1
|
Wong DSH, Santos AF. The future of food allergy diagnosis. FRONTIERS IN ALLERGY 2024; 5:1456585. [PMID: 39575109 PMCID: PMC11578968 DOI: 10.3389/falgy.2024.1456585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
Food allergy represents an increasing global health issue, significantly impacting society on a personal and on a systems-wide level. The gold standard for diagnosing food allergy, the oral food challenge, is time-consuming, expensive, and carries risks of allergic reactions, with unpredictable severity. There is, therefore, an urgent need for more accurate, scalable, predictive diagnostic techniques. In this review, we discuss possible future directions in the world of food allergy diagnosis. We start by describing the current clinical approach to food allergy diagnosis, highlighting novel diagnostic methods recommended for use in clinical practice, such as the basophil activation test and molecular allergology, and go on to discuss tests that require more research before they can be applied to routine clinical use, including the mast cell activation test and bead-based epitope assay. Finally, we consider exploratory approaches, such as IgE glycosylation, IgG4, T and B cell assays, microbiome analysis, and plasma cytokines. Artificial intelligence is assessed for potential integrated interpretation of panels of diagnostic tests. Overall, a framework is proposed suggesting how combining established and emerging technologies can effectively enhance the accuracy of food allergy diagnosis in the future.
Collapse
Affiliation(s)
- Dominic S. H. Wong
- King's College London GKT School of Medical Education, London, United Kingdom
| | - Alexandra F. Santos
- Department of Women and Children’s Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
2
|
Nassikas NJ, Luttmann-Gibson H, Rifas-Shiman SL, Oken E, Gold DR, Rice MB. Acute exposure to pollen and airway inflammation in adolescents. Pediatr Pulmonol 2024; 59:1313-1320. [PMID: 38353177 PMCID: PMC11058013 DOI: 10.1002/ppul.26908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Pollen exposure is known to exacerbate allergic asthma and allergic rhinitis symptoms, yet few studies have investigated if exposure to pollen affects lung function or airway inflammation in healthy children. METHODS We evaluated the extent to which higher pollen exposure was associated with differences in airway inflammation and lung function among 490 early adolescent participants (mean age of 12.9 years) in Project Viva, a prebirth cohort based in Massachusetts. We obtained regional daily total pollen counts, including tree, grass, and weed pollen, from a Rotorod pollen counter. We evaluated associations of 3- and 7-day moving averages of pollen with fractional exhaled nitric oxide (FeNO) and lung function using linear regression models and evaluated the linearity of associations with penalized splines. We tested if associations of pollen with FeNO and lung function were modified by current asthma diagnosis, history of allergic rhinitis, aeroallergen sensitivity, temperature, precipitation, and air pollution. RESULTS Three- and 7-day median pollen concentrations were 19.0 grains/m3 (IQR: 73.4) and 20.9 grains/m3 (IQR: 89.7). In main models, higher concentrations of total pollen over the preceding 3 and 7 days were associated with a 4.6% (95% CI: 0.1,9.2) and 7.4% (95% CI: 0.9,14.3) higher FeNO per IQR of pollen, respectively. We did not find associations of pollen with lung function in main models. Asthma, allergic rhinitis, precipitation, and air pollution (nitrogen dioxide and ozone) modified associations of pollen with lung function (Pinteraction < 0.1), while temperature, sex, and aeroallergen sensitization did not. CONCLUSION Short-term exposure to pollen was associated with higher FeNO in early adolescents, even in the absence of allergic sensitization and asthma.
