCanada
- Centre for Outcomes Research and EvaluationResearch Institute of the McGill University Hospital CentreMontrealQuébecCanada
| | - Gary Mallach
- Air Health Effects Assessment Division, Water and Air Quality BureauHealth CanadaOttawaOntarioCanada
| |
Collapse
|
9
|
Kang H, Bang JY, Mo Y, Shin JW, Bae B, Cho SH, Kim HY, Kang HR. Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin Exp Allergy 2021; 52:518-529. [PMID: 34874580 DOI: 10.1111/cea.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although lung macrophages are directly exposed to external stimuli, their exact immunologic roles in asthma are still largely unknown. The aim of this study was to investigate the anti-asthmatic effect of Acinetobacter lwoffii in terms of lung macrophage modulation. METHODS Six-week-old female BALB/c mice were sensitized and challenged with ovalbumin (OVA) with or without intranasal administration of A. lwoffii during the sensitization period. Airway hyperresponsiveness and inflammation were evaluated. Using flow cytometry, macrophages were subclassified according to their activation status. In the in vitro study, a murine alveolar macrophage cell line (MH-S) treated with or without A. lwoffii before IL-13 stimulation were analysed by quantitative RT-PCR. RESULTS In a murine asthma model, the number of inflammatory cells, including macrophages and eosinophils, decreased in mice treated with A. lwoffii (A. lwoffii/OVA group) compared with untreated mice (OVA group). The enhanced expression of MHCII in macrophages in the OVA group was decreased by A. lwoffii treatment. M2 macrophage subtypes were significantly altered. A. lwoffii treatment decreased CD11b+ M2a and CD11b+ M2c macrophages, which showed strong positive correlations with Th2 cells, ILC2 and eosinophils. In contrast, CD11b+ M2b macrophages were significantly increased by A. lwoffii treatment and showed strong positive correlations with ILC1 and ILC3. In vitro, A. lwoffii down-regulated the expression of M2 markers related but up-regulated those related to M2b macrophages. CONCLUSIONS AND CLINICAL RELEVANCE Intranasal A. lwoffii exposure suppresses asthma development by suppressing the type 2 response via modulating lung macrophage activation, shifting M2a and M2c macrophages to M2b macrophages.
Collapse
Affiliation(s)
- Hanbit Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woo Shin
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Hosseini B, Berthon BS, Starkey MR, Collison A, McLoughlin RF, Williams EJ, Nichol K, Wark PA, Jensen ME, Da Silva Sena CR, Baines KJ, Mattes J, Wood LG. Children With Asthma Have Impaired Innate Immunity and Increased Numbers of Type 2 Innate Lymphoid Cells Compared With Healthy Controls. Front Immunol 2021; 12:664668. [PMID: 34220812 PMCID: PMC8248177 DOI: 10.3389/fimmu.2021.664668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Asthma is the most frequent cause of hospitalisation among children; however, little is known regarding the effects of asthma on immune responses in children. Objective The present study aimed to evaluate cytokine responses of peripheral blood mononuclear cells (PBMCs), PBMC composition and lung function in children with and without asthma. Methods Using a case-control design, we compared 48 children with asthma aged 3-11 years with 14 age-matched healthy controls. PBMC composition and cytokine production including interferon (IFN)-γ, interleukin (IL)-1β, IL-5 and lL-6 following stimulation with rhinovirus-1B (RV1B), house dust mite (HDM) and lipopolysaccharide (LPS) were measured. Lung function was assessed using impulse oscillometry and nitrogen multiple breath washout. Results The frequency of group 2 innate lymphoid cells were significantly higher in asthmatics and PBMCs from asthmatics had deficient IFN-γ production in response to both RV1B and LPS compared with controls (P<0.01). RV1B-induced IL-1β response and HDM-stimulated IL-5 production was higher in asthmatics than controls (P<0.05). In contrast, IL-1β and IL-6 were significantly reduced in response to HDM and LPS in asthmatics compared to controls (P<0.05). Children with asthma also had reduced pulmonary function, indicated by lower respiratory reactance as well as higher area of-reactance and lung clearance index values compared with controls (P<0.05). Conclusion Our study indicates that children with asthma have a reduced lung function in concert with impaired immune responses and altered immune cell subsets. Improving our understanding of immune responses to viral and bacterial infection in childhood asthma can help to tailor management of the disease.
Collapse
Affiliation(s)
- Banafshe Hosseini
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Adam Collison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Rebecca F McLoughlin
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Peter Ab Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Megan E Jensen
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Carla Rebeca Da Silva Sena
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
11
|
Ishida T, Khan MS, Kodama H, Uejima Y, Kawase Y, Matsumoto T, Yamamura Y, Sera N, Gotou T, Hirakawa M, Yano Y, Shima M, Yamagishi N, Wakabayashi K, Watanabe T. Association of Protein and Endotoxin in Outdoor Air with Emergency Department Visits for Children and Adults with Asthma in Fukuoka, Japan. Biol Pharm Bull 2021; 43:1361-1366. [PMID: 32879210 DOI: 10.1248/bpb.b20-00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the association of biological components in airborne particles, i.e., proteins and endotoxins, in outdoor air with asthma exacerbation in the Fukuoka metropolitan area, Fukuoka, Japan. Data on emergency department (ED) visits for asthma in children (age, 0-14 years) and adults (age, 15-64 years) were collected at a medical center from December 2014 to November 2015. One hundred eighty-one children and 143 adults visited the ED for asthma, and the weekly number of ED visits in children increased in autumn, i.e., September (second week) to November (first week). Fine (aerodynamic diameter ≤2.5 µm) and coarse (≥2.5 µm) particles were collected for 3 or 4 weeks per month, and protein and endotoxin concentrations were analyzed. Protein was largely prevalent in fine particles (0.34-7.33 µg/m3), and concentrations were high in April, May, June, and October. In contrast, endotoxin was mainly included in coarse particles (0.0010-0.0246 EU/m3), and concentrations were high in September (third week), October (first, second, and fourth weeks), February (fourth week), and July (first week). The results of a Poisson regression analysis indicated that endotoxin (in fine and coarse particles alike) was a significant factor for ED visits related to asthma in children, even after adjusting for meteorological factors, i.e., temperature, relative humidity, and wind speed. However, there was no association between environmental factors and ED visits for asthma in adults. These results suggest that endotoxin in outdoor air is significantly associated with an increased risk of asthma exacerbation in children.
Collapse
Affiliation(s)
- Tomoko Ishida
- Department of Public Health, Kyoto Pharmaceutical University
| | | | - Honami Kodama
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yukiko Uejima
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yumi Kawase
- Department of Public Health, Kyoto Pharmaceutical University
| | | | - Yuki Yamamura
- Fukuoka Institute of Health and Environmental Science
| | - Nobuyuki Sera
- Department of Occupational Therapy, Teikyo University Fukuoka Campus
| | - Takao Gotou
- Department of Pharmacy, Fukuoka Tokushukai Medical Center
| | | | - Yoshitaka Yano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University
| | | | | | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | | |
Collapse
|
12
|
Kajino M, Hagino H, Fujitani Y, Morikawa T, Fukui T, Onishi K, Okuda T, Igarashi Y. Simulation of the transition metal-based cumulative oxidative potential in East Asia and its emission sources in Japan. Sci Rep 2021; 11:6550. [PMID: 33753804 PMCID: PMC7985388 DOI: 10.1038/s41598-021-85894-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
The aerosol oxidative potential (OP) is considered to better represent the acute health hazards of aerosols than the mass concentration of fine particulate matter (PM2.5). The proposed major contributors to OP are water soluble transition metals and organic compounds, but the relative magnitudes of these compounds to the total OP are not yet fully understood. In this study, as the first step toward the numerical prediction of OP, the cumulative OP (OPtm*) based on the top five key transition metals, namely, Cu, Mn, Fe, V, and Ni, was defined. The solubilities of metals were assumed constant over time and space based on measurements. Then, the feasibility of its prediction was verified by comparing OPtm* values based on simulated metals to that based on observed metals in East Asia. PM2.5 typically consists of primary and secondary species, while OPtm* only represents primary species. This disparity caused differences in the domestic contributions of PM2.5 and OPtm*, especially in large cities in western Japan. The annual mean domestic contributions of PM2.5 were 40%, while those of OPtm* ranged from 50 to 55%. Sector contributions to the OPtm* emissions in Japan were also assessed. The main important sectors were the road brake and iron-steel industry sectors, followed by power plants, road exhaust, and railways.
