1
|
Kheshtchin N, Kanannejad Z, Ghahramani Z, Esmaeilzadeh H, Sepahi N. Balancing immune responses: regulatory cells in eosinophilic gastrointestinal disorders. Front Immunol 2024; 15:1372009. [PMID: 39136025 PMCID: PMC11317405 DOI: 10.3389/fimmu.2024.1372009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Eosinophilic gastrointestinal disorders (EGIDs) are a group of conditions characterized by an abnormal accumulation of eosinophils in the gastrointestinal tract, leading to inflammation and tissue damage. Regulatory cells are a subset of immune cells that are crucial in maintaining the balance of the immune system and preventing the occurrence of autoimmune diseases. In EGIDs, regulatory cells are believed to play a key role in controlling the immune response and overseeing the growth and activation of eosinophils in the gastrointestinal tract. There is evidence indicating that regulatory T cells (Tregs) and regulatory eosinophils may play a role in suppressing the inflammatory response in EGIDs. Regulatory eosinophils are a subgroup of eosinophils that possess an anti-inflammatory role. Recent studies have shown that enhancing the number or effectiveness of regulatory eosinophils can reduce the severity of EGIDs. Regulatory eosinophils dampen inflammation through their regulatory mediators, such as galectin-10 and growth factor beta (TGF-β), which promote Treg expansion and inhibit effector T cell function. Further research on regulatory cells in EGIDs may have significant implications for the advancement of novel therapies for these uncommon and intricate disorders. The aim of this review is to provide complete view of the immune responses connected to EGIDs, examine the regulatory cells that control these responses, and evaluate their potential as therapeutic targets for EGID treatment.
Collapse
Affiliation(s)
- Nassim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Ackerman SJ, Stacy NI. Considerations on the evolutionary biology and functions of eosinophils: what the "haeckel"? J Leukoc Biol 2024; 116:247-259. [PMID: 38736141 PMCID: PMC11288384 DOI: 10.1093/jleuko/qiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The origins and evolution of the eosinophilic leukocyte have received only scattered attention since Paul Ehrlich first named this granulocyte. Studies suggest that myeloperoxidase, expressed by granulocytes, and eosinophil peroxidase diverged some 60 to 70 million years ago, but invertebrate to vertebrate evolution of the eosinophil lineage is unknown. Vertebrate eosinophils have been characterized extensively in representative species at light microscopic, ultrastructural, genetic, and biochemical levels. Understanding of eosinophil function continues to expand and includes to date regulation of "Local Immunity And/Or Remodeling/Repair" (the so-called LIAR hypothesis), modulation of innate and adaptive immune responses, maintenance of tissue and metabolic homeostasis, and, under pathologic conditions, inducers of tissue damage, repair, remodeling, and fibrosis. This contrasts with their classically considered primary roles in host defense against parasites and other pathogens, as well as involvement in T-helper 2 inflammatory and immune responses. The eosinophils' early appearance during evolution and continued retention within the innate immune system across taxa illustrate their importance during evolutionary biology. However, successful pregnancies in eosinophil-depleted humans/primates treated with biologics, host immune responses to parasites in eosinophil-deficient mice, and the absence of significant developmental or functional abnormalities in eosinophil-deficient mouse strains under laboratory conditions raise questions of the continuing selective advantages of the eosinophil lineage in mammals and humans. The objectives of this review are to provide an overview on evolutionary origins of eosinophils across the animal kingdom, discuss some of their main functions in the context of potential evolutionary relevance, and highlight the need for further research on eosinophil functions and functional evolution.
