1
|
Boulund U, Thorsen J, Trivedi U, Tranæs K, Jiang J, Shah SA, Stokholm J. The role of the early-life gut microbiome in childhood asthma. Gut Microbes 2025; 17:2457489. [PMID: 39882630 PMCID: PMC11784655 DOI: 10.1080/19490976.2025.2457489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Asthma is a chronic disease affecting millions of children worldwide, and in severe cases requires hospitalization. The etiology of asthma is multifactorial, caused by both genetic and environmental factors. In recent years, the role of the early-life gut microbiome in relation to asthma has become apparent, supported by an increasing number of population studies, in vivo research, and intervention trials. Numerous early-life factors, which for decades have been associated with the risk of developing childhood asthma, are now being linked to the disease through alterations of the gut microbiome. These factors include cesarean birth, antibiotic use, breastfeeding, and having siblings or pets, among others. Association studies have highlighted several specific microbes that are altered in children developing asthma, but these can vary between studies and disease phenotype. This demonstrates the importance of the gut microbial ecosystem in asthma, and the necessity of well-designed studies to validate the underlying mechanisms and guide future clinical applications. In this review, we examine the current literature on the role of the gut microbiome in childhood asthma and identify research gaps to allow for future microbial-focused therapeutic applications in asthma.
Collapse
Affiliation(s)
- Ulrika Boulund
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Urvish Trivedi
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Tranæs
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jie Jiang
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz A. Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Mishra PE, Han YY, Hill K, Rosser FJ, Forno E, Acosta-Pérez E, Canino G, Celedón JC. Persistent cat ownership and asthma in a longitudinal study of Puerto Rican youth. Ann Allergy Asthma Immunol 2024; 133:545-549.e2. [PMID: 38925527 PMCID: PMC11605777 DOI: 10.1016/j.anai.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Epidemiologic studies have reported conflicting findings for cat or dog exposure and childhood asthma. No study has evaluated whether persistent pet exposure from early life to school age is associated with asthma or allergic sensitization in youth. OBJECTIVE To evaluate whether persistent ownership of a cat or a dog throughout childhood is associated with asthma in Puerto Rican youth, a group disproportionately affected with asthma. METHODS Prospective study of 384 youth who completed a baseline visit at ages 6 to 14 years and a second visit at ages 9 to 20 years. Persistent cat or dog ownership was defined as ownership of a cat or a dog in early life (during pregnancy or the first year of life) at either study visit (at school age). An allergen-specific IgE result was considered positive if more than or equal to 0.35 IU/mL. Logistic regression was used for the multivariable analysis of asthma and allergic sensitization. RESULTS In an analysis adjusting for household income, family history of atopy, persistent overweight or obesity, a persistent unhealthy diet, the time interval between study visits, and other covariates, persistent cat ownership was significantly associated with 68% reduced odds of asthma (95% CI for odds ratio = 0.11-0.92) but not with any allergic sensitization or sensitization to cat allergen. In contrast, persistent dog ownership was not significantly associated with asthma or allergic sensitization. CONCLUSION Among school-aged Puerto Rican youth followed for an average of 5 years, persistent cat ownership from early life to school age was inversely associated with asthma.
Collapse
Affiliation(s)
- Pooja E Mishra
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yueh-Ying Han
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyla Hill
- Department of Public Health Education, North Carolina Central University, Durham, North Carolina
| | - Franziska J Rosser
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Sánchez J, Diez LS, Álvarez L, Munera M, Sánchez A. Changes in Prevalence of IgE Sensitization and Allergenic Exposition over a 10-Year Period in a Tropical Region. Int Arch Allergy Immunol 2024; 186:12-22. [PMID: 39226878 DOI: 10.1159/000540646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION Multiple antigen environmental sources have been identified as possible causes of allergies, but few studies have evaluated changes in the sensitization profiles over time. The aim of this study was to evaluate the changes in IgE sensitization and exposure to dust mites, cats, dogs, and cockroaches over a 10-year period. METHODS During a period of 10 years among patients with asthma, rhinitis and/or atopic dermatitis, we evaluated the annual frequency of atopy to Dermatophagoides farinae, Dermatophagoides pteronyssinus, Blomia tropicalis, Canis familiaris, Felis domesticus and cockroaches (Periplaneta americana and Blatella germanica). Exposure to sources was also assessed using questionnaires (Pets) or direct counts (House dust mites and cockroaches). The association between some risk factors and the prevalence of atopy was explored. RESULTS A total of 6,000 records were included. Among the patients, 82% had IgE sensitization to at least one of the six allergenic sources. Sensitization to Dermatophagoides spp. was the most frequent (>78%). Exposure and sensitization in the first decade of life to Dermatophagoides spp. seem to determine the molecular spreading to other allergenic sources. Exposure to Blomia tropical increases significantly over time (year 2015; 38% vs. year 2022; 51%, p 0.03). Exposure to dogs was higher than with cats but association between atopy and exposure was stronger with cats (OR 27.4, 95% CI: 22.3-33.6, p < 0.01). CONCLUSION Exposure and sensitization in the first decade of life to Dermatophagoides spp. determine the molecular spreading of IgE antibodies to other allergenic sources. Household exposure to dogs and cats seems to be important for the subsequent development of atopy. Sensitization to B. tropicalis and cockroach appears to be mostly from cross-reactivity rather than direct exposure.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
| | - Libia-Susana Diez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
| | - Leidy Álvarez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
- Group "Ciencias de la vida y la salud, escuela de graduados" University CES, Medellín, Colombia
| | - Marlon Munera
- Medical Research Group (GINUMED), Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| | - Andrés Sánchez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
- Medical Research Group (GINUMED), Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| |
Collapse
|
4
|
Hoof I, Bønnelykke K, Stranzl T, Brand S, Li X, Shamji MH, Meyers DA, Bateman ED, Bleecker E, Andersen PS. Genetic and T2 biomarkers linked to the efficacy of HDM sublingual immunotherapy in asthma. Thorax 2024; 79:332-339. [PMID: 38160049 DOI: 10.1136/thorax-2023-220707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Hypersensitivity to house dust mite (HDM) allergens is a common cause of allergic asthma symptoms and can be effectively treated with allergy immunotherapy (AIT). OBJECTIVE To investigate whether genetic and type 2 (T2) inflammatory biomarkers correlate with disease severity in subjects with allergic asthma, and whether this can be modified by AIT. METHODS MITRA (NCT01433523) was a phase III, randomised, double-blind, placebo-controlled trial of HDM sublingual immunotherapy (SLIT)-tablets in adults with HDM allergic asthma. Post hoc analyses of the study population (N=742) evaluated associations between T2 inflammatory (blood eosinophils, eosinophil cationic protein (ECP), total IgE and tryptase) and genetic (single-nucleotide polymorphisms, SNP) biomarkers (n=582) for the primary study endpoint (time to first moderate/severe asthma exacerbation). SNP associations were verified in HDM-positive subgroup from an independent 3-year Severe Asthma Research Programme (SARP3) subject cohort. RESULTS An increased asthma exacerbation risk in subjects homozygous for SNP rs7216389 (chromosomal locus 17q12-21) was reduced (p=0.037) by treatment with HDM SLIT (HR=0.37 (95% CI 0.22 to 0.64), p<0.001). The associations between exacerbation risk and 17q12-21 SNPs were replicated in the SARP3 HDM-positive subgroup. High levels of T2 biomarkers were associated with increased risk of asthma exacerbations in the placebo group. HDM SLIT-tablet treatment reduced this risk (blood eosinophils: HR=0.50 (95% CI 0.30 to 0.85); ECP: HR=0.45 (95% CI 0.29 to 0.87); tryptase: HR=0.45 (95% CI 0.25 to 0.80)). The treatment effect was higher (p=0.006) for subjects with a higher number of elevated T2 biomarkers. CONCLUSIONS HDM SLIT-tablet AIT is efficacious in HDM-sensitised asthma subjects with a genetic asthma predisposition and/or an underlying T2 endotype. TRIAL REGISTRATION NUMBER NCT01433523.
