1
|
Zhang X, Chen X, Bai T, Meng X, Wu Y, Yang A, Chen H, Li X. Egg White Diet Induces Severe Allergic Enteritis in an Animal Model Driven by Caspase-3 and Gasdermin C-Mediated Mucosal Alarmin Secretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24035-24045. [PMID: 39420749 DOI: 10.1021/acs.jafc.4c06967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Allergic enteritis is an important phenotype of food allergies. However, there is not a suitable animal model for deeply exploring the natural progression and mechanism of allergic enteritis. In our study, we successfully developed an allergic enteritis animal model by feeding mice with an egg white diet. Following the dietary challenge, allergic mice displayed typical food allergy manifestations, including decreased core temperature, aversion to the allergenic diet, and elevated levels of serum sIgE and mMCP-1. Notably, these dietary challenged mice exhibited severe gut damage, characterized by disrupted intestinal microstructure, tissue inflammation, and edema that were evident morphologically. Moreover, upon exposure to food allergens, we observed a marked increase in caspase-3 and GSDMC levels in allergic mice. These two active proteins were found to be colocalized in damaged mucosal enterocytes and were associated with the secretion of epithelial sourced alarmins, such as IL25 and TSLP. Further data on the cellular and molecular levels suggest that such severe food-induced enteritis is mediated by the caspase-3-GSDMC pathway. We believe that this established animal model provides a valuable tool for advancing research on the mechanisms of food allergies.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xuanyi Meng
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Anshu Yang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, P. R. China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| |
Collapse
|
2
|
Pesantes E, Hernando R, Lores C, Cámara J, Arévalo E, Lores L. Utility of exhaled nitric oxide to guide mild asthma treatment in atopic patients and its correlation with asthma control test score: a randomized controlled trial. BMC Pulm Med 2024; 24:421. [PMID: 39210358 PMCID: PMC11360837 DOI: 10.1186/s12890-024-03227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fractional exhaled nitric oxide (FeNO) is used for the diagnosis and monitoring of asthma, although its utility to guide treatment and its correlation with other tools is still under discussion. We study the possibility to withdraw inhaled corticosteroid treatment in atopic patients with mild asthma based on the FeNO level, as well as to study its correlation with other clinical control tools. METHODS Prospective and randomized study including atopic patients aged 18 to 65 with mild asthma, stable, on low-dose inhaled corticosteroid (ICS) treatment, who had their treatment withdrawn based on a FeNO level of 40 ppb. Patients were randomized into two groups: control group (treatment with ICS was withdrawn regardless of FeNO level) and experimental group (according to the FeNO levels, patients were assigned to one of two groups: FeNO > 40 ppb on treatment with budesonide 200 mcg every 12 h and SABA on demand; FeNO ≤ 40 ppb only with SABA on demand). Follow-up was conducted for one year, during which medical assessment was performed with FeNO measurements, asthma control test (ACT), lung function tests (FEV1, FEV1/FVC, PEF, and RV/TLC), and recording of the number of exacerbations. RESULTS Ninety-two patients were included, with a mean age of 39.92 years (SD 13.99); 46 patients were assigned to the control group, and 46 patients to the experimental group. The number of exacerbations was similar between the groups (p = 0.301), while the time to the first exacerbation was significantly shorter in the control group (30.86 vs. 99.00 days), p < 0.001, 95% CI (43.332-92.954). Lung function tests (FEV1, FEV1/FVC, PEF, and RV/TLC) showed no differences between the groups (p > 0.05). Both FeNO and ACT showed significant changes in the groups in which ICS was withdrawn (p < 0.05 for both parameters). A significant negative correlation was observed between FeNO and ACT (r = -0.139, p = 0.008). CONCLUSIONS In atopic patients with mild asthma, withdrawal of ICS based on an FeNO of 40 ppb led to worsened symptoms but without changes in lung function tests or an increase in exacerbations. There was a negative correlation between FeNO values and symptomatic control measured by the ACT. TRIAL REGISTRATION Clinical Trial Number: 2012-000372-42. Start Date: 2012-07-23. Trial registered prospectively ( https://www.clinicaltrialsregister.eu/ctr-search/search?query=2012-000372-42 ). This study adheres to CONSORT guidelines of randomised control trials.
Collapse
Affiliation(s)
- Edwin Pesantes
- Parc Sanitari Sant Joan de Dèu, Camí Vell de la colonia, 25, Sant Boi de Llobregat, Barcelona, 08830, Spain.
| | - Rosana Hernando
- Parc Sanitari Sant Joan de Dèu, Camí Vell de la colonia, 25, Sant Boi de Llobregat, Barcelona, 08830, Spain
| | - Carmen Lores
- Bellvitge University Hospital,, Barcelona, Spain
| | - Jonathan Cámara
- Parc Sanitari Sant Joan de Dèu, Camí Vell de la colonia, 25, Sant Boi de Llobregat, Barcelona, 08830, Spain
| | - Elías Arévalo
- San Francisco Xavier de Chuquisaca University, Sucre, Bolivia
| | - Luis Lores
- Parc Sanitari Sant Joan de Dèu, Camí Vell de la colonia, 25, Sant Boi de Llobregat, Barcelona, 08830, Spain
| |
Collapse
|
3
|
Sun N, Zhang M, Kong J, Li J, Dong Y, Wang X, Fu L, Zhou Y, Chen Y, Li Y, Sun X, Guo R. Dysregulated T-cell homeostasis and decreased CD30 + Treg proliferating in aplastic anemia. Heliyon 2024; 10:e35775. [PMID: 39170389 PMCID: PMC11337026 DOI: 10.1016/j.heliyon.2024.e35775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Aplastic anemia (AA) is an autoimmune hematopoietic disease mediated by autoreactive T cells leading to bone marrow failure. However, the precise role of autoreactive T cells in the development of AA is not fully understood, hindering the advancement of therapeutic and diagnostic strategies. In this study, we conducted a single-cell transcriptome analysis of CD8+ T cells, conventional CD4+ T (CD4+ Tconv) cells, and Treg cells, to elucidate the potential disruption of T cell homeostasis in patients with AA. We identified changes in CD4+ Tconv cells, including loss of homeostasis in naïve and memory cells and increased differentiation potential in T helper type 1 (TH1), T helper type 2 (TH2), and T helper type 17 (TH17) cells. Additionally, we identified naïve and memory CD8+ T cells that were enforced into an effector state. CD127 is an ideal surface marker for assessing the immune state of CD8+ T cells,as identified by flow cytometry. Abnormal expression of TNFSF8 has been observed in AA and other autoimmune diseases. Flow cytometry analysis revealed that TNFRSF8 (CD30), a receptor for TNFSF8, was predominantly present in human Treg cells. Importantly, patients with AA have a decreased CD30+ Treg subset. RNA-sequencing analysis revealed, that the CD30+ Treg cells are characterized by high proliferation and a remarkable immunosuppressive phenotype. Taken, together, we propose that abnormal TNFSF8/TNFRSF8 signaling is involved in dysfunctional T cell immunity by increasing the destruction of CD30+ Treg cells.
Collapse
Affiliation(s)
- Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Dong
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoqian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Clinical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Stockis J, Yip T, Moreno-Vicente J, Burton O, Samarakoon Y, Schuijs MJ, Raghunathan S, Garcia C, Luo W, Whiteside SK, Png S, Simpson C, Monk S, Sawle A, Yin K, Barbieri J, Papadopoulos P, Wong H, Rodewald HR, Vyse T, McKenzie ANJ, Cragg MS, Hoare M, Withers DR, Fehling HJ, Roychoudhuri R, Liston A, Halim TYF. Cross-talk between ILC2 and Gata3 high T regs locally constrains adaptive type 2 immunity. Sci Immunol 2024; 9:eadl1903. [PMID: 39028828 DOI: 10.1126/sciimmunol.adl1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.
Collapse
Affiliation(s)
- Julie Stockis
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Thomas Yip
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Oliver Burton
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Youhani Samarakoon
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martijn J Schuijs
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Celine Garcia
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Weike Luo
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sarah K Whiteside
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaun Png
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Charlotte Simpson
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stela Monk
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ashley Sawle
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kelvin Yin
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Johanna Barbieri
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Hannah Wong
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Hoare
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hans Jörg Fehling
- Institute of Immunology, University Hospital Ulm, Ulm 89081, Germany
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | |
Collapse
|
5
|
Wang Y, Cui J, Jiang Y, Zhang S, Chen L, Ma Z, Yang D, Zhang Z, Huang X, Yang Y, Guo J, Lu Z, Li C. Jiawei Yanghe Decoction attenuate allergic airway inflammation by suppressing group 2 innate lymphoid cells responses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117927. [PMID: 38373665 DOI: 10.1016/j.jep.2024.117927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jie Cui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuwei Jiang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Linjin Chen
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zifeng Ma
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Di Yang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhengyi Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Huang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongqing Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinglei Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Cui Li
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
6
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Whiteside SK, Grant FM, Alvisi G, Clarke J, Tang L, Imianowski CJ, Zhang B, Evans AC, Wesolowski AJ, Conti AG, Yang J, Lauder SN, Clement M, Humphreys IR, Dooley J, Burton O, Liston A, Alloisio M, Voulaz E, Langhorne J, Okkenhaug K, Lugli E, Roychoudhuri R. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon T reg depletion. Sci Immunol 2023; 8:eabo5558. [PMID: 38100544 PMCID: PMC7615475 DOI: 10.1126/sciimmunol.abo5558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Francis M Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - James Clarke
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Leqi Tang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Charlotte J Imianowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Baojie Zhang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander C Evans
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander J Wesolowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alberto G Conti
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Mathew Clement
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
8
|
Nagira Y, Nagira M, Nagai R, Nogami W, Hirata M, Ueyama A, Yoshida T, Yoshikawa M, Shinonome S, Yoshida H, Haruna M, Miwa H, Chatani N, Ohkura N, Wada H, Tanaka H. S-531011, a Novel Anti-Human CCR8 Antibody, Induces Potent Antitumor Responses through Depletion of Tumor-Infiltrating CCR8-Expressing Regulatory T Cells. Mol Cancer Ther 2023; 22:1063-1072. [PMID: 37420296 PMCID: PMC10477828 DOI: 10.1158/1535-7163.mct-22-0570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Although regulatory T cells (Treg) are inhibitory immune cells that are essential for maintaining immune homeostasis, Tregs that infiltrate tumor tissue promote tumor growth by suppressing antitumor immunity. Selective reduction of tumor-infiltrating Tregs is, therefore, expected to activate antitumor immunity without affecting immune homeostasis. We previously reported that selective Treg depletion targeted by a C-C motif chemokine receptor 8 (CCR8) resulted in induction of strong antitumor immunity without any obvious autoimmunity in mouse models. Thus, herein, we developed a novel humanized anti-CCR8 monoclonal antibody, S-531011, aimed as a cancer immunotherapy strategy for patients with cancer. S-531011 exclusively recognized human CCR8 among all chemokine receptors and showed potent antibody-dependent cell-mediated cytotoxicity activity toward CCR8+ cells and neutralization activity against CCR8-mediated signaling. We observed that S-531011 reduced tumor-infiltrating CCR8+ Tregs and induced potent antitumor activity in a tumor-bearing human-CCR8 knock-in mouse model. Moreover, combination therapy with S-531011 and anti-mouse programmed cell death 1 (PD-1) antibody strongly suppressed tumor growth compared with anti-PD-1 antibody alone with no observable adverse effects. S-531011 also depleted human tumor-infiltrating Tregs, but not Tregs derived from human peripheral blood mononuclear cells. These results suggest that S-531011 is a promising drug for inducing antitumor immunity without severe side effects in the clinical setting.