Collapse
Affiliation(s)
- Nicholas J. Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
3
|
Garib V, Trifonova D, Freidl R, Linhart B, Schlederer T, Douladiris N, Pampura A, Dolotova D, Lepeshkova T, Gotua M, Varlamov E, Beltyukov E, Naumova V, Taka S, Kiyamova A, Katsamaki S, Karaulov A, Valenta R. Milk Allergen Micro-Array (MAMA) for Refined Detection of Cow's-Milk-Specific IgE Sensitization. Nutrients 2023; 15:nu15102401. [PMID: 37242284 DOI: 10.3390/nu15102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Immunoglobulin-E(IgE)-mediated hypersensitivity to cow's milk allergens is a frequent cause of severe and life-threatening anaphylactic reactions. Besides case histories and controlled food challenges, the detection of the IgE antibodies specific to cow's milk allergens is important for the diagnosis of cow-milk-specific IgE sensitization. Cow´s milk allergen molecules provide useful information for the refined detection of cow-milk-specific IgE sensitization. METHODS A micro-array based on ImmunoCAP ISAC technology was developed and designated milk allergen micro-array (MAMA), containing a complete panel of purified natural and recombinant cow's milk allergens (caseins, α-lactalbumin, β-lactoglobulin, bovine serum albumin-BSA and lactoferrin), recombinant BSA fragments, and α-casein-, α-lactalbumin- and β-lactoglobulin-derived synthetic peptides. Sera from 80 children with confirmed symptoms related to cow's milk intake (without anaphylaxis: n = 39; anaphylaxis with a Sampson grade of 1-3: n = 21; and anaphylaxis with a Sampson grade of 4-5: n = 20) were studied. The alterations in the specific IgE levels were analyzed in a subgroup of eleven patients, i.e., five who did not and six who did acquire natural tolerance. RESULTS The use of MAMA allowed a component-resolved diagnosis of IgE sensitization in each of the children suffering from cow's-milk-related anaphylaxis according to Sampson grades 1-5 requiring only 20-30 microliters of serum. IgE sensitization to caseins and casein-derived peptides was found in each of the children with Sampson grades of 4-5. Among the grade 1-3 patients, nine patients showed negative reactivity to caseins but showed IgE reactivity to alpha-lactalbumin (n = 7) or beta-lactoglobulin (n = 2). For certain children, an IgE sensitization to cryptic peptide epitopes without detectable allergen-specific IgE was found. Twenty-four children with cow-milk-specific anaphylaxis showed additional IgE sensitizations to BSA, but they were all sensitized to either caseins, alpha-lactalbumin, or beta-lactoglobulin. A total of 17 of the 39 children without anaphylaxis lacked specific IgE reactivity to any of the tested components. The children developing tolerance showed a reduction in allergen and/or peptide-specific IgE levels, whereas those remaining sensitive did not. CONCLUSIONS The use of MAMA allows for the detection, using only a few microliters of serum, of IgE sensitization to multiple cow's milk allergens and allergen-derived peptides in cow-milk-allergic children with cow-milk-related anaphylaxis.
Collapse
Affiliation(s)
- Victoria Garib
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Daria Trifonova
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Raphaela Freidl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Linhart
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Schlederer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Nikolaos Douladiris
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexander Pampura
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics Named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Daria Dolotova
- Department of Bioinformatics, Department of Pediatric Surgery, Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Tatiana Lepeshkova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620028 Ekaterinburg, Russia
| | - Maia Gotua
- Center of Allergy and Immunology, 123182 Tbilisi, Georgia
| | - Evgeniy Varlamov
- Department of Allergology and Clinical Immunology, Research and Clinical Institute for Pediatrics Named after Yuri Veltischev at the Pirogov Russian National Research Medical University of the Russian Ministry of Health, 117997 Moscow, Russia
| | - Evgeny Beltyukov
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620028 Ekaterinburg, Russia
| | - Veronika Naumova
- Department of Faculty Therapy, Endocrinology, Allergology and Immunology, Ural State Medical University, 620028 Ekaterinburg, Russia
| | - Styliani Taka
- Allergy Department, 2nd Pediatric Clinic, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alina Kiyamova
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Stefani Katsamaki
- International Center of Molecular Allergology, Ministry of Innovation Development, Tashkent 100174, Uzbekistan