Collapse
Affiliation(s)
- Ilka Hoof
- Translational Research, Alk-Abello A/S, Horsholm, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Stranzl
- Translational Research, Alk-Abello A/S, Horsholm, Denmark
| | | | - Xingnan Li
- Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Deborah A Meyers
- Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Eric D Bateman
- Division of Respiratory Medicine, Univ of Cape Town, Cape Town, South Africa
| | - Eugene Bleecker
- Medicine, University of Arizona, Health Sciences Center, Tucson, Arizona, USA
| | | |
Collapse
|
5
|
Wolters AAB, Kersten ETG, Koppelman GH. Genetics of preschool wheeze and its progression to childhood asthma. Pediatr Allergy Immunol 2024; 35:e14067. [PMID: 38284918 DOI: 10.1111/pai.14067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Wheezing is a common and heterogeneous condition in preschool children. In some countries, the prevalence can be as high as 30% and up to 50% of all children experience wheezing before the age of 6. Asthma often starts with preschool wheeze, but not all wheezing children will develop asthma at school age. At this moment, it is not possible to accurately predict which wheezing children will develop asthma. Recently, studying the genetics of wheeze and the childhood-onset of asthma have grown in interest. Childhood-onset asthma has a stronger heritability in comparison with adult-onset asthma. In early childhood asthma exacerbations, CDHR3, which encodes the receptor for Rhinovirus C, was identified, as well as IL33, and the 17q locus that includes GSDMB and ORMDL3 genes. The 17q locus is the strongest wheeze and childhood-onset asthma locus, and was shown to interact with many environmental factors, including smoking and infections. Finally, ANXA1 was recently associated with early-onset, persistent wheeze. ANXA1 may help resolve eosinophilic inflammation. Overall, despite its complexities, genetic approaches to unravel the early-onset of wheeze and asthma are promising, since these shed more light on mechanisms of childhood asthma-onset. Implicated genes point toward airway epithelium and its response to external factors, such as viral infections. However, the heterogeneity of wheeze phenotypes complicates genetic studies. It is therefore important to define accurate wheezing phenotypes and forge larger international collaborations to gain a better understanding of the pathways underlying early-onset asthma.
Collapse
Affiliation(s)
- Alba A B Wolters
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elin T G Kersten
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Lu C, Yang W, Wang F, Li B, Liu Z, Liao H. Effects of intrauterine and post-natal exposure to air pollution on children's pneumonia: Key roles in different particulate matters exposure during critical time windows. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131837. [PMID: 37329598 DOI: 10.1016/j.jhazmat.2023.131837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Despite mounting evidence linked pneumonia with air pollution, it is unclear what main pollutant(s) exposure in which critical window(s) play a key role in pneumonia. OBJECTIVE To examine effects of intrauterine and post-natal exposure to air pollution on children's doctor-diagnosed pneumonia (DDP). METHODS A combination of cross-sectional and retrospective cohort study was conducted at Changsha, China during 2019-2020. Personal exposure to outdoor air pollutants at each child's home address was estimated using inverse distance weighted (IDW) method based on data from 10 air quality monitoring stations. Associations between personal air pollution exposure and DDP were evaluated. RESULTS Children's DDP was associated with intrauterine and post-natal exposure to PM2.5, PM2.5-10, and PM10, adjusted ORs (95% CI) of 1.17 (1.04-1.30), 1.09 (1.01-1.17), and 1.07 (1.00-1.14) for IQR increase in intrauterine exposure and 1.12 (1.02-1.22), 1.13 (1.06-1.21), and 1.28 (1.16-1.41) for post-natal exposure. Intrauterine PM2.5 exposure and post-natal PM10 exposure were associated with a higher risk of pneumonia. We identified the 2nd trimester, 3rd trimester, and first year as critical windows respectively for PM2.5, PM2.5-10, and PM10 exposure. Daytime exposure to traffic-related air pollution especially during early life increased DDP. CONCLUSION Intrauterine and post-natal exposure to particulate matters played a dominant role in children's DDP.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven 3001, Belgium; Occupational Safety and Public Health Group, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, China
| | - Bin Li
- School of Psychology, Central China Normal University, Wuhan 430070, China
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
7
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Tutino M, Granell R, Curtin JA, Haider S, Fontanella S, Murray CS, Roberts G, Arshad SH, Turner S, Morris AP, Custovic A, Simpson A. Dog ownership in infancy is protective for persistent wheeze in 17q21 asthma-risk carriers. J Allergy Clin Immunol 2023; 151:423-430. [PMID: 36273658 DOI: 10.1016/j.jaci.2022.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asthma-associated single nucleotide polymorphisms from large genome-wide association studies only explain a fraction of genetic heritability. Likely causes of the missing heritability include broad phenotype definitions and gene-environment interactions (GxE). The mechanisms underlying GxE in asthma are poorly understood. Previous GxE studies on pet ownership showed discordant results. OBJECTIVES We sought to study the GxE between the 17q12-21 locus and pet ownership in infancy in relation to wheeze. METHODS Wheezing classes derived from 5 UK-based birth cohorts (latent class analysis) were used to study GxE between the 17q12-21 asthma-risk variant rs2305480 and dog and cat ownership in infancy, using multinomial logistic regression. A total of 9149 children had both pet ownership and genotype data available. Summary statistics from individual analyses were meta-analyzed. RESULTS rs2305480 G allele was associated with increased risk of persistent wheeze (additive model odds ratio, 1.37; 95% CI, 1.25-1.51). There was no evidence of an association between dog or cat ownership and wheeze. We found significant evidence of a GxE interaction between rs2305480 and dog ownership (P = 8.3 × 10-4) on persistent wheeze; among dog owners, the G allele was no longer associated with an increased risk of persistent wheeze (additive model odds ratio, 0.95; 95% CI, 0.73-1.24). For those without pets, G allele was associated with increased risk of persistent wheeze (odds ratio, 1.61; 95% CI, 1.40-1.86). Among cat owners, no such dampening of the genetic effect was observed. CONCLUSIONS Among dog owners, rs2305480 G was no longer associated with an increased risk of persistent wheeze (or asthma). Early-life environmental exposures may therefore attenuate likelihood of asthma in those carrying 17q12-21 risk alleles.