Collapse
Affiliation(s)
- Mizuo Kajino
- Meteorological Research Institute (MRI), Japan Meteorological Agency (JMA), Nagamine 1-1, Tsukuba, Ibaraki, 305-0052, Japan. .,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Hiroyuki Hagino
- Japan Automobile Research Institute (JARI), Tsukuba, Ibaraki, 305-0822, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, 305-8506, Japan
| | - Tazuko Morikawa
- Japan Automobile Research Institute (JARI), Tsukuba, Ibaraki, 305-0822, Japan
| | - Tetsuo Fukui
- Institute of Behavioral Sciences, Shinjuku, Tokyo, 162-0845, Japan
| | - Kazunari Onishi
- St. Luke's International University, Chuo, Tokyo, 104-0044, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yasuhito Igarashi
- Institute for Integrated Radiation and Nuclear Science (KURNS), Kyoto University, Kumatori, Osaka, 590-0494, Japan.,College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
| |
Collapse
|
13
|
Morianos I, Semitekolou M. Dendritic Cells: Critical Regulators of Allergic Asthma. Int J Mol Sci 2020; 21:ijms21217930. [PMID: 33114551 PMCID: PMC7663753 DOI: 10.3390/ijms21217930] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by airway hyperresponsiveness (AHR), chronic airway inflammation, and excessive T helper (Th) type 2 immune responses against harmless airborne allergens. Dendritic cells (DCs) represent the most potent antigen-presenting cells of the immune system that act as a bridge between innate and adaptive immunity. Pertinent to allergic asthma, distinct DC subsets are known to play a central role in initiating and maintaining allergen driven Th2 immune responses in the airways. Nevertheless, seminal studies have demonstrated that DCs can also restrain excessive asthmatic responses and thus contribute to the resolution of allergic airway inflammation and the maintenance of pulmonary tolerance. Notably, the transfer of tolerogenic DCs in vivo suppresses Th2 allergic responses and protects or even reverses established allergic airway inflammation. Thus, the identification of novel DC subsets that possess immunoregulatory properties and can efficiently control aberrant asthmatic responses is critical for the re-establishment of tolerance and the amelioration of the asthmatic disease phenotype.
Collapse
|
14
|
Niu M, Shen F, Zhou F, Zhu T, Zheng Y, Yang Y, Sun Y, Li X, Wu Y, Fu P, Tao S. Indoor air filtration could lead to increased airborne endotoxin levels. ENVIRONMENT INTERNATIONAL 2020; 142:105878. [PMID: 32580116 DOI: 10.1016/j.envint.2020.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 05/13/2023]
Abstract
Stand-alone portable air purifiers (APs) have become an increasingly popular method of controlling individual inhalation exposure. Exposure to bacterial endotoxins has a causative role in respiratory inhalation health. Here, we studied the changes in endotoxin levels in indoor air before and after purification by a portable AP equipped with HEPA (high-efficiency particulate air) filters. An increase in endotoxins was observed when a previously used AP was turned on to clean the air. Replacing the HEPA filters in the AP helped to mitigate the increase in endotoxins of larger sizes but not endotoxins of smaller sizes. Consequently, the use of APs could lead to increased endotoxin deposition in airways, especially in the alveolar region. The endotoxin concentrations on the HEPA filters were well correlated with the free DNA concentrations on the HEPA filters. This correlation indicates that the disrupted bacteria, which released free DNA, could also release endotoxins, thus making HEPA filters a source of indoor airborne endotoxins. Our results illustrate a potential endotoxin inhalation risk associated with HEPA-APs as an air cleaning strategy and highlight the importance of composition-specific air cleaning while reducing the particle number/mass.
Collapse
Affiliation(s)
- Mutong Niu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China.
| | - Feng Zhou
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yi Yang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Xinghua Li
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, Beihang University, Beijing 100191, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Yen YC, Yang CY, Wang TN, Yen PC, Ho CK, Mena KD, Lee TC, Chen KS, Lin YC, Chen PS. Household airborne endotoxin associated with asthma and allergy in elementary school-age children: a case-control study in Kaohsiung, Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19502-19509. [PMID: 32212084 PMCID: PMC7244453 DOI: 10.1007/s11356-020-07899-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
To evaluate the association between the presence of asthma and allergy, and airborne endotoxin in homes of school-age children in Kaohsiung City, Taiwan, with a case-control study design by matching the age and class exposure. Data collection of home visits included an interviewer-administered questionnaire and air sampling of participants' homes for endotoxin, bacteria, and fungi, as well as temperature and relative humidity measurements. Endotoxin was detected in all air samples with a median value of 0.67 EU m-3. In the adjusted logistic regression model, household airborne endotoxin was associated with higher prevalence of asthma and allergy; OR = 4.88 (95% CI 1.16-20.55) for Q3 (between 0.67 and 1.97 EU m -3) vs. Q1 (< 0.31 EU m -3), with statistical significance. Airborne fungi were associated with higher prevalence of asthma and allergy; OR = 4.47 (95% CI 1.13-17.69) for Q3 (between 314 and 699 CFU m -3) vs. Q1 (< 159 CFU m -3) in adjusted logistic regression models. Airborne endotoxin and fungi were significantly associated with children's asthma and allergy.
Collapse
Affiliation(s)
- Yu-Chuan Yen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chun Yen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Kung Ho
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kristina D Mena
- Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tzu-Chi Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan
| | - Kang-Shin Chen
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Pascoe CD, Jha A, Basu S, Mahood T, Lee A, Hinshaw S, Falsafi R, Hancock REW, Mookherjee N, Halayko AJ. The importance of reporting house dust mite endotoxin abundance: impact on the lung transcriptome. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1229-L1236. [PMID: 32320279 DOI: 10.1152/ajplung.00103.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The abundance of lipopolysaccharide (LPS) in house dust mite (HDM) preparations is broad and mirrors the variability seen in the homes of people with asthma. LPS in commercially available stocks ranges from 31 to 5,2000 endotoxin units. The influence of vastly different LPS loads on the mechanisms that define the immune and inflammatory phenotype of HDM-challenged mice has not been defined. This aim of the study was to understand the lung phenotype of mice challenged with HDM extract containing high or low levels of LPS. Female BALB/c mice were sensitized for 2 wk with commercial HDM extract containing either high (36,000 endotoxin units; HHDM) or low (615 endotoxin units; LHDM) levels of LPS. Lung phenotype was characterized by measuring lung function, total and differential cell counts, cytokine abundance, and the lung transcriptome by RNA-sequencing. LPS levels in HDM stocks used for preclinical asthma research in mice remain poorly reported. In 2019, only 14% of papers specified LPS concentration in HDM lots. Specific differences existed in airway responsiveness between mice challenged with HHDM or LHDM. HHDM- and LHDM-induced cytokine profiles of bronchial lavage were significantly different and the lung transcriptome was differentially enriched for genes involved in DNA damage repair or cilium movement, following HHDM or LHDM challenge, respectively. The abundance of LPS in commercially available HDM influences the phenotype of allergic airways inflammation in mice. Failure to report the level of LPS in HDM extracts used in animal models of airway disease will lead to inconsistency in reproducibility and reliability of published data.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas Mahood
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy Lee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Hinshaw
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Falsafi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, Winnipeg, Manitoba, Canada.,Department of Immunology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Yen YC, Yang CY, Ho CK, Yen PC, Cheng YT, Mena KD, Lee TC, Chen PS. Indoor ozone and particulate matter modify the association between airborne endotoxin and schoolchildren's lung function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135810. [PMID: 31972944 DOI: 10.1016/j.scitotenv.2019.135810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND To date, the effect of household airborne pollutants on the association between airborne endotoxin and lung function of schoolchildren is unknown. OBJECTIVES The objective of this study is to evaluate whether indoor air pollutants such as carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), particulate matter with aerodynamic diameter <10 and 2.5 μm (PM10, PM2.5) can modify the association between airborne endotoxin and school children's lung function in a heavy industrial city in Taiwan. METHODS We recruited 120 elementary school-age children in Kaohsiung City, Taiwan. Aerosol samples were collected on a filter membrane for 24 h period and then analyzed for endotoxin. Air pollutants were measured for 24 h in living rooms while school children's lung function was measured. The modification of air pollutants on the relationship between airborne endotoxin and children's lung function was estimated after adjusting the gender, age, height, weight, and case-control status. RESULTS We found that both O3 and PM10 concentrations significantly modified the relationships between airborne endotoxin and school children's lung function. Among children living in homes with O3 ≥ 0.01 ppm or PM10 ≥ 62 μg/m3, airborne endotoxin was negatively associated with lung functions, whereas among those living in homes with O3 < 0.01 ppm or PM10 < 62 μg/m3, airborne endotoxin was positively associated with lung functions. CONCLUSIONS The indoor air pollutant concentration of O3 and PM10 modifies the association between airborne endotoxin and school children's lung function.