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Karl Landsteiner University for Health Sciences, 3500 Krems, Austria
| |
Collapse
|
4
|
Nassikas NJ, Rifas-Shiman SL, Luttmann-Gibson H, Chen K, Blossom JC, Oken E, Gold DR, Rice MB. Precipitation and Adolescent Respiratory Health in the Northeast United States. Ann Am Thorac Soc 2023; 20:698-704. [PMID: 36749585 PMCID: PMC10174124 DOI: 10.1513/annalsats.202209-805oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
Rationale: With more frequent and intense precipitation events across the globe due to a changing climate, there is a need to understand the relationship between precipitation and respiratory health. Precipitation may trigger asthma exacerbations, but little is known about how precipitation affects lung function and airway inflammation in early adolescents. Objectives: To determine if short-term precipitation exposure is associated with lung function and airway inflammation in early adolescents and if ever having a diagnosis of asthma modifies associations of precipitation with lung function and airway inflammation. Methods: In a prospective prebirth cohort, Project Viva, that included 1,019 early adolescents born in the northeastern United States, we evaluated associations of 1-, 2-, 3-, and 7-day moving averages of precipitation in the preceding week and forced expiratory volume in 1 second, forced vital capacity, and fractional exhaled nitric oxide (FeNO) using linear regression. We used log-transformed FeNO with effect estimates presented as percentage change. We adjusted for maternal education and household income at enrollment; any smoking in the home in early adolescence; child sex, race/ethnicity, and ever asthma diagnosis; and age, height, weight, date, and season (as sine and cosine functions of visit date) at the early adolescent visit and moving averages for mean daily temperature (same time window as exposure). Results: In fully adjusted linear models, 3- and 7-day moving averages for precipitation were positively associated with FeNO but not lung function. Every 2-mm increase in the 7-day moving average for precipitation was associated with a 4.0% (95% confidence interval, 1.1, 6.9) higher FeNO. There was evidence of effect modification by asthma status: Precipitation was associated with lower forced vital capacity and higher FeNO among adolescents with asthma. We also found that outdoor aeroallergen sensitization (immunoglobulin E against common ragweed, oak, ryegrass, or silver birch) modified associations of precipitation with FeNO, with higher FeNO in sensitized adolescents compared with nonsensitized adolescents. The associations of precipitation with FeNO were not explained by relative humidity or air pollution exposure. Conclusions: We found that greater short-term precipitation may trigger airway inflammation in adolescents, particularly among those with asthma.
Collapse
Affiliation(s)
- Nicholas J. Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kelly Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jeffrey C. Blossom
- Center for Geographic Analysis, Harvard University, Cambridge, Massachusetts; and
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
5
|
Liu W, Wu Y, Wang J, Wang Z, Gao J, Yuan J, Chen H. A Meta-Analysis of the Prevalence of Wheat Allergy Worldwide. Nutrients 2023; 15:nu15071564. [PMID: 37049405 PMCID: PMC10097276 DOI: 10.3390/nu15071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Wheat allergy is a primary disease of food allergy, and its global prevalence is unclear. This study aimed to characterize the latest worldwide prevalence of wheat allergy based on five different diagnostic methods. Study searches were conducted in Web of Science, PubMed, Ovid LWW, and Cochrane database, with a time limit of 1 January 2007 to 1 September 2022. The review and screening of the articles was undertaken by two independent reviewers. The statistical analysis was conducted by R. A total of 56 articles were finally included. The prevalence of wheat allergy was 0.63% (95% CI: 0.43-0.87%) for self-reported, 0.70% (95% CI: 0.18-1.22%) for self-reported physician-diagnosed, 0.22% (95%CI: 0.07-0.65%) for skin prick test positive, 0.97% (95% CI: 0.43-2.20%) for specific immunoglobulin E positive, and 0.04% (95% CI: 0-0.16%) for food challenge. However, food challenge can be largely subjective, and the results were only based two countries, so the prevalence of wheat allergy confirmed by food challenge may be not entirely trustworthy. In conclusion, investigating the prevalence of wheat allergy in the real world as accurately as possible will contribute to the prevention, management, and risk assessment of wheat allergy.