Collapse
Affiliation(s)
- Mauro Tutino
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Graham Roberts
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Stephen Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
9
|
Custovic A, de Moira AP, Murray CS, Simpson A. Environmental influences on childhood asthma: Allergens. Pediatr Allergy Immunol 2023; 34:e13915. [PMID: 36825741 DOI: 10.1111/pai.13915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Allergen exposure is associated with the development of allergen-specific sensitization, but their relationship is influenced by other contemporaneous exposures (such as microbial exposure) and the genetic predisposition of the host. Clinical outcomes of the primary prevention studies that tested the effectiveness of allergen avoidance in pregnancy and early life on the subsequent development of sensitization and asthma published to date are inconsistent. Therefore, we cannot provide any evidence-based advice on the use of allergen avoidance for the primary prevention of these conditions. The evidence about the impact of allergen exposure among and among sensitized children with asthma is more consistent, and the combination of sensitization and high exposure to sensitizing allergen increases airway inflammation, triggers symptoms, adversely impacts upon disease control, and is associated with poorer lung function in preschool age. However, there are differing opinions about the role of inhalant allergen avoidance in asthma management, and recommendations differ in different guidelines. Evidence from more recent high-quality trials suggests that mite allergen-impermeable bed encasings reduce hospital attendance with asthma attacks and that multifaceted targeted environmental control improves asthma control in children. We therefore suggest a pragmatic approach to allergen avoidance in the management of childhood asthma for clinical practice, including the recommendations to: (1) tailor the intervention to the patient's sensitization and exposure status by using titer of allergen-specific IgE antibodies and/or the size of the skin test as indicators of potential response; (2) use a multifaceted allergen control regime to reduce exposure as much as possible; and (3) start intervention as early as possible upon diagnosis.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Clare S Murray
- NIHR Manchester Biomedical Research Unit, Division of Immunology, Immunity to Infection, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Angela Simpson
- NIHR Manchester Biomedical Research Unit, Division of Immunology, Immunity to Infection, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
10
|
Schoettler N, Dissanayake E, Craven MW, Yee JS, Eliason J, Schauberger EM, Lemanske RF, Ober C, Gern JE. New Insights Relating Gasdermin B to the Onset of Childhood Asthma. Am J Respir Cell Mol Biol 2022; 67:430-437. [PMID: 35580164 PMCID: PMC9564923 DOI: 10.1165/rcmb.2022-0043ps] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Chromosome 17q12-q21 is the most replicated genetic locus for childhood-onset asthma. Polymorphisms in this locus containing ∼10 genes interact with a variety of environmental exposures in the home and outdoors to modify asthma risk. However, the functional basis for these associations and their linkages to the environment have remained enigmatic. Within this extended region, regulation of GSDMB (gasdermin B) expression in airway epithelial cells has emerged as the primary mechanism underlying the 17q12-q21 genome-wide association study signal. Asthma-associated SNPs influence the abundance of GSDMB transcripts as well as the functional properties of GSDMB protein in airway epithelial cells. GSDMB is a member of the gasdermin family of proteins, which regulate pyroptosis and inflammatory responses to microbial infections. The aims of this review are to synthesize recent studies on the relationship of 17q12-q21 SNPs to childhood asthma and the evidence pointing to GSDMB gene expression or protein function as the underlying mechanism and to explore the potential functions of GSDMB that may influence the risk of developing asthma during childhood.
Collapse
Affiliation(s)
| | | | - Mark W. Craven
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jeremiah S. Yee
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Joshua Eliason
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | | | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois; and
| | | |
Collapse
|
11
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
12
|
Hernandez-Pacheco N, Kere M, Melén E. Gene-environment interactions in childhood asthma revisited; expanding the interaction concept. Pediatr Allergy Immunol 2022; 33:e13780. [PMID: 35616899 PMCID: PMC9325482 DOI: 10.1111/pai.13780] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023]
Abstract
Investigation of gene-environment interactions (GxE) may provide important insights into the gene regulatory framework in response to environmental factors of relevance for childhood asthma. Over the years, different methodological strategies have been applied, more recently using genome-wide approaches. The best example to date is the major asthma locus on the 17q12-21 chromosome region, viral infections, and airway epithelium processes where recent studies have shed much light on mechanisms in childhood asthma. However, there are challenges with the traditional single variant-single exposure interaction models, as they do not encompass the complexity and cumulative effects of multiple exposures or multiple genetic variants. As such, we need to redefine our traditional GxE thinking, and we propose in this review to expand the GxE concept by also evaluating other omics layers, such as epigenetics, transcriptomics, metabolomics, and proteomics. In addition, host factors such as age, gender, and other exposures are very likely to influence GxE effects and need firmly to be considered in future studies.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Gereige JD, Morin A, Calatroni A, Visness CM, Wood RA, Kattan M, Bacharier LB, Becker P, Altman MC, Gern JE, Ober C, O'Connor GT. 17q12-q21 variants interact with early-life exposures to modify asthma risk in Black children. Clin Exp Allergy 2022; 52:565-568. [PMID: 34862819 PMCID: PMC10829392 DOI: 10.1111/cea.14074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica D Gereige
- Department of Medicine, Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andreanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | | | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Meyer Kattan
- Department of Pediatrics, Columbia University, New York City, New York, USA
| | - Leonard B Bacharier
- Monroe Carell Jr. Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Patrice Becker
- National Institute of Allergy and Infectious Disease, Bethesda, Maryland, USA
| | - Matthew C Altman
- Benaroya Research Institute, Systems Immunology Division, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - George T O'Connor
- Department of Medicine, Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Sunde RB, Thorsen J, Pedersen CET, Stokholm J, Bønnelykke K, Chawes B, Bisgaard H. Prenatal tobacco exposure and risk of asthma and allergy outcomes in childhood. Eur Respir J 2022; 59:2100453. [PMID: 34244319 DOI: 10.1183/13993003.00453-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Harmful effects of prenatal tobacco exposure and possible interaction with 17q12-21 genetic variants have been shown for some asthma outcomes in childhood, whereas findings related to allergy outcomes are more inconsistent. This study aimed to examine the effect of prenatal tobacco exposure and relation to 17q12-21 genotype on a wide array of asthma and allergy-related outcomes in early childhood. METHODS Prenatal tobacco exposure was determined by maternal smoking during the third trimester (yes/no) in 411 children from the phenotyped Copenhagen Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with clinical follow-up to age 7 years. The rs7216389 single nucleotide polymorphism was used as main representative of the 17q12-21 locus. Asthma end-points included asthma diagnosis, exacerbations, episodes with troublesome lung symptoms and lower respiratory tract infections, spirometry, plethysmography, bronchial responsiveness to methacholine, exercise and cold dry air. Allergy-related endpoints included aeroallergen sensitisation, allergic rhinitis, fractional exhaled nitric oxide, blood eosinophil count and urine eosinophil protein X levels. Statistical analyses were done using Cox regression, linear regression, logistic regression and quasi-Poisson regression. RESULTS Prenatal tobacco exposure increased the risk of asthma (adjusted hazard ratio (aHR) 2.05, 95% CI 1.13-3.73; p=0.02), exacerbations (aHR 3.76, 95% CI 2.05-6.91; p<0.001), number of LRTIs (adjusted incidence rate ratio 1.87, 95% CI 1.34-2.55; p<0.001), and was associated with decreased spirometry indices (forced expiratory volume in 1 s (FEV1) adjusted mean difference (aMD) -0.07 L, 95% CI -0.13- -0.005 L, p=0.03; maximal mid-expiratory flow aMD -0.19 L·s-1, -0.34- -0.04 L·s-1, p=0.01) and increased bronchial responsiveness to methacholine (provocative dose of methacholine causing a 20% drop in FEV1 adjusted geometric mean ratio 0.55, 95% CI 0.31-0.96; p=0.04). In contrast, there was no association with any allergy-related end-points. The effect on asthma depended on 17q12-21 genotype with an increased risk only among children without risk alleles. CONCLUSION Prenatal tobacco exposure was associated with asthma dependent on 17q12-21 genotype and with exacerbations, lung function and bronchial responsiveness, but not with any allergy-related outcomes. This suggests that tobacco exposure in utero leads to adverse lung developmental/structural effects rather than susceptibility to develop allergy and type 2 inflammation.
