1
|
Hwang SM, Song JM, Choi JJ, Jung Y, Park CK, Kim YH. Functional Role of Piezo1 in the Human Eosinophil Cell Line AML14.3D10: Implications for the Immune and Sensory Nervous Systems. Biomolecules 2024; 14:1157. [PMID: 39334923 PMCID: PMC11429562 DOI: 10.3390/biom14091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.3D10. We detected Piezo1 mRNA expression, but not Piezo2 expression, in these cells, confirming the presence of the Piezo1 protein. Activation of Piezo1 with Yoda1, its specific agonist, resulted in a significant calcium influx, which was inhibited by the Piezo1-specific inhibitor Dooku1, as well as other nonspecific inhibitors (Ruthenium Red, Gd3+, and GsMTx-4). Further analysis revealed that Piezo1 activation modulated the expression and secretion of both pro-inflammatory and anti-inflammatory cytokines in AML14.3D10 cells. Notably, supernatants from Piezo1-activated AML14.3D10 cells enhanced capsaicin and ATP-induced calcium responses in the dorsal root ganglion neurons of mice. These findings elucidate the physiological role of Piezo1 in AML14.3D10 cells and suggest that factors secreted by these cells can modulate the activity of transient receptor potential 1 (TRPV1) and purinergic receptors, which are associated with pain and itch signaling. The results of this study significantly advance our understanding of the function of Piezo1 channels in the immune and sensory nervous systems.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Min Song
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jung Ju Choi
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Hendrix SV, Mreyoud Y, McNehlan ME, Smirnov A, Chavez SM, Hie B, Chamberland MM, Bradstreet TR, Webber AM, Kreamalmeyer D, Taneja R, Bryson BD, Edelson BT, Stallings CL. BHLHE40 Regulates Myeloid Cell Polarization through IL-10-Dependent and -Independent Mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1766-1781. [PMID: 38683120 PMCID: PMC11105981 DOI: 10.4049/jimmunol.2200819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/16/2024] [Indexed: 05/01/2024]
Abstract
Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1β, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.
Collapse
Affiliation(s)
- Skyler V. Hendrix
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sthefany M. Chavez
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Hie
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan M. Chamberland
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan D. Bryson
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Szyluk K, Bubnov R, Jarosz A, Reguła R, Grabowski P, Iwanicka J, Iwanicki T, Gierek M, Sieroń D, Christe A, Niemiec P. The Impact of Blood Morphological Parameters on Treatment Outcomes in Tennis Elbow Patients Receiving Platelet-Rich Plasma (PRP) Therapy: A Prospective Study. J Clin Med 2023; 13:77. [PMID: 38202084 PMCID: PMC10780100 DOI: 10.3390/jcm13010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Platelet-rich plasma (PRP) therapy holds substantial promise for the treatment of tennis elbow, a complex and challenging musculoskeletal condition. The aim of the study was to assess whether there are correlations between the levels of individual morphotic elements determined in whole blood and the outcomes of tennis elbow treatment with PRP injection, as measured using patient-reported outcome measures (PROMs) such as the Visual Analog Scale (VAS), Quick Disabilities of the Arm, Shoulder, and Hand (QDASH), and Patient-Rated Tennis Elbow Evaluation (PRTEE). A prospective analysis was conducted on 107 patients (132 elbows) undergoing lateral epicondylitis treatment with (PRP) injections. Patients completed VAS, PRTEE, and QDASH questionnaires on the day of PRP administration and at established checkpoints (2, 4, 8, 12, 24, 52, and 104 weeks). Minimal clinically important difference (MCID) was employed to assess the treatment effects. Then, correlations were measured within each PROM, and the impact of the concentration of individual blood parameters on the MCID outcomes was assessed. Analyzing the relationships between the MCID+ and MCID- groups, significant correlations for the VAS and QDASH scales were observed. The level of individual morphotic elements in the blood may have influenced the treatment outcome, as measured using specific patient-reported outcome measures (PROMs). Regarding the VAS scale, factors favoring a positive treatment outcome included higher values of eosinophils (EOS) and basophils (BASO). For the QDASH scale, these factors were a lower value of mean corpuscular volume (MCV) and a higher mean corpuscular hemoglobin (MCH). The levels of certain blood parameters, such as EOS and BASO, in the current study influenced the classification of patients into MCID+ or MCID- groups, based on the VAS and QDASH scales.
Collapse
Affiliation(s)
- Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland; (R.R.); (P.G.)
| | - Rostyslav Bubnov
- Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (A.J.); (J.I.); (T.I.); (P.N.)
| | - Rafał Reguła
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland; (R.R.); (P.G.)
| | - Piotr Grabowski
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland; (R.R.); (P.G.)
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (A.J.); (J.I.); (T.I.); (P.N.)
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (A.J.); (J.I.); (T.I.); (P.N.)
| | - Marcin Gierek
- Center for Burns Treatment, Jana Pawła II Str., 41-100 Siemianowice Śląskie, Poland;
| | - Dominik Sieroń
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland; (D.S.); (A.C.)
| | - Andreas Christe
- Department of Radiology SLS, Inselgroup, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland; (D.S.); (A.C.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (A.J.); (J.I.); (T.I.); (P.N.)
| |
Collapse
|
4
|
Chiarella SE, Cuervo-Pardo L, Coden ME, Jeong BM, Doan TC, Connelly AR, Rodriguez RI, Queener AM, Berdnikovs S. Sex differences in a murine model of asthma are time and tissue compartment dependent. PLoS One 2023; 18:e0271281. [PMID: 37819947 PMCID: PMC10566727 DOI: 10.1371/journal.pone.0271281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/27/2022] [Indexed: 10/13/2023] Open
Abstract
CONCLUSION Sexual dimorphism in lung inflammation is both time and tissue compartment dependent. Spatiotemporal variability in sex differences in a murine model of asthma must be accounted for when planning experiments to model the sex bias in allergic inflammation.