Collapse
Affiliation(s)
- Yu-Chuan Yen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chi-Kung Ho
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Pei-Chun Yen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yu-Ting Cheng
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Kristina D Mena
- Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, TX, United States
| | - Tzu-Chi Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Health Promotion and Health Education, National Taiwan Normal University, Taiwan
| | - Pei-Shih Chen
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung City, Taiwan; Institute of Environmental Engineering, College of Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Shahhosseini E, Naddafi K, Nabizadeh R, Shamsipour M, Namvar Z, Tayebi B, Shoormasti RS, Hassanvand MS, Yunesian M. Endotoxin and Der p1 allergen levels in indoor air and settled dust in day-care centers in Tehran, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:789-795. [PMID: 32030152 PMCID: PMC6985405 DOI: 10.1007/s40201-019-00395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Allergens like endotoxin and mite allergen Der p 1 are associated with early wheezing and asthma morbidity. Day-care centers can be an important source of exposure to allergens. The aim of this study was to evaluate children's exposure to endotoxin and mite allergen (Der p 1) associated with total suspended particulate matter (TSP) and settled dust in day-care centers in two phases in years of 2015 and 2016 in Tehran city, Iran. METHODS Endotoxin and mite allergen Der p 1 in TSP and settled dust were measured in 23 day-care centers in Tehran. After collecting dust samples and weighting them, and then their extraction, Endotoxin and Der p 1 allergen were determined using QCL-1000 Endpoint chromogenic LAL Assay and ELISA, respectively. RESULTS The mean concentrations of endotoxin and mite allergen Der p 1 in settled dust were 0.3 EU/mg and 0.2 ng/mg, respectively. The mean concentration of endotoxin and mite allergen Der p 1 in indoor air TSP were 0.8 EU/m3 and 0.4 ng/m3, respectively. A significant negative correlation was found between endotoxin both in settled dust and in TSP with measured relative humidity in winter. Also, moderate correlation was observed between Der p 1 in settled dust and relative humidity in winter; however, the correlation between allergen in TSP and relative humidity was not significant. CONCLUSION Day-care centers can be an important source of endotoxin and Der p 1 allergen, so, implementation of proper interventions in these places can reduce exposure to them.
Collapse
Affiliation(s)
- Elahe Shahhosseini
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoosh Tayebi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Khan MS, Deguchi Y, Matsumoto T, Nagaoka H, Yamagishi N, Wakabayashi K, Watanabe T. Relationship of Asian Dust Events with Atmospheric Endotoxin and Protein Levels in Sasebo and Kyoto, Japan, in Spring. Biol Pharm Bull 2019; 42:1713-1719. [DOI: 10.1248/bpb.b19-00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yuya Deguchi
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | | | - Hiroaki Nagaoka
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | | | - Keiji Wakabayashi
- Department of Public Health, Kyoto Pharmaceutical University
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | | |
Collapse
|
20
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Godobedzha T. Biological Composition of Respirable Particulate Matter in an Industrial Vicinity in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E629. [PMID: 30795513 PMCID: PMC6406656 DOI: 10.3390/ijerph16040629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/15/2023]
Abstract
There is a growing concern that exposure to particulate matter of aerodynamic diameter of less than 2.5 µm (PM2.5) with biological composition (bioaerosols) may play a key role in the prevalence of adverse health outcomes in humans. This study determined the bacterial and fungal concentrations in PM2.5 and their inhalation health risks in an industrial vicinity in South Africa. Samples of PM2.5 collected on a 47-mm glass fiber filter during winter and summer months were analysed for bacterial and fungal content using standard methods. The health risks from inhalation of bioaerosols were done by estimating the age-specific dose rate. The concentration of bacteria (168⁻378 CFU/m³) was higher than fungi (58⁻155 CFU/m³). Bacterial and fungal concentrations in PM2.5 were lower in winter than in the summer season. Bacteria identified in summer were similar to those identified in winter: Staphylococcus sp., Bacillus sp., Micrococcus sp., Flavobacterium sp., Klebsiella sp. and Pseudomonas sp. Moreover, the fungal floras identified include Cladosporium spp., Aspergillus spp., Penicillium spp., Fusarium spp. and Alternaria spp. Children inhaled a higher dose of bacterial and fungal aerosols than adults. Bacteria and fungi are part of the bioaerosol components of PM2.5. Bioaerosol exposure may present additional health risks for children.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Tshifhiwa Godobedzha
- Air Quality Management, Environment and Agriculture Management Department, City of Tshwane Municipality Private Bag 440, Pretoria 0001, South Africa.
| |
Collapse
|
21
|
Luo B, Shi H, Zhang K, Wei Q, Niu J, Wang J, Hammond SK, Liu S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:9-16. [PMID: 30384172 DOI: 10.1016/j.ecoenv.2018.10.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA.
| | - Hongxia Shi
- Health Management Center, Lanzhou University the Second Hospital, Lanzhou 730030, China
| | - Kai Zhang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Wei
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA; Environmental & Occupational Health Sciences, School of Health Sciences, Purdue University, West Lafayette 47907, USA.
| |
Collapse
|
22
|
Abstract
This article on exposome and asthma focuses on the interaction of patients and their environments in various parts of their growth, development, and stages of life. Indoor and outdoor environments play a role in pathogenesis via levels and duration of exposure, with genetic susceptibility as a crucial factor that alters the initiation and trajectory of common conditions such as asthma. Knowledge of environmental exposures globally and changes that are occurring is necessary to function effectively as medical professionals and health advocates.
Collapse
Affiliation(s)
- Ahila Subramanian
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, CWRU School of Medicine, 9500 Euclid Avenue/A90, Cleveland, OH 4419, USA
| | - Sumita B Khatri
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, CWRU School of Medicine, 9500 Euclid Avenue/A90, Cleveland, OH 4419, USA.
| |
Collapse
|
23
|
Lovinsky-Desir S, Lawrence J, Jung KH, Rundle AG, Hoepner LA, Yan B, Perera F, Perzanowski MS, Miller RL, Chillrud SN. Assessment of exposure to air pollution in children: Determining whether wearing a personal monitor affects physical activity. ENVIRONMENTAL RESEARCH 2018; 166:340-343. [PMID: 29913435 PMCID: PMC6330888 DOI: 10.1016/j.envres.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Personal air pollution monitoring in research studies should not interfere with usual patterns of behavior and bias results. In an urban pediatric cohort study we tested whether wearing an air monitor impacted activity time based on continuous watch-based accelerometry. The majority (71%) reported that activity while wearing the monitor mimicked normal activity. Correspondingly, variation in activity while wearing versus not wearing the monitor did not differ greatly from baseline variation in activity (P = 0.84).
Collapse
Affiliation(s)
- Stephanie Lovinsky-Desir
- Division of Pediatric Pulmonology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 3959 Broadway CHC-745, New York, NY 10032, United States.
| | - Jennifer Lawrence
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630W. 168th St., New York, NY 10032, United States
| | - Kyung Hwa Jung
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630W. 168th St., New York, NY 10032, United States
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722W. 168th St., New York, NY 10032, United States
| | - Lori A Hoepner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th St., New York, NY 10032, United States; Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health, Box 43, 450 Clarkson Ave., Brooklyn, NY 11203, United States
| | - Beizhan Yan
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9W Palisades, NY 10964, United States
| | - Federica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th St., New York, NY 10032, United States
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th St., New York, NY 10032, United States
| | - Rachel L Miller
- Division of Pulmonary, Allergy and Critical Care of Medicine, Department of Medicine, College of Physicians and Surgeons, Columbia University, PH8E-101, 630W. 168th St., New York, NY 10032, United States; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th St., New York, NY 10032, United States; Division of Pediatric Allergy, Immunology, and Rheumatology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, PH8E-101, 630W 168th St., New York, NY 10032, United States
| | - Steve N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, 61 Rt, 9W Palisades, NY 10964, United States
| |
Collapse
|
24
|
Khan MS, Coulibaly S, Matsumoto T, Yano Y, Miura M, Nagasaka Y, Shima M, Yamagishi N, Wakabayashi K, Watanabe T. Association of airborne particles, protein, and endotoxin with emergency department visits for asthma in Kyoto, Japan. Environ Health Prev Med 2018; 23:41. [PMID: 30153806 PMCID: PMC6114267 DOI: 10.1186/s12199-018-0731-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 01/23/2023] Open
Abstract
Background The health effects of biological aerosols on the respiratory system are unclear. The purpose of this study was to clarify the association of airborne particle, protein, and endotoxin with emergency department visits for asthma in Kyoto City, Japan. Methods We collected data on emergency department visits at a hospital in Kyoto from September 2014 to May 2016. Fine (aerodynamic diameter ≤ 2.5 μm) and coarse (≥ 2.5 μm) particles were collected in Kyoto, and protein and endotoxin levels were analyzed. The association of the levels of particles, protein, endotoxin, and meteorological factors (temperature, relative humidity, wind speed, and air pressure) with emergency department visits for asthma was estimated. Results There were 1 to 15 emergency department visits for asthma per week, and the numbers of visits increased in the autumn and spring, namely many weeks in September, October, and April. Weekly concentration of protein in fine particles was markedly higher than that in coarse particles, and protein concentration in fine particles was high in spring months. Weekly endotoxin concentrations in fine and coarse particles were high in autumn months, including September 2014 and 2015. Even after adjusting for meteorological factors, the concentrations of coarse particles and endotoxin in both particles were significant factors on emergency department visits for asthma. Conclusions Our results suggest that atmospheric coarse particles and endotoxin are significantly associated with an increased risk of asthma exacerbation. Electronic supplementary material The online version of this article (10.1186/s12199-018-0731-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Shahriar Khan
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan
| | - Souleymane Coulibaly
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan
| | - Takahiro Matsumoto
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan
| | - Yoshitaka Yano
- Education and Research Center for Clinical Pharmacy, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchcho, Yamashinaku, Kyoto, 607-8414, Japan
| | - Makoto Miura
- Rakuwakai Otowa Hospital, 2 Otowachinji-cho, Yamashinaku, Kyoto, 607-8062, Japan
| | - Yukio Nagasaka
- Rakuwakai Otowa Hospital, 2 Otowachinji-cho, Yamashinaku, Kyoto, 607-8062, Japan
| | - Masayuki Shima
- Department of Public Health, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Nobuyuki Yamagishi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka, 573-0101, Japan
| | - Keiji Wakabayashi
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, 1 Misasagi-Shichonocho, Yamashinaku, Kyoto, 607-8412, Japan.