Collapse
Affiliation(s)
- Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, MBRB2074, MC669, 900 S. Ashland Ave, Chicago, IL 60607, United States
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL 32610, United States
| |
Collapse
|
3
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
4
|
Wipperman MF, Gayvert KM, Atanasio A, Wang CQ, Corren J, Covarrubias A, Setliff I, Chio E, Laws E, Wolfe K, Harel S, Maloney J, Herman G, Orengo JM, Lim WK, Hamon SC, Hamilton JD, O'Brien MP. Differential modulation of allergic rhinitis nasal transcriptome by dupilumab and allergy immunotherapy. Allergy 2024; 79:894-907. [PMID: 38279910 DOI: 10.1111/all.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Nasal epithelial cells are important regulators of barrier function and immune signaling; however, in allergic rhinitis (AR) these functions can be disrupted by inflammatory mediators. We aimed to better discern AR disease mechanisms using transcriptome data from nasal brushing samples from individuals with and without AR. METHODS Data were drawn from a feasibility study of individuals with and without AR to Timothy grass and from a clinical trial evaluating 16 weeks of treatment with the following: dupilumab, a monoclonal antibody that binds interleukin (IL)-4Rα and inhibits type 2 inflammation by blocking signaling of both IL-4/IL-13; subcutaneous immunotherapy with Timothy grass (SCIT), which inhibits allergic responses through pleiotropic effects; SCIT + dupilumab; or placebo. Using nasal brushing samples from these studies, we defined distinct gene signatures in nasal tissue of AR disease and after nasal allergen challenge (NAC) and assessed how these signatures were modulated by study drug(s). RESULTS Treatment with dupilumab (normalized enrichment score [NES] = -1.73, p = .002) or SCIT + dupilumab (NES = -2.55, p < .001), but not SCIT alone (NES = +1.16, p = .107), significantly repressed the AR disease signature. Dupilumab (NES = -2.55, p < .001), SCIT (NES = -2.99, p < .001), and SCIT + dupilumab (NES = -3.15, p < .001) all repressed the NAC gene signature. CONCLUSION These results demonstrate type 2 inflammation is an important contributor to the pathophysiology of AR disease and that inhibition of the type 2 pathway with dupilumab may normalize nasal tissue gene expression.
Collapse
Affiliation(s)
| | | | | | - Claire Q Wang
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Jonathan Corren
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Angelica Covarrubias
- Clinical Research Division, Jonathan Corren, MD. Inc., Los Angeles, California, USA
| | - Ian Setliff
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Erica Chio
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | | | - Sivan Harel
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | - Gary Herman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Sara C Hamon
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | | |
Collapse
|
5
|
Tiligada E, Gafarov D, Zaimi M, Vitte J, Levi-Schaffer F. Novel Immunopharmacological Drugs for the Treatment of Allergic Diseases. Annu Rev Pharmacol Toxicol 2024; 64:481-506. [PMID: 37722722 DOI: 10.1146/annurev-pharmtox-051623-091038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joana Vitte
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
- Desbrest Institute of Epidemiology and Public Health, University of Montpellier, INSERM
- Montpellier, France
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
6
|
Zhang S, Wang Z. An Emerging Role of Extracellular Traps in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2023; 23:675-688. [PMID: 37934391 PMCID: PMC10739460 DOI: 10.1007/s11882-023-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a complicated, heterogeneous disease likely caused by inflammatory and infectious factors. There is clear evidence that innate immune cells, including neutrophils and eosinophils, play a significant role in CRS. Multiple immune cells, including neutrophils and eosinophils, have been shown to release chromatin and granular proteins into the extracellular space in response to triggering extracellular traps (ETs). The formation of ETs remains controversial due to their critical function during pathogen clearance while being associated with harmful inflammatory illnesses. This article summarizes recent research on neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs) and their possible significance in the pathophysiology of CRS. RECENT FINDINGS A novel type of programmed cell death called ETosis, which releases ETs, has been proposed by recent study. Significantly more NETs are presented in nasal polyps, and its granule proteins LL-37 induce NETs production in CRS with nasal polyps (CRSwNP) patients. Similar to NETs, developed in the tissue of nasal polyps, primarily in subepithelial regions with epithelial barrier defects, and are associated with linked to elevated tissue levels of IL-5 and S. aureus colonization. This article provides a comprehensive overview of NETs and EETs, as well as an in-depth understanding of the functions of these ETs in CRS.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Nehmé R, St-Pierre Y. Targeting intracellular galectins for cancer treatment. Front Immunol 2023; 14:1269391. [PMID: 37753083 PMCID: PMC10518623 DOI: 10.3389/fimmu.2023.1269391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Although considerable attention has been paid to the role of extracellular galectins in modulating, positively or negatively, tumor growth and metastasis, we have witnessed a growing interest in the role of intracellular galectins in response to their environment. This is not surprising as many galectins preferentially exist in cytosolic and nuclear compartments, which is consistent with the fact that they are exported outside the cells via a yet undefined non-classical mechanism. This review summarizes our most recent knowledge of their intracellular functions in cancer cells and provides some directions for future strategies to inhibit their role in cancer progression.