Collapse
Affiliation(s)
- Sergio E. Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | | | - Mackenzie E. Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Brian M. Jeong
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Ton C. Doan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Andrew R. Connelly
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Raul I. Rodriguez
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Ashley M. Queener
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
5
|
Cao Q, Wang R, Niu Z, Chen T, Azmi F, Read SA, Chen J, Lee VW, Zhou C, Julovi S, Huang Q, Wang YM, Starkey MR, Zheng G, Alexander SI, George J, Wang Y, Harris DC. Type 2 innate lymphoid cells are protective against hepatic ischaemia/reperfusion injury. JHEP Rep 2023; 5:100837. [PMID: 37691688 PMCID: PMC10482753 DOI: 10.1016/j.jhepr.2023.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 09/12/2023] Open
Abstract
Background and Aims Although type 2 innate lymphoid cells (ILC2s) were originally found to be liver-resident lymphocytes, the role and importance of ILC2 in liver injury remains poorly understood. In the current study, we sought to determine whether ILC2 is an important regulator of hepatic ischaemia/reperfusion injury (IRI). Methods ILC2-deficient mice (ICOS-T or NSG) and genetically modified ILC2s were used to investigate the role of ILC2s in murine hepatic IRI. Interactions between ILC2s and eosinophils or macrophages were studied in coculture. The role of human ILC2s was assessed in an immunocompromised mouse model of hepatic IRI. Results Administration of IL-33 prevented hepatic IRI in association with reduction of neutrophil infiltration and inflammatory mediators in the liver. IL-33-treated mice had elevated numbers of ILC2s, eosinophils, and regulatory T cells. Eosinophils, but not regulatory T cells, were required for IL-33-mediated hepatoprotection in IRI mice. Depletion of ILC2s substantially abolished the protective effect of IL-33 in hepatic IRI, indicating that ILC2s play critical roles in IL-33-mediated liver protection. Adoptive transfer of ex vivo-expanded ILC2s improved liver function and attenuated histologic damage in mice subjected to IRI. Mechanistic studies combining genetic and adoptive transfer approaches identified a protective role of ILC2s through promoting IL-13-dependent induction of anti-inflammatory macrophages and IL-5-dependent elevation of eosinophils in IRI. Furthermore, in vivo expansion of human ILC2s by IL-33 or transfer of ex vivo-expanded human ILC2s ameliorated hepatic IRI in an immunocompromised mouse model of hepatic IRI. Conclusions This study provides insight into the mechanisms of ILC2-mediated liver protection that could serve as therapeutic targets to treat acute liver injury. Impact and Implications We report that type 2 innate lymphoid cells (ILC2s) are important regulators in a mouse model of liver ischaemia/reperfusion injury (IRI). Through manipulation of macrophage and eosinophil phenotypes, ILC2s mitigate liver inflammation and injury during liver IRI. We propose that ILC2s have the potential to serve as a therapeutic tool for protecting against acute liver injury and lay the foundation for translation of ILC2 therapy to human liver disease.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Farhana Azmi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Vincent W.S. Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chunze Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuan Min Wang
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C.H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Xu L, Yang Y, Jiang J, Wen Y, Jeong JM, Emontzpohl C, Atkins CL, Kim K, Jacobsen EA, Wang H, Ju C. Eosinophils protect against acetaminophen-induced liver injury through cyclooxygenase-mediated IL-4/IL-13 production. Hepatology 2023; 77:456-465. [PMID: 35714036 PMCID: PMC9758273 DOI: 10.1002/hep.32609] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS A better understanding of the underlying mechanism of acetaminophen (APAP)-induced liver injury (AILI) remains an important endeavor to develop therapeutic approaches. Eosinophils have been detected in liver biopsies of patients with APAP overdose. We recently demonstrated a profound protective role of eosinophils against AILI; however, the molecular mechanism had not been elucidated. APPROACH AND RESULTS In agreement with our previous data from experiments using genetic deletion of eosinophils, we found that depletion of eosinophils in wild-type (WT) mice by an anti-IL-15 antibody resulted in exacerbated AILI. Moreover, adoptive transfer of eosinophils significantly reduced liver injury and mortality rate in WT mice. Mechanistic studies using eosinophil-specific IL-4/IL-13 knockout mice demonstrated that these cytokines, through inhibiting interferon-γ, mediated the hepatoprotective function of eosinophils. Reverse phase protein array analyses and in vitro experiments using various inhibitors demonstrated that IL-33 stimulation of eosinophils activated p38 mitogen-activated protein kinase (MAPK), and in turn, cyclooxygenases (COX), which triggered NF-κB-mediated IL-4/IL-13 production. In vivo adoptive transfer experiments showed that in contrast to naive eosinophils, those pretreated with COX inhibitors failed to attenuate AILI. CONCLUSIONS The current study revealed that eosinophil-derived IL-4/IL-13 accounted for the hepatoprotective effect of eosinophils during AILI. The data demonstrated that the p38 MAPK/COX/NF-κB signaling cascade played a critical role in inducing IL-4/IL-13 production by eosinophils in response to IL-33.
Collapse
Affiliation(s)
- Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jiali Jiang
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance L. Atkins
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kangho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
7
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
8
|
Kong J, Yang F, Bai M, Zong Y, Li Z, Meng X, Zhao X, Wang J. Airway immune response in the mouse models of obesity-related asthma. Front Physiol 2022; 13:909209. [PMID: 36051916 PMCID: PMC9424553 DOI: 10.3389/fphys.2022.909209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence rates of obesity and its complications have increased dramatically worldwide. Obesity can lead to low-grade chronic systemic inflammation, which predisposes individuals to an increased risk of morbidity and mortality. Although obesity has received considerable interest in recent years, the essential role of obesity in asthma development has not been explored. Asthma is a common chronic inflammatory airway disease caused by various environmental allergens. Obesity is a critical risk factor for asthma exacerbation due to systemic inflammation, and obesity-related asthma is listed as an asthma phenotype. A suitable model can contribute to the understanding of the in-depth mechanisms of obese asthma. However, stable models for simulating clinical phenotypes and the impact of modeling on immune response vary across studies. Given that inflammation is one of the central mechanisms in asthma pathogenesis, this review will discuss immune responses in the airways of obese asthmatic mice on the basis of diverse modeling protocols.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Minghua Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| |
Collapse
|
9
|
Xu L, Yang Y, Wen Y, Jeong JM, Emontzpohl C, Atkins CL, Sun Z, Poulsen KL, Hall DR, Steve Bynon J, Gao B, Lee WM, Rule J, Jacobsen EA, Wang H, Ju C. Hepatic recruitment of eosinophils and their protective function during acute liver injury. J Hepatol 2022; 77:344-352. [PMID: 35259470 PMCID: PMC9308653 DOI: 10.1016/j.jhep.2022.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Beyond the classical description of eosinophil functions in parasite infections and allergic diseases, emerging evidence supports a critical role of eosinophils in resolving inflammation and promoting tissue remodeling. However, the role of eosinophils in liver injury and the underlying mechanism of their recruitment into the liver remain unclear. METHODS Hepatic eosinophils were detected and quantified using flow cytometry and immunohistochemical staining. Eosinophil-deficient (ΔdblGata1) mice were used to investigate the role of eosinophils in 3 models of acute liver injury. In vivo experiments using Il33-/- mice and macrophage-depleted mice, as well as in vitro cultures of eosinophils and macrophages, were performed to interrogate the mechanism of eotaxin-2 (CCL24) production. RESULTS Hepatic accumulation of eosinophils was observed in patients with acetaminophen (APAP)-induced liver failure, whereas few eosinophils were detectable in healthy liver tissues. In mice treated with APAP, carbon tetrachloride or concanavalin A, eosinophils were recruited into the liver and played a profound protective role. Mice deficient of macrophages or IL-33 exhibited impaired hepatic eosinophil recruitment during acute liver injury. CCL24, but not CCL11, was increased after treatment of each hepatotoxin in an IL-33 and macrophage-dependent manner. In vitro experiments demonstrated that IL-33, by stimulating IL-4 release from eosinophils, promoted the production of CCL24 by macrophages. CONCLUSIONS This is the first study to demonstrate that hepatic recruitment of and protection by eosinophils occur commonly in various models of acute liver injury. Our findings support further exploration of eosinophils as a therapeutic target to treat APAP-induced acute liver injury. LAY SUMMARY The current study unveils that eosinophils are recruited into the liver and play a protective function during acute liver injury caused by acetaminophen overdose. The data demonstrate that IL-33-activated eosinophils trigger macrophages to release high amounts of CCL24, which promotes hepatic eosinophil recruitment. Our findings suggest that eosinophils could be an effective cell-based therapy for the treatment of acetaminophen-induced acute liver injury.