Collapse
Affiliation(s)
- Yoji Nagira
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Morio Nagira
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryohei Nagai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Wataru Nogami
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Michinari Hirata
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Azumi Ueyama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuya Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mai Yoshikawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satomi Shinonome
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Hiroshi Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Miya Haruna
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroto Miwa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Natsumi Chatani
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Naganari Ohkura
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidekazu Tanaka
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
9
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
10
|
Choi A, Jung YW, Choi H. The extrinsic factors important to the homeostasis of allergen-specific memory CD4 T cells. Front Immunol 2022; 13:1080855. [PMID: 36591273 PMCID: PMC9798121 DOI: 10.3389/fimmu.2022.1080855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Memory T cells, which are generated after the primary immune response to cognate antigens, possess unique features compared to naïve or effector T cells. These memory T cells are maintained for a long period of time and robustly reactivate in lymphoid or peripheral tissues where they re-encounter antigens. Environments surrounding memory T cells are importantly involved in the process of the maintenance and reactivation of these T cells. Although memory T cells are generally believed to be formed in response to acute infections, the pathogenesis and persistence of chronic inflammatory diseases, including allergic diseases, are also related to the effector functions of memory CD4 T cells. Thus, the factors involved in the homeostasis of allergen-specific memory CD4 T cells need to be understood to surmount these diseases. Here, we review the characteristics of allergen-specific memory CD4 T cells in allergic diseases and the importance of extrinsic factors for the homeostasis and reactivation of these T cells in the view of mediating persistence, recurrence, and aggravation of allergic diseases. Overall, this review provides a better understanding of memory CD4 T cells to devise effective therapeutic strategies for refractory chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong-si, Republic of Korea
| | - Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong-si, Republic of Korea
| |
Collapse
|
11
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
12
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
13
|
Saito M, Suzuki H, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of an Anti-Mouse CCR8 Monoclonal Antibody (C 8Mab-1) for Flow Cytometry and Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:333-338. [PMID: 35483056 DOI: 10.1089/mab.2021.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been widely accepted that monoclonal antibody (mAb) is an effective tool for cancer immunotherapy. The C-C motif chemokine receptor 8 (CCR8) is highly expressed in regulatory T cells and many cancers and is associated with the progression of the cancers. However, its role in cancer progression remains unclear. Thus, the development of mAbs for CCR8 leads to cancer immunotherapy and elucidation of unknown mechanisms of CCR8-dependent cancer progression. In this study, we have developed an anti-mouse CCR8 (mCCR8) mAb (clone C8Mab-1, rat IgG2a, kappa) using the Cell-Based Immunization and Screening (CBIS) method. We showed that C8Mab-1 and its recombinant antibody (recC8Mab-1) bind to mCCR8-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/mCCR8), but not to the parental CHO-K1 cells, in flow cytometry and immunofluorescence. Moreover, C8Mab-1 and recC8Mab-1 specifically reacted to P388 (a mouse lymphocyte-like cells) and J774-1 (a mouse macrophage-like cells), which express endogenous mCCR8, in both applications. These results suggest that C8Mab-1, developed using the CBIS method, is useful for flow cytometry and immunocytochemistry against exogenous and endogenous mCCR8.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
14
|
Liao L, Song D, Shi B, Chen M, Wu L, Xu J, Dong F. Inhibition of CCR8 attenuates Ang Ⅱ-induced vascular smooth muscle cell injury by suppressing the MAPK/NF-κB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25. [PMID: 36246058 PMCID: PMC9526881 DOI: 10.22038/ijbms.2022.64524.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Hyperinsulinemia, secondary to insulin resistance, may lead to vascular smooth muscle cell dysfunction. In the present research, we aimed to investigate the effect of Chemokine receptor 8 (CCR8) on angiotensin II (Ang II)-induced dysfunction of vascular smooth muscle cells (VSMCs) and to explore the underlying molecular mechanism. MATERIALS AND METHODS The expression of CCR8 was analyzed in diabetics and normal people by RT-PCR and ELISA. CCK-8 assay and transwell were used to explore cell proliferation and migration, and ELISA was used to measure the content of IL-6 and TNF-α. Reactive oxygen species (ROS) kit was employed to measure ROS generation. RESULTS The results revealed that CCR8 was highly expressed in diabetics and Ang Ⅱ-induced VSMCs. Further studies found that interfering with the expression of CCR8 significantly reduced the production of ROS and the levels of inflammatory factors in AngⅡ-induced VSMCs. Interfering with CCR8 increased the glucose uptake induced by AngⅡ+IR. More importantly, inhibition of CCR8 alleviated Ang II-induced dysfunction of VSMCs. Inhibition of CCR8 inactivated the MAPK/NF-κB signaling pathway. CONCLUSION Inhibition of CCR8 attenuates Ang II-induced VSMCs injury by inhibiting the MAPK/NF-κB pathway. CCR8 may be a new biomarker related to hypertension and insulin resistance and is a new target for the treatment of human cardiovascular diseases.
Collapse
Affiliation(s)
- Lisi Liao
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,These authors contributed eqully to this work
| | - Di Song
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,These authors contributed eqully to this work
| | - Bobo Shi
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Ming Chen
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Linghu Wu
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Jinfeng Xu
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,Corresponding authors: Jinfeng Xu. No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China. ; Fajin Dong.No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China.
| | - Fajin Dong
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,Corresponding authors: Jinfeng Xu. No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China. ; Fajin Dong.No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
15
|
Liao L, Song D, Shi B, Chen M, Wu L, Xu J, Dong F. Inhibition of CCR8 attenuates Ang Ⅱ-induced vascular smooth muscle cell injury by suppressing the MAPK/NF-κB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1104-1109. [PMID: 36246068 PMCID: PMC9526886 DOI: 10.22038/ijbms.2022.65178.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
Objective(s): To enhance the efficiency of radiotherapy (RT), implementation of individual-based treatment is essential. In this way, determining individual intrinsic radiosensitivity (IRS) can be useful to achieve minimal adverse effects of RT. The present study aimed to identify IRS of breast cancer (BC) patients through determination of radiation-induced DNA double-strand breaks (DSBs), repair kinetics, and acute normal tissue complications induced by RT. Materials and Methods: DSBs induction and its repair kinetics in 50 BC patients’ lymphocytes were analyzed by flow cytometric analysis of H2AX Ser-139 phosphorylation at 30 min, 3 and 24 hr after in vitro irradiation. In vivo skin dosimetry was done by GAFChromic films and acute skin toxicity was scored by radiation oncologists according to the criteria of Radiation Therapy and Oncology Group (RTOG) in all patients with similar prescribed treatment. Results: The average surface dose for patients ranged from 0.92 to 1.9 Gy and correlation analysis showed no significant relationship with weekly acute skin reactions. Formation of γH2AX after 30 min, slope of dose-response curve and repair kinetics of DSBs after 3 and 24 hr (intrinsic radiosensitivity) were significantly correlated with the RTOG scores following irradiation (clinical radiosensitivity) (r=0.48 and P-value<0.0001, r=0.72 and P-value<0.0001, r=0.48 and P-value<0.001, and finally r=0.53 and P-value<0.001, respectively; (using Pearson’s correlation test). Conclusion: Flow cytometric analysis of DNA DSBs by γH2AX measurement has the potential to be developed into a clinical predictor for identifying the overreactor patients prior to RT. Our result suggests that the slope-related quantity based on the linear pattern of the dose-response curve has the merit to predict overreactor patients with a sensitivity of 89% and a specificity of 94%.