Collapse
Affiliation(s)
- Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jian Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
- School of Pharmaceutical Sciences, Nanchang University, Nanchang 330006, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Qin L, Tang LF, Cheng L, Wang HY. The clinical significance of allergen-specific IgG4 in allergic diseases. Front Immunol 2022; 13:1032909. [PMID: 36389804 PMCID: PMC9648126 DOI: 10.3389/fimmu.2022.1032909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 09/10/2023] Open
Abstract
IgG4 is a subclass of IgG antibody with a unique molecular feature of (Fragment antigen- binding) Fab-arm exchange, allowing bispecific antigen binding in a mono-valent manner. With low binding affinity to C1q and Fcγreceptors, IgG4 is incapable of forming immune complexes and activating the complement pathway, exhibiting a non-inflammatory feature. IgG4 is produced similarly to IgE and is considered a modified reaction to IgE class-switching response under certain conditions. It could also counteract IgE-activated inflammation. However, the clinical significance of IgG4 in allergic diseases is complex and controversial. Three viewpoints have been suggested to describe the role of IgG4. IgG4 can act as a tolerance-inducer to play a protective role under repeated and rapid incremental dosing of allergen exposure in allergen immunotherapy (AIT), supported by allergies in cat raisers and venom desensitization in beekeepers. Another viewpoint accepted by mainstream specialists and guidelines of Food Allergy and Management in different countries points out that food-specific IgG4 is a bystander in food allergy and should not be used as a diagnostic tool in clinical work. However, eosinophilic esophagitis (EoE) investigation revealed a direct clinical relevance between physiopathology and serum IgG4 in cow milk and wheat. These factors indicate that allergen-specific IgG4 plays a multifaceted role in allergic diseases that is protective or pathogenic depending on different allergens or exposure conditions.
Collapse
Affiliation(s)
- Lu Qin
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan-Fang Tang
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
An Overview of the Relevance of IgG4 Antibodies in Allergic Disease with a Focus on Food Allergens. CHILDREN-BASEL 2021; 8:children8050418. [PMID: 34065166 PMCID: PMC8160978 DOI: 10.3390/children8050418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022]
Abstract
Antibodies of the IgG4 isotype are strongly associated with allergic disease but have several properties such as not precipitating with allergens, not activating complement and poor binding to Fcγ receptors that argue against a pro-inflammatory role. In keeping with that, IgG4 antibodies are a striking feature of the response to immunotherapy. In two naturally occurring situations IgG4 antibodies are common with low or absent IgE antibodies. The first example is children raised in a house with a cat and the second is eosinophilic esophagitis (EoE). In many population-based cohorts, the ownership of a cat in early childhood is associated with a decreased prevalence of a cat allergy at age 10. The second example (i.e., EoE) is a novel form of food allergy that is not mediated by IgE and is related to consuming cow’s milk or wheat. In EoE, patients have IgG4 to milk proteins in high > 10 µg/mL or very high > 100 µg/mL titers. Enigmatically these patients are found to have deposits of IgG4 in the wall of their inflamed esophagus. The factors that have given rise to EoE remain unclear; however, changes in food processing over the past 50 years, particularly ultra-heat treatment and the high pressure homogenization of milk, represent a logical hypothesis.