Collapse
Affiliation(s)
- Rikke Bjersand Sunde
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Dept of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Dept of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Ferguson PL, Commodore S, Neelon B, Cobbs J, Sciscione AC, Grobman WA, Newman RB, Tita AT, Nageotte MP, Palomares K, Skupski DW, Vena JE, Hunt KJ. Early Exposure to Animals and Childhood Body Mass Index Percentile and Percentage Fat Mass. CHILD AND ADOLESCENT OBESITY (ABINGDON, ENGLAND) 2022; 5:3-15. [PMID: 35128342 PMCID: PMC8813042 DOI: 10.1080/2574254x.2021.2021788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION A few studies have identified childhood animal exposure as associated with adiposity, but results are inconsistent and differ in timing. METHODS We conducted an observational cohort study of children ages 4-8 in the Environmental Influences on Child Health Outcomes [ECHO] study. The main exposure was having a dog in the home and/or regular contact with farm animals during the first year of life. Outcomes of interest were child BMI percentile (adjusted for gender and age) categorized as normal/underweight (<85th percentile), overweight (85th to <95th), and obese (≥95th), and percent fat mass (continuous). Associations were analyzed using multinomial logistic regression and multivariable linear regression, respectively, with and without multiple imputation. RESULTS First year animal exposure occurred in 245 of 770 (31.8%) children. Children with early animal exposure had 0.53 (95% CI: 0.28, 0.997) times the odds of being in the obese BMI category compared to those exposed to animals after controlling for covariates: maternal pre-pregnancy BMI, race/ethnicity, reported child activity level, receiving food assistance, age child began daycare (<1 year vs 1+), exclusively breastfed x6 months, and NICU admission (n=721). Children with early animal exposure had, on average, 1.5% (95% CI: -3.0, -0.1) less fat mass than exposed children after adjustment for maternal BMI, race/ethnicity, activity, food assistance, breastfeeding, and maternal education (n=548). Multiple imputation did not alter either result. CONCLUSION These results provide evidence that exposure to dogs or farm animals in the first year of life is associated with lower odds of obesity and lower percent fat mass in childhood.
Collapse
Affiliation(s)
- Pamela L. Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Sarah Commodore
- School of Public Health, Indiana University, Bloomington, IN
| | - Brian Neelon
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - JacKetta Cobbs
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Anthony C. Sciscione
- Department of Obstetrics & Gynecology, Christiana Care Health System, Newark, DE
| | - William A. Grobman
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Roger B. Newman
- Department of Obstetrics & Gynecology, Medical University of South Carolina, Charleston, SC
| | - Alan T. Tita
- Department of Obstetrics & Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael P. Nageotte
- Department of Obstetrics & Gynecology, Long Beach Memorial Medical Center, Long Beach, CA
| | - Kristy Palomares
- Department of Obstetrics & Gynecology, Saint Peter’s University Hospital, New Brunswick, NJ
| | - Daniel W. Skupski
- Department of Obstetrics & Gynecology, New York Presbyterian Queens Hospital, Queens, NY
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Kelly J. Hunt
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
16
|
Illi S, Depner M, Pfefferle PI, Renz H, Roduit C, Taft DH, Kalanetra KM, Mills DA, Farquharson FM, Louis P, Schmausser-Hechfellner E, Divaret-Chauveau A, Lauener R, Karvonen AM, Pekkanen J, Kirjavainen PV, Roponen M, Riedler J, Kabesch M, Schaub B, von Mutius E. Immune Responsiveness to LPS Determines Risk of Childhood Wheeze and Asthma in 17q21 Risk Allele Carriers. Am J Respir Crit Care Med 2021; 205:641-650. [PMID: 34919021 DOI: 10.1164/rccm.202106-1458oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In murine models microbial exposures induce protection from experimental allergic asthma through innate immunity. Our aim was to assess the association of early life innate immunity with the development of asthma in children at risk. METHODS In the PASTURE farm birth cohort innate, Th2, Th1 and Th17 cytokine expression at age 1 year was measured after stimulation of PBMCs with lipopolysaccharide (LPS) in N=445 children. Children at risk of asthma were defined based on single-nucleotide polymorphisms at the 17q21 asthma gene locus. Specifically, we used the SNP rs7216389 in the GSDMB gene. Wheeze in the 1st year of life was assessed by weekly diaries and asthma by questionnaire at age 6 years. RESULTS Not all cytokines were detectable in all children after LPS-stimulation. When classifying detectability of cytokines by latent class analysis, carrying the 17q21 risk allele rs7216389 was associated with risk of wheeze only in the class with the lowest level of LPS-induced activation, odds ratio (OR)=1.89, 95%-CI 1.13-3.16, p=0.015. In contrast, in children with high cytokine activation after LPS-stimulation no association of the 17q21 risk allele with wheeze (OR=0.63, 95%-CI 0.29-1.40, p=0.258, p=0.034 for interaction) or school age asthma was observed. In these children consumption of unprocessed cow's milk was associated with higher cytokine activation (OR=3.37, 95%-CI 1.56-7.30, p=0.002), which was in part mediated by the gut microbiome. CONCLUSIONS These findings suggest that within the 17q21 genotype asthma risk can be mitigated by activated immune responses after innate stimulation, which is partly mediated by a gut-immune axis.