| |
Collapse
|
25
|
Khan MS, Coulibaly S, Abe M, Furukawa N, Kubo Y, Nakaoji Y, Kawase Y, Matsumoto T, Hasei T, Deguchi Y, Nagaoka H, Yamagishi N, Watanabe M, Honda N, Wakabayashi K, Watanabe T. Seasonal Fluctuation of Endotoxin and Protein Concentrations in Outdoor Air in Sasebo, Japan. Biol Pharm Bull 2018; 41:115-122. [PMID: 29311473 DOI: 10.1248/bpb.b17-00745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the levels of endotoxin, which is a major component of outer membrane of Gram-negative bacteria, and protein in the atmosphere in Sasebo, Japan, we measured these biological materials in fine (aerodynamic diameter ≤2.5 µm) and coarse (≥2.5 µm) particles collected for 81 weeks (September 2014 to May 2016). The monthly concentrations (i.e., the mean value of weekly concentrations for each month) of endotoxin were higher in coarse particles than in fine particles. Fluctuations in monthly endotoxin concentrations were large in both fine (0.0005-0.0208 EU/m3) and coarse (0.0032-0.1164 EU/m3) particles. Furthermore, the endotoxin concentrations in coarse particles were highest in October 2014 and 2015 as well as September 2014 (0.0407-0.1164 EU/m3). However, the monthly protein concentrations were higher in fine particles than in coarse particles. Compared to the endotoxin concentrations, the fluctuations in the monthly protein concentrations were smaller in both coarse and fine particles. To our knowledge, this study is the first to report long-term atmospheric concentrations of endotoxin and protein in Japan. Since the endotoxin concentrations in coarse particles were positively associated with the concentrations of Na+ and Cl-, it suggests the involvement of Gram-negative bacteria from seawater to the endotoxin levels in the atmosphere. For fine particles, the protein concentrations were positively associated with the concentrations of particles, NO3- and SO42-. These results suggest that combustion of organic materials, such as biomass burning, may be a contributor to atmospheric protein during this study period.
Collapse
Affiliation(s)
| | | | - Maho Abe
- Department of Public Health, Kyoto Pharmaceutical University
| | - Nami Furukawa
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yuuki Kubo
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yusuke Nakaoji
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yumi Kawase
- Department of Public Health, Kyoto Pharmaceutical University
| | | | - Tomohiro Hasei
- Department of Public Health, Kyoto Pharmaceutical University
| | - Yuya Deguchi
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroaki Nagaoka
- Faculty of Pharmaceutical Sciences, Nagasaki International University
| | | | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Tottori University Faculty of Medicine
| | - Naoko Honda
- Department of Public Health, Kyoto Pharmaceutical University.,Department of Food and Nutrition, Faculty of Human Health, Sonoda Women's University
| | - Keiji Wakabayashi
- Department of Public Health, Kyoto Pharmaceutical University.,Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka
| | | |
Collapse
|
26
|
Park WM, Park DU, Hwang SH. Factors affecting ambient endotoxin and particulate matter concentrations around air vents of subway stations in South Korea. CHEMOSPHERE 2018; 205:45-51. [PMID: 29679788 DOI: 10.1016/j.chemosphere.2018.04.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Levels of airborne endotoxins and particulate matter less than 10 μm and 2.5 μm in diameter (PM) were measured in the air vents of subway stations in Seoul, South Korea, and factors affecting both pollutants were analyzed. The measurements were completed from March 2016 to February 2017 for eight air vents situated at the ground level around the subway stations. A total of 166 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from not detected to 1.986 EU m-3, with a mean of 0.227 EU m-3. The results showed significantly different PM levels from the measurements reported by AIRKOREA as part of the comprehensive air quality index. This can be attributed to different sampling sites in the same area. Endotoxin levels tended to be higher in fall compared to summer. Airborne bacteria levels showed a pattern similar to the endotoxin levels, but no significant association was reported between them. The levels of endotoxins around air vents with a glass cover and streets that allowed smoking were significantly higher than those not containing a walled barrier and streets in which smoking was prohibited. Multivariate regression analysis showed that the factors affecting endotoxin levels comprised air vents with a glass cover (coefficient = 0.106, p = 0.014) and season (coefficient = 0.062, p < 0.0001). Therefore, installing barriers on the air vents and prohibiting smoking in streets to which the vents open may be effective ways to lessen exposure to airborne endotoxin levels around air vents.
Collapse
Affiliation(s)
- Wha Me Park
- The Institute for Occupational Health, Yonsei University College of Medicine, South Korea; Graduate School of Public Health, Yonsei University, South Korea
| | - Dong Uk Park
- Department of Environmental Health, Korea National Open University, South Korea
| | - Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea.
| |
Collapse
|
27
|
Oluwole O, Rennie DC, Senthilselvan A, Dyck R, Afanasieva A, Kirychuk S, Katselis G, Lawson JA. The association between endotoxin and beta-(1 → 3)-D-glucan in house dust with asthma severity among schoolchildren. Respir Med 2018; 138:38-46. [PMID: 29724391 DOI: 10.1016/j.rmed.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/13/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Asthma severity can be affected by microbial exposures. However, less is known about the specific indoor agents aggravating the disease in children. We examined the associations between indoor endotoxin and beta-(1 → 3)-D-glucan exposures and asthma severity in children with asthma. METHODS A clinical cross-sectional study of schoolchildren (aged 7-17 years) was conducted in the province of Saskatchewan, Canada. Children with asthma (n = 116) were identified from 335 participants using a combination of survey responses and objective clinical assessments. We then ascertained asthma severity based on recommended guidelines (continuous daytime asthma symptoms, frequent nighttime asthma symptoms, and ≤ 60% predicted FEV1). Levels of indoor endotoxin and beta-(1 → 3)-D-glucan were measured in dust samples obtained from play area floors and child's mattresses. RESULTS The study population of 116 children with asthma was comprised of 75.9% mild asthma and 24.1% moderate/severe asthma. Higher mattress endotoxin concentration was associated with increased odds of moderate/severe asthma [adjusted odds ratio (aOR) = 11.40, 95% confidence interval (CI): 1.45-89.43] while higher beta-(1 → 3)-D-glucan concentration (aOR = 0.16, 95% CI: 0.03-0.89) and load (aOR = 0.10, 95% CI: 0.02-0.72) in play areas were inversely associated with moderate/severe asthma. Furthermore, higher mattress endotoxin concentration was associated with lower FVC (p = 0.01) and FEV1 (p = 0.03). These associations were not seen for beta-(1 → 3)-D-glucan. CONCLUSION Our results showed differential effects of microbial exposures on childhood asthma severity and further highlight domestic endotoxin exposure effects on respiratory health outcomes in children with asthma.