Collapse
|
8
|
Arroyo AC, Robinson LB, Geller RJ, Rudders SA, Sullivan AF, Hasegawa K, Camargo CA. Allergic sensitization during early life: Concordance between ImmunoCAP and ISAC results. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:2126-2128.e3. [PMID: 33359588 PMCID: PMC8113067 DOI: 10.1016/j.jaip.2020.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Anna Chen Arroyo
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, Calif.
| | - Lacey B Robinson
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Ruth J Geller
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Susan A Rudders
- Harvard Medical School, Boston, Mass; Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Ashley F Sullivan
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Kohei Hasegawa
- Harvard Medical School, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Carlos A Camargo
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
9
|
Flashner BM, Rifas-Shiman SL, Oken E, Camargo CA, Platts-Mills TAE, Workman L, Litonjua AA, Gold DR, Rice MB. Contributions of asthma, rhinitis and IgE to exhaled nitric oxide in adolescents. ERJ Open Res 2021; 7:00945-2020. [PMID: 33898613 PMCID: PMC8053905 DOI: 10.1183/23120541.00945-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Exhaled nitric oxide fraction (FeNO) is an indicator of allergic airway inflammation. However, it is unknown how asthma, allergic rhinitis (AR) and allergic sensitisation relate to FeNO, particularly among adolescents and in overlapping conditions. We sought to determine the associations between asthma, AR, and aeroallergen immunoglobulin (Ig)E and FeNO in adolescents. We measured FeNO among 929 adolescents (aged 11–16 years) in Project Viva, an unselected prebirth cohort in Massachusetts, USA. We defined asthma as ever asthma physician diagnosis plus wheezing in the past year or taking asthma medications in the past month, AR as a physician diagnosis of hay fever or AR, and aeroallergen IgE as any IgE >0.35 IU·mL−1 among 592 participants who provided blood samples. We examined associations of asthma, AR and IgE with percent difference in FeNO in linear regression models adjusted for sex, race/ethnicity, age and height, maternal education and smoking during pregnancy, and household/neighbourhood demographics. Asthma (14%) was associated with 97% higher FeNO (95% CI 70–128%), AR (21%) with 45% higher FeNO (95% CI 28–65%), and aeroallergen IgE (58%) with 102% higher FeNO (95% CI 80–126%) compared to those without each condition, respectively. In the absence of asthma or AR, aeroallergen IgE was associated with 75% higher FeNO (95% CI 52–101), while asthma and AR were not associated with FeNO in the absence of IgE. The link between asthma and AR with FeNO is limited to those with IgE-mediated phenotypes. FeNO may be elevated in those with allergic sensitisation alone, even in the absence of asthma or AR. While asthma, allergic rhinitis (AR) and allergic sensitisation are associated with higher FENO, asthma and AR in the absence of aeroallergen IgE are not associated with FENO. When elevated in asthma or AR, FENO suggests allergic sensitisation.https://bit.ly/3bGgr0r
Collapse
Affiliation(s)
- Bess M Flashner
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Dept of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Dept of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos A Camargo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Dept of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas A E Platts-Mills
- Dept of Allergy and Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Lisa Workman
- Dept of Allergy and Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Augusto A Litonjua
- Pediatric Pulmonary Division, Dept of Pediatrics, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
10
|
α-Gal specific-IgE prevalence and levels in Ecuador and Kenya: Relation to diet, parasites, and IgG 4. J Allergy Clin Immunol 2021; 147:1393-1401.e7. [PMID: 33539899 DOI: 10.1016/j.jaci.2020.12.650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/13/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND IgE to α-Gal is a cause of mammalian meat allergy and has been linked to tick bites in North America, Australia, and Eurasia. Reports from the developing world indicate that α-Gal sensitization is prevalent but has been little investigated. OBJECTIVE We sought evidence for the cause(s) of α-Gal sensitization and lack of reported meat allergy among children in less developed settings in Ecuador and Kenya. METHODS IgE to α-Gal and total IgE were assessed in children from Ecuador (n = 599) and Kenya (n = 254) and compared with children with (n = 42) and without known (n = 63) mammalian meat allergy from the southeastern United States. Information on diet, potential risk factors, and helminth infections was available for children from Ecuador. IgG4 to α-Gal and antibodies to regionally representative parasites were assessed in a subset of children. RESULTS In Ecuador (32%) and Kenya (54%), α-Gal specific IgE was prevalent, but levels were lower than in children with meat allergy from the United States. Sensitization was associated with rural living, antibody markers of Ascaris exposure, and total IgE, but not active infections with Ascaris or Trichuris species. In Ecuador, 87.5% reported consuming beef at least once per week, including 83.9% of those who had α-Gal specific IgE. Levels of α-Gal specific IgG4 were not high in Ecuador, but were greater than in children from the United States. CONCLUSIONS These results suggest that in areas of the developing world with endemic parasitism, α-Gal sensitization is (1) common, (2) associated with Ascaris exposure, and (3) distinguished by a low percentage of specific/total IgE compared with individuals with meat allergy in the United States.