Collapse
Affiliation(s)
- Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Constance L Atkins
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David R Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Jody Rule
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
10
|
She Y, Wang K, Makarowski A, Mangat R, Tsai S, Willing BP, Proctor SD, Richard C. Effect of High-Fat and Low-Fat Dairy Products on Cardiometabolic Risk Factors and Immune Function in a Low Birthweight Swine Model of Diet-Induced Insulin Resistance. Front Nutr 2022; 9:923120. [PMID: 35782930 PMCID: PMC9247580 DOI: 10.3389/fnut.2022.923120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although dairy intake has been shown to have a neutral or some beneficial effect on major cardiometabolic risk factors, the impact of dairy, and especially dairy fat, on immune function remains to be investigated. To understand the effect of consuming dairy fat on cardiometabolic risk factors and immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance to compare high-fat and low-fat dairy products to a control high-fat diet (CHF). LBW piglets were randomized to consume one of the 3 experimental HF diets: (1) CHF, (2) CHF diet supplemented with 3 servings/day of high-fat dairy (HFDairy) and (3) CHF diet supplemented with 3 servings/day of low-fat dairy (LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). A total of 35 pigs completed the study and were fed for a total of 7 weeks, including 1 week of CHF transition diet. At 12 weeks of age, piglets were euthanized. Fasting blood and tissue samples were collected. Ex vivo cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with pokeweed (PWM), phytohemagglutinin (PHA) and phorbol myristate acetate-ionomycin (PMA-I) were assessed. As expected, LBW-CHF piglets showed early signs of insulin resistance (HOMA-IR, P model = 0.08). Feeding high-fat dairy products improved fasting plasma glucose concentrations more than low-fat dairy compared to LBW-CHF (P < 0.05). Irrespective of fat content, dairy consumption had neutral effect on fasting lipid profile. We have also observed lower production of IL-2 after PWM and PHA stimulation as well as lower production of TNF-α and IFN-γ after PWM stimulation in LBW-CHF than in NBW-Chow (all, P < 0.05), suggesting impaired T cell and antigen presenting cell function. While feeding high-fat dairy had minimal effect on immune function, feeding low-fat dairy significantly improved the production of IL-2, TNF-α and IFN-γ after PWM stimulation, IL-2 and IFN-γ after PHA stimulation as well as TNF-α after PMA-I stimulation compared to LBW-CHF (all, P < 0.05). These data provide novel insights into the role of dairy consumption in counteracting some obesity-related cardiometabolic and immune perturbations.
Collapse
Affiliation(s)
- Yongbo She
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kun Wang
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Alexander Makarowski
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P. Willing
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Metabolic and Cardiovascular Diseases Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Jeong BM, Walker MT, Rodriguez R, Coden ME, Nagasaka R, Doan TC, Politanska Y, Abdala-Valencia H, Berdnikovs S. More than neutrophils: Lin(+)Ly6G(+)IL-5Rα(+) multipotent myeloid cells (MMCs) are dominant in normal murine bone marrow and retain capacity to differentiate into eosinophils and monocytes. J Leukoc Biol 2022; 111:113-122. [PMID: 33857341 PMCID: PMC10080214 DOI: 10.1002/jlb.1ab0519-170rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bone marrow is a hematopoietic site harboring multiple populations of myeloid cells in different stages of differentiation. Murine bone marrow eosinophils are traditionally identified by Siglec-F(+) staining using flow cytometry, whereas neutrophils are characterized by Ly6G(+) expression. However, using flow cytometry to characterize bone marrow hematopoietic cells in wild-type mice, we found substantial gray areas in identification of these cells. Siglec-F(+) mature eosinophil population constituted only a minority of bone marrow Lin(+)CD45(+) pool (5%). A substantial population of Siglec-F(-) cells was double positive for neutrophil marker Ly6G and eosinophil lineage marker, IL-5Rα. This granulocyte population with mixed neutrophil and eosinophil characteristics is typically attributable to neutrophil pool based on neutral granule staining and expression of Ly6G and myeloid peroxidase. It is distinct from Lineage(-) myeloid progenitors or Siglec-F(+)Ly6G(+) maturing eosinophil precursors, and can be accurately identified by Lineage(+) staining and positive expression of markers IL-5Rα and Ly6G. At 15-50% of all CD45(+) hematopoietic cells in adult mice (percentage varies by sex and age), this is a surprisingly dominant population, which increases with age in both male and female mice. RNA-seq characterization of these cells revealed a complex immune profile and the capacity to secrete constituents of the extracellular matrix. When sorted from bone marrow, these resident cells had neutrophilic phenotype but readily acquired all characteristics of eosinophils when cultured with G-CSF or IL-5, including expression of Siglec-F and granular proteins (Epx, Mbp). Surprisingly, these cells were also able to differentiate into Ly6C(+) monocytes when cultured with M-CSF. Herein described is the discovery of an unexpected hematopoietic flexibility of a dominant population of multipotent myeloid cells, typically categorized as neutrophils, but with the previously unknown plasticity to contribute to mature pools of eosinophils and monocytes.
Collapse
Affiliation(s)
- Brian M. Jeong
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew T. Walker
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raul Rodriguez
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E. Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Reina Nagasaka
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ton C. Doan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuliya Politanska
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
13
|
Li Y, Chen Q, Ji W, Fan Y, Huang L, Chu C, Zhou W. TLR2 deficiency promotes IgE and inhibits IgG1 class-switching following ovalbumin sensitization. Ital J Pediatr 2021; 47:162. [PMID: 34315511 PMCID: PMC8314519 DOI: 10.1186/s13052-021-01088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore the roles of Toll-like receptor (TLR)2 in Th2 cytokine production and immunoglobulin (Ig) class switching following ovalbumin (OVA) sensitization. METHODS TLR2-/- and wild-type C57BL/6 mice were sensitized by intraperitoneal injection with OVA. Lung pathology was assessed by hematoxylin and eosin staining. Abundance of interleukin (IL)4, IL5, IL13, and IL21 transcripts in the lungs was quantified by RT-PCR. OVA-specific IgG1, IgG2a, IgG2b, IgE and IgM were quantified by enzyme-linked immunosorbent assay. Phosphorylated signal transducer and activator of transcription (STAT)3 in lung tissue was detected by immunohistochemistry staining and nuclear factor (NF) κB activation was measured by immunofluorescence staining. STAT3 activation was inhibited using cryptotanshinone (CPT) treatment. Germline transcripts (Iμ-Cμ, Iγ-Cγ, Iα-Cα or Iε-Cε), post-recombination transcripts (Iμ-Cγ, Iμ-Cα or Iμ- Cε) and mature transcripts (VHDJH-Cγ, VHDJH-Cα or VHDJH-Cε) were analyzed from splenic B cells of OVA-sensitized wild-type mice (with or without CPT treatment) and TLR2-/- mice (with or without IL21 treatment). RESULTS The lungs of TLR2-/- mice showed a lesser degree of inflammation than wild-type mice after OVA sensitization. Following OVA sensitization, levels of IL4, IL13, and IL21, but not IL5, were significantly lower in TLR2-/- compared with wild-type mice. Moreover, OVA-specific IgG1 and IgE titers were markedly lower and higher, respectively, in TLR2-/- mice. TLR2 deficiency inhibited STAT3 activation but not NF-κB p65 activation. CPT treatment reduced IgG1 titers via inhibition of Stat3 phosphorylation. Both TLR2 knockout and CPT treatment reduced the frequencies of Iγ1-Cγ1, Iγ3-Cγ3 and Iα-Cα transcripts, but IL21 treatment compensated for the effects of TLR2 deficiency. CONCLUSION These results suggest a role of TLR2 in restricting OVA-sensitized lung inflammation via promotion of IgG1 and inhibition of IgE class switching regulated by IL21 and STAT3.