Collapse
Affiliation(s)
- Sabina Illi
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany.,German Center for Lung Research, 542891, Giessen, Germany;
| | - Martin Depner
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Umwelt und Gesundheit, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany
| | - Petra Ina Pfefferle
- Philipps-Universität Marburg Fachbereich Medizin, 98594, Comprehensive Biobank Marburg CBBM, Marburg, Germany.,German Center for Lung Research, 542891, Giessen, Germany
| | - Harald Renz
- Philipps-Universität Marburg, 9377, Institute of Laboratory Medicine, Marburg, Germany.,Sechenov University, 68477, Department of Clinical Immunology and Allergology, Laboratory of Immunopathology, Moskva, Russian Federation.,German Center for Lung Research, 542891, Giessen, Germany
| | - Caroline Roduit
- University of Zurich, Children's Hospital, Zurich, Switzerland.,Christine Kühne Center for Allergy Research and Education (CK-CARE) , Davos, Switzerland.,Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Diana Hazard Taft
- University of California Davis, 8789, Department of Food Science & Technology, Davis, California, United States
| | - Karen M Kalanetra
- University of California Davis, 8789, Department of Food Science & Technology, Davis, California, United States
| | - David A Mills
- University of California Davis, 8789, Department of Food Science & Technology, Davis, California, United States
| | - Freda M Farquharson
- University of Aberdeen, 1019, The Rowett Institute, Aberdeen, United Kingdom of Great Britain and Northern Ireland
| | - Petra Louis
- University of Aberdeen, 1019, The Rowett Institute, Aberdeen, United Kingdom of Great Britain and Northern Ireland
| | - Elisabeth Schmausser-Hechfellner
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany
| | - Amandine Divaret-Chauveau
- Burgundy Franche-Comté University, 439716, UMR 6249 Chrono-environment , Besancon, France.,University of Lorraine, 137665, EA3450 Développement Adaptation et Handicap (DevAH) , Nancy, France.,University Hospital Centre Nancy, 26920, Pediatric Allergy Department, Nancy, France
| | - Roger Lauener
- Children's Hospital of Eastern Switzerland, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.,Christine Kühne Center for Allergy Research and Education (CK-CARE) , Davos, Switzerland
| | - Anne M Karvonen
- Finnish Institute for Health and Welfare, 3837, Department of Health Security, Helsinki, Finland
| | - Juha Pekkanen
- University of Helsinki, Department of Public Health, Helsinki, Finland.,Finnish Institute for Health and Welfare, 3837, Department of Health Security, Helsinki, Finland
| | - Pirkka V Kirjavainen
- Finnish Institute for Health and Welfare, 3837, Department of Health Security, Kuopio, Finland.,University of Eastern Finland, 163043, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Marjut Roponen
- University of Eastern Finland, 163043, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Josef Riedler
- Children's Hospital Schwarzach, Children's Hospital Schwarzach, Schwarzach, Austria
| | - Michael Kabesch
- University Children's Hospital Regensburg (KUNO), Department of Pediatric Pneumology and Allergy, Campus St. Hedwig, Regensburg, Germany
| | - Bianca Schaub
- Ludwig-Maximilians-Universitat Munchen, 9183, Dr. von Hauner Children's Hospital, Munchen, Germany.,German Center for Lung Research, 542891, Giessen, Germany
| | - Erika von Mutius
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Institute of Asthma and Allergy Prevention, Neuherberg, Germany.,Ludwig-Maximilians-Universitat Munchen, 9183, Dr. von Hauner Children's Hospital, München, Germany.,German Center for Lung Research, 542891, Giessen, Germany
| | | |
Collapse
|
17
|
Wang N, Brix S, Larsen JM, Thysen AH, Rasmussen MA, Workman CT, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL. Innate IL-23/Type 17 immune responses mediate the effect of the 17q21 locus on childhood asthma. Clin Exp Allergy 2021; 51:892-901. [PMID: 33987892 DOI: 10.1111/cea.13900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Several childhood asthma risk loci that relate to immune function have been identified by genome-wide association studies (GWAS), but the underlying mechanisms remain unknown. OBJECTIVE Here, we examined whether perturbed innate immune responses mediate the association between known genetic risk variants and development of childhood asthma. METHODS Peripheral blood mononuclear cells from 336 six-month-old infants from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000 ) cohort were stimulated in vitro with six different innate ligands (LPS, CpG, poly(I:C), R848, HDMAPP and aluminium hydroxide together with low levels of LPS) followed by quantification of 18 released cytokines and chemokines 40 h after the stimulations. The innate immune response profiles were decomposed by principal component (PC) analysis, and PC1-5 were used in mediation analyses of the effect of 25 known genetic risk variants on childhood asthma until age 7. RESULTS The effects of two variants from the 17q21 locus (rs7216389, rs2305480) on asthma and exacerbation risk were significantly mediated by immune parameters induced in response to ligands mimicking intracellular colonization; bacterial DNA (CpG) and double-stranded viral RNA (poly(I:C)). The Th17 and innate lymphoid cell type 3-amplifying cytokine IL-23 was the most prominent cytokine involved. CONCLUSION The 17q21 effect on childhood asthma and exacerbations was partly mediated by deregulation of IL-23 in response to intracellular microbial ligands, which may suggest ineffective clearance of intracellular pathogens in the lungs.
Collapse
Affiliation(s)
- Ni Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jeppe M Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anna H Thysen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten A Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
18
|
Zhang Y, Hua L, Liu QH, Chu SY, Gan YX, Wu M, Bao YX, Chen Q, Zhang J. Household mold exposure interacts with inflammation-related genetic variants on childhood asthma: a case-control study. BMC Pulm Med 2021; 21:114. [PMID: 33810791 PMCID: PMC8019181 DOI: 10.1186/s12890-021-01484-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of studies have examined the association between mold exposure and childhood asthma. However, the conclusions were inconsistent, which might be partly attributable to the lack of consideration of gene function, especially the key genes affecting the pathogenesis of childhood asthma. Research on the interactions between genes and mold exposure on childhood asthma is still very limited. We therefore examined whether there is an interaction between inflammation-related genes and mold exposure on childhood asthma. METHODS A case-control study with 645 asthmatic children and 910 non-asthmatic children aged 3-12 years old was conducted. Eight single nucleotide polymorphisms (SNPs) in inflammation-related genes were genotyped using MassARRAY assay. Mold exposure was defined as self-reported visible mold on the walls. Associations between visible mold exposure, SNPs and childhood asthma were evaluated using logistic regression models. In addition, crossover analyses were used to estimate the gene-environment interactions on childhood asthma on an additive scale. RESULTS After excluding children without information on visible mold exposure or SNPs, 608 asthmatic and 839 non-asthmatic children were included in the analyses. Visible mold exposure was reported in 151 asthmatic (24.8%) and 119 non-asthmatic children (14.2%) (aOR 2.19, 95% CI 1.62-2.97). The rs7216389 SNP in gasdermin B gene (GSDMB) increased the risk of childhood asthma with each C to T substitution in a dose-dependent pattern (additive model, aOR 1.32, 95% CI 1.11-1.57). Children carrying the rs7216389 T allele and exposed to visible mold dramatically increased the risk of childhood asthma (aOR 3.21; 95% CI 1.77-5.99). The attributable proportion due to the interaction (AP: 0.47, 95% CI 0.03-0.90) and the relative excess risk due to the interaction (RERI: 1.49, 95% CI 0-2.99) were statistically significant. CONCLUSIONS In the present study, there was a significant additive interaction between visible mold exposure and rs7216389 SNP on childhood asthma. Future studies need to consider the gene-environment interactions when exploring the risk factors of childhood asthma.