Collapse
Affiliation(s)
- Lisi Liao
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,These authors contributed eqully to this work
| | - Di Song
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,These authors contributed eqully to this work
| | - Bobo Shi
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Ming Chen
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Linghu Wu
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China
| | - Jinfeng Xu
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,Corresponding authors: Jinfeng Xu. No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China. ; Fajin Dong.No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China.
| | - Fajin Dong
- The Second Clinical Medical College, Jinan University; Department of Ultrasound, The First Affiliated Hospital, Southern University of Science and Technology; Department of Ultrasound, Shenzhen People’s Hospital, Shenzhen 518020, Guangdong, China,Corresponding authors: Jinfeng Xu. No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China. ; Fajin Dong.No.1017 Dongmen North Road, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
16
|
Saito M, Tanaka T, Asano T, Nakamura T, Yanaka M, Handa S, Komatsu Y, Harigae Y, Tateyama N, Nanamiya R, Li G, Suzuki H, Kaneko MK, Kato Y. C 8Mab-2: An Anti-Mouse C-C Motif Chemokine Receptor 8 Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:115-119. [PMID: 35471052 DOI: 10.1089/mab.2021.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C-C motif chemokine receptor 8 (CCR8) is a G protein-coupled receptor predominantly expressed in regulatory T (Treg) and T helper 2 cells. The evidence that CCR8 expression in Treg is increased in cancers, CCR8 increases migration activity of Treg, and CCR8 induces the anti-apoptotic activity in T cell leukemia and lymphoma suggests that CCR8 is associated with cancer development. Thus, developing a specific monoclonal antibody (mAb) for CCR8 is useful for diagnostic and therapeutic purposes and the anti-CCR8 mAb becomes a remarkable experimental tool for basic research. We previously developed an anti-mouse CCR8 (mCCR8) mAb called C8Mab-2 (rat IgG2b, kappa) that was applicable to flow cytometric analysis for both endogenous and exogenous mCCR8. This study showed that C8Mab-2 and recombinant C8Mab-2 (recC8Mab-2) were specifically bound to exogenously expressed mCCR8 in mCCR8-overexpressed Chinese hamster ovary-K1 cells. In addition, we found that C8Mab-2 and recC8Mab-2 recognized endogenous mCCR8 in P388 (a mouse lymphocyte-like cell line) and J774-1 cells (a mouse macrophage-like cell line). These data demonstrate that C8Mab-2 and recC8Mab-2 are useful for immunocytochemical analysis.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Komatsu
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Ogbe A, Pace M, Bittaye M, Tipoe T, Adele S, Alagaratnam J, Aley PK, Ansari MA, Bara A, Broadhead S, Brown A, Brown H, Cappuccini F, Cinardo P, Dejnirattisai W, Ewer KJ, Fok H, Folegatti PM, Fowler J, Godfrey L, Goodman AL, Jackson B, Jenkin D, Jones M, Longet S, Makinson RA, Marchevsky NG, Mathew M, Mazzella A, Mujadidi YF, Parolini L, Petersen C, Plested E, Pollock KM, Rajeswaran T, Ramasamy MN, Rhead S, Robinson H, Robinson N, Sanders H, Serrano S, Tipton T, Waters A, Zacharopoulou P, Barnes E, Dunachie S, Goulder P, Klenerman P, Screaton GR, Winston A, Hill AV, Gilbert SC, Carroll M, Pollard AJ, Fidler S, Fox J, Lambe T, Frater J. Durability of ChAdOx1 nCoV-19 vaccination in people living with HIV. JCI Insight 2022; 7:e157031. [PMID: 35192543 PMCID: PMC9057612 DOI: 10.1172/jci.insight.157031] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Duration of protection from SARS-CoV-2 infection in people living with HIV (PWH) following vaccination is unclear. In a substudy of the phase II/III the COV002 trial (NCT04400838), 54 HIV+ male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells > 350 cells/μL) received 2 doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and Meso Scale Discovery [MSD]), neutralization, ACE-2 inhibition, IFN-γ ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that, 6 months after vaccination, the majority of measurable immune responses were greater than prevaccination baseline but with evidence of a decline in both humoral and cell-mediated immunity. There was, however, no significant difference compared with a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although they were lower than WT. Preexisting cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater postvaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the ongoing policy to vaccinate PWH against SARS-CoV-2, and they underpin the need for long-term monitoring of responses after vaccination.
Collapse
Affiliation(s)
- Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Parvinder K. Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Anna Bara
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Samantha Broadhead
- NIHR Guy’s and St Thomas’ Biomedical Research Centre, London, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Federica Cappuccini
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paola Cinardo
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katie J. Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Fok
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Pedro M. Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jamie Fowler
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leila Godfrey
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna L. Goodman
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Bethany Jackson
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Daniel Jenkin
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalie G. Marchevsky
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Moncy Mathew
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Andrea Mazzella
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Yama F. Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Claire Petersen
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Katrina M. Pollock
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Thurkka Rajeswaran
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Maheshi N. Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sarah Rhead
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Sanders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sonia Serrano
- NIHR Guy’s and St Thomas’ Biomedical Research Centre, London, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anele Waters
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Adrian V.S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Public Health England, Porton Down, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julie Fox
- NIHR Guy’s and St Thomas’ Biomedical Research Centre, London, United Kingdom
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
18
|
Ortega VE, Daya M, Szefler SJ, Bleecker ER, Chinchilli VM, Phipatanakul W, Mauger D, Martinez FD, Herrera-Luis E, Pino-Yanes M, Hawkins GA, Ampleford EJ, Kunselman SJ, Cox C, Bacharier LB, Cabana MD, Cardet JC, Castro M, Denlinger LC, Eng C, Fitzpatrick AM, Holguin F, Hu D, Jackson DJ, Jarjour N, Kraft M, Krishnan JA, Lazarus SC, Lemanske RF, Lima JJ, Lugogo N, Mak A, Moore WC, Naureckas ET, Peters SP, Pongracic JA, Sajuthi SP, Seibold MA, Smith LJ, Solway J, Sorkness CA, Wenzel S, White SR, Burchard EG, Barnes K, Meyers DA, Israel E, Wechsler ME. Pharmacogenetic studies of long-acting beta agonist and inhaled corticosteroid responsiveness in randomised controlled trials of individuals of African descent with asthma. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:862-872. [PMID: 34762840 PMCID: PMC8787857 DOI: 10.1016/s2352-4642(21)00268-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pharmacogenetic studies in asthma cohorts, primarily made up of White people of European descent, have identified loci associated with response to inhaled beta agonists and corticosteroids (ICSs). Differences exist in how individuals from different ancestral backgrounds respond to long-acting beta agonist (LABA) and ICSs. Therefore, we sought to understand the pharmacogenetic mechanisms regulating therapeutic responsiveness in individuals of African descent. METHODS We did ancestry-based pharmacogenetic studies of children (aged 5-11 years) and adolescents and adults (aged 12-69 years) from the Best African Response to Drug (BARD) trials, in which participants with asthma uncontrolled with low-dose ICS (fluticasone propionate 50 μg in children, 100 μg in adolescents and adults) received different step-up combination therapies. The hierarchal composite outcome of pairwise superior responsiveness in BARD was based on asthma exacerbations, a 31-day difference in annualised asthma-control days, or a 5% difference in percentage predicted FEV1. We did whole-genome admixture mapping of 15 159 ancestral segments within 312 independent regions, stratified by the two age groups. The two co-primary outcome comparisons were the step up from low-dose ICS to the quintuple dose of ICS (5 × ICS: 250 μg twice daily in children and 500 μg twice daily in adolescents and adults) versus double dose (2-2·5 × ICS: 100 μg twice daily in children, 250 μg twice daily in adolescents and adults), and 5 × ICS versus 100 μg fluticasone plus a LABA (salmeterol 50 μg twice daily). We used a genome-wide significance threshold of p<1·6 × 10-4, and tested for replication using independent cohorts of individuals of African descent with asthma. FINDINGS We included 249 unrelated children and 267 unrelated adolescents and adults in the BARD pharmacogenetic analysis. In children, we identified a significant admixture mapping peak for superior responsiveness to 5 × ICS versus 100 μg fluticasone plus salmeterol on chromosome 12 (odds ratio [ORlocal African] 3·95, 95% CI 2·02-7·72, p=6·1 × 10-5) fine mapped to a locus adjacent to RNFT2 and NOS1 (rs73399224, ORallele dose 0·17, 95% CI 0·07-0·42, p=8·4 × 10-5). In adolescents and adults, we identified a peak for superior responsiveness to 5 × ICS versus 2·5 × ICS on chromosome 22 (ORlocal African 3·35, 1·98-5·67, p=6·8 × 10-6) containing a locus adjacent to TPST2 (rs5752429, ORallele dose 0·21, 0·09-0·52, p=5·7 × 10-4). We replicated rs5752429 and nominally replicated rs73399224 in independent African American cohorts. INTERPRETATION BARD is the first genome-wide pharmacogenetic study of LABA and ICS response in clinical trials of individuals of African descent to detect and replicate genome-wide significant loci. Admixture mapping of the composite BARD trial outcome enabled the identification of novel pharmacogenetic variation accounting for differential therapeutic responses in people of African descent with asthma. FUNDING National Institutes of Health, National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Victor E Ortega
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Michelle Daya
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Eugene R Bleecker
- Department of Internal Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Wanda Phipatanakul
- Division of Pediatric Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dave Mauger
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Esther Herrera-Luis
- Department of Biochemistry, La Laguna, Tenerife, Spain; Microbiology, Cell Biology, and Genetics, La Laguna, Tenerife, Spain; Genomics and Health Group, La Laguna, Tenerife, Spain; Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Department of Biochemistry, La Laguna, Tenerife, Spain; Microbiology, Cell Biology, and Genetics, La Laguna, Tenerife, Spain; Genomics and Health Group, La Laguna, Tenerife, Spain; Universidad de La Laguna, La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Gregory A Hawkins
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth J Ampleford
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Susan J Kunselman
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Corey Cox
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Leonard B Bacharier
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Michael D Cabana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Juan Carlos Cardet
- Department of Internal Medicine, Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mario Castro