Collapse
|
11
|
Keshavarz B, Platts-Mills TAE, Wilson JM. The use of microarray and other multiplex technologies in the diagnosis of allergy. Ann Allergy Asthma Immunol 2021; 127:10-18. [PMID: 33450398 DOI: 10.1016/j.anai.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To give an overview and describe the strengths and weaknesses of immunoglobulin E (IgE) microarray and other multiplex assays that have been developed and are being used for allergy diagnostics. DATA SOURCES Queries for IgE microarray and multiplex assays were conducted with PubMed and Google Scholar, searching for primary articles and review papers. STUDY SELECTIONS We focused on articles written in English on commercially available IgE multiplex assays that were reported in the allergy and immunology literature. RESULTS Several commercial IgE assays that use microarray or other multiplex technology have been developed, and some have been implemented into clinical practice in Europe and Asia, with the Immuno Solid-Phase Allergen Chip being the most widely studied. Results of these assays generally correlate with results using "singleplex" IgE assays (eg, ImmunoCAP), though there can be variability among products and among allergens. A strength of the microarray technology is that IgE to a large number of allergens can be detected simultaneously in a single test, and only a small amount of patient serum is required. Cost, inadequate sensitivity under some scenarios, and difficulties with data interpretation, in some cases of 100 or more allergens, can be limitations. CONCLUSION IgE microarray assays are already a valuable tool in research applications. These assays, and also other forms of IgE multiplex assays, are likely to play an important role in the clinical practice of allergy in the future. Additional studies focused on clinical outcomes, and the development of more targeted allergen panels could facilitate increased clinical use.
Collapse
Affiliation(s)
- Behnam Keshavarz
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Thomas A E Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Jeffrey M Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
12
|
Andorf S, Bunning B, Tupa D, Cao S, Long AJ, Borres MP, Galli SJ, Chinthrajah RS, Nadeau KC. Trends in egg specific immunoglobulin levels during natural tolerance and oral immunotherapy. Allergy 2020; 75:1454-1456. [PMID: 31724180 DOI: 10.1111/all.14107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sandra Andorf
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| | - Bryan Bunning
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| | - Dana Tupa
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| | - Andrew J. Long
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| | - Magnus P. Borres
- Thermo Fisher Scientific Uppsala Sweden
- Women's and Children's Health Uppsala University Uppsala Sweden
| | - Stephen J. Galli
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
- Department of Pathology Stanford University Stanford CA USA
- Department of Microbiology and Immunology Stanford University Stanford CA USA
| | - Rebecca S. Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
| |
Collapse
|
13
|
Wilson JM, Platts-Mills TAE. α-Gal and other recent findings that have informed our understanding of anaphylaxis. Ann Allergy Asthma Immunol 2019; 124:135-142. [PMID: 31785367 DOI: 10.1016/j.anai.2019.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To summarize the current understanding of anaphylaxis, with an emphasis on major findings that have been reported within the last 10 years. DATA SOURCES Queries relating to anaphylaxis, immunoglobulin E (IgE), and mast cells were conducted with PubMed and Google Scholar, searching for primary articles and review papers. STUDY SELECTIONS We focused on articles written in English and which were reported in major allergy and immunology journals. RESULTS Anaphylaxis represents an extreme manifestation of a form of allergic immunity that appears to have evolved to protect against "toxic" threats that present at skin and mucosal barriers. The factors that have contributed to a rise in anaphylaxis are increasingly appreciated to relate to changes in hygiene and microbial ecology that have occurred with industrialization. Induction of allergen-specific IgG4 is often part of the allergic response and is associated with protection against anaphylaxis. The recognition of the α-Gal syndrome suggests that carbohydrates can be epitopes that are relevant to anaphylaxis and that IgE-mediated reactions do not always occur "immediately." CONCLUSION Our understanding of anaphylaxis has advanced significantly over the past 10 years. It is anticipated that ongoing research will build on this foundation to further advance our knowledge of anaphylaxis and also translate into clinically meaningful therapies.