Collapse
Affiliation(s)
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| |
Collapse
|
8
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
9
|
Larsson H, Albinsson Högberg S, Lind M, Rabe H, Lingblom C. Investigating immune profile by CyTOF in individuals with long-standing type 1 diabetes. Sci Rep 2023; 13:8171. [PMID: 37210405 DOI: 10.1038/s41598-023-35300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by T-cell mediated destruction of pancreatic beta cells. Eosinophils are found in pancreatic tissue from individuals with T1D. Eosinophilic suppression of T cells is dependent of the protein galectin-10. Little is known when it comes to the role of eosinophil granulocytes in type 1 diabetes. Here we show that individuals with long-standing T1D had lower levels of galectin-10hi eosinophils and a subgroup of galectin-10hi eosinophils were entirely absent in all T1D patients. In addition, 7% immature eosinophils were present in the circulation of T1D patients whereas 0.8% in healthy individuals. Furthermore, higher levels of CD4+CD8+ T cells and Th17 cells were observed in patients with T1D. Blood samples from 12 adult individuals with long-standing T1D and 12 healthy individuals were compared using cytometry by time-of-flight. Lower levels of galectin-10hi eosinophils, which are potent T cell suppressors, in individuals with T1D could indicate that activated T cells are enabled to unrestrictedly kill the insulin producing beta cells. This is the first study showing absence of galectin-10hi eosinophilic subgroup in individuals with T1D compared with healthy controls. This study is a first important step toward unraveling the role of the eosinophils in patients with T1D.
Collapse
Affiliation(s)
- Helen Larsson
- Department of ENT, Head and Neck Surgery, NU Hospital Group, Trollhättan, Sweden
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sofie Albinsson Högberg
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden
| | - Marcus Lind
- Department of Medicine, NU Hospital Group, Uddevalla, Trollhättan, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden
| | - Hardis Rabe
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden
| | - Christine Lingblom
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden.
| |
Collapse
|
10
|
Na H, Sayed H, Ayala GJ, Wang X, Liu Y, Yu J, Liu T, Mayo KH, Su J. Glutathione disrupts galectin-10 Charcot-Leyden crystal formation to possibly ameliorate eosinophil-based diseases such as asthma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:613-622. [PMID: 36988350 DOI: 10.3724/abbs.2023050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Charcot-Leyden crystals (CLCs) are the hallmark of many eosinophilic-based diseases, such as asthma. Here, we report that reduced glutathione (GSH) disrupts CLCs and inhibits crystallization of human galectin-10 (Gal-10). GSH has no effect on CLCs from monkeys ( Macaca fascicularis or M. mulatta), even though monkey Gal-10s contain Cys29 and Cys32. Interestingly, human Gal-10 contains another cysteine residue (Cys57). Because GSH cannot disrupt CLCs formed by the human Gal-10 variant C57A or inhibit its crystallization, the effects of GSH on human Gal-10 or CLCs most likely occur by chemical modification of Cys57. We further report the crystal structures of Gal-10 from M. fascicularis and M. mulatta, along with their ability to bind to lactose and inhibit erythrocyte agglutination. Structural comparison with human Gal-10 shows that Cys57 and Gln75 within the ligand binding site are responsible for the loss of lactose binding. Pull-down experiments and mass spectrometry show that human Gal-10 interacts with tubulin α-1B, with GSH, GTP and Mg 2+ stabilizing this interaction and colchicine inhibiting it. Overall, this study enhances our understanding of Gal-10 function and CLC formation and suggests that GSH may be used as a pharmaceutical agent to ameliorate CLC-induced diseases.
Collapse
|
11
|
Liu D, Zhu H, Li C. Galectins and galectin-mediated autophagy regulation: new insights into targeted cancer therapy. Biomark Res 2023; 11:22. [PMID: 36814341 PMCID: PMC9945697 DOI: 10.1186/s40364-023-00466-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Galectins are animal lectins with specific affinity for galactosides via the conserved carbohydrate recognition domains. Increasing studies recently have identified critical roles of galectin family members in tumor progression. Abnormal expression of galectins contributes to the proliferation, metastasis, epithelial-mesenchymal transformation (EMT), immunosuppression, radio-resistance and chemoresistance in various cancers, which has attracted cumulative clinical interest in galectin-based cancer treatment. Galectin family members have been reported to participate in autophagy regulation under physiological conditions and in non-tumoral diseases, and implication of galectins in multiple processes of carcinogenesis also involves regulation of autophagy, however, the relationship between galectins, autophagy and cancer remains largely unclear. In this review, we introduce the structure and function of galectins at the molecular level, summarize their engagements in autophagy and cancer progression, and also highlight the regulation of autophagy by galectins in cancer as well as the therapeutic potentials of galectin and autophagy-based strategies. Elaborating on the mechanism of galectin-regulated autophagy in cancers will accelerate the exploitation of galectins-autophagy targeted therapies in treatment for cancer.