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Loren C Denlinger
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nizar Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Kraft
- Department of Internal Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jerry A Krishnan
- Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois, Chicago, IL, USA
| | - Stephen C Lazarus
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Robert F Lemanske
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - John J Lima
- Center for Pharmacogenomics and Translational Research, Nemours Children's Health System, Jacksonville, FL, USA
| | - Njira Lugogo
- Department of Medicine, Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, MI, USA
| | - Angel Mak
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Wendy C Moore
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Stephen P Peters
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jacqueline A Pongracic
- Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Satria P Sajuthi
- Center for Genes, Environment, and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Max A Seibold
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA; Center for Genes, Environment, and Health, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Lewis J Smith
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Christine A Sorkness
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sally Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R White
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen Barnes
- Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Deborah A Meyers
- Department of Internal Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Elliot Israel
- Department of Pulmonary and Critical Care Medicine and Allergy and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
19
|
Koh J, Jang I, Mun S, Lee C, Cha HJ, Oh YH, Kim JM, Han JH, Paik JH, Cho J, Ko YH, Park CS, Go H, Huh J, Kim K, Jeon YK. Genetic profiles of subcutaneous panniculitis-like T-cell lymphoma and clinicopathological impact of HAVCR2 mutations. Blood Adv 2021; 5:3919-3930. [PMID: 34535012 PMCID: PMC8945616 DOI: 10.1182/bloodadvances.2021004562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022] Open
Abstract
Recent studies identified germline mutations in HAVCR2 (encoding T-cell immunoglobulin mucin 3) as a genetic factor that predisposes to subcutaneous panniculitis-like T-cell lymphoma (SPTCL). However, the differences between HAVCR2-mutated (HAVCR2MUT) and HAVCR2 wild-type (HAVCR2WT) SPTCLs remain unclear. A nationwide cohort of 53 patients with SPTCL diagnosed at 8 Korean institutions was established. Whole-exome sequencing and RNA-sequencing were performed on 8 patients in the discovery set. In the validation set, targeted gene sequencing or direct sequencing of HAVCR2 was performed. Of 49 patients with available HAVCR2 status, 25 (51.0%) were HAVCR2Y82C. HAVCR2Y82C was associated with younger age (P = .001), development of hemophagocytic lymphohistiocytosis or hemophagocytic lymphohistiocytosis-like systemic illness (P < .001), and short relapse-free survival (RFS) (P = .023). Most mutated genes in SPTCLs were involved in immune responses, epigenetic modifications, and cell signaling. Mutations in UNC13D, PIAS3, and KMT2D were more frequent in HAVCR2WT SPTCLs. At the gene expression level, HAVCR2Y82C SPTCLs were enriched in genes involved in IL6-JAK-STAT3 signaling and in tumor necrosis factor-α signaling via NF-κB. CCR4 was significantly upregulated in HAVCR2WT SPTCLs both at the messenger RNA level and at the protein level. We established a risk stratification system for SPTCL by integrating clinical and histopathological features, including age and HAVCR2 mutation status. This risk stratification system was strongly associated with RFS (P = .031). In conclusion, the HAVCR2Y82C mutation was common in Korean patients with SPTCL and was associated with unique clinicopathological and genetic features. Combining clinicopathological parameters could aid in predicting prognosis for patients with SPTCL.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Insoon Jang
- Department of Data Science Research, Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seungchan Mun
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, Republic of Korea
| | - Young Ha Oh
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Republic of Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Republic of Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; and
| | - Kwangsoo Kim
- Department of Data Science Research, Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| |
Collapse
|
20
|
Pei W, Li X, Bi R, Zhang X, Zhong M, Yang H, Zhang Y, Lv K. Exosome membrane-modified M2 macrophages targeted nanomedicine: Treatment for allergic asthma. J Control Release 2021; 338:253-267. [PMID: 34418524 DOI: 10.1016/j.jconrel.2021.08.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUNDS Exosomes are naturally secreted nanovesicles that have emerged as a promising therapeutic nanodelivery platform due to their specific composition, biological properties, and stability. Modifying synthetic nanoparticles with the intrinsic hallmarks of exosome membrane to create exosome mimetics could lead to safe and efficient smart silencer delivery. OBJECTIVES The study focuses on exploring the combination of polylactic-co-glycolic acid (PLGA)-based nanoparticles with naturally occurring exosome membrane from M2 macrophages to deliver a Dnmt3aos smart silencer to treat allergic asthma (AA) in mice. MATERIALS AND METHODS Exosome membrane of M2 macrophages and PLGA nanoparticles (PLGA NPs) wrapped with the smart silencer of Dnmt3aos (Dnmt3aossmart silencer) were first synthesized. The resulting exosome membrane coated PLGA@Dnmt3aossmart silencer (EM-PLGA@Dnmt3aossmart silencer) was administered intravenously into Der f1-induced asthma mice, which was followed by the investigation of therapeutic outcomes and the mechanism in vivo. RESULTS Seven infusions of EM-PLGA@Dnmt3aossmart silencer ameliorated AA with a marked reduction of lung inflammation. After intravenous injection, the EM-PLGA@Dnmt3aossmart silencer was distributed in various organs, including the lungs, with retention over 48 h, and it targeted M2 macrophages. Moreover, the injections of EM-PLGA@Dnmt3aossmart silencer markedly decreased the proportion of M2 macrophages and inflammatory cytokines in the airway. More importantly, the EM-PLGA@Dnmt3aossmart silencer treatment did not obviously suppress the overall immune function of host. CONCLUSION To our knowledge, this study provides the first experimental evidence of the ability of EM-PLGA@Dnmt3aossmart silencer to target M2 macrophages in the treatment of AA by combining exosome membrane and biomaterials, thus presenting a novel immunotherapy for the allergic disease.
Collapse
Affiliation(s)
- Weiya Pei
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Xueqin Li
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Runlei Bi
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Xin Zhang
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Min Zhong
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Hui Yang
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China
| | - Yingying Zhang
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Department of Laboratory Medicine (Wannan Medical College), Wuhu, PR China
| | - Kun Lv
- Central Laboratory, The first affiliated hospital of Wannan Medical College, Wuhu, PR China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China.
| |
Collapse
|
21
|
Baker JR, Rasky AJ, Landers JJ, Janczak KW, Totten TD, Lukacs NW, O’Konek JJ. Intranasal delivery of allergen in a nanoemulsion adjuvant inhibits allergen-specific reactions in mouse models of allergic airway disease. Clin Exp Allergy 2021; 51:1361-1373. [PMID: 33999457 PMCID: PMC11155263 DOI: 10.1111/cea.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Atopic diseases are an increasing problem that involve both immediate hypersensitivity reactions mediated by IgE and unique cellular inflammation. Many forms of specific immunotherapy involve the administration of allergen to suppress allergic immune responses but are focused on IgE-mediated reactions. In contrast, the effect of allergen-specific immunotherapy on allergic inflammation is complex, not entirely consistent and not well understood. We have previously demonstrated the ability of allergen administered in a nanoemulsion (NE) mucosal adjuvant to suppress IgE-mediated allergic responses and protect from allergen challenge in murine food allergy models. This activity was associated with decreases in allergen-specific IL-10 and reductions in allergic cytokines and increases in regulatory T cells. OBJECTIVE Here, we extend these studies to using 2 distinct models, the ovalbumin (OVA) and cockroach (CRA) models of allergic airway disease, which are based predominantly on allergic inflammation. METHODS Acute or chronic allergic airway disease was induced in mice using ovalbumin and cockroach allergen models. Mice received three therapeutic immunizations with allergen in NE, and reactivity to airway challenge was determined. RESULTS Therapeutic immunization with cockroach or OVA allergen in NE markedly reduced pathology after airway challenge. The 2 models demonstrated protection from allergen challenge-induced pathology that was associated with suppression of Th2-polarized immune responses in the lung. In addition, the reduction in ILC2 numbers in the lungs of allergic mice along with reduction in epithelial cell alarmins, IL-25 and IL-33, suggests an overall change in the lung immune environment induced by the NE immunization protocol. CONCLUSIONS AND CLINICAL RELEVANCE These results demonstrate that suppression of allergic airway inflammation and bronchial hyper-reactivity can be achieved using allergen-specific immunotherapy without significant reductions in allergen-specific IgE and suggest that ILC2 cells may be critical targets for this activity.
Collapse
Affiliation(s)
- James R. Baker
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Tiffanie D. Totten
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
23
|
Warren KJ, Poole JA, Sweeter JM, DeVasure JM, Dickinson JD, Peebles RS, Wyatt TA. Neutralization of IL-33 modifies the type 2 and type 3 inflammatory signature of viral induced asthma exacerbation. Respir Res 2021; 22:206. [PMID: 34266437 PMCID: PMC8281667 DOI: 10.1186/s12931-021-01799-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Respiratory viral infections are one of the leading causes of need for emergency care and hospitalizations in asthmatic individuals, and airway-secreted cytokines are released within hours of viral infection to initiate these exacerbations. IL-33, specifically, contributes to these allergic exacerbations by amplifying type 2 inflammation. We hypothesized that blocking IL-33 in RSV-induced exacerbation would significantly reduce allergic inflammation. Methods Sensitized BALB/c mice were challenged with aerosolized ovalbumin (OVA) to establish allergic inflammation, followed by RSV-A2 infection to yield four treatment groups: saline only (Saline), RSV-infected alone (RSV), OVA alone (OVA), and OVA-treated with RSV infection (OVA-RSV). Lung outcomes included lung mRNA and protein markers of allergic inflammation, histology for mucus cell metaplasia and lung immune cell influx by cytospin and flow cytometry. Results While thymic stromal lymphopoietin (TSLP) and IL-33 were detected 6 h after RSV infection in the OVA-RSV mice, IL-23 protein was uniquely upregulated in RSV-infected mice alone. OVA-RSV animals varied from RSV- or OVA-treated mice as they had increased lung eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2) and group 3 innate lymphoid cells (ILC3) detectable as early as 6 h after RSV infection. Neutralized IL-33 significantly reduced ILC2 and eosinophils, and the prototypical allergic proteins, IL-5, IL-13, CCL17 and CCL22 in OVA-RSV mice. Numbers of neutrophils and ILC3 were also reduced with anti-IL-33 treatment in both RSV and OVA-RSV treated animals as well. Conclusions Taken together, our findings indicate a broad reduction in allergic-proinflammatory events mediated by IL-33 neutralization in RSV-induced asthma exacerbation.