Collapse
Affiliation(s)
- Oluwafemi Oluwole
- Department of Community Health and Epidemiology, University of Saskatchewan, 104 Clinic Place Saskatoon, SK, S7N 2Z4, Canada; Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada.
| | - Donna C Rennie
- Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada; College of Nursing, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK, S7N 2Z4, Canada
| | | | - Roland Dyck
- Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada; Department of Medicine, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Anna Afanasieva
- Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada
| | - Shelley Kirychuk
- Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada; Department of Medicine, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - George Katselis
- Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada; Department of Medicine, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Joshua A Lawson
- Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, 104 Clinic Place, PO Box 23, Saskatoon, SK, S7N 2Z4, Canada; Department of Medicine, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| |
Collapse
|
28
|
Farokhi A, Heederik D, Smit LAM. Respiratory health effects of exposure to low levels of airborne endotoxin - a systematic review. Environ Health 2018; 17:14. [PMID: 29422043 PMCID: PMC5806377 DOI: 10.1186/s12940-018-0360-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Elevated endotoxin levels have been measured in ambient air around livestock farms, which is a cause of concern for neighbouring residents. There is clear evidence that occupational exposure to high concentrations of airborne endotoxin causes respiratory inflammation, respiratory symptoms and lung function decline. However, health effects of exposure to low levels of endotoxin are less well described. The aim of this systematic review is to summarize published associations between exposure to relatively low levels of airborne endotoxin and respiratory health endpoints. METHODS Studies investigating respiratory effects of measured or modelled exposure to low levels of airborne endotoxin (average < 100 EU/m3) were eligible for inclusion. In total, 1362 articles were identified through a Pubmed database search, of which 31 articles were included in this review. Studies were included up to February 2017. Overview tables and forest plots were created, and study quality was assessed. RESULTS Twenty-two included studies had a cross-sectional design, others were designed as longitudinal observational (n = 7) or experimental (n = 2) studies. Most studies (n = 23) were conducted in an occupational setting, some involved domestic or experimental exposure. Several studies reported statistically significant effects of exposure to low levels of endotoxin on respiratory symptoms and lung function. However, considerable heterogeneity existed in the outcomes of the included studies and no overall estimate could be provided by meta-analysis to quantify the possible relationship. Instead, a best evidence synthesis was performed among studies examining the exposure-response relationship between endotoxin and respiratory outcomes. Significant exposure-response relationships between endotoxin and symptoms and FEV1 were shown in several studies, with no conflicting findings in the studies included in the best evidence synthesis. Significantly different effects of endotoxin exposure were also seen in vulnerable subgroups (atopics and patients with broncho-obstructive disease) and smokers. CONCLUSIONS Respiratory health effects of exposure to low levels of airborne endotoxin (< 100 EU/m3) seem plausible. Future studies are needed to investigate ambient exposure to endotoxin and potential respiratory health effects, especially in vulnerable subgroups of the population.
Collapse
Affiliation(s)
- Azadèh Farokhi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508TD, Utrecht, The Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508TD, Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508TD, Utrecht, The Netherlands.
| |
Collapse
|
29
|
Yoda Y, Tamura K, Shima M. Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city. INDOOR AIR 2017; 27:955-964. [PMID: 28161889 DOI: 10.1111/ina.12370] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM2.5 ) and coarse (PM10-2.5 ) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM2.5 than in PM10-2.5 . In both PM2.5 and PM10-2.5 , indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R2 =0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM10-2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations.
Collapse
Affiliation(s)
- Y Yoda
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan
| | - K Tamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - M Shima
- Department of Public Health, Hyogo College of Medicine, Nishinomiya, Japan
- Hyogo Regional Center of Japan Environment and Children's Study, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
30
|
Fessler MB, Carnes MU, Salo PM, Wilkerson J, Cohn RD, King D, Hoppin JA, Sandler DP, Travlos G, London S, Thorne P, Zeldin D. House Dust Endotoxin and Peripheral Leukocyte Counts: Results from Two Large Epidemiologic Studies. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:057010. [PMID: 28599265 PMCID: PMC5730525 DOI: 10.1289/ehp661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/27/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND The peripheral leukocyte count is a biomarker of inflammation and is associated with human all-cause mortality. Although causes of acute leukocytosis are well-described, chronic environmental determinants of leukocyte number are less well understood. OBJECTIVES We investigated the relationship between house dust endotoxin concentration and peripheral leukocyte counts in human subjects. METHODS The endotoxin–leukocyte relationship was evaluated by linear regression in the National Health and Nutrition Examination Survey (NHANES) 2005–2006 (n=6,254) and the Agricultural Lung Health Study (ALHS; n=1,708). In the ALHS, we tested for a gene [Toll-like Receptor 4 (TLR4), encoding the endotoxin receptor]-by-environment interaction in the endotoxin–leukocyte relationship using regression models with an interaction term. RESULTS There is a statistically significant, positive association between endotoxin concentration and total leukocyte number [estimated change, 0.186×103/μL (95% CI: 0.070, 0.301×103/μL) per 10-fold change in endotoxin; p=0.004) in the NHANES. Similar positive associations were found for monocytes, lymphocytes, and neutrophils. Stratified analyses revealed possible effect modification by asthma and chronic obstructive pulmonary disease. We observed similar associations in the ALHS. For total leukocytes, there was suggestive evidence in the ALHS of a gene-by-environment interaction for minor allele carrier status at the TLR4 haplotype defined by rs4986790 and rs4986791 (interaction p=0.15). CONCLUSIONS This is, to our knowledge, the first report of an association between house dust endotoxin and leukocyte count in a national survey. The finding was replicated in a farming population. Peripheral leukocyte count may be influenced by residential endotoxin exposure in diverse settings. https://doi.org/10.1289/EHP661.
Collapse
Affiliation(s)
- Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Megan U Carnes
- Epidemiology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Päivi M Salo
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Jesse Wilkerson
- Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Richard D Cohn
- Social & Scientific Systems, Inc., Durham, North Carolina, USA
| | - Debra King
- Clinical Pathology Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Jane A Hoppin
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Dale P Sandler
- Epidemiology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Greg Travlos
- Clinical Pathology Group, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Stephanie London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
- Epidemiology Branch, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Peter Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, USA
| | - Darryl Zeldin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
31
|
Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060592. [PMID: 27314370 PMCID: PMC4924049 DOI: 10.3390/ijerph13060592] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality.
Collapse
Affiliation(s)
- Oyewale Mayowa Morakinyo
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Matlou Ingrid Mokgobu
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Murembiwa Stanley Mukhola
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| | - Raymond Paul Hunter
- Department of Environmental Health, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
32
|
Time-Based Measurement of Personal Mite Allergen Bioaerosol Exposure over 24 Hour Periods. PLoS One 2016; 11:e0153414. [PMID: 27192200 PMCID: PMC4871444 DOI: 10.1371/journal.pone.0153414] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
Allergic diseases such as asthma and rhinitis are common in many countries. Globally the most common allergen associated with symptoms is produced by house dust mites. Although the bed has often been cited as the main site of exposure to mite allergens, surprisingly this has not yet been directly established by measurement due to a lack of suitable methods. Here we report on the development of novel methods to determine the pattern of personal exposure to mite allergen bioaerosols over 24-hour periods and applied this in a small field study using 10 normal adults. Air was sampled using a miniature time-based air-sampler of in-house design located close to the breathing zone of the participants, co-located with a miniature time-lapse camera. Airborne particles, drawn into the sampler at 2L/min via a narrow slot, were impacted onto the peripheral surface of a disk mounted on the hour-hand of either a 12 or 24 hour clock motor. The impaction surface was either an electret cloth, or an adhesive film; both novel for these purposes. Following a review of the time-lapse images, disks were post-hoc cut into subsamples corresponding to eight predetermined categories of indoor or outdoor location, extracted and analysed for mite allergen Der p 1 by an amplified ELISA. Allergen was detected in 57.2% of the total of 353 subsamples collected during 20 days of sampling. Exposure patterns varied over time. Higher concentrations of airborne mite allergen were typically measured in samples collected from domestic locations in the day and evening. Indoor domestic Der p 1 exposures accounted for 59.5% of total exposure, whereas total in-bed-asleep exposure, which varied 80 fold between individuals, accounted overall for 9.85% of total exposure, suggesting beds are not often the main site of exposure. This study establishes the feasibility of novel methods for determining the time-geography of personal exposure to many bioaerosols and identifies new areas for future technical development and clinical applications.