Collapse
Affiliation(s)
- Dan Liu
- grid.33199.310000 0004 0368 7223Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- grid.412793.a0000 0004 1799 5032Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Lactose and Galactose Promote the Crystallization of Human Galectin-10. Molecules 2023; 28:molecules28041979. [PMID: 36838965 PMCID: PMC9966682 DOI: 10.3390/molecules28041979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Galectin-10 (Gal-10) forms Charcot-Leyden crystals (CLCs), which play a key role in the symptoms of asthma and allergies and some other diseases. Gal-10 has a carbohydrate-binding site; however, neither the Gal-10 dimer nor the CLCs can bind sugars. To investigate the monomer-dimer equilibrium of Gal-10, high-performance size-exclusion chromatography (SEC) was employed to separate serial dilutions of Gal-10 with and without carbohydrates. We found that both the dimerization and crystallization of Gal-10 were promoted by lactose/galactose binding. A peak position shift for the monomer was observed after treatment with either lactose or galactose, implying that the polarity of the monomer was reduced by lactose/galactose binding. Further experiments indicated that alkaline conditions of pH 8.8 mimicked the lactose/galactose-binding environment, and the time interval between monomers and dimers in the chromatogram decreased from 0.8 min to 0.4 min. Subsequently, the electrostatic potential of the Gal-10 monomers was computed. After lactose/galactose binding, the top side of the monomer shifted from negatively charged to electrically neutral, allowing it to interact with the carbohydrate-binding site of the opposing subunit during dimerization. Since lactose/galactose promotes the crystallization of Gal-10, our findings implied that dairy-free diets (free of lactose/galactose) might be beneficial to patients with CLC-related diseases.
Collapse
|
13
|
Placental Galectins in Cancer: Why We Should Pay More Attention. Cells 2023; 12:cells12030437. [PMID: 36766779 PMCID: PMC9914345 DOI: 10.3390/cells12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The first studies suggesting that abnormal expression of galectins is associated with cancer were published more than 30 years ago. Today, the role of galectins in cancer is relatively well established. We know that galectins play an active role in many types of cancer by regulating cell growth, conferring cell death resistance, or inducing local and systemic immunosuppression, allowing tumor cells to escape the host immune response. However, most of these studies have focused on very few galectins, most notably galectin-1 and galectin-3, and more recently, galectin-7 and galectin-9. Whether other galectins play a role in cancer remains unclear. This is particularly true for placental galectins, a subgroup that includes galectin-13, -14, and -16. The role of these galectins in placental development has been well described, and excellent reviews on their role during pregnancy have been published. At first sight, it was considered unlikely that placental galectins were involved in cancer. Yet, placentation and cancer progression share several cellular and molecular features, including cell invasion, immune tolerance and vascular remodeling. The development of new research tools and the concomitant increase in database repositories for high throughput gene expression data of normal and cancer tissues provide a new opportunity to examine the potential involvement of placental galectins in cancer. In this review, we discuss the possible roles of placental galectins in cancer progression and why they should be considered in cancer studies. We also address challenges associated with developing novel research tools to investigate their protumorigenic functions and design highly specific therapeutic drugs.