Collapse
Affiliation(s)
- Yuqin Li
- Children’s Hospital of Soochow University, Suzhou, 215003 People’s Republic of China
| | - Qiu Chen
- School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
| | - Wei Ji
- Children’s Hospital of Soochow University, Suzhou, 215003 People’s Republic of China
| | - Yujie Fan
- Children’s Hospital of Soochow University, Suzhou, 215003 People’s Republic of China
| | - Li Huang
- Children’s Hospital of Soochow University, Suzhou, 215003 People’s Republic of China
| | - Chu Chu
- Children’s Hospital of Soochow University, Suzhou, 215003 People’s Republic of China
| | - Weifang Zhou
- Children’s Hospital of Soochow University, Suzhou, 215003 People’s Republic of China
| |
Collapse
|
14
|
Jacobsen EA, Jackson DJ, Heffler E, Mathur SK, Bredenoord AJ, Pavord ID, Akuthota P, Roufosse F, Rothenberg ME. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils Through Eosinophil-Directed Biological Therapies. Annu Rev Immunol 2021; 39:719-757. [PMID: 33646859 PMCID: PMC8317994 DOI: 10.1146/annurev-immunol-093019-125918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.
Collapse
Affiliation(s)
- Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona 85259, USA;
| | - David J Jackson
- Guy's and St Thomas' Hospitals, London WC2R 2LS, United Kingdom;
- Department of Immunobiology, King's College London, London WC2R 2LS, United Kingdom
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Personalized Medicine, Asthma and Allergy Unit, Humanitas Clinical and Research Center IRCCS, 20089 Milan, Italy;
| | - Sameer K Mathur
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53792, USA;
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ian D Pavord
- Respiratory Medicine Unit, Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, Oxford OX3 9DU, United Kingdom;
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Florence Roufosse
- Médecine Interne, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA;
| |
Collapse
|
15
|
Eosinophil Responses at the Airway Epithelial Barrier during the Early Phase of Influenza A Virus Infection in C57BL/6 Mice. Cells 2021; 10:cells10030509. [PMID: 33673645 PMCID: PMC7997358 DOI: 10.3390/cells10030509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.
Collapse
|
16
|
Psaila AM, Vohralik EJ, Quinlan KGR. Shades of white: new insights into tissue-resident leukocyte heterogeneity. FEBS J 2021; 289:308-318. [PMID: 33513286 DOI: 10.1111/febs.15737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Populations of white blood cells (leukocytes) have been found in tissues and organs across the body, in states of both health and disease. The role leukocytes play within these tissues is often highly contested. For many leukocytes, there are studies outlining pro-inflammatory destructive functions, while other studies provide clear evidence of anti-inflammatory homeostatic activities of leukocytes within the same tissue. We discuss how this functional dissonance can be explained by leukocyte heterogeneity. Although cell morphology and surface receptor profiles are excellent methods to segregate cell types, the true degree of leukocyte heterogeneity that exists can only be appreciated by studying the variable and dynamic gene expression profile. Unbiased single-cell RNA sequencing profiling of tissue-resident leukocytes is transforming the way we understand leukocytes across health and disease. Recent investigations into adipose tissue-resident leukocytes have revealed unprecedented levels of heterogeneity among populations of macrophages. We use this example to pose emerging questions regarding tissue-resident leukocytes and review what is currently known (and unknown) about the diversity of tissue-resident leukocytes within different organs.
Collapse
Affiliation(s)
- Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
17
|
Mattei F, Andreone S, Marone G, Gambardella AR, Loffredo S, Varricchi G, Schiavoni G. Eosinophils in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:1-28. [PMID: 33119873 DOI: 10.1007/978-3-030-49270-0_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils are rare blood-circulating and tissue-infiltrating immune cells studied for decades in the context of allergic diseases and parasitic infections. Eosinophils can secrete a wide array of soluble mediators and effector molecules, with potential immunoregulatory activities in the tumor microenvironment (TME). These findings imply that these cells may play a role in cancer immunity. Despite these cells were known to infiltrate tumors since many years ago, their role in TME is gaining attention only recently. In this chapter, we will review the main biological functions of eosinophils that can be relevant within the TME. We will discuss how these cells may undergo phenotypic changes acquiring pro- or antitumoricidal properties according to the surrounding stimuli. Moreover, we will analyze canonical (i.e., degranulation) and unconventional mechanisms (i.e., DNA traps, exosome secretion) employed by eosinophils in inflammatory contexts, which can be relevant for tumor immune responses. Finally, we will review the available preclinical models that could be employed for the study of the role in vivo of eosinophils in cancer.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy. .,WAO Center of Excellence, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
18
|
Kanda A, Yun Y, Bui DV, Nguyen LM, Kobayashi Y, Suzuki K, Mitani A, Sawada S, Hamada S, Asako M, Iwai H. The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergol Int 2021; 70:9-18. [PMID: 33243693 DOI: 10.1016/j.alit.2020.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Eosinophils not only play a critical role in the pathogenesis of eosinophil-associated diseases, but they also have multiple important biological functions, including the maintenance of homeostasis, host defense against infections, immune regulation through canonical Th1/Th2 balance modulation, and anti-inflammatory and anti-tumorigenic activities. Recent studies have elucidated some emerging roles of eosinophils in steady-state conditions; for example, eosinophils contribute to adipose tissue metabolism and metabolic health through alternatively activated macrophages and the maintenance of plasma cells in intestinal tissue and bone marrow. Moreover, eosinophils exert tissue damage through eosinophil-derived cytotoxic mediators that are involved in eosinophilic airway inflammation, leading to diseases including asthma and chronic rhinosinusitis with nasal polyps characterized by fibrin deposition through excessive response by eosinophils-induced. Thus, eosinophils possessing these various effects reflect the heterogenous features of these cells, which suggests the existence of distinct different subpopulations of eosinophils between steady-state and pathological conditions. Indeed, a recent study demonstrated that instead of dividing eosinophils by classical morphological changes into normodense and hypodense eosinophils, murine eosinophils from lung tissue can be phenotypically divided into two distinct subtypes: resident eosinophils and inducible eosinophils gated by Siglec-Fint CD62L+ CD101low and Siglec-Fhigh CD62L- CD101high, respectively. However, it is difficult to explain every function of eosinophils by rEos and iEos, and the relationship between the functions and subpopulations of eosinophils remains controversial. Here, we overview the multiple roles of eosinophils in the tissue and their biological behavior in steady-state and pathological conditions. We also discuss eosinophil subpopulations.