Collapse
Affiliation(s)
- Yu Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Li Hua
- Department of Pediatric Pulmonology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Quan-Hua Liu
- Department of Pediatric Pulmonology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shu-Yuan Chu
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yue-Xin Gan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Min Wu
- Department of Chinese Traditional Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Xiao Bao
- Department of Pediatric Pulmonology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
19
|
Maciag MC, Phipatanakul W. Prevention of Asthma: Targets for Intervention. Chest 2020; 158:913-922. [PMID: 32330461 PMCID: PMC7478233 DOI: 10.1016/j.chest.2020.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Approximately 300 million people worldwide are estimated to be affected by asthma, and the number of patients affected is growing exponentially-with potential for an additional 100 million people affected by the condition by 2025. With this increasing burden of disease, there is high motivation to discover effective prevention strategies. Strategies aimed at stalling the atopic progression, modifying the microbiome, preventing respiratory viral infections, and reducing the impact of toxin/pollutant exposure through dietary supplements have had limited success in the prevention of asthma. This is likely because asthma is heterogenous and is influenced by different genetic and environmental factors. Genes underlie a predisposition to asthma and allergic sensitization, whereas exposure to allergens, respiratory infections, and pollution may modify asthma pathogenesis and the variation in severity seen among individuals. Future advances in asthma prevention may include a more personalized approach: genetic variations among susceptible individuals with distinct asthma phenotypes or different biomarkers of disease may help individualize prevention strategies and render them more . In this article, we summarize interventions that have been studied for the prevention of asthma and identify some of the clinical trials that are actively underway in asthma prevention.
Collapse
Affiliation(s)
- Michelle C Maciag
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
20
|
Expression quantitative trait locus fine mapping of the 17q12-21 asthma locus in African American children: a genetic association and gene expression study. THE LANCET RESPIRATORY MEDICINE 2020; 8:482-492. [PMID: 32380068 DOI: 10.1016/s2213-2600(20)30011-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND African ancestry is associated with a higher prevalence and greater severity of asthma than European ancestries, yet genetic studies of the most common locus associated with childhood-onset asthma, 17q12-21, in African Americans have been inconclusive. The aim of this study was to leverage both the phenotyping of the Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium, and the reduced linkage disequilibrium in African Americans, to fine map the 17q12-21 locus. METHODS We first did a genetic association study and meta-analysis using 17q12-21 tag single-nucleotide polymorphisms (SNPs) for childhood-onset asthma in 1613 European American and 870 African American children from the CREW consortium. Nine tag SNPs were selected based on linkage disequilibrium patterns at 17q12-21 and their association with asthma, considering the effect allele under an additive model (0, 1, or 2 effect alleles). Results were meta-analysed with publicly available summary data from the EVE consortium (on 4303 European American and 3034 African American individuals) for seven of the nine SNPs of interest. Subsequently, we tested for expression quantitative trait loci (eQTLs) among the SNPs associated with childhood-onset asthma and the expression of 17q12-21 genes in resting peripheral blood mononuclear cells (PBMCs) from 85 African American CREW children and in upper airway epithelial cells from 246 African American CREW children; and in lower airway epithelial cells from 44 European American and 72 African American adults from a case-control study of asthma genetic risk in Chicago (IL, USA). FINDINGS 17q12-21 SNPs were broadly associated with asthma in European Americans. Only two SNPs (rs2305480 in gasdermin-B [GSDMB] and rs8076131 in ORMDL sphingolipid biosynthesis regulator 3 [ORMDL3]) were associated with asthma in African Americans, at a Bonferroni-corrected threshold of p<0·0055 (for rs2305480_G, odds ratio [OR] 1·36 [95% CI 1·12-1·65], p=0·0014; and for rs8076131_A, OR 1·37 [1·13-1·67], p=0·0010). In upper airway epithelial cells from African American children, genotype at rs2305480 was the most significant eQTL for GSDMB (eQTL effect size [β] 1·35 [95% CI 1·25-1·46], p<0·0001), and to a lesser extent showed an eQTL effect for post-GPI attachment to proteins phospholipase 3 (β 1·15 [1·08-1·22], p<0·0001). No SNPs were eQTLs for ORMDL3. By contrast, in PBMCs, the five core SNPs were associated only with expression of GSDMB and ORMDL3. Genotype at rs12936231 (in zona pellucida binding protein 2) showed the strongest associations across both genes (for GSDMB, eQTLβ 1·24 [1·15-1·32], p<0·0001; and for ORMDL3 (β 1·19 [1·12-1·24], p<0·0001). The eQTL effects of rs2305480 on GSDMB expression were replicated in lower airway cells from African American adults (β 1·29 [1·15-1·44], p<0·0001). INTERPRETATION Our study suggests that SNPs regulating GSDMB expression in airway epithelial cells have a major role in childhood-onset asthma, whereas SNPs regulating the expression levels of 17q12-21 genes in resting blood cells are not central to asthma risk. Our genetic and gene expression data in African Americans and European Americans indicated GSDMB to be the leading candidate gene at this important asthma locus. FUNDING National Institutes of Health, Office of the Director.
Collapse
|
21
|
Altman MC, Beigelman A, Ciaccio C, Gern JE, Heymann PW, Jackson DJ, Kennedy JL, Kloepfer K, Lemanske RF, McWilliams LM, Muehling L, Nance C, Peebles RS. Evolving concepts in how viruses impact asthma: A Work Group Report of the Microbes in Allergy Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2020; 145:1332-1344. [PMID: 31926183 PMCID: PMC7577409 DOI: 10.1016/j.jaci.2019.12.904] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Over the past decade, there have been substantial advances in our understanding about how viral infections regulate asthma. Important lessons have been learned from birth cohort studies examining viral infections and subsequent asthma and from understanding the relationships between host genetics and viral infections, the contributions of respiratory viral infections to patterns of immune development, the impact of environmental exposure on the severity of viral infections, and how the viral genome influences host immune responses to viral infections. Further, there has been major progress in our knowledge about how bacteria regulate host immune responses in asthma pathogenesis. In this article, we also examine the dynamics of bacterial colonization of the respiratory tract during viral upper respiratory tract infection, in addition to the relationship of the gut and respiratory microbiomes with respiratory viral infections. Finally, we focus on potential interventions that could decrease virus-induced wheezing and asthma. There are emerging therapeutic options to decrease the severity of wheezing exacerbations caused by respiratory viral infections. Primary prevention is a major goal, and a strategy toward this end is considered.
Collapse
Affiliation(s)
| | - Avraham Beigelman
- Division of Pediatric Allergy, Immunology & Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo; Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Petach Tikvah, Israel
| | - Christina Ciaccio
- Allergy/Immunology and Pediatric Pulmonology and Sleep Medicine, University of Chicago School of Medicine, Chicago, Ill
| | - James E Gern
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Peter W Heymann
- Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Va
| | - Daniel J Jackson
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Joshua L Kennedy
- Division of Allergy/Immunology, Departments of Pediatrics and Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark
| | - Kirsten Kloepfer
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Robert F Lemanske
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Lyndsey Muehling
- Department of Medicine, University of Virginia Medical Center, Charlottesville, Va
| | - Christy Nance
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Immunology/Pathology, Baylor College of Medicine, Houston, Tex
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
22
|
Preventing the development of asthma: stopping the allergic march. Curr Opin Allergy Clin Immunol 2020; 19:161-168. [PMID: 30507718 DOI: 10.1097/aci.0000000000000501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To describe important precipitants of asthma and allergic disease, to highlight the links between these triggers and modifications within the immune system, and to examine innovative research regarding asthma prevention with focus on attenuating the atopic march. RECENT FINDINGS Allergen avoidance, allergen immunotherapy, IgE antagonists, prevention and treatment of respiratory infections, as well as management of gastrointestinal and respiratory dysbiosis have been considered as strategies in asthma prevention. Antenatal vitamin D supplementation in expectant mothers and aggressive control of atopic dermatitis to prevent the development of other allergic conditions were carefully studied as well. SUMMARY Asthma is a major cause of morbidity and lost productivity. Despite the tremendous burden of this disease, the scientific community is still struggling to find an effective means of prevention. The contribution of genetics to the development of atopy cannot be altered, but environmental changes as well as pharmacotherapy have been studied as modifiable risk factors. Many trials to date have been effective only for subjects with certain characteristics. This is likely because asthma is a heterogenous condition, with a variety of triggers and clinical phenotypes. Thus far, a universally effective prevention strategy has eluded us. However, if an intervention can be found to prevent asthma and the allergic march, it will greatly improve quality of life for millions of sufferers and decrease healthcare expenditures.