Collapse
|
14
|
Aegerter H, Lambrecht BN. The Pathology of Asthma: What Is Obstructing Our View? ANNUAL REVIEW OF PATHOLOGY 2023; 18:387-409. [PMID: 36270294 DOI: 10.1146/annurev-pathol-042220-015902] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
16
|
Tomizawa H, Yamada Y, Arima M, Miyabe Y, Fukuchi M, Hikichi H, Melo RCN, Yamada T, Ueki S. Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules 2022; 12:biom12101385. [PMID: 36291593 PMCID: PMC9599181 DOI: 10.3390/biom12101385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Galectin-10 is a member of the lectin family and one of the most abundant cytoplasmic proteins in human eosinophils. Except for some myeloid leukemia cells, basophils, and minor T cell populations, galectin-10 is exclusively present in eosinophils in the human body. Galectin-10 forms Charcot–Leyden crystals, which are observed in various eosinophilic diseases. Accumulating studies have indicated that galectin-10 acts as a new biomarker for disease activity, diagnosis, and treatment effectiveness in asthma, eosinophilic esophagitis, rhinitis, sinusitis, atopic dermatitis, and eosinophilic granulomatosis with polyangiitis. The extracellular release of galectin-10 is not mediated through conventional secretory processes (piecemeal degranulation or exocytosis), but rather by extracellular trap cell death (ETosis), which is an active cell death program. Eosinophils undergoing ETosis rapidly disintegrate their plasma membranes to release the majority of galectin-10. Therefore, elevated galectin-10 levels in serum and tissue suggest a high degree of eosinophil ETosis. To date, several studies have shown that galectin-10/Charcot–Leyden crystals are more than just markers for eosinophilic inflammation, but play functional roles in immunity. In this review, we focus on the close relationship between eosinophils and galectin-10, highlighting this protein as a potential new biomarker in eosinophilic diseases.
Collapse
Affiliation(s)
- Hiroki Tomizawa
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yoshiyuki Yamada
- Department of Pediatrics, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Misaki Arima
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yui Miyabe
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Mineyo Fukuchi
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Haruka Hikichi
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shigeharu Ueki
- Clinical Laboratory Medicine, Department of General Internal Medicine, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Correspondence: ; Tel./Fax: +81-18-884-6209
| |
Collapse
|
17
|
Munemura R, Maehara T, Murakami Y, Koga R, Aoyagi R, Kaneko N, Doi A, Perugino CA, Della-Torre E, Saeki T, Sato Y, Yamamoto H, Kiyoshima T, Stone JH, Pillai S, Nakamura S. Distinct disease-specific Tfh cell populations in two different fibrotic diseases: IgG4-related disease and Kimura's disease. J Allergy Clin Immunol 2022; 150:440-455.e17. [PMID: 35568079 PMCID: PMC10369367 DOI: 10.1016/j.jaci.2022.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND How T follicular (Tfh) cells contribute to many different B-cell class-switching events during T cell-dependent immune responses has been unclear. Diseases with polarized isotype switching offer a unique opportunity for the exploration of Tfh subsets. Secondary and tertiary lymphoid organs (SLOs and TLOs) in patients with elevated tissue expression levels of IgE (Kimura's disease, KD) and those of IgG4 (IgG4-related disease, IgG4-RD) can provide important insights regarding cytokine expression by Tfh cells. OBJECTIVE To identify disease-specific Tfh cell subsets in SLOs and TLOs expressing IL-10 or IL-13 and thus identify different cellular drivers of class switching in two distinct types of fibrotic disorders: allergic fibrosis (driven by type 2 immune cells) and inflammatory fibrosis (driven by cytotoxic T lymphocytes). METHODS Single-cell RNA-sequencing, in situ sequencing, and multi-color immunofluorescence analysis was used to investigate B cells, Tfh cells and infiltrating type 2 cells in lesion tissues from patients with KD or IgG4-RD. RESULTS Infiltrating Tfh cells in TLOs from IgG4-RD were divided into six main clusters. We encountered abundant infiltrating IL-10-expressing LAG3+ Tfh cells in patients with IgG4-RD. Furthermore, we found that infiltrating AID+CD19+B cells expressing IL-4, IL-10, and IL-21 receptors correlated with IgG4 expression. In contrast, we found that infiltrating IL-13-expressing Tfh cells were abundant in affected tissues from patients with KD. Moreover, we observed few infiltrating IL-13-expressing Tfh cells in tissues from patients with IgG4-RD, despite high serum levels of IgE (but low IgE in the disease lesions). Cytotoxic T cells were abundant in IgG4-RD, and in contrast Type 2 immune cells were abundant in KD. CONCLUSIONS This single-cell dataset revealed a novel subset of IL10+LAG3+Tfh cells infiltrating the affected organs of IgG4-RD patients. In contrast, IL13+Tfh cells and type 2 immune cells infiltrated those of KD patients.