Collapse
Affiliation(s)
- Akira Kanda
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan; Allergy Center, Kansai Medical University, Osaka, Japan; Department of Pathology and Laboratory Medicine, Kansai Medical University, Osaka, Japan.
| | - Yasutaka Yun
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Dan Van Bui
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Linh Manh Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Yoshiki Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan; Allergy Center, Kansai Medical University, Osaka, Japan
| | - Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Akitoshi Mitani
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Shunsuke Sawada
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Satoko Hamada
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| | - Mikiya Asako
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan; Allergy Center, Kansai Medical University, Osaka, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
19
|
Doyle AD, Masuda MY, Kita H, Wright BL. Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Front Immunol 2020; 11:603295. [PMID: 33335531 PMCID: PMC7736408 DOI: 10.3389/fimmu.2020.603295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an antigen-driven disease associated with epithelial barrier dysfunction and chronic type 2 inflammation. Eosinophils are the defining feature of EoE histopathology but relatively little is known about their role in disease onset and progression. Classically defined as destructive, end-stage effector cells, eosinophils (a resident leukocyte in most of the GI tract) are increasingly understood to play roles in local immunity, tissue homeostasis, remodeling, and repair. Indeed, asymptomatic esophageal eosinophilia is observed in IgE-mediated food allergy. Interestingly, EoE is a potential complication of oral immunotherapy (OIT) for food allergy. However, we recently found that patients with peanut allergy may have asymptomatic esophageal eosinophilia at baseline and that peanut OIT induces transient esophageal eosinophilia in most subjects. This is seemingly at odds with multiple studies which have shown that EoE disease severity correlates with tissue eosinophilia. Herein, we review the potential role of eosinophils in EoE at different stages of disease pathogenesis. Based on current literature we suggest the following: (1) eosinophils are recruited to the esophagus as a homeostatic response to epithelial barrier disruption; (2) eosinophils mediate barrier-protective activities including local antibody production, mucus production and epithelial turnover; and (3) when type 2 inflammation persists, eosinophils promote fibrosis.
Collapse
Affiliation(s)
- Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
20
|
Orban NT, Jacobson MR, Nouri-Aria KT, Durham SR, Eifan AO. Repetitive nasal allergen challenge in allergic rhinitis: Priming and Th2-type inflammation but no evidence of remodelling. Clin Exp Allergy 2020; 51:329-338. [PMID: 33141493 DOI: 10.1111/cea.13775] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Local tissue eosinophilia and Th2 cytokines are characteristic features of seasonal allergic rhinitis. Airway remodelling is a feature of asthma whereas evidence for remodelling in allergic rhinitis (AR) is conflicting. OBJECTIVE By use of a novel human repetitive nasal allergen challenge (RAC) model, we evaluated the relationship between allergic inflammation and features of remodelling in AR. METHODS Twelve patients with moderate-severe AR underwent 5 alternate day challenges with diluent which after 4 weeks were followed by 5 alternate day challenges with grass pollen extract. Nasal symptoms, Th1/Th2 cytokines in nasal secretion and serum were evaluated. Nasal biopsies were taken 24 hours after the 1st and 5th challenges with diluent and with allergen. Sixteen healthy controls underwent a single challenge with diluent and with allergen. Using immunohistochemistry, epithelial and submucosal inflammatory cells and remodelling markers were evaluated by computed image analysis. RESULTS There was an increase in early and late-phase symptoms after every allergen challenge compared to diluent (both P < .05) with evidence of both clinical and immunological priming. Nasal tissue eosinophils and IL-5 in nasal secretion increased significantly after RAC compared to corresponding diluent challenges (P < .01, P = .01, respectively). There was a correlation between submucosal mast cells and the early-phase clinical response (r = 0.79, P = .007) and an association between epithelial eosinophils and IL-5 concentrations in nasal secretion (r = 0.69, P = .06) in allergic rhinitis. No differences were observed after RAC with regard to epithelial integrity, reticular basement membrane thickness, glandular area, expression of markers of activation of airway remodelling including α-SMA, HSP-47, extracellular matrix (MMP7, 9 and TIMP-1), angiogenesis and lymphangiogenesis for AR compared with healthy controls. CONCLUSION Novel repetitive nasal allergen challenge in participants with severe persistent seasonal allergic rhinitis resulted in tissue eosinophilia and increases in IL-5 but no structural changes. Our data support no link between robust Th2-inflammation and development of airway remodelling in AR.
Collapse
Affiliation(s)
- Nara T Orban
- Allergy and Clinical Immunology, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Faculty of Medicine, Imperial College London, London, UK.,Allergy Department, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College London, London, UK
| | - Mikila R Jacobson
- Allergy and Clinical Immunology, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Faculty of Medicine, Imperial College London, London, UK.,Allergy Department, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College London, London, UK
| | - Kayhan T Nouri-Aria
- Allergy and Clinical Immunology, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Faculty of Medicine, Imperial College London, London, UK.,Allergy Department, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College London, London, UK
| | - Stephen R Durham
- Allergy and Clinical Immunology, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Faculty of Medicine, Imperial College London, London, UK.,Allergy Department, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College London, London, UK
| | - Aarif O Eifan
- Allergy and Clinical Immunology, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre for Allergic Mechanisms of Asthma, Faculty of Medicine, Imperial College London, London, UK.,Allergy Department, Royal Brompton and Harefield Hospitals NHS Trust, Imperial College London, London, UK
| |
Collapse
|
21
|
Miyata J, Fukunaga K, Kawashima Y, Ohara O, Kawana A, Asano K, Arita M. Dysregulated metabolism of polyunsaturated fatty acids in eosinophilic allergic diseases. Prostaglandins Other Lipid Mediat 2020; 150:106477. [PMID: 32711128 DOI: 10.1016/j.prostaglandins.2020.106477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), represented by the omega-6 fatty acid arachidonic acid (AA) and omega-3 fatty acid docosahexaenoic acid (DHA), are essential components of the human body. PUFAs are converted enzymatically into bioactive lipid mediators, including AA-derived cysteinyl leukotrienes (cys-LTs) and lipoxins and DHA-derived protectins, which orchestrate a wide range of immunological responses. For instance, eosinophils possess the biosynthetic capacity of various lipid mediators through multiple enzymes, including 5-lipoxygenase and 15-lipoxygenase, and play central roles in the regulation of allergic diseases. Dysregulated metabolism of PUFAs is reported, especially in severe asthma, aspirin-exacerbated respiratory disease, and eosinophilic chronic rhinosinusitis (ECRS), which is characterized by the overproduction of cys-LTs and impaired synthesis of pro-resolving mediators. Recently, by performing a multi-omics analysis (lipidomics, proteomics, and transcriptomics), we demonstrated the metabolic derangement of eosinophils in inflamed tissues of patients with ECRS. This abnormality occurred subsequent to altered enzyme expression of gamma-glutamyl transferase-5. In this review, we summarize the previous findings of dysregulated PUFA metabolism in allergic diseases, and discuss future prospective therapeutic strategies for correcting this imbalance.
Collapse
Affiliation(s)
- Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University, School of Medicine, Kanagawa, Japan.