Collapse
Affiliation(s)
- Jeffrey M Wilson
- Division of Allergy & Immunology, University of Virginia, Charlottesville, VA, 22908
| | | |
Collapse
|
14
|
Platts-Mills TAE. Dr. Kimishige Ishizaka: 1926-2018: The discovery of IgE and the revolution in the study of allergic disease. Ann Allergy Asthma Immunol 2018; 122:2-7. [PMID: 30287256 DOI: 10.1016/j.anai.2018.09.464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023]
|
15
|
Schuyler AJ, Wilson JM, Tripathi A, Commins SP, Ogbogu PU, Kruzsewski PG, Barnes BH, McGowan EC, Workman LJ, Lidholm J, Rifas-Shiman SL, Oken E, Gold DR, Platts-Mills TAE, Erwin EA. Specific IgG 4 antibodies to cow's milk proteins in pediatric patients with eosinophilic esophagitis. J Allergy Clin Immunol 2018; 142:139-148.e12. [PMID: 29678750 DOI: 10.1016/j.jaci.2018.02.049] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Allergen-specific IgG4 (sIgG4) antibodies are often associated with tolerance, but sIgG4 antibodies to causally relevant foods have been reported recently in adults with eosinophilic esophagitis (EoE). Prevalence and levels of food sIgG4 are not well established in the general pediatric population. OBJECTIVE We sought to investigate serum food sIgG4 with component diagnostics in children with EoE and children from an unselected birth cohort and to explore the effects of sex, age, and milk consumption on sIgG4 levels. METHODS Sera from 71 pediatric patients with EoE and 210 early adolescent children from an unselected birth cohort (Project Viva) were assayed for sIgG4 and specific IgE (sIgE) to major cow's milk (CM) proteins (α-lactalbumin, β-lactoglobulin, and caseins) and to wheat, soy, egg, and peanut proteins. RESULTS In the EoE cohort high-titer sIgG4 (≥10 μg/mL) to CM proteins was more common than in control sera and achieved odds ratios for EoE ranging from 5.5 to 8.4. sIgE levels to CM proteins were mostly 4 IU/mL or less in patients with EoE, such that sIgG4/sIgE ratios were often 10,000 or greater. When adjusted for age and milk consumption, high-titer sIgG4 to CM proteins was strongly associated with EoE, with an odds ratio of greater than 20 to all 3 CM proteins in boys. CONCLUSIONS sIgG4 to CM proteins are common and high titer in children with EoE. Although it is not clear that this response is pathogenic, sIgG4 levels imply that these antibodies are an important feature of the local immune response that gives rise to EoE.
Collapse
Affiliation(s)
- Alexander J Schuyler
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Anubha Tripathi
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Scott P Commins
- Division of Rheumatology, Allergy & Immunology, University of North Carolina, Chapel Hill, NC
| | - Princess U Ogbogu
- Allergy and Immunology, Department of Otolaryngology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Patrice G Kruzsewski
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Emory University, Atlanta, Ga
| | - Barrett H Barnes
- Division of Pediatric Gastroenterology, University of Virginia, Charlottesville, Va
| | - Emily C McGowan
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Lisa J Workman
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| | | | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Mass
| | | | - Elizabeth A Erwin
- Center for Innovation in Pediatric Practice, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|