Collapse
Affiliation(s)
- Ryusuke Munemura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takashi Maehara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Dento-craniofacial Development and Regeneration Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Yuka Murakami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Risako Koga
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ryuichi Aoyagi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Cory A Perugino
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy, and Rare Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Takako Saeki
- Department of Internal Medicine, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Yasuharu Sato
- Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hidetaka Yamamoto
- Division of Diagnostic Pathology, Kyushu University Hospital, Fukuoka, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins – A biomaterials-focused perspective. Biomaterials 2022; 286:121585. [DOI: 10.1016/j.biomaterials.2022.121585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
|
19
|
Janson C, Bjermer L, Lehtimäki L, Kankaanranta H, Karjalainen J, Altraja A, Yasinska V, Aarli B, Rådinger M, Hellgren J, Lofdahl M, Howarth PH, Porsbjerg C. Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. Eur Clin Respir J 2022; 9:2040707. [PMID: 35251534 PMCID: PMC8896196 DOI: 10.1080/20018525.2022.2040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eosinophils have a broad range of functions, both homeostatic and pathological, mediated through an array of cell surface receptors and specific secretory granules that promote interactions with their microenvironment. Eosinophil development, differentiation, activation, survival and recruitment are closely regulated by a number of type 2 cytokines, including interleukin (IL)-5, the key driver of eosinophilopoiesis. Evidence shows that type 2 inflammation, driven mainly by interleukin (IL)-4, IL-5 and IL-13, plays an important role in the pathophysiology of eosinophilic airway diseases, including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. Several biologic therapies have been developed to suppress type 2 inflammation, namely mepolizumab, reslizumab, benralizumab, dupilumab, omalizumab and tezepelumab. While these therapies have been associated with clinical benefits in a range of eosinophilic diseases, their development has highlighted several challenges and directions for future research. These include the need for further information on disease progression and identification of treatable traits, including clinical characteristics or biomarkers that will improve the prediction of treatment response. The Nordic countries have a long tradition of collaboration using patient registries and Nordic asthma registries provide unique opportunities to address these research questions. One example of such a registry is the NORdic Dataset for aSThmA Research (NORDSTAR), a longitudinal population-based dataset containing all 3.3 million individuals with asthma from four Nordic countries (Denmark, Finland, Norway and Sweden). Large-scale, real-world registry data such as those from Nordic countries may provide important information regarding the progression of eosinophilic asthma, in addition to clinical characteristics or biomarkers that could allow targeted treatment and ensure optimal patient outcomes.
Collapse
Affiliation(s)
- Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jussi Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Alan Altraja
- Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentyna Yasinska
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Sweden
| | - Bernt Aarli
- Department of Clinical Science, University of Bergen and Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Hellgren
- Department of Otorhinolaryngology, University of Gothenburg, Gothenburg, Sweden
| | | | - Peter H Howarth
- Respiratory Medical Franchise, GSK, Brentford, Middlesex, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital and Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
20
|
Wechsler JB, Ackerman SJ, Chehade M, Amsden K, Riffle ME, Wang M, Du J, Kleinjan ML, Alumkal P, Gray E, Kim KA, Wershil BK, Kagalwalla AF. Noninvasive biomarkers identify eosinophilic esophagitis: A prospective longitudinal study in children. Allergy 2021; 76:3755-3765. [PMID: 33905577 DOI: 10.1111/all.14874] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Esophageal histology is critical for diagnosis and surveillance of disease activity in eosinophilic esophagitis (EoE). A validated noninvasive biomarker has not been identified. We aimed to determine the utility of blood and urine eosinophil-associated proteins to diagnose EoE and predict esophageal eosinophilia. METHODS Blood and urine were collected from children undergoing endoscopy with biopsy. Absolute eosinophil count (AEC), plasma eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), major basic protein-1 (MBP-1), galectin-10 (CLC/GAL-10), Eotaxin-2 and Eotaxin-3, and urine osteopontin (OPN) and matrix metalloproteinase-9 (MMP-9) were determined. Differences were assessed between EoE and control, and with treatment response. The capacity to predict EoE diagnosis and esophageal eosinophil counts was assessed. RESULTS Of 183 specimens were collected from 56 EoE patients and 15 non-EoE controls with symptoms of esophageal dysfunction; 33 EoE patients had paired pre- and post-treatment specimens. Plasma (CLC/GAL-10, ECP, EDN, Eotaxin-3, MBP-1) and urine (OPN) biomarkers were increased in EoE compared to control. A panel comprising CLC/GAL-10, Eotaxin-3, ECP, EDN, MBP-1, and AEC was superior to AEC alone in distinguishing EoE from control. AEC, CLC/GAL-10, ECP, and MBP-1 were significantly decreased in patients with esophageal eosinophil counts <15/hpf in response to treatment. AEC, CLC/GAL-10, ECP, EDN, OPN, and MBP-1 each predicted esophageal eosinophil counts utilizing mixed models controlled for age, gender, treatment, and atopy; AEC combined with MBP-1 best predicted the counts. CONCLUSIONS We identified novel panels of eosinophil-associated proteins that along with AEC are superior to AEC alone in distinguishing EoE from controls and predicting esophageal eosinophil counts.