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
22
|
Brosnahan MM. Eosinophils of the horse: Part II: Eosinophils in clinical diseases. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M. M. Brosnahan
- College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
23
|
Coden ME, Berdnikovs S. Eosinophils in wound healing and epithelial remodeling: Is coagulation a missing link? J Leukoc Biol 2020; 108:93-103. [DOI: 10.1002/jlb.3mr0120-390r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 01/13/2023] Open
Affiliation(s)
- Mackenzie E. Coden
- Division of Allergy and Immunology Department of Medicine Northwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology Department of Medicine Northwestern University Feinberg School of Medicine Chicago Illinois USA
| |
Collapse
|
24
|
Loffredo LF, Coden ME, Jeong BM, Walker MT, Anekalla KR, Doan TC, Rodriguez R, Browning M, Nam K, Lee JJ, Abdala-Valencia H, Berdnikovs S. Eosinophil accumulation in postnatal lung is specific to the primary septation phase of development. Sci Rep 2020; 10:4425. [PMID: 32157178 PMCID: PMC7064572 DOI: 10.1038/s41598-020-61420-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Type 2 immune cells and eosinophils are transiently present in the lung tissue not only in pathology (allergic disease, parasite expulsion) but also during normal postnatal development. However, the lung developmental processes underlying airway recruitment of eosinophils after birth remain unexplored. We determined that in mice, mature eosinophils are transiently recruited to the lung during postnatal days 3-14, which specifically corresponds to the primary septation/alveolarization phase of lung development. Developmental eosinophils peaked during P10-14 and exhibited Siglec-Fmed/highCD11c-/low phenotypes, similar to allergic asthma models. By interrogating the lung transcriptome and proteome during peak eosinophil recruitment in postnatal development, we identified markers that functionally capture the establishment of the mesenchymal-epithelial interface (Nes, Smo, Wnt5a, Nog) and the deposition of the provisional extracellular matrix (ECM) (Tnc, Postn, Spon2, Thbs2) as a key lung morphogenetic event associating with eosinophils. Tenascin-C (TNC) was identified as one of the key ECM markers in the lung epithelial-mesenchymal interface both at the RNA and protein levels, consistently associating with eosinophils in development and disease in mice and humans. As determined by RNA-seq analysis, naïve murine eosinophils cultured with ECM enriched in TNC significantly induced expression of Siglec-F, CD11c, eosinophil peroxidase, and other markers typical for activated eosinophils in development and allergic inflammatory responses. TNC knockout mice had an altered eosinophil recruitment profile in development. Collectively, our results indicate that lung morphogenetic processes associated with heightened Type 2 immunity are not merely a tissue "background" but specifically guide immune cells both in development and pathology.
Collapse
Affiliation(s)
- Lucas F Loffredo
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian M Jeong
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew T Walker
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kishore Reddy Anekalla
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ton C Doan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raul Rodriguez
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mandy Browning
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kiwon Nam
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
25
|
Chen Y, Guo KM, Nagy T, Guo TL. Chronic oral exposure to glycated whey proteins increases survival of aged male NOD mice with autoimmune prostatitis by regulating the gut microbiome and anti-inflammatory responses. Food Funct 2020; 11:153-162. [PMID: 31829366 PMCID: PMC6992484 DOI: 10.1039/c9fo01740b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glycated whey proteins have been shown to be protective against type 1 diabetes in our previous studies, suggesting their potential application as medical food. To determine if the protection could be extended to other autoimmune diseases, aged male non-obese diabetic (NOD) mice that develop a wide spectrum of autoimmune pathologies, including spontaneous autoimmune prostatitis, were used. After a 6-month oral exposure to whey protein-derived early glycation products (EGPs), EGP-treated NOD mice had an increased survival rate, decreased macrophage infiltration in the anterior lobe and decreased inflammation in the prostate when compared to the mice that received non-reacted controls. The systemic immunity was regulated towards anti-inflammation, evidenced by an increase in serum IL-10 level and decreases in total splenocytes, splenic M1 macrophages, CD4+ T cells, CD8+ T cells and B cells. Consistent with an overall anti-inflammatory status, the gut microbiome was altered in abundance but not diversity, with increased Allobaculum, Anaerostipes, Bacteroides, Parabacteroides and Prevotella and decreased Adlercreutzia and Roseburia at the genus level. Moreover, increased Bacteroides acidifaciens correlated with most of the immune parameters measured. Collectively, chronic oral exposure to EGPs produced an anti-inflammatory effect in aged male NOD mice, which might contribute to the protective effects against spontaneous autoimmune prostatitis and/or other organ specific autoimmune diseases.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | | | | | | |
Collapse
|
26
|
Cysteinyl leukotriene metabolism of human eosinophils in allergic disease. Allergol Int 2020; 69:28-34. [PMID: 31248811 DOI: 10.1016/j.alit.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 01/14/2023] Open
Abstract
Eosinophils are multifaceted immune cells with diverse functions that enhance allergic inflammation. Cysteinyl leukotrienes (cys-LTs), mainly synthesized in eosinophils, are a class of inflammatory lipid mediators produced via multiple enzymatic reactions from arachidonic acid. Multiple clinical studies have reported dysregulated fatty acid metabolism in severe asthma and aspirin-exacerbated respiratory diseases. Therefore, understanding the mechanism responsible for this metabolic abnormality has attracted a lot of attention. In eosinophils, various stimuli (including cytokines, chemokines, and pathogen-derived factors) prime and/or induce leukotriene generation and secretion. Cell-cell interactions with component cells (endothelial cells, epithelial cells, fibroblasts) also enhance this machinery to augment allergic responses. Nasal polyp-derived eosinophils from patients with eosinophilic rhinosinusitis present a characteristic fatty acid metabolism with selectively higher production of leukotriene D4. Interestingly, type 2 cytokines and microbiome components might be responsible for this metabolic change with altered enzyme expression. Here, we review the regulation of fatty acid metabolism, especially cys-LT metabolism, in human eosinophils toward allergic inflammatory status.