Collapse
|
23
|
Nasal Provocation Test with Cat and Dog Extracts: Results according to Molecular Components. Pulm Med 2020; 2020:6365314. [PMID: 32047667 PMCID: PMC7001676 DOI: 10.1155/2020/6365314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 01/14/2023] Open
Abstract
Background IgE sensitization (atopy) to pets is commonly evaluated using pet dander extracts. However, the diagnosis by components seems to be more adequate to evaluate the clinical relevance (allergy) of sIgE sensitization. Objective To study the association between IgE sensitization to pet allergen components and clinical symptoms. Methodology. Dander extracts and sIgE levels to pet components (Can f 1, Can f 2, Can f 3, Can f 5, Fel d 1, Fel 2, and Fel 4) were measured in a rhinitis group (n = 101) and a control group (n = 101) and a control group (. Results Dog (34.6% vs. 23.5%) and cat dander (26.7% vs. 8.8%, p = 0.05) IgE sensitization was frequent among rhinitis and no-rhinitis subjects, and it was similar to dog (29.7% vs. 20.5%) and cat (18.8% vs. 8.8%) components. Polysensitization for dog (3.1, 95% CI: 1.5 to 6.1, p = 0.05) IgE sensitization was frequent among rhinitis and no-rhinitis subjects, and it was similar to dog (29.7% vs. 20.5%) and cat (18.8% vs. 8.8%) components. Polysensitization for dog (3.1, 95% CI: 1.5 to 6.1, p = 0.05) IgE sensitization was frequent among rhinitis and no-rhinitis subjects, and it was similar to dog (29.7% vs. 20.5%) and cat (18.8% vs. 8.8%) components. Polysensitization for dog (3.1, 95% CI: 1.5 to 6.1. Conclusions Sensitization to pet dander extract identifies atopic patients, but its utility to predict clinical relevance is poor. Allergenic components could help to define the clinical relevance of sensitization to furry animals and could reduce the need for provocation test.
Collapse
|
24
|
Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld AD, Maitland-van der Zee AH. Omics for the future in asthma. Semin Immunopathol 2020; 42:111-126. [PMID: 31942640 DOI: 10.1007/s00281-019-00776-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Asthma is a common, complex, multifaceted disease. It comprises multiple phenotypes, which might benefit from treatment with different types of innovative targeted therapies. Refining these phenotypes and understanding their underlying biological structure would help to apply precision medicine approaches. Using different omics methods, such as (epi)genomics, transcriptomics, proteomics, metabolomics, microbiomics, and exposomics, allowed to view and investigate asthma from diverse angles. Technological advancement led to a large increase in the application of omics studies in the asthma field. Although the use of omics technologies has reduced the gap between bench to bedside, several design and methodological challenges still need to be tackled before omics can be applied in asthma patient care. Collaborating under a centralized harmonized work frame (such as in consortia, under consistent methodologies) could help worldwide research teams to tackle these challenges. In this review, we discuss the transition of single biomarker research to multi-omics studies. In addition, we deliberate challenges such as the lack of standardization of sampling and analytical methodologies and validation of findings, which comes in between omics and personalized patient care. The future of omics in asthma is encouraging but not completely clear with some unanswered questions, which have not been adequately addressed before. Therefore, we highlight these questions and emphasize on the importance of fulfilling them.
Collapse
Affiliation(s)
- Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.,Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anne H Neerincx
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands. .,Department of Pediatric Respiratory Medicine, Emma Children's Hospital, Amsterdam UMC, Amsterdam, Netherlands.
| |
Collapse
|
25
|
Role of early life immune regulation in asthma development. Semin Immunopathol 2019; 42:29-42. [PMID: 31873782 PMCID: PMC7079989 DOI: 10.1007/s00281-019-00774-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Development of childhood asthma is complex with a strong interaction of genetic, epigenetic, and environmental factors. Ultimately, it is critical how the immune system of a child responds to these influences and whether effective strategies for a balanced and healthy immune maturation can be assured. Pregnancy and early childhood are particularly susceptible for exogenous influences due to the developing nature of a child’s immune system. While endogenous influences such as family history and the genetic background are immutable, epigenetic regulations can be modulated by both heredity and environmental exposures. Prenatal influences such as a mother’s nutrition, smoking, or infections influence the complex interplay of innate and adaptive immune regulation as well as peri- and postnatal influences including mode of delivery. Early in life, induction and continuous training of healthy maturation include balanced innate immunity (e.g., via innate lymphoid cells) and an equilibrium of T-cell subpopulations (e.g., via regulatory T cells) to counter-regulate potential pro-inflammatory or exuberant immune reactions. Later in childhood, rather compensatory immune mechanisms are required to modulate deviant regulation of a child’s already primed immune trajectory. The specific effects of exogenous and endogenous influences on a child’s maturing immune system are summarized in this review, and its importance and potential intervention for early prevention and treatment strategies are delineated.
Collapse
|
26
|
Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland‐van der Zee AH. What did we learn from multiple omics studies in asthma? Allergy 2019; 74:2129-2145. [PMID: 31004501 DOI: 10.1111/all.13833] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
More than a decade has passed since the finalization of the Human Genome Project. Omics technologies made a huge leap from trendy and very expensive to routinely executed and relatively cheap assays. Simultaneously, we understood that omics is not a panacea for every problem in the area of human health and personalized medicine. Whilst in some areas of research omics showed immediate results, in other fields, including asthma, it only allowed us to identify the incredibly complicated molecular processes. Along with their possibilities, omics technologies also bring many issues connected to sample collection, analyses and interpretation. It is often impossible to separate the intrinsic imperfection of omics from asthma heterogeneity. Still, many insights and directions from applied omics were acquired-presumable phenotypic clusters of patients, plausible biomarkers and potential pathways involved. Omics technologies develop rapidly, bringing improvements also to asthma research. These improvements, together with our growing understanding of asthma subphenotypes and underlying cellular processes, will likely play a role in asthma management strategies.