Collapse
Affiliation(s)
- Kristi J Warren
- Division of Pulmonary Medicine, Department of Internal Medicine, University of Utah Health, 26 N 1900 E, Salt Lake City, UT, 84132, USA. .,VA Salt Lake City Health Care System, Salt Lake City, UT, 84148, USA.
| | - Jill A Poole
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - Jenea M Sweeter
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - Jane M DeVasure
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - John D Dickinson
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, USA
| | - Todd A Wyatt
- Critical Care and Sleep Division, Department of Internal Medicine, Pulmonary, University of Nebraska Medical Center, Omaha, USA.,Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198-5910, USA.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| |
Collapse
|
24
|
Yang X, Zhang Y, Zhan X, Xu X, Li S, Xu X, Ying S, Chen Z. Particulate matter exposure is highly correlated to pediatric asthma exacerbation. Aging (Albany NY) 2021; 13:17818-17829. [PMID: 34254951 PMCID: PMC8312457 DOI: 10.18632/aging.203281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/01/2021] [Indexed: 12/02/2022]
Abstract
Asthma is a heterogeneous disease in which environmental factors play an important role, and the effect of particulate matter (PM) on the occurrence and severity of asthma is drawing more attention. This study aims to identify the correlation between PM and pediatric asthma exacerbation and explore the potential mechanisms. The asthma visits data (N = 16,779,739) in a university-based tertiary children’s hospital from January 2013 to December 2017 were collected, and the relationship between asthma visits and local PM concentration was analyzed. For further study, we established a house dust mite (HDM)-induced allergic airway inflammation model with PM intervention. We detected a correlation between PM concentration and pediatric asthma visits, especially in children under 6 years old. The in vivo data showed that PM aggravated HDM-induced airway inflammation, and IL-33 neutralizing antibody exerted a protective role. Our study suggests that PM is a risk factor in promoting pediatric asthma exacerbation, in which IL-33 might be a promising target.
Collapse
Affiliation(s)
- Xin Yang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xueqin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuchen Xu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China.,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
25
|
Xue L, Li C, Ge G, Zhang S, Tian L, Wang Y, Zhang H, Ma Z, Lu Z. Jia-Wei-Yu-Ping-Feng-San Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation in Allergic Asthma. Front Pharmacol 2021; 12:703724. [PMID: 34305612 PMCID: PMC8299004 DOI: 10.3389/fphar.2021.703724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
The incidence of asthma has increased in recent decades. Although corticosteroids and bronchodilators are used in clinical practice, the control of asthma remains a challenge. Allergic asthma is characterized airway inflammation mediated by type 2 immune response. Group 2 innate lymphoid cells (ILC2s) are an important source of type 2 cytokines IL-5 and IL-13, which contribute to the progress of asthma. Jia-Wei-Yu-Ping-Feng-San (JWYPFS), a traditional Chinese medicine, has been widely used to treat asthma in China. In this study we investigated the mechanisms of JWYPFS in the treatment of asthma, especially the effect on ILC2s important in airway inflammation. Female C57BL/6 mice were sensitized and challenged with OVA to establish a model of allergic asthma. Airway hyperresponsiveness was examined by direct airway resistance analysis. Inflammatory cell counts were determined in bronchoalveolar lavage fluid (BALF). Inflammatory cell infiltration and mucus hypersecretion in lung tissue sections was observed by HE and PAS staining, respectively. The numbers and proportions of ILC2s as well as the ILC2s-related transcription factors GATA3, IRF4, and type 2 cytokines were measured in lung tissue samples. Additionally, ILC2s were collected from mouse lung; ILC2s-related cytokines and GATA3 and IRF4 were evaluated after IL-33-induced activation of ILC2s in vitro. Elevated inflammatory cells, mucus secretion, airway hyperresponsiveness and type 2 cytokines in the OVA-treated asthma group indicated that an allergic asthma model had been established. JWYPFS treatment attenuated airway resistance and reduced inflammatory cells including eosinophils, and inhibited mucus production and type 2 cytokines in these asthmatic mice. Moreover, JWYPFS treatment dramatically decreased the numbers and proportions of ILC2s and the mRNA levels of GATA3 and IRF4. In an in vitro experiment JWYPFS significantly suppressed GATA3, IRF4 and type 2 cytokine expression, including IL-5 and IL-13 in IL-33-stimulated ILC2s. JWYPFS alleviates ILC2s-mediated airway inflammation, suggesting that JWYPFS might be an effective agent to treat allergic asthma.
Collapse
Affiliation(s)
- Lingna Xue
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cui Li
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liming Tian
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zifeng Ma
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Michailidou D, Schwartz DM, Mustelin T, Hughes GC. Allergic Aspects of IgG4-Related Disease: Implications for Pathogenesis and Therapy. Front Immunol 2021; 12:693192. [PMID: 34305927 PMCID: PMC8292787 DOI: 10.3389/fimmu.2021.693192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
IgG4-related disease (IgG4-RD) is a rare systemic fibroinflammatory disease frequently associated with allergy. The pathogenesis of IgG4-RD is poorly understood, and effective therapies are limited. However, IgG4-RD appears to involve some of the same pathogenic mechanisms observed in allergic disease, such as T helper 2 (Th2) and regulatory T cell (Treg) activation, IgG4 and IgE hypersecretion, and blood/tissue eosinophilia. In addition, IgG4-RD tissue fibrosis appears to involve activation of basophils and mast cells and their release of alarmins and cytokines. In this article, we review allergy-like features of IgG4-RD and highlight targeted therapies for allergy that have potential in treating patients with IgG4-RD.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Daniella Muallem Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomas Mustelin
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Grant C. Hughes
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Tanaka T, Nanamiya R, Takei J, Nakamura T, Yanaka M, Hosono H, Sano M, Asano T, Kaneko MK, Kato Y. Development of Anti-Mouse CC Chemokine Receptor 8 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:65-70. [PMID: 33900818 DOI: 10.1089/mab.2021.0005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CC chemokine receptor 8 (CCR8) belongs to the class A of G protein-coupled receptor. It is highly expressed on Treg and T helper 2 (TH2) cells recruited to the inflammation site and is implicated in allergy and asthma. Recently, CCR8+Treg cells have been suggested to be a master regulator in the immunosuppressive tumor microenvironment; therefore, developing sensitive monoclonal antibodies (mAbs) for CCR8 has been desired. This study established a specific and sensitive mAb for mouse CCR8 (mCCR8), which is useful for flow cytometry by using the Cell-Based Immunization and Screening (CBIS) method. The established anti-mCCR8 mAb, C8Mab-2 (rat IgG2b, kappa), reacted with mCCR8-overexpressed Chinese hamster ovary-K1 (CHO/mCCR8) cells and P388 (mouse lymphoid neoplasma) or J774-1 (mouse macrophage-like) cells, which express endogenous mCCR8 by flow cytometry. C8Mab-2, which was established by the CBIS method, could be useful for elucidating the mCCR8-related biological response by flow cytometry.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Kang L, Schmalzl A, Leupold T, Gonzalez-Acera M, Atreya R, Neurath MF, Becker C, Wirtz S. CCR8 Signaling via CCL1 Regulates Responses of Intestinal IFN-γ Producing Innate Lymphoid CelIs and Protects From Experimental Colitis. Front Immunol 2021; 11:609400. [PMID: 33613532 PMCID: PMC7892458 DOI: 10.3389/fimmu.2020.609400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
A diverse spectrum of immune cells populates the intestinal mucosa reflecting the continuous stimulation by luminal antigens. In lesions of patients with inflammatory bowel disease, an aberrant inflammatory process is characterized by a very prominent infiltrate of activated immune cells producing cytokines and chemokines. These mediators perpetuate intestinal inflammation or may contribute to mucosal protection depending on the cellular context. In order to further characterize this complex immune cell network in intestinal inflammation, we investigated the contribution of the chemokine receptor CCR8 to development of colitis using a mouse model of experimental inflammation. We found that CCR8-/- mice compared to wildtype controls developed strong weight loss accompanied by increased histological and endoscopic signs of mucosal damage. Further experiments revealed that this gut protective function of CCR8 seems to be selectively mediated by the chemotactic ligand CCL1, which was particularly produced by intestinal macrophages during colitis. Moreover, we newly identified CCR8 expression on a subgroup of intestinal innate lymphoid cells producing IFN-γ and linked a functional CCL1/CCR8 axis with their abundance in the gut. Our data therefore suggest that this pathway supports tissue-specific ILC functions important for intestinal homeostasis. Modulation of this regulatory circuit may represent a new strategy to treat inflammatory bowel disease in humans.
Collapse
Affiliation(s)
- Le Kang
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Angelika Schmalzl
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tamara Leupold
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Tindemans I, van Schoonhoven A, KleinJan A, de Bruijn MJ, Lukkes M, van Nimwegen M, van den Branden A, Bergen IM, Corneth OB, van IJcken WF, Stadhouders R, Hendriks RW. Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress. J Clin Invest 2021; 130:3576-3591. [PMID: 32255764 DOI: 10.1172/jci128310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Allergic asthma is mediated by Th2 responses to inhaled allergens. Although previous experiments indicated that Notch signaling activates expression of the key Th2 transcription factor Gata3, it remains controversial how Notch promotes allergic airway inflammation. Here we show that T cell-specific Notch deficiency in mice prevented house dust mite-driven eosinophilic airway inflammation and significantly reduced Th2 cytokine production, serum IgE levels, and airway hyperreactivity. However, transgenic Gata3 overexpression in Notch-deficient T cells only partially rescued this phenotype. We found that Notch signaling was not required for T cell proliferation or Th2 polarization. Instead, Notch-deficient in vitro-polarized Th2 cells showed reduced accumulation in the lungs upon in vivo transfer and allergen challenge, as Notch-deficient Th2 cells were retained in the lung-draining lymph nodes. Transcriptome analyses and sequential adoptive transfer experiments revealed that while Notch-deficient lymph node Th2 cells established competence for lung migration, they failed to upregulate sphingosine-1-phosphate receptor 1 (S1PR1) and its critical upstream transcriptional activator Krüppel-like factor 2 (KLF2). As this KLF2/S1PR1 axis represents the essential cell-intrinsic regulator of T cell lymph node egress, we conclude that the druggable Notch signaling pathway licenses the Th2 response in allergic airway inflammation via promoting lymph node egress.