Collapse
|
27
|
Ferreira CM, Williams JW, Tong J, Rayon C, Blaine KM, Sperling AI. Allergen Exposure in Lymphopenic Fas-Deficient Mice Results in Persistent Eosinophilia Due to Defects in Resolution of Inflammation. Front Immunol 2018; 9:2395. [PMID: 30425708 PMCID: PMC6219400 DOI: 10.3389/fimmu.2018.02395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is characterized by chronic airway type-2 inflammation and eosinophilia, yet the mechanisms involved in chronic, non-resolving inflammation remain poorly defined. Previously, our group has found that when Rag-deficient mice were reconstituted with Fas-deficient B6 LPR T cells and sensitized and challenged, the mice developed a prolonged type-2-mediated airway inflammation that continued for more than 6 weeks after the last antigen exposure. Surprisingly, no defect in resolution was found when intact B6 LPR mice or T cell specific Fas-conditional knockout mice were sensitized and challenged. We hypothesize that the homeostatic proliferation induced by adoptive transfer of T cells into Rag-deficient mice may be an important mechanism involved in the lack of resolution. To investigate the role of homeostatic proliferation, we induced lymphopenia in the T cell-specific Fas-conditional knockout mice by non-lethal irradiation and sensitized them when T cells began to repopulate. Interestingly, we found that defective Fas signaling on T cells plus antigen exposure during homeostatic proliferation was sufficient to induce prolonged eosinophilic airway inflammation. In conclusion, our data show that the combination of transient lymphopenia, abnormal Fas-signaling, and antigen exposure leads to the development of a prolonged airway eosinophilic inflammatory phase in our mouse model of experimental asthma.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Jesse W Williams
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Jiankun Tong
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Crystal Rayon
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Kelly M Blaine
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anne I Sperling
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States.,Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL, United States.,Committee on Immunology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS, Lee JJ, Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-108. [PMID: 29656559 DOI: 10.1002/jlb.1mr1117-442rr] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergio E Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth A Jacobsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Cazzola M, Matera MG, Levi-Schaffer F, Rogliani P. Safety of humanized monoclonal antibodies against IL-5 in asthma: focus on reslizumab. Expert Opin Drug Saf 2018; 17:429-435. [PMID: 29486600 DOI: 10.1080/14740338.2018.1446940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Reslizumab, a humanized mAb against IL-5, reduces the number of eosinophils in the blood and lungs. Based on efficacy and safety data from pivotal RCTs, reslizumab had been approved for use as an add-on maintenance treatment of severe asthma with an eosinophilic phenotype in adults who have a history of exacerbations despite receiving their current asthma medicines. Areas covered: Current literature on reslizumab has been reviewed with a specific focus on its safety profile in the treatment of severe asthma. Expert opinion: Large pivotal and supportive trials reinforce the view that reslizumab is well tolerated, with an acceptable safety profile in patients exposed for longer than 2 years. However, no or few data concerning safety in special populations such as smokers, those with immune- and cellular senescence, patients with comorbidities and those receiving multi-drug treatments are available as yet. Furthermore, we need to fully elucidate some fundamental issues such as the risk of anaphylaxis and the long-term risk-benefit ratio of the impact of depletion of eosinophils and the potential risk of malignancies induced by a treatment with this anti-IL-5 agent.
Collapse
Affiliation(s)
- Mario Cazzola
- a Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery , University of Rome 'Tor Vergata' , Rome , Italy
| | - Maria Gabriella Matera
- b Unit of Pharmacology, Department of Experimental Medicine , University of Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Francesca Levi-Schaffer
- c Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine , Hebrew University of Jerusalem , Jerusalem , Israel
| | - Paola Rogliani
- a Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery , University of Rome 'Tor Vergata' , Rome , Italy
| |
Collapse
|
30
|
Bernatchez E, Gold MJ, Langlois A, Blais-Lecours P, Boucher M, Duchaine C, Marsolais D, McNagny KM, Blanchet MR. Methanosphaera stadtmanae induces a type IV hypersensitivity response in a mouse model of airway inflammation. Physiol Rep 2017; 5:5/7/e13163. [PMID: 28364028 PMCID: PMC5392504 DOI: 10.14814/phy2.13163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
Despite improved awareness of work‐related diseases and preventive measures, many workers are still at high risk of developing occupational hypersensitivity airway diseases. This stems from a lack of knowledge of bioaerosol composition and their potential effects on human health. Recently, archaea species were identified in bioaerosols, raising the possibility that they play a major role in exposure‐related pathology. Specifically, Methanosphaera stadtmanae (MSS) and Methanobrevibacter smithii (MBS) are found in high concentrations in agricultural environments and respiratory exposure to crude extract demonstrates immunomodulatory activity in mice. Nevertheless, our knowledge of the specific impact of methanogens exposure on airway immunity and their potential to induce airway hypersensitivity responses in workers remains scant. Analysis of the lung mucosal response to methanogen crude extracts in mice demonstrated that MSS and MBS predominantly induced TH17 airway inflammation, typical of a type IV hypersensitivity response. Furthermore, the response to MSS was associated with antigen‐specific IgG1 and IgG2a production. However, despite the presence of eosinophils after MSS exposure, only a weak TH2 response and no airway hyperresponsiveness were observed. Finally, using eosinophil and mast cell‐deficient mice, we confirmed that these cells are dispensable for the TH17 response to MSS, although eosinophils likely contribute to the exacerbation of inflammatory processes induced by MSS crude extract exposure. We conclude that, as MSS induces a clear type IV hypersensitivity lung response, it has the potential to be harmful to workers frequently exposed to this methanogen, and that preventive measures should be taken to avoid chronic hypersensitivity disease development in workers.
Collapse
Affiliation(s)
- Emilie Bernatchez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Matthew J Gold
- The Biomedical Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anick Langlois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Pascale Blais-Lecours
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Duchaine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Kelly M McNagny
- The Biomedical Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
31
|
Eosinophils and eosinophil-associated diseases: An update. J Allergy Clin Immunol 2017; 141:505-517. [PMID: 29045815 DOI: 10.1016/j.jaci.2017.09.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023]
Abstract
The goal of this series is to offer a survey of the latest literature for clinicians and scientists alike, providing a list of important recent advances relevant to the broad field of allergy and immunology. This particular assignment was to cover the topic of eosinophils. In an attempt to highlight major ideas, themes, trends, and advances relevant to basic and clinical aspects of eosinophil biology, a search of articles published since 2015 in the Journal of Allergy and Clinical Immunology and other high-impact journals was performed. Articles were then reviewed and organized, and then key findings were summarized. Given space limitations, many outstanding articles could not be included, but the hope is that what follows provides a succinct overview of recently published work that has significantly added to our knowledge of eosinophils and eosinophil-associated diseases.
Collapse
|
32
|
IL-4-secreting eosinophils promote endometrial stromal cell proliferation and prevent Chlamydia-induced upper genital tract damage. Proc Natl Acad Sci U S A 2017; 114:E6892-E6901. [PMID: 28765368 DOI: 10.1073/pnas.1621253114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genital Chlamydia trachomatis infections in women typically are asymptomatic and do not cause permanent upper genital tract (UGT) damage. Consistent with this presentation, type 2 innate and TH2 adaptive immune responses associated with dampened inflammation and tissue repair are elicited in the UGT of Chlamydia-infected women. Primary C. trachomatis infection of mice also causes no genital pathology, but unlike women, does not generate Chlamydia-specific TH2 immunity. Herein, we explored the significance of type 2 innate immunity for restricting UGT tissue damage in Chlamydia-infected mice, and in initial studies intravaginally infected wild-type, IL-10-/-, IL-4-/-, and IL-4Rα-/- mice with low-dose C. trachomatis inoculums. Whereas Chlamydia was comparably cleared in all groups, IL-4-/- and IL-4Rα-/- mice displayed endometrial damage not seen in wild-type or IL-10-/- mice. Congruent with the aberrant tissue repair in mice with deficient IL-4 signaling, we found that IL-4Rα and STAT6 signaling mediated IL-4-induced endometrial stromal cell (ESC) proliferation ex vivo, and that genital administration of an IL-4-expressing adenoviral vector greatly increased in vivo ESC proliferation. Studies with IL-4-IRES-eGFP (4get) reporter mice showed eosinophils were the main IL-4-producing endometrial leukocyte (constitutively and during Chlamydia infection), whereas studies with eosinophil-deficient mice identified this innate immune cell as essential for endometrial repair during Chlamydia infection. Together, our studies reveal IL-4-producing eosinophils stimulate ESC proliferation and prevent Chlamydia-induced endometrial damage. Based on these results, it seems possible that the robust type 2 immunity elicited by Chlamydia infection of human genital tissue may analogously promote repair processes that reduce phenotypic disease expression.