Collapse
|
33
|
Crespo-Lessmann A, Mateus E, Vidal S, Ramos-Barbón D, Torrejón M, Giner J, Soto L, Juárez C, Plaza V. Expression of toll-like receptors 2 and 4 in subjects with asthma by total serum IgE level. Respir Res 2016; 17:41. [PMID: 27084682 PMCID: PMC4833957 DOI: 10.1186/s12931-016-0355-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging data suggest that innate immunity may play a role in asthma, particularly the toll-like receptors (TLRs). Some studies pointed to an involvement of TLRs 2 and 4 in the pathogenesis of allergic asthma, and other studies related TLRs to IgE. However, there are not any studies that have comprehensively evaluated the expression of TLRs 2 and 4 in inflammatory cells, in peripheral blood and induced sputum specimens from asthmatic patients, according to their total serum IgE. METHODS We studied 44 asthmatic patients (15 with high total serum IgE and 29 with normal total serum IgE). On a single visit, all patients underwent: induced sputum, pulmonary function tests, determination of exhaled nitric oxide fraction, venipuncture for blood analysis and skin prick allergy tests. The induced sputum cellularity was analyzed by flow cytometry, where expression of TLRs 2 and 4 was studied using fluorochrome-conjugated monoclonal antibodies. RESULTS Asthmatic patients with high total serum IgE showed, a higher percentage of macrophages expressing TLR4 (42.99 % ± 22.49) versus asthmatic patients with normal total serum IgE (28.84 % ± 15.16) (P = 0.048). Furthermore, we observed a correlation (but weak) between the percentage of macrophages expressing TLR4 in induced sputum and the total serum IgE level (R = 0.314; P = 0.040). CONCLUSION Asthmatic subjects with high total serum IgE show increased macrophage expression of TLR4 in induced sputum. This outcome may result from a link between innate immunity and IgE-mediated, adaptive immune responses in asthma, and point to TLR4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Astrid Crespo-Lessmann
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Eder Mateus
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
- Immunology Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Silvia Vidal
- Immunology Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - David Ramos-Barbón
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Montserrat Torrejón
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Jordi Giner
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Lorena Soto
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
| | - Cándido Juárez
- Immunology Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Vicente Plaza
- Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Hwang SH, Park DJ, Park WM, Park DU, Ahn JK, Yoon CS. Seasonal variation in airborne endotoxin levels in indoor environments with different micro-environmental factors in Seoul, South Korea. ENVIRONMENTAL RESEARCH 2016; 145:101-108. [PMID: 26656510 DOI: 10.1016/j.envres.2015.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
This study evaluated the variation over a year in airborne endotoxin levels in the indoor environment of five university laboratories in Seoul, South Korea, and examined the micro-environmental factors that influenced endotoxin levels. These included temperature, relative humidity, CO2, CO, illumination, and wind velocity. A total of 174 air samples were collected and analyzed using the kinetic limulus amebocyte lysate assay. Endotoxin levels ranged from <0.001 to 8.90EU/m(3), with an overall geometric mean of 0.240EU/m(3). Endotoxin levels showed significantly negative correlation with temperature (r=-0.529, p<0.001), CO2 (r=-0.213, p<0.001) and illumination (r=-0.538, p<0.001). Endotoxin levels tended to be higher in winter. Endotoxin levels in laboratories with rabbits were significantly higher than those of laboratories with mice. Multivariate regression analysis showed that the environmental factors affecting endotoxin levels were temperature (coefficient=-0.388, p<0.001) and illumination (coefficient=-0.370, p<0.001). Strategies aimed at reducing airborne endotoxin levels in the indoor environments may be most effective if they focus on illumination.
Collapse
Affiliation(s)
- Sung Ho Hwang
- National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, South Korea
| | - Dong Jin Park
- Occupational Safety and Health Research, Ulsan, South Korea
| | - Wha Me Park
- Institute of Environmental and Industrial Medicine, Hanyang University, Seoul, South Korea
| | - Dong Uk Park
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Jae Kyoung Ahn
- Research Institute of Standards for Environmental Testing, Seoul, South Korea
| | - Chung Sik Yoon
- Institute of Health and Environment, School of Public Health, Seoul National University, Gwanak ,1 Gwanak-ro, Seoul, South Korea.
| |
Collapse
|
35
|
Thorne PS, Mendy A, Metwali N, Salo P, Co C, Jaramillo R, Rose KM, Zeldin DC. Endotoxin Exposure: Predictors and Prevalence of Associated Asthma Outcomes in the United States. Am J Respir Crit Care Med 2015; 192:1287-97. [PMID: 26258643 PMCID: PMC4731700 DOI: 10.1164/rccm.201502-0251oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/07/2015] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Inhaled endotoxin induces airway inflammation and is an established risk factor for asthma. The 2005-2006 National Health and Nutrition Examination Survey included measures of endotoxin and allergens in homes as well as specific IgE to inhalant allergens. OBJECTIVES To understand the relationships between endotoxin exposure, asthma outcomes, and sensitization status for 15 aeroallergens in a nationally representative sample. METHODS Participants were administered questionnaires in their homes. Reservoir dust was vacuum sampled to generate composite bedding and bedroom floor samples. We analyzed 7,450 National Health and Nutrition Examination Survey dust and quality assurance samples for their endotoxin content using extreme quality assurance measures. Data for 6,963 subjects were available, making this the largest study of endotoxin exposure to date. Log-transformed endotoxin concentrations were analyzed using logistic models and forward stepwise linear regression. Analyses were weighted to provide national prevalence estimates and unbiased variances. MEASUREMENTS AND MAIN RESULTS Endotoxin exposure was significantly associated with wheeze in the past 12 months, wheeze during exercise, doctor and/or emergency room visits for wheeze, and use of prescription medications for wheeze. Models adjusted for age, sex, race and/or ethnicity, and poverty-to-income ratio and stratified by allergy status showed that these relationships were not dependent upon sensitization status but were worsened among those living in poverty. Significant predictors of higher endotoxin exposures were lower family income; Hispanic ethnicity; participant age; dog(s), cat(s), cockroaches, and/or smoker(s) in the home; and carpeted floors. CONCLUSIONS In this U.S. nationwide representative sample, higher endotoxin exposure was significantly associated with measures of wheeze, with no observed protective effect regardless of sensitization status.
Collapse
Affiliation(s)
- Peter S. Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Angelico Mendy
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Päivi Salo
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Caroll Co
- Social & Scientific Systems, Inc., Durham, North Carolina
| | | | | | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| |
Collapse
|
36
|
Kanchongkittiphon W, Mendell MJ, Gaffin JM, Wang G, Phipatanakul W. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:6-20. [PMID: 25303775 PMCID: PMC4286274 DOI: 10.1289/ehp.1307922] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Previous research has found relationships between specific indoor environmental exposures and exacerbation of asthma. OBJECTIVES In this review we provide an updated summary of knowledge from the scientific literature on indoor exposures and exacerbation of asthma. METHODS Peer-reviewed articles published from 2000 to 2013 on indoor exposures and exacerbation of asthma were identified through PubMed, from reference lists, and from authors' files. Articles that focused on modifiable indoor exposures in relation to frequency or severity of exacerbation of asthma were selected for review. Research findings were reviewed and summarized with consideration of the strength of the evidence. RESULTS Sixty-nine eligible articles were included. Major changed conclusions include a causal relationship with exacerbation for indoor dampness or dampness-related agents (in children); associations with exacerbation for dampness or dampness-related agents (in adults), endotoxin, and environmental tobacco smoke (in preschool children); and limited or suggestive evidence for association with exacerbation for indoor culturable Penicillium or total fungi, nitrogen dioxide, rodents (nonoccupational), feather/down pillows (protective relative to synthetic bedding), and (regardless of specific sensitization) dust mite, cockroach, dog, and dampness-related agents. DISCUSSION This review, incorporating evidence reported since 2000, increases the strength of evidence linking many indoor factors to the exacerbation of asthma. Conclusions should be considered provisional until all available evidence is examined more thoroughly. CONCLUSION Multiple indoor exposures, especially dampness-related agents, merit increased attention to prevent exacerbation of asthma, possibly even in nonsensitized individuals. Additional research to establish causality and evaluate interventions is needed for these and other indoor exposures.
Collapse
|
37
|
Karottki DG, Bekö G, Clausen G, Madsen AM, Andersen ZJ, Massling A, Ketzel M, Ellermann T, Lund R, Sigsgaard T, Møller P, Loft S. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. ENVIRONMENT INTERNATIONAL 2014; 73:372-81. [PMID: 25233101 DOI: 10.1016/j.envint.2014.08.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/11/2014] [Accepted: 08/31/2014] [Indexed: 05/22/2023]
Abstract
This cross-sectional study investigated the relationship between exposure to airborne indoor and outdoor particulate matter (PM) and cardiovascular and respiratory health in a population-based sample of 58 residences in Copenhagen, Denmark. Over a 2-day period indoor particle number concentrations (PNC, 10-300 nm) and PM2.5 (aerodynamic diameter<2.5 μm) were monitored for each of the residences in the living room, and outdoor PNC (10-280 nm), PM2.5 and PM10 (aerodynamic diameter<10 μm) were monitored at an urban background station in Copenhagen. In the morning, after the 2-day monitoring period, we measured microvascular function (MVF) and lung function and collected blood samples for biomarkers related to inflammation, in 78 middle-aged residents. Bacteria, endotoxin and fungi were analyzed in material from electrostatic dust fall collectors placed in the residences for 4 weeks. Data were analyzed using linear regression with the generalized estimating equation approach. Statistically significant associations were found between indoor PNC, dominated by indoor use of candles, and lower lung function, the prediabetic marker HbA1c and systemic inflammatory markers observed as changes in leukocyte differential count and expression of adhesion markers on monocytes, whereas C-reactive protein was significantly associated with indoor PM2.5. The presence of indoor endotoxin was associated with lower lung function and expression of adhesion markers on monocytes. An inverse association between outdoor PNC and MVF was also statistically significant. The study suggests that PNC in the outdoor environment may be associated with decreased MVF, while PNC, mainly driven by candle burning, and bioaerosols in the indoor environment may have a negative effect on lung function and markers of systemic inflammation and diabetes.