Collapse
|
30
|
Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging strategies in immunotherapy. Eur J Immunol 2020; 51:280-291. [PMID: 33302322 DOI: 10.1002/eji.202048992] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
The adaptive immune system is modulated by an important subset of CD4+ T lymphocytes called Treg cells that function in maintaining immune homeostasis by preventing excessive immune activation. Both deficiency and overactivation of Treg cell function can result in disease pathology. While loss of Treg function can lead to autoimmunity, an overabundance of Treg activity can promote tumorigenesis. Blocking and/or depleting Tregs has emerged as a viable strategy to enhance antitumor immunity. A major limitation underlying the limited efficacy observed with Treg therapies in the clinic is lack of selective targeting, often attributed to concurrent depletion of antitumor effector T-cell populations. Novel approaches to improve the specificity of Treg targeting in the context of cancer include the use of T-cell receptor mimic antibodies, bispecific antibodies, and near-infrared photoimmunotherapy. Next-generation technology platforms and transcriptomic/computational-based screening methods have been recently developed to identify preferential Treg targets. Herein, we highlight key advancements and challenges pertaining to the development of novel Treg targeting cancer therapeutics and discuss ongoing clinical trials evaluating next-generation Treg therapies for solid tumors.
Collapse
Affiliation(s)
- Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Rajkumar Ganesan
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| |
Collapse
|
31
|
Lee JH, Zou L, Yang R, Han J, Wan Q, Zhang X, El Baghdady S, Roman A, Elly C, Jin HS, Park Y, Croft M, Liu YC. The deubiquitinase CYLD controls protective immunity against helminth infection by regulation of Treg cell plasticity. J Allergy Clin Immunol 2020; 148:209-224.e9. [PMID: 33309741 DOI: 10.1016/j.jaci.2020.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.
Collapse
Affiliation(s)
- Jee H Lee
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif.
| | - Le Zou
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jihye Han
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Qingqing Wan
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xian Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Sarah El Baghdady
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Andrea Roman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Hyung-Seung Jin
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Department of Convergence Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Park
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
32
|
Rahimi RA, Nepal K, Cetinbas M, Sadreyev RI, Luster AD. Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease. J Exp Med 2020; 217:e20190865. [PMID: 32579670 PMCID: PMC7478729 DOI: 10.1084/jem.20190865] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 03/25/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023] Open
Abstract
Memory CD4+ T helper type 2 (Th2) cells drive allergic asthma, yet the mechanisms whereby tissue-resident memory Th2 (Th2 Trm) cells and circulating memory Th2 cells collaborate in vivo remain unclear. Using a house dust mite (HDM) model of allergic asthma and parabiosis, we demonstrate that Th2 Trm cells and circulating memory Th2 cells perform nonredundant functions. Upon HDM rechallenge, circulating memory Th2 cells trafficked into the lung parenchyma and ignited perivascular inflammation to promote eosinophil and CD4+ T cell recruitment. In contrast, Th2 Trm cells proliferated near airways and induced mucus metaplasia, airway hyperresponsiveness, and airway eosinophil activation. Transcriptional analysis revealed that Th2 Trm cells and circulating memory Th2 cells share a core Th2 gene signature but also exhibit distinct transcriptional profiles. Th2 Trm cells express a tissue-adaptation signature, including genes involved in regulating and interacting with extracellular matrix. Our findings demonstrate that Th2 Trm cells and circulating memory Th2 cells are functionally and transcriptionally distinct subsets with unique roles in promoting allergic airway disease.
Collapse
Affiliation(s)
- Rod A. Rahimi
- Airway Immunity Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Keshav Nepal
- Airway Immunity Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Andrew D. Luster
- Airway Immunity Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Early-life vancomycin treatment promotes airway inflammation and impairs microbiome homeostasis. Aging (Albany NY) 2020; 11:2071-2081. [PMID: 30981206 PMCID: PMC6503881 DOI: 10.18632/aging.101901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/31/2019] [Indexed: 12/19/2022]
Abstract
Several studies have reported that gut and lung microbiomes are involved in the process of asthma pathogenesis. However, it remains unclear how perinatal or early-life antibiotic intervention affect adult allergic airway inflammation. We assigned C57BL/6 mice randomly to four experimental groups: normal saline control (NS), ovalbumin (OVA), vancomycin pretreated NS (VAN-NS), and vancomycin pretreated OVA (VAN-OVA). The vancomycin groups were orally given the drug from gestational day 14 to 6 week. An OVA-induced asthma model was then established at 6 weeks of age, and airway inflammation was evaluated. In addition, total DNA was extracted from the feces and lung tissue and used for 16S rDNA gene sequencing, to detect the composition of the microbiome. In the VAN-OVA group, airway inflammation and Th2-related cytokines were found to be significantly increased versus the control groups. Gene sequencing showed that vancomycin treatment attenuated the richness and evenness, and altered the composition of the microbiome in the gut and lung. Micrococcaceae and Clostridiaceae-1 were potentially correlated to the severity of allergic airway inflammation. Our study suggests that perinatal and early-life vancomycin intervention aggravates allergic inflammation in adulthood, which might be correlated with imbalanced gut and lung microbiome homeostasis.
Collapse
|
34
|
Antagonistic Peptides That Specifically Bind to the First and Second Extracellular Loops of CCR5 and Anti-IL-23p19 Antibody Reduce Airway Inflammation by Suppressing the IL-23/Th17 Signaling Pathway. Mediators Inflamm 2020; 2020:1719467. [PMID: 32410846 PMCID: PMC7204182 DOI: 10.1155/2020/1719467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways with a complex etiology, which involves a variety of cells and cellular components. Therefore, the aim of the study was to investigate the effects and mechanisms of antagonistic peptides that specifically bind to the first and second extracellular loops of CCR5 (GH and HY peptides, respectively) and anti-interleukin-23 subunit p19 (anti-IL-23p19) in the airway and thereby mediate inflammation and the IL-23/T helper 17 (Th17) cell pathway in asthmatic mice. An experimental asthma model using BALB/c mice was induced by ovalbumin (OVA) and treated with peptides that are antagonistic to CCR5 or with anti-IL-23p19. The extents of the asthmatic inflammation and mucus production were assessed. In addition, bronchoalveolar lavage fluid (BALF) was collected, the cells were counted, and the IL-4 level was detected by ELISA. The IL-23/Th17 pathway-related protein and mRNA levels in the lung tissues were measured, and the positive production rates of Th17 cells in the thymus, spleen, and peripheral blood were detected. The groups treated with one of the two peptides and/or anti-IL-23p19 showed significant reductions in allergic inflammation and mucus secretion; decreased expression levels of IL-23p19, IL-23R, IL-17A and lactoferrin (LTF); and reduced proportions of Th17 cells in the thymus, spleen, and peripheral blood. Specifically, among the four treatment groups, the anti-IL-23p19 with HY peptide group exhibited the lowest positive production rate of Th17 cells. Our data also showed a significant and positive correlation between CCR5 and IL-23p19 protein expression. These findings suggest that the administration of peptides antagonistic to CCR5 and/or anti-IL-23p19 can reduce airway inflammation in asthmatic mice, most likely through inhibition of the IL-23/Th17 signaling pathway, and the HY peptide can alleviate inflammation not only through the IL-23/Th17 pathway but also through other mechanisms that result in the regulation of inflammation.
Collapse
|
35
|
Umeda M, Origuchi T, Kawashiri SY, Koga T, Ichinose K, Furukawa K, Sato T, Tsuji S, Endo Y, Takatani A, Shimizu T, Fukui S, Iwamoto N, Igawa T, Tamai M, Nakamura H, Kawakami A. Thymus and Activation-regulated Chemokine as a Biomarker for IgG4-related Disease. Sci Rep 2020; 10:6010. [PMID: 32265499 PMCID: PMC7138842 DOI: 10.1038/s41598-020-62941-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
High serum concentrations of thymus and activation-regulated chemokine (TARC) are observed in allergic diseases such as atopic dermatitis and bronchial asthma. Frequent allergic symptoms have been reported in patients with IgG4-related disease (IgG4-RD). We investigated the pathogenic role of TARC as a biomarker in IgG4-RD patients. We evaluated the serum concentrations of TARC from 29 IgG4-RD patients, 28 primary Sjögren syndrome (pSS) patients, and 23 healthy controls (HCs) by enzyme-linked immunosorbent assay (ELISA). We analyzed the correlations between the TARC concentrations and the subjects’ clinical parameters. To investigate the biological effect of TARC on the pathogenesis of IgG4-RD, we evaluated the in vitro induction of plasmablasts from IgG4-RD patients by TARC. The serum concentrations of TARC in the IgG4-RD patients were significantly higher than those of the pSS patients and HCs. The serum TARC concentration of the IgG4-RD group was positively correlated with the IgG4-RD responder index (IgG4-RD RI) score and with the number of organs involved, but it was not correlated with the serum IgG4 level or eosinophil number in the IgG4-RD patients’ peripheral blood. The patients who had lung involvement had higher serum TARC concentrations. In vitro, TARC clearly induced the formation of plasmablasts from the IgG4-RD patients’ peripheral blood mononuclear cells. Collectively, our data suggest that a systemic increment of TARC may contribute to the development of IgG4-RD through an aberrant induction of plasmablasts.