Collapse
|
33
|
Gangwar RS, Levi-Schaffer F. sCD48 is anti-inflammatory in Staphylococcus aureus Enterotoxin B-induced eosinophilic inflammation. Allergy 2016; 71:829-39. [PMID: 26836239 DOI: 10.1111/all.12851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Staphylococcus aureus, one of the most important pathogens, is heavily associated with allergy. S. aureus and its toxins interact with eosinophils through CD48, a GPI-anchored receptor important in allergy mainly as expressed by the eosinophils (mCD48). CD48 can exist in a soluble form (sCD48). Our aim was to investigate SEB-induced regulation of eosinophil CD48 and the possible formation and role of sCD48 in SEB-mediated eosinophil activation in vitro and in vivo. METHODS Human peripheral blood eosinophils were activated by SEB with or without inhibitors for phospholipases (PL) (-C or -D), or cycloheximide, or brefeldin A. We evaluated eosinophil activation (CD11b expression or EPO/IL-8 release), mCD48 (flow cytometry), sCD48 (ELISA), SEB binding to sCD48 (ELISA), and chemotaxis toward SEB. C57BL/6 mice were pre-injected (ip.) with sCD48, and then, peritonitis was induced by SEB injection; peritoneal lavages were collected after 48 h and analyzed by flow cytometry and ELISA. RESULTS SEB-activated human eosinophils formed sCD48, directly correlating with CD11b expression, through cell-associated PL-C and -D. mCD48 remained stable due to up-regulation in CD48 transcription and cellular trafficking. sCD48 bound to SEB and down-regulated SEB stimulatory effects on eosinophils as assessed by EPO and IL-8 release and eosinophil chemotaxis toward SEB. sCD48 showed anti-inflammatory activity in a SEB-induced mouse peritonitis model. CONCLUSIONS SEB regulates CD48 dynamics on eosinophils. Our data indicate sCD48 as a SEB-induced 'decoy' receptor derived from eosinophil and therefore as a potential anti-inflammatory tool in S. aureus-induced eosinophil inflammation often associated with allergy.
Collapse
Affiliation(s)
- R. S. Gangwar
- Faculty of Medicine; Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| | - F. Levi-Schaffer
- Faculty of Medicine; Pharmacology & Experimental Therapeutics Unit; Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
34
|
Lin JY, Ta YC, Liu IL, Chen HW, Wang LF. Suppressive effects of primed eosinophils on single epicutaneous sensitization through regulation of dermal dendritic cells. Exp Dermatol 2016; 25:548-52. [DOI: 10.1111/exd.12998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jing-Yi Lin
- Department of Dermatology; Chang Gung Memorial Hospital; Keelung Taiwan
- Chang Gung University College of Medicine; Taoyuan Taiwan
| | - Yng-Cun Ta
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - I-Lin Liu
- Department of Dermatology; Taipei City Hospital Heping Fuyou branch; Taipei Taiwan
| | - Hsi-Wen Chen
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Li-Fang Wang
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
35
|
Barnig C, Levy BD. Innate immunity is a key factor for the resolution of inflammation in asthma. Eur Respir Rev 2015; 24:141-53. [PMID: 25726564 PMCID: PMC4490858 DOI: 10.1183/09059180.00012514] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The resolution of inflammation is an integral and natural part of the physiological response to tissue injury, infection and allergens or other noxious stimuli. Resolution is now recognised as an active process with highly regulated cellular and biochemical events. Recent discoveries have highlighted that innate inflammatory cells have bimodal effector functions during the inflammatory response, including active roles during the resolution process. Several mediators displaying potent pro-resolving actions have recently been uncovered. Lipoxin A4, the lead member of this new class of pro-resolving mediators, has anti-inflammatory actions on type 2 innate lymphoid cells and pro-resolving actions through natural killer cells in asthma immunobiology. Eosinophils are also able to control crucial aspects of resolution through the generation of pro-resolving mediators. Uncontrolled asthma has been associated with a defect in the generation of specialised pro-resolving mediators, including lipoxin A4 and protectin D1. Thus, bioactive stable analogue mimetics of these mediators that can harness endogenous resolution mechanisms for inflammation may offer new therapeutic strategies for asthma and airway inflammation associated diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Dept of Chest Disease, University Hospital of Strasbourg and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Strasbourg, France
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Dept of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Jacobsen EA, Doyle AD, Colbert DC, Zellner KR, Protheroe CA, LeSuer WE, Lee NA, Lee JJ. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice. Allergy 2015; 70:1148-59. [PMID: 26009788 DOI: 10.1111/all.12655] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. METHODS Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. RESULTS In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. CONCLUSION The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies.
Collapse
Affiliation(s)
- E. A. Jacobsen
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - A. D. Doyle
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - D. C. Colbert
- Division of Hematology/Oncology; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - K. R. Zellner
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - C. A. Protheroe
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - W. E. LeSuer
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - N. A. Lee
- Division of Hematology/Oncology; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| | - J. J. Lee
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; 13400 East Shea Boulevard Scottsdale AZ 85259 USA
| |
Collapse
|
37
|
Abstract
INTRODUCTION Patients with severe eosinophilic asthma have an unmet need for novel and efficacious treatments. Reslizumab is one of the three monoclonal antibodies targeting the IL-5 pathway and has been found in Phase IIIb clinical trials to reduce asthma exacerbations, control asthma-related symptoms and improve pulmonary function in patients with eosinophilic asthma. AREAS COVERED In this article, we discuss the results of asthma clinical trials using reslizumab, beginning with a discussion of the relationship between eosinophils, IL-5 and asthma. We conducted PubMed searches using the terms 'reslizumab', 'anti-IL-5', 'eosinophilic asthma', 'IL-5 asthma'. We also searched ClinicalTrials.gov for 'reslizumab', 'reslizumab asthma', 'SCH 55700', 'SCH 55700 asthma', 'Cinquil' and 'Cinquil asthma'. EXPERT OPINION Reslizumab and other anti-IL-5 therapies have seen success in recent trials through more stringent study participant selection targeting eosinophilic inflammation. This selection can now be based on simple blood counts. These drugs have shown a very good safety profile, but long-term safety data are not yet available. Approval for these drugs is eagerly awaited by clinicians and patients alike.
Collapse
Affiliation(s)
- Juan Carlos Cardet
- a 1 Harvard Medical School , Boston, MA, USA
- b 2 Assistant Director of the Asthma Research Center,Brigham and Women's Hospital , Boston, MA, USA
- c 3 Divisions of Rheumatology, Immunology & Allergy and Pulmonary and Critical Care Medicine , Boston, MA, USA
| | - Elliot Israel
- d 4 Harvard Medical School. Director of Clinical Research, Division of Pulmonary Medicine, Brigham and Women's Hospital , 75 Francis st, Boston, MA 02115, USA +1 61 77 32 81 10 ; +1 61 77 32 74 21 ;
| |
Collapse
|
38
|
Cheung DS, Grayson MH. A survivor: the eosinophil as a regulator in asthma. J Allergy Clin Immunol 2014; 135:461-2. [PMID: 25533648 DOI: 10.1016/j.jaci.2014.10.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Dorothy S Cheung
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis
| | - Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|