Collapse
Affiliation(s)
- Olga Ivanova
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Levi B. Richards
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
- Department of Paediatric Pulmonology Amsterdam UMC/ Emma Children's Hospital Amsterdam the Netherlands
| |
Collapse
|
27
|
Kelly RS, Chawes BL, Guo F, Zhang L, Blighe K, Litonjua AA, Raby BA, Levy BD, Rago D, Stokholm J, Bønnelykke K, Bisgaard H, Zhou X, Lasky-Su JA, Weiss ST. The role of the 17q21 genotype in the prevention of early childhood asthma and recurrent wheeze by vitamin D. Eur Respir J 2019; 54:1900761. [PMID: 31439681 PMCID: PMC7181456 DOI: 10.1183/13993003.00761-2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023]
Abstract
Evidence suggests vitamin D has preventive potential in asthma; however, not all children benefit from this intervention. This study aimed to investigate whether variation in the functional 17q21 single nucleotide polymorphism rs12936231 affects the preventive potential of vitamin D against asthma.A combined secondary analysis of two randomised controlled trials of prenatal vitamin D supplementation for the prevention of asthma in offspring (Vitamin D Antenatal Asthma Reduction Trial (VDAART) and Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010)) was performed, stratifying by genotype and integrating metabolite data to explore underlying mechanisms.The protective effect of vitamin D on asthma/wheeze was evident among children with the low-risk rs12936231 GG genotype (hazard ratio (HR) 0.49, 95% CI 0.26-0.94, p=0.032) but not the high-risk CC genotype (HR 1.08, 95% CI 0.69-1.69, p=0.751). In VDAART, in the GG genotype vitamin D supplementation was associated with increased plasma levels of sphingolipids, including sphingosine-1-phosphate (β 0.022, 95% CI 0.001-0.044, p=0.038), but this was not evident with the CC genotype, known to be associated with increased expression of ORMDL3 in bronchial epithelial cells. Sphingolipid levels were associated with decreased risk of asthma/wheeze, and there was evidence of interactions between sphingolipid levels, vitamin D and genotype (p-interactionvitaminD*genotype*sphingosine-1-phosphate=0.035). In a cellular model, there was a significant difference in the induction of sphingosine-1-phosphate by vitamin D between a control human bronchial epithelial cell line and a cell line overexpressing ORMDL3 (p=0.002).Results suggest prenatal vitamin D supplementation may reduce the risk of early childhood asthma/wheeze via alterations of sphingolipid metabolism dependent on the 17q21 genotype.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Co-first authors
| | - Bo L Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Co-first authors
| | - Feng Guo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Li Zhang
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Dept of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Kevin Blighe
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Pulmonary Division, Dept of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Levy
- Harvard Medical School, Boston, MA, USA
- Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniela Rago
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Co-senior authors
| | - Scott T Weiss
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Co-senior authors
| |
Collapse
|
28
|
Grayson MH, Feldman S, Prince BT, Patel PJ, Matsui EC, Apter AJ. Advances in asthma in 2017: Mechanisms, biologics, and genetics. J Allergy Clin Immunol 2018; 142:1423-1436. [PMID: 30213625 DOI: 10.1016/j.jaci.2018.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
This review summarizes some of the most significant advances in asthma research over the past year. We first focus on novel discoveries in the mechanism of asthma development and exacerbation. This is followed by a discussion of potential new biomarkers, including the use of radiographic markers of disease. Several new biologics have become available to the clinician in the past year, and we summarize these advances and how they can influence the clinical delivery of asthma care. After this, important findings in the genetics of asthma and heterogeneity in phenotypes of the disease are explored, as is the role the environment plays in shaping the development and exacerbation of asthma. Finally, we conclude with a discussion of advances in health literacy and how they will affect asthma care.
Collapse
Affiliation(s)
- Mitchell H Grayson
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio.
| | - Scott Feldman
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio
| | - Priya J Patel
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Elizabeth C Matsui
- Department of Population Health, Dell Medical School, University of Texas-Austin, Austin, Tex
| | - Andrea J Apter
- Section of Allergy and Immunology, Division of Pulmonary Allergy Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pa
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The review provides insight into recent findings on bedroom allergen exposures, primarily focusing on pet, pest, and fungal exposures. RECENT FINDINGS Large-scale studies and improved exposure assessment technologies, including measurement of airborne allergens and of multiple allergens simultaneously, have extended our understanding of indoor allergen exposures and their impact on allergic disease. Practical, streamlined methods for exposure reduction have shown promise in some settings, and potential protective effects of early-life exposures have been further elucidated through the investigation of specific bacterial taxa. Advances in molecular allergology have yielded novel data on sensitization profiles and cross-reactivity. The role of indoor allergen exposures in allergic disease is complex and remains incompletely understood. Advancing our knowledge of various co-exposures, including the environmental and host microbiome, that interact with allergens in early life will be crucial for the development of efficacious interventions to reduce the substantial economic and social burden of allergic diseases including asthma.
Collapse
|
30
|
Lemke H. Immune Response Regulation by Antigen Receptors' Clone-Specific Nonself Parts. Front Immunol 2018; 9:1471. [PMID: 30034389 PMCID: PMC6026803 DOI: 10.3389/fimmu.2018.01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Antigen determinants (epitopes) are recognized by the combining sites (paratopes) of B and T cell antigen receptors (BCR/TCR), which again express clone-specific epitopes (idiotopes) that can be recognized by BCR/TCR not only of genetically different donors but also within the autologous immune system. While xenogeneic and allogeneic anti-idiotypic BCR/TCR are broadly cross-reactive, only autologous anti-idiotypes are truly specific and of functional regulatory relevance within a particular immune system. Autologous BCR/TCR idiotopes are (a) somatically created at the third complementarity-determining regions, (b) through mutations introduced into BCRs during adaptive immune responses, and (c) through the conformational impact of both. As these idiotypic characters have no genomic counterparts they have to be regarded as antigen receptor-intrinsic nonself-portions. Although foreign, however, they are per se non-immunogenic, but in conjunction with immunogenicity- and adjuvanticity-providing antigen-induced immune responses, they induce abating regulatory idiotypic chain reactions. The dualistic nature of antigen receptors of seeing antigens (self and nonself alike) and being nonself at the same time has far reaching consequences for an understanding of the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Hilmar Lemke
- Biochemical Institute of the Medical Faculty, Christian-Albrechts-University at Kiel, Kiel, Germany
| |
Collapse
|
31
|
A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy Clin Immunol 2018; 142:749-764.e3. [PMID: 29307657 PMCID: PMC6172038 DOI: 10.1016/j.jaci.2017.12.974] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Chromosome 17q12–21 remains the most highly replicated and significant asthma locus. Genotypes in the core region defined by the first genome-wide association study correlate with expression of 2 genes, ORM1-like 3 (ORMDL3) and gasdermin B (GSDMB), making these prime candidate asthma genes, although recent studies have implicated gasdermin A (GSDMA) distal to and post-GPI attachment to proteins 3 (PGAP3) proximal to the core region as independent loci. We review 10 years of studies on the 17q12–21 locus and suggest that genotype-specific risks for asthma at the proximal and distal loci are not specific to early-onset asthma and mediated by PGAP3, ORMDL3, and/or GSDMA expression. We propose that the weak and inconsistent associations of 17q single nucleotide polymorphisms with asthma in African Americans is due to the high frequency of some 17q alleles, the breakdown of linkage disequilibrium on African-derived chromosomes, and possibly different early-life asthma endotypes in these children. Finally, the inconsistent association between asthma and gene expression levels in blood or lung cells from older children and adults suggests that genotype effects may mediate asthma risk or protection during critical developmental windows and/or in response to relevant exposures in early life. Thus studies of young children and ethnically diverse populations are required to fully understand the relationship between genotype and asthma phenotype and the gene regulatory architecture at this locus. (J Allergy Clin Immunol 2018;142:749–64.)
Collapse
|