Collapse
Affiliation(s)
- Masataka Umeda
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. .,Medical Education Development Center, Nagasaki University Hospital, Nagasaki, Japan.
| | - Tomoki Origuchi
- Department of Locomotive Rehabilitation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Shin-Ya Kawashiri
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Departments of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohito Sato
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sousuke Tsuji
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yushiro Endo
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Igawa
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mami Tamai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
36
|
Pei W, Zhang Y, Li X, Luo M, Chen T, Zhang M, Zhong M, Lv K. LncRNA AK085865 depletion ameliorates asthmatic airway inflammation by modulating macrophage polarization. Int Immunopharmacol 2020; 83:106450. [PMID: 32247269 DOI: 10.1016/j.intimp.2020.106450] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 01/19/2023]
Abstract
Accumulating evidence indicates that regulators of macrophages polarization may play a key role in the development of allergic asthma (AA). However, the exact role of long non-coding RNAs (lncRNAs) in regulating in macrophages polarization in the pathogenesis of dermatophagoides farinae protein 1(Der f1)-induced AA is not fully understood. The purpose of this study was to determine the function of lncRNA AK085865 in regulating macrophages in AA. Here we report that lncRNA AK085865 served as a critical regulator of macrophages polarization and reduced the pathological progress of asthmatic airway inflammation. In response to the challenge of Der f1, AK085865-/- mice displayed attenuated allergic airway inflammation, including decreased eosinophil in BALF and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. In addition, Der f1-treated AK085865-/- mice show fewer M2 macrophages when compared with WT asthmatic mice. After adopting bone marrow-derived macrophages (BMDM, M0) from WT mice, Der f1-treated AK085865-/- mice also revealed a light inflammatory reactions. We further observed that the percentage of type II innate immune lymphoid cells (ILC2s) decreased in AK085865-/- asthmatic mice. Moreover, M2 macrophages helped promote the differentiation of ILC2s, probably through the exosomal pathway secreted by M2 macrophages. Taken together, these findings reveal that AK085865 depletion can ameliorate asthmatic airway inflammation by modulating macrophage polarization and M2 macrophages can promote the differentiation of innate lymphoid cells progenitor (ILCP) into ILC2s.
Collapse
Affiliation(s)
- Weiya Pei
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China
| | - Yingying Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Department of Laboratory Medicine (Wannan Medical College), Wuhu, PR China
| | - Xueqin Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China
| | - Mengsha Luo
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China
| | - Tianbing Chen
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China
| | - Mengying Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China
| | - Min Zhong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, PR China; Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, PR China.
| |
Collapse
|
37
|
Knipfer L, Schulz-Kuhnt A, Kindermann M, Greif V, Symowski C, Voehringer D, Neurath MF, Atreya I, Wirtz S. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation. J Exp Med 2019; 216:2763-2777. [PMID: 31537642 PMCID: PMC6888976 DOI: 10.1084/jem.20182111] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) possess indispensable roles during type 2-mediated inflammatory diseases. Although their physiological and detrimental immune functions seem to depend on the anatomical compartment they reside, their tissue tropism and the molecular and immunological processes regulating the self-renewal of the local pool of ILC2s in the context of inflammation or infection are incompletely understood. Here, we analyzed the role of the CC-chemokine receptor CCR8 for the biological functions of ILC2s. In vitro and in vivo experiments indicated that CCR8 is in comparison to the related molecule CCR4 less important for migration of these cells. However, we found that activated mouse and human ILC2s produce the CCR8 ligand CCL1 and are a major source of CCL1 in vivo. CCL1 signaling to ILC2s regulates their proliferation and supports their capacity to protect against helminthic infections. In summary, we identify a novel chemokine receptor-dependent mechanism by which ILC2s are regulated during type 2 responses.
Collapse
Affiliation(s)
- Lisa Knipfer
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Markus Kindermann
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Vicky Greif
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Cornelia Symowski
- Department of Infection Biology, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| |
Collapse
|
38
|
Blanco-Pérez F, Kato Y, Gonzalez-Menendez I, Laiño J, Ohbayashi M, Burggraf M, Krause M, Kirberg J, Iwakura Y, Martella M, Quintanilla-Martinez L, Shibata N, Vieths S, Scheurer S, Toda M. CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis. Sci Rep 2019; 9:9608. [PMID: 31270368 PMCID: PMC6610106 DOI: 10.1038/s41598-019-45653-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.
Collapse
Affiliation(s)
- Frank Blanco-Pérez
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Jonathan Laiño
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Masaharu Ohbayashi
- Department of Nursing, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Manja Burggraf
- Junior Research Group 1 Experimental Allergy Models", Paul-Ehrlich-Institut, Langen, Germany
| | - Maren Krause
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Jörg Kirberg
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science (TUS), Chiba, Japan
| | - Manuela Martella
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Stefan Vieths
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Stephan Scheurer
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany
| | - Masako Toda
- Vice President Research Group "Molecular Allergology", Paul-Ehrlich-Institut, Langen, Germany. .,Junior Research Group 1 Experimental Allergy Models", Paul-Ehrlich-Institut, Langen, Germany. .,Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
39
|
Vila-Caballer M, González-Granado JM, Zorita V, Abu Nabah YN, Silvestre-Roig C, Del Monte-Monge A, Molina-Sánchez P, Ait-Oufella H, Andrés-Manzano MJ, Sanz MJ, Weber C, Kremer L, Gutiérrez J, Mallat Z, Andrés V. Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. J Mol Cell Cardiol 2019; 132:154-163. [PMID: 31121182 DOI: 10.1016/j.yjmcc.2019.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.
Collapse
Affiliation(s)
- Marian Vila-Caballer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Universidad Cardenal Herrera-CEU (CEU Universities), Valencia, Spain
| | - José M González-Granado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain; LamImSys Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yafa N Abu Nabah
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Carlos Silvestre-Roig
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | | | - Hafid Ait-Oufella
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - María J Sanz
- Departamento de Farmacología, Universidad de Valencia and Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Leonor Kremer
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Julio Gutiérrez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ziad Mallat
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain.
| |
Collapse
|
40
|
Villarreal DO, L'Huillier A, Armington S, Mottershead C, Filippova EV, Coder BD, Petit RG, Princiotta MF. Targeting CCR8 Induces Protective Antitumor Immunity and Enhances Vaccine-Induced Responses in Colon Cancer. Cancer Res 2018; 78:5340-5348. [PMID: 30026324 DOI: 10.1158/0008-5472.can-18-1119] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 07/10/2018] [Indexed: 01/29/2023]
Abstract
CCR8 is a chemokine receptor expressed principally on regulatory T cells (Treg) and is known to be critical for CCR8+ Treg-mediated immunosuppression. Recent studies have demonstrated that CCR8 is uniquely upregulated in human tumor-resident Tregs of patients with breast, colon, and lung cancer when compared with normal tissue-resident Tregs. Therefore, CCR8+ tumor-resident Tregs are rational targets for cancer immunotherapy. Here, we demonstrate that mAb therapy targeting CCR8 significantly suppresses tumor growth and improves long-term survival in colorectal tumor mouse models. This antitumor activity correlated with increased tumor-specific T cells, enhanced infiltration of CD4+ and CD8+ T cells, and a significant decrease in the frequency of tumor-resident CD4+CCR8+ Tregs. Tumor-specific CD8+ T cells displayed lower expression of exhaustion markers as well as increased functionality upon restimulation. Treatment with anti-CCR8 mAb prevented de novo induction and suppressive function of Tregs without affecting CD8+ T cells. Initial studies explored a combinatorial regimen using anti-CCR8 mAb therapy and a Listeria monocytogenes-based immunotherapy. Anti-CCR8 mAb therapy synergized with L. monocytogenes-based immunotherapy to significantly delay growth of established tumors and to prolong survival. Collectively, these findings identify CCR8 as a promising new target for tumor immunotherapy and provide a strong rationale for further development of this approach, either as a monotherapy or in combination with other immunotherapies.Significance: Inhibition of CCR8 represents a promising new cancer immunotherapy strategy that modulates tumor-resident regulatory T cells to enhance antitumor immunity and prolong patient survival. Cancer Res; 78(18); 5340-8. ©2018 AACR.
Collapse
|
41
|
Lin R, Choi YH, Zidar DA, Walker JKL. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells. Am J Respir Cell Mol Biol 2018; 58:745-755. [PMID: 29361236 PMCID: PMC6002661 DOI: 10.1165/rcmb.2017-0240oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4+ T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4+ T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4+ Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4+ Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.
Collapse
Affiliation(s)
- Rui Lin
- Duke University Division of Pulmonary Medicine and
| | - Yeon ho Choi
- Duke University Division of Pulmonary Medicine and
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Julia K. L. Walker
- Duke University Division of Pulmonary Medicine and
- Duke University School of Nursing, Duke University, Durham, North Carolina; and
| |
Collapse
|
42
|
Wiest M, Upchurch K, Yin W, Ellis J, Xue Y, Lanier B, Millard M, Joo H, Oh S. Clinical implications of CD4 + T cell subsets in adult atopic asthma patients. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:7. [PMID: 29507584 PMCID: PMC5833086 DOI: 10.1186/s13223-018-0231-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND T cells play a central role in chronic inflammation in asthma. However, the roles of individual subsets of T cells in the pathology of asthma in patients remain to be better understood. METHODS We investigated the potential signatures of T cell subset phenotypes in asthma using fresh whole blood from adult atopic asthma patients (n = 43) and non-asthmatic control subjects (n = 22). We further assessed their potential clinical implications by correlating asthma severity. RESULTS We report four major features of CD4+ T cells in the blood of atopic asthma patients. First, patients had a profound increase of CCR7+ memory CD4+ T cells, but not CCR7- memory CD4+ T cells. Second, an increase in CCR4+ CD4+ T cells in patients was mainly attributed to the increase of CCR7+ memory CD4+ T cells. Accordingly, the frequency of CCR4+CCR7+ memory CD4+ T cells correlated with asthma severity. Current common asthma therapeutics (including corticosteroids) were not able to affect the frequency of CCR4+CCR7+ memory CD4+ T cell subsets. Third, patients had an increase of Tregs, as assessed by measuring CD25, Foxp3, IL-10 and CTLA-4 expression. However, asthma severity was inversely correlated only with the frequency of CTLA-4+ CD4+ T cells. Lastly, patients and control subjects have similar frequencies of CD4+ T cells that express CCR5, CCR6, CXCR3, CXCR5, CD11a, or α4 integrin. However, the frequency of α4+ CD4+ T cells in patients correlated with asthma severity. CONCLUSIONS CCR4+CCR7+ memory, but not CCR4+CCR7- memory, α4+, and CTLA4+ CD4+ T cells in patients show significant clinical implications in atopic asthma. Current common therapeutics cannot alter the frequency of such CD4+ T cell subsets in adult atopic asthma patients.