Collapse
Affiliation(s)
- Dorina Gabriela Karottki
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Dept. of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark
| | - Geo Clausen
- International Centre for Indoor Environment and Energy, Dept. of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen O, Denmark
| | - Zorana Jovanovic Andersen
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark
| | - Andreas Massling
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Thomas Ellermann
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Rikke Lund
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark; Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Torben Sigsgaard
- Department of Public Health - Section of Environment, Occupation and Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus C, Denmark
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark.
| |
Collapse
|
38
|
Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J 2014; 44:1682-96. [PMID: 25323240 DOI: 10.1183/09031936.00084114] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease often originate early in life. In addition to a genetic predisposition, prenatal and early-life environmental exposures have a persistent impact on respiratory health. Acting during a critical phase of lung development, these factors may change lung structure and metabolism, and may induce maladaptive responses to harmful agents, which will affect the whole lifespan. Some environmental factors, such as exposure to cigarette smoke, type of childbirth and diet, may be modifiable, but it is more difficult to influence other factors, such as preterm birth and early exposure to viruses or allergens. Here, we bring together recent literature to analyse the critical aspects involved in the early stages of lung development, going back to prenatal and perinatal events, and we discuss the mechanisms by which noxious factors encountered early on may have a lifelong impact on respiratory health. We briefly comment on the need for early disease biomarkers and on the possible role of "-omic" technologies in identifying risk profiles predictive of chronic respiratory conditions. Such profiles could guide the ideation of effective preventive strategies and/or targeted early lifestyle or therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| | - Nienke Scheltema
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louis Bont
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eugenio Baraldi
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| |
Collapse
|
39
|
Ivester KM, Couëtil LL, Zimmerman NJ. Investigating the link between particulate exposure and airway inflammation in the horse. J Vet Intern Med 2014; 28:1653-65. [PMID: 25273818 PMCID: PMC4895611 DOI: 10.1111/jvim.12458] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023] Open
Abstract
Inhalant exposure to airborne irritants commonly encountered in horse stables is implicated in the pathogenesis of inflammatory airway disease (IAD) and recurrent airway obstruction (RAO), non‐infectious, inflammatory pulmonary disorders that impact the health and performance of horses across all equine disciplines. IAD and RAO have overlapping clinical, cytological, and functional manifestations of the pulmonary response to organic dust and noxious gases encountered in the barn environment. Study of these diseases has provided important but incomplete understanding of the effect of air quality upon the respiratory health of horses. In this review, the principles of particulate exposure assessment, including health‐related aerosol size fractions and size‐selective sampling, the factors influencing air quality in equine environments, and the effect of air quality on the equine respiratory tract are discussed. The objective of this review is to provide the reader with a summary of the most common chronic inflammatory airway diseases in the horse and the principles of air sampling that are essential to the planning, interpretation, and assessment of equine respiratory health‐related exposure studies.
Collapse
Affiliation(s)
- K M Ivester
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN
| | | | | |
Collapse
|
40
|
Jacobs JH, Krop EJM, Borras-Santos A, Zock JP, Taubel M, Hyvarinnen A, Pekkanen J, Doekes G, Heederik DJJ. Endotoxin levels in settled airborne dust in European schools: the HITEA school study. INDOOR AIR 2014; 24:148-157. [PMID: 23927557 DOI: 10.1111/ina.12064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/02/2013] [Indexed: 05/29/2023]
Abstract
Indoor exposure to microbial agents is known to influence respiratory health. Besides home exposure, exposure in schools can affect respiratory health. In this study, we measured endotoxin in settled dust in primary schools in three European countries from three different geographical regions with different climates. Our aim was to characterize endotoxin levels in primary schools and evaluate associations with potential determinants. Endotoxin levels were repeatedly assessed in 23 schools in Spain (n = 7), the Netherlands (n = 10), and Finland (n = 6) using electrostatic dustfall collectors. In total, 645 measurements were taken in 237 classrooms. Endotoxin levels differed significantly between countries; Dutch schools had the highest levels, while Finnish schools showed the lowest levels. In each country, differences in endotoxin levels were observed between schools and over the sampling periods. Estimates improved after adjustment for sampling period. Factors affecting endotoxin levels in a school differed per country. In general, endotoxin levels were higher in lower grades and in classrooms with higher occupancy. School endotoxin levels may contribute significantly to total endotoxin exposure in children and teachers. As the correlation between the repeated measurements is reasonable, single endotoxin measurements form a reasonable basis for estimating annual endotoxin levels in schools.
Collapse
Affiliation(s)
- J H Jacobs
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yatagai Y, Sakamoto T, Masuko H, Kaneko Y, Yamada H, Iijima H, Naito T, Noguchi E, Hirota T, Tamari M, Imoto Y, Tokunaga T, Fujieda S, Konno S, Nishimura M, Hizawa N. Genome-wide association study for levels of total serum IgE identifies HLA-C in a Japanese population. PLoS One 2013; 8:e80941. [PMID: 24324648 PMCID: PMC3851760 DOI: 10.1371/journal.pone.0080941] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022] Open
Abstract
Most of the previously reported loci for total immunoglobulin E (IgE) levels are related to Th2 cell-dependent pathways. We undertook a genome-wide association study (GWAS) to identify genetic loci responsible for IgE regulation. A total of 479,940 single nucleotide polymorphisms (SNPs) were tested for association with total serum IgE levels in 1180 Japanese adults. Fine-mapping with SNP imputation demonstrated 6 candidate regions: the PYHIN1/IFI16, MHC classes I and II, LEMD2, GRAMD1B, and chr13∶60576338 regions. Replication of these candidate loci in each region was assessed in 2 independent Japanese cohorts (n = 1110 and 1364, respectively). SNP rs3130941 in the HLA-C region was consistently associated with total IgE levels in 3 independent populations, and the meta-analysis yielded genome-wide significance (P = 1.07×10−10). Using our GWAS results, we also assessed the reproducibility of previously reported gene associations with total IgE levels. Nine of 32 candidate genes identified by a literature search were associated with total IgE levels after correction for multiple testing. Our findings demonstrate that SNPs in the HLA-C region are strongly associated with total serum IgE levels in the Japanese population and that some of the previously reported genetic associations are replicated across ethnic groups.
Collapse
Affiliation(s)
- Yohei Yatagai
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tohru Sakamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Hironori Masuko
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hideyasu Yamada
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | | | | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomomitsu Hirota
- Laboratory for Respiratory Diseases, Center for Genomic Medicine, the Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Mayumi Tamari
- Laboratory for Respiratory Diseases, Center for Genomic Medicine, the Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| | - Yoshimasa Imoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Fukui, Fukui, Japan
| | - Takahiro Tokunaga
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, University of Fukui, Fukui, Japan
| | - Satoshi Konno
- First Department of Medicine, School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masaharu Nishimura
- First Department of Medicine, School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
42
|
Kudo M, Ishigatsubo Y, Aoki I. Pathology of asthma. Front Microbiol 2013; 4:263. [PMID: 24032029 PMCID: PMC3768124 DOI: 10.3389/fmicb.2013.00263] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 12/14/2022] Open
Abstract
Asthma is a serious health and socioeconomic issue all over the world, affecting more than 300 million individuals. The disease is considered as an inflammatory disease in the airway, leading to airway hyperresponsiveness, obstruction, mucus hyper-production and airway wall remodeling. The presence of airway inflammation in asthmatic patients has been found in the nineteenth century. As the information in patients with asthma increase, paradigm change in immunology and molecular biology have resulted in an extensive evaluation of inflammatory cells and mediators involved in the pathophysiology of asthma. Moreover, it is recognized that airway remodeling into detail, characterized by thickening of the airway wall, can be profound consequences on the mechanics of airway narrowing and contribute to the chronic progression of the disease. Epithelial to mesenchymal transition plays an important role in airway remodeling. These epithelial and mesenchymal cells cause persistence of the inflammatory infiltration and induce histological changes in the airway wall, increasing thickness of the basement membrane, collagen deposition and smooth muscle hypertrophy and hyperplasia. Resulting of airway inflammation, airway remodeling leads to the airway wall thickening and induces increased airway smooth muscle mass, which generate asthmatic symptoms. Asthma is classically recognized as the typical Th2 disease, with increased IgE levels and eosinophilic inflammation in the airway. Emerging Th2 cytokines modulates the airway inflammation, which induces airway remodeling. Biological agents, which have specific molecular targets for these Th2 cytokines, are available and clinical trials for asthma are ongoing. However, the relatively simple paradigm has been doubted because of the realization that strategies designed to suppress Th2 function are not effective enough for all patients in the clinical trials. In the future, it is required to understand more details for phenotypes of asthma.
Collapse
Affiliation(s)
- Makoto Kudo
- Department of Clinical Immunology and Internal medicine, Graduate School of Medicine, Yokohama City University Yokohama, Japan
| | | | | |
Collapse
|
43
|
Salonen H, Duchaine C, Létourneau V, Mazaheri M, Clifford S, Morawska L. Endotoxins in indoor air and settled dust in primary schools in a subtropical climate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9882-9890. [PMID: 23927534 DOI: 10.1021/es4023706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins, and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the "baseline" range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) <13 EU/m(3) and <24,570 EU/m(2), respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.