Collapse
Affiliation(s)
- Matthew Wiest
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Katherine Upchurch
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Wenjie Yin
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Jerome Ellis
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
| | - Yaming Xue
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
| | | | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, TX USA
| | - HyeMee Joo
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - SangKon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| |
Collapse
|
43
|
Jeyanathan M, Afkhami S, Khera A, Mandur T, Damjanovic D, Yao Y, Lai R, Haddadi S, Dvorkin-Gheva A, Jordana M, Kunkel SL, Xing Z. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway. THE JOURNAL OF IMMUNOLOGY 2017; 199:2555-2569. [PMID: 28827285 DOI: 10.4049/jimmunol.1700382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Sam Afkhami
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Amandeep Khera
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Talveer Mandur
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Daniela Damjanovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Yushi Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Rocky Lai
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Siamak Haddadi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada; .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| |
Collapse
|
44
|
Agrawal S, Srivastava R, Rahmatpanah F, Madiraju C, BenMohamed L, Agrawal A. Airway epithelial cells enhance the immunogenicity of human myeloid dendritic cells under steady state. Clin Exp Immunol 2017; 189:279-289. [PMID: 28470729 DOI: 10.1111/cei.12983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) and airway epithelial cells (AECs) are in close proximity, and AECs secrete factors such as retinoic acid which induce tolerance in DCs at homeostasis. However, the question remains as to how DCs in the lung are able to respond to pathogens in the immunosuppressive environment. Using an in vitro human myeloid DC (mDC)-AEC co-culture system, we demonstrate that AECs induced several gene changes in the mDCs cultured with AECs compared to the mDCs not cultured with AECs. Analysis revealed that several chemokine genes were altered. These chemokine genes could serve to attract neutrophils, natural killer (NK) T as well as T helper type 1 (Th1)/Th2 cells to the airways. Genes priming lipid and major histocompatibility complex (MHC) class II antigen presentation were also up-regulated, along with certain anti-microbial protein genes. In addition, the expression and function of pathogen-sensing Toll-like receptors (TLRs) as well as Nod-like receptors (NLRs) and their downstream signalling molecules were up-regulated in mDCs cultured with AECs. Moreover, murine mucosal DCs from the lung expressed significantly higher levels of TLRs and NLRs compared to peripheral DCs from the spleen. These results indicate that AECs prime mDCs to enhance their immunogenicity, which could be one of the mechanisms that compensates for the immunosuppressive mucosal environment.
Collapse
Affiliation(s)
- S Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, Irvine, CA, USA
| | - R Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - F Rahmatpanah
- Department of pathology, University of California, Irvine, Irvine, CA, USA
| | - C Madiraju
- Division of Basic and Clinical Immunology, Department of Medicine, Irvine, CA, USA
| | - L BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - A Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, Irvine, CA, USA
| |
Collapse
|
45
|
Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72:682-690. [PMID: 27864967 DOI: 10.1111/all.13089] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Under homeostatic conditions, as well as in various diseases, leukocyte migration is a crucial issue for the immune system that is mainly organized through the activation of bone marrow-derived cells in various tissues. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell-surface receptors that bind to chemokines and trigger transendothelial migration. Most allergic diseases, such as asthma, rhinitis, food allergies, and atopic dermatitis, are generally classified by the tissue rather than the type of inflammation, making the chemokine/chemokine receptor system a key point of the immune response. Moreover, because small antagonists can easily block such receptors, various molecules have been developed to suppress the recruitment of immune cells during allergic reactions, representing potential new drugs for allergies. We review the chemokines and chemokine receptors that are important in asthma, food allergies, and atopic dermatitis and their respectively developed antagonists.
Collapse
Affiliation(s)
- L. Castan
- INRA; UR1268 BIA; Nantes France
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- Université de Nantes; Nantes France
| | - A. Magnan
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- CHU de Nantes; Service de Pneumologie; Institut du thorax; Nantes France
| | | |
Collapse
|
46
|
Abboud D, Hanson J. Chemokine neutralization as an innovative therapeutic strategy for atopic dermatitis. Drug Discov Today 2017; 22:702-711. [DOI: 10.1016/j.drudis.2016.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023]
|
47
|
Gregor CE, Foeng J, Comerford I, McColl SR. Chemokine-Driven CD4 + T Cell Homing: New Concepts and Recent Advances. Adv Immunol 2017; 135:119-181. [DOI: 10.1016/bs.ai.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Zhang C, Zhang LH, Wu YF, Lai TW, Wang HS, Xiao H, Che LQ, Ying SM, Li W, Chen ZH, Shen HH. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma. Sci Rep 2016; 6:21515. [PMID: 26861679 PMCID: PMC4748281 DOI: 10.1038/srep21515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Lan-Hong Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-Wen Lai
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Sheng Wang
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing, China
| | - Hui Xiao
- Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing, China
| | - Luan-Qing Che
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Song-Min Ying
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Institute of Respiratory Diseases, Zhejiang University School of Medicine, Hangzhou, China.,State Key Lab of Respiratory Disease, Guangzhou, China
| |
Collapse
|
49
|
Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, Fallon PG, McKenzie ANJ. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol 2016; 17:57-64. [PMID: 26523868 PMCID: PMC4685755 DOI: 10.1038/ni.3294] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/14/2015] [Indexed: 12/13/2022]
Abstract
Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.
Collapse
Affiliation(s)
- Timotheus YF Halim
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| | - You Yi Hwang
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| | - Seth T Scanlon
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Natalio Garbi
- Department of Molecular Immunology, Institutes of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn D-53105, Germany
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
- Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew NJ McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, United Kingdom
| |
Collapse
|
50
|
Pai HJ, Azevedo RS, Braga ALF, Martins LC, Saraiva-Romanholo BM, de Arruda Martins M, Lin CA. A randomized, controlled, crossover study in patients with mild and moderate asthma undergoing treatment with traditional Chinese acupuncture. Clinics (Sao Paulo) 2015; 70:663-9. [PMID: 26598077 PMCID: PMC4602383 DOI: 10.6061/clinics/2015(10)01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES This study sought to verify the effects of acupuncture as an adjuvant treatment for the control of asthma. METHODS This was a randomized, controlled, crossover trial conducted at the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. A total of 74 patients with mild/moderate, persistent asthma were randomized into two therapeutic groups: Group A - 31 patients underwent 10 real weekly acupuncture sessions, followed by a 3-week washout period and 10 sham weekly acupuncture sessions; and Group B - 43 patients underwent 10 sham weekly acupuncture sessions, followed by a 3-week washout period and 10 real weekly acupuncture sessions. Patients used short- and long-acting β-2 agonists and inhaled corticosteroids when necessary. Prior to treatment and after each period of 10 treatment sessions, the patients were evaluated for spirometry, induced sputum cell count, exhaled nitric oxide (NO) and with the Short Form 36 (SF-36) and Questionnaire on Quality of Life-Asthma (QQLA) questionnaires. Daily peak flow and symptom diaries were registered. The level of significance adopted was 5% (α=0.05). RESULTS In Group B, after real acupuncture, there was a decrease in eosinophils (p=0.035) and neutrophils (p=0.047), an increase in macrophages (p=0.001) and an improvement in peak flow (p=0.01). After sham acupuncture treatment, patients experienced less coughing (p=0.037), wheezing (p=0.013) and dyspnea (p=0.014); similarly, after real acupuncture, patients reported less coughing (p=0.040), wheezing (p=0.012), dyspnea (p<0.001) and nocturnal awakening episodes (p=0.009). In Group A, there was less use of rescue medication (p=0.043). After the sham procedure, patients in Group A experienced less coughing (p=0.007), wheezing (p=0.037), dyspnea (p<0.001) and use of rescue medication (p<0.001) and after real acupuncture, these patients showed improvements in functional capacity (p=0.004), physical aspects (p=0.002), general health status (p<0.001) and vitality (p=0.019). Sham acupuncture also led to significant differences in symptoms, but these were not different from those seen with real acupuncture. Spirometry and exhaled NO levels did not show a difference between sham and real acupuncture treatment. In addition, no significant difference was demonstrated between treatments regarding the quality of life evaluation. CONCLUSION Real and sham acupuncture have different effects and outcomes on asthma control. The crossover approach was not effective in this study because both interventions led to improvement of asthma symptoms, quality of life and inflammatory cell counts. Thus, sham acupuncture cannot serve as a placebo in trials with acupuncture as the main intervention for asthma.
Collapse
Affiliation(s)
- Hong Jin Pai
- Faculdade de Medicina da Universidade de São Paulo, Hospital das Clínicas, Instituto de Ortopedia e Traumatologia, Centro de Acupuntura, São Paulo, SP, Brazil
| | - Raymundo Soares Azevedo
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Patologia, São Paulo, SP, Brazil
| | - Alfésio Luís Ferreira Braga
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Patologia, Laboratório de Poluição Atmosférica Experimental, Grupo De Estudos de Epidemiologia Ambiental, São Paulo, SP, Brazil
- Universidade Católica de Santos, Programa de Pós-Graduação de Saúde Coletiva, Santos, SP, Brasil
| | - Lourdes Conceição Martins
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Patologia, Laboratório de Poluição Atmosférica Experimental, Grupo De Estudos de Epidemiologia Ambiental, São Paulo, SP, Brazil
- Universidade Católica de Santos, Programa de Pós-Graduação de Saúde Coletiva, Santos, SP, Brasil
| | - Beatriz M Saraiva-Romanholo
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Investigação Médica, LIM-20, São Paulo, SP, Brazil
| | - Milton de Arruda Martins
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Medicina Interna, São Paulo, SP, Brazil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Investigação Médica, LIM-20, São Paulo, SP, Brazil
| | - Chin An Lin
- Faculdade de Medicina da Universidade de São Paulo, Hospital das Clínicas, Instituto de Ortopedia e Traumatologia, Centro de Acupuntura, São Paulo, SP, Brazil
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Medicina Interna, São Paulo, SP, Brazil
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Patologia, Laboratório de Poluição Atmosférica Experimental, Grupo De Estudos de Epidemiologia Ambiental, São Paulo, SP, Brazil
| |
Collapse
|