Collapse
Affiliation(s)
- Heidi Salonen
- International Laboratory for Air Quality and Health, Queensland University of Technology , 2 George Street, Brisbane Q 4001, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Tovey ER, Willenborg CM, Crisafulli DA, Rimmer J, Marks GB. Most personal exposure to house dust mite aeroallergen occurs during the day. PLoS One 2013; 8:e69900. [PMID: 23894558 PMCID: PMC3722239 DOI: 10.1371/journal.pone.0069900] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/14/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The bed is commonly regarded as the main site of house dust mite exposure; however this has not been directly established by continuous measurements. The objective of this study was to determine the pattern of personal exposure to mite aeroallergen over 24 hours. METHODS 12 adults each collected 9 sequential samples (8 during the day, mean 115 mins, and one overnight, mean 514 mins) over 24 hours using a portable air-pump (2L/min) connected to an IOM filter located on the shoulder during the day and on the bed head overnight. Samples were analysed for mite allergen Der p 1 by ELISA. Location and activity were recorded. A mixed model analysis was performed to determine exposure as a function of 14 categories of activity. RESULTS Personal aeroallergen exposure differed widely over time, both within and between subjects. The highest average exposure (1117 pg/m(3), 95% CI: 289-4314) occurred on public transport and the lowest overnight in bed (45 pg/m(3), 95% CI: 17-17), which contributed only 9.8% (95% CI: 4.4%-15.1%) of total daily exposure. Aeroallergens were not related to bed reservoirs. CONCLUSION The study challenges the current paradigm that the bed is the main site of HDM exposure and instead suggests most exposure occurs in association with domestic activity and proximity to other people. Effective mite interventions, designed to improve asthma outcomes, need to first identify and then address the multiple sources of aeroallergen exposure.
Collapse
Affiliation(s)
- Euan R Tovey
- Allergen Group, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
45
|
Tovey E, Ferro A. Time for new methods for avoidance of house dust mite and other allergens. Curr Allergy Asthma Rep 2012; 12:465-77. [PMID: 22833251 DOI: 10.1007/s11882-012-0285-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Asthma is a common disease in which environmental exposures and lifestyle factors play critical roles in expression and symptoms. Recommended methods for reducing exposure to domestic allergens as a component of asthma and rhinitis management have changed little over the last 30 years. The data that implementation of these provides clinical benefit are inconsistent. We contend that current methods are ineffective at reducing chronic personal exposure. More effective strategies can be developed based on understanding when people are exposed, the sources of this exposure and the activities associated with this exposure. Developing new methods should be founded on understanding the aerodynamic behavior of particles, their aerosolization, removal from surfaces, and the complex relationships between exposures and clinical outcomes. It will also require developing better proxy measures of chronic exposure, identifying markers for the sub-set of people who benefit, and integrating this with strategies addressing other domestic exposures and lifestyle factors.
Collapse
Affiliation(s)
- Euan Tovey
- Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, P.O. Box M77, Missenden Road, Sydney, NSW, 2050, Australia.
| | | |
Collapse
|
46
|
Rodes CE, Chillrud SN, Haskell WL, Intille SS, Albinali F, Rosenberger M. Predicting Adult Pulmonary Ventilation Volume and Wearing Compliance by On-Board Accelerometry During Personal Level Exposure Assessments. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2012; 57:126-137. [PMID: 24065872 PMCID: PMC3779692 DOI: 10.1016/j.atmosenv.2012.03.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
BACKGROUND Metabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l/min) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg/m3) to be extended to potential doses in μg/min/kg of body weight? OBJECTIVES In a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). METHODS Prototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n= 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. RESULTS Triaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ~<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean regression slope was computed for the RTI system across participants and showed a modest RSD of +/-36.6%. Comparison of the correlation values of the exposure monitors with the Wocket accelerometers at various body locations showed statistically identical regressions for all sensors at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket accelerometer located at the dominant-side wrist location (R=0.57; p=0.016). CONCLUSIONS Even with a modest number of adult volunteers, the consistency and linearity of regression slopes for all subjects were very good with excellent within-person Pearson correlations for the accelerometer versus ventilation volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear regression is likely to be usable for a wider range of adults to predict ventilation volumes from accelerometry data over a range of low to moderate energy level activities. The predicted volumes would then allow real-time estimates of potential dose, enabling more robust panel studies. The poorer correlation in predicting ventilation rate for an accelerometer located on the wrist suggested that this location should not be considered for predictions of ventilation volume.
Collapse
|
47
|
Rabinovitch N. Household mold as a predictor of asthma risk: recent progress, limitations, and future directions. J Allergy Clin Immunol 2012; 130:645-6. [PMID: 22857791 DOI: 10.1016/j.jaci.2012.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022]
|
48
|
Abstract
The recognition that asthma is primarily an inflammatory disorder of the airways associated with T helper type 2 (T(H)2) cell-dependent promotion of IgE production and recruitment of mast cells and eosinophils has provided the rationale for disease control using inhaled corticosteroids and other anti-inflammatory drugs. As more has been discovered about the cytokine, chemokine and inflammatory pathways that are associated with T(H)2-driven adaptive immunity, attempts have been made to selectively inhibit these in the hope of discovering new therapeutics as predicted from animal models of allergic inflammation. The limited success of this approach, together with the recognition that asthma is more than allergic inflammation, has drawn attention to the innate immune response in this disease. Recent advances in our understanding of the sentinel role played by innate immunity provides new targets for disease prevention and treatment. These include pathways of innate stimulation by environmental or endogenous pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) to influence the activation and trafficking of DCs, innate sources of cytokines, and the identification of new T cell subsets and lymphoid cells.
Collapse
Affiliation(s)
- Stephen T Holgate
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Southampton General Hospital, UK.
| |
Collapse
|
49
|
Lawson JA, Dosman JA, Rennie DC, Beach J, Newman SC, Senthilselvan A. The association between endotoxin and lung function among children and adolescents living in a rural area. Can Respir J 2011; 18:e89-94. [PMID: 22187693 PMCID: PMC3267627 DOI: 10.1155/2011/290261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED BACKGROUND⁄ OBJECTIVES Knowledge of the effects of domestic endotoxin on children's lung function is limited. The association between domestic endotoxin and asthma or wheeze and lung function among school-age children (six to 18 years of age) was examined. The interaction between endotoxin and other personal and environmental characteristics and lung function was also assessed. METHODS A case-control study was conducted in and around the rural community of Humboldt, Saskatchewan, between 2005 and 2007. Parents of cases reported either doctor-diagnosed asthma or wheeze in the previous year. Controls were randomly selected from those not reporting these conditions. Data were collected by questionnaire to ascertain symptoms and conditions, while spirometry was used to measure lung function including forced vital capacity and forced expiratory volume in 1 s. Dust collected from the child's play area floor and the child's mattress was used to quantify endotoxin, and saliva was collected to quantify cotinine levels and assess tobacco smoke exposure. RESULTS There were 102 cases and 207 controls included in the present study. Lower forced expiratory volume in 1 s was associated with higher mattress endotoxin load among female cases (beta=-0.25, SE=0.07 [P<0.01]). There was a trend toward lower forced vital capacity, which was associated with higher play area endotoxin load among cases with high tobacco smoke exposure (beta=-0.17, SE=0.09 [P<0.10]). CONCLUSIONS Findings indicated that high endotoxin levels present in common household areas of rural children with asthma or wheeze may also affect their lung function. These associations may be potentiated by tobacco smoke exposure and female sex.
Collapse
Affiliation(s)
- Joshua A Lawson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 2011; 242:91-105. [PMID: 21682740 DOI: 10.1111/j.1600-065x.2011.01035.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ozone (O(3)) and endotoxin are common environmental contaminants that cause asthma exacerbation. These pollutants have similar phenotype response characteristics, including induction of neutrophilic inflammation, changes in airway macrophage immunophenotypes, and ability to enhance response to inhaled allergen. Evoked phenotyping studies of volunteers exposed to O(3) and endotoxin were used to identify the response characteristics of volunteers to these pollutants. New studies support the hypotheses that similar innate immune and oxidant processes modulate response to these agents. These include TLR4 and inflammasome-mediated signaling and cytokine production. Innate immune responses are also impacted by oxidative stress. It is likely that continued discovery of common molecular processes which modulate response to these pollutants will occur. Understanding the pathways that modulate response to pollutants will also allow for discovery of genetic and epigenetic factors that regulate response to these pollutants and determine risk of disease exacerbation. Additionally, defining the mechanisms of response will allow rational selection of interventions to examine. Interventions focused on inhibition of Toll-like receptor 4 and inflammasome represent promising new approaches to preventing pollutant-induced asthma exacerbations. Such interventions include specific inhibitors of innate immunity and antioxidant therapies designed to counter the effects of pollutants on cell signaling.
Collapse
Affiliation(s)
- David B Peden
- Division of Pediatric Allergy, Immunology, Rheumatology and Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|