Collapse
Affiliation(s)
- Joshua B. Wechsler
- Northwestern University Feinberg School of Medicine Chicago IL USA
- Department of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition Eosinophilic Gastrointestinal Diseases ProgramAnn & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
| | - Steven J. Ackerman
- Department of Biochemistry and Molecular Genetics University of Illinois‐Chicago Chicago IL USA
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders Icahn School of Medicine at Mount Sinai New York NY USA
| | - Katie Amsden
- Department of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition Eosinophilic Gastrointestinal Diseases ProgramAnn & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
| | - Mary E. Riffle
- Mount Sinai Center for Eosinophilic Disorders Icahn School of Medicine at Mount Sinai New York NY USA
| | - Ming‐Yu Wang
- Department of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition Eosinophilic Gastrointestinal Diseases ProgramAnn & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
| | - Jian Du
- Department of Biochemistry and Molecular Genetics University of Illinois‐Chicago Chicago IL USA
| | - Matt L. Kleinjan
- Department of Biochemistry and Molecular Genetics University of Illinois‐Chicago Chicago IL USA
| | - Preeth Alumkal
- Department of Biochemistry and Molecular Genetics University of Illinois‐Chicago Chicago IL USA
| | - Elizabeth Gray
- Northwestern University Feinberg School of Medicine Chicago IL USA
- Department of Preventive Medicine Feinberg School of Medicine Chicago IL USA
| | - Kwang‐Youn A. Kim
- Northwestern University Feinberg School of Medicine Chicago IL USA
- Department of Preventive Medicine Feinberg School of Medicine Chicago IL USA
| | - Barry K. Wershil
- Northwestern University Feinberg School of Medicine Chicago IL USA
- Department of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition Eosinophilic Gastrointestinal Diseases ProgramAnn & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
| | - Amir F. Kagalwalla
- Northwestern University Feinberg School of Medicine Chicago IL USA
- Department of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition Eosinophilic Gastrointestinal Diseases ProgramAnn & Robert H. Lurie Children's Hospital of Chicago Chicago IL USA
- John H. Stroger Hospital of Cook County Chicago IL USA
| |
Collapse
|
21
|
Dunn JLM, Rothenberg ME. 2021 year in review: Spotlight on eosinophils. J Allergy Clin Immunol 2021; 149:517-524. [PMID: 34838883 DOI: 10.1016/j.jaci.2021.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent advances in the understanding of eosinophils and eosinophilic diseases, particularly eosinophilic gastrointestinal diseases during the last year. The increasing incidence of diseases marked by eosinophilia has been documented and highlighted the need to understand eosinophil biology and eosinophilic contributions to disease. Significant insight into the nature of eosinophilic diseases has been achieved using next-generation sequencing technologies, proteomic analysis, and machine learning to analyze tissue biopsies. These technologies have elucidated mechanistic underpinnings of eosinophilic inflammation, delineated patient endotypes, and identified patient responses to therapeutic intervention. Importantly, recent clinical studies using mAbs that interfere with type 2 cytokine signaling or deplete eosinophils point to multiple and complex roles of eosinophils in tissues. Several studies identified distinct activation features of eosinophils in different tissues and disease states. The confluence of these studies supports a new paradigm of tissue-resident eosinophils that have pro- and anti-inflammatory immunomodulatory roles in allergic disease. Improved understanding of unique eosinophil activation states is now poised to identify novel therapeutic targets for eosinophilic diseases.
Collapse
Affiliation(s)
- Julia L M Dunn
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
22
|
Ajarrag S, St-Pierre Y. Galectins in Glioma: Current Roles in Cancer Progression and Future Directions for Improving Treatment. Cancers (Basel) 2021; 13:cancers13215533. [PMID: 34771696 PMCID: PMC8582867 DOI: 10.3390/cancers13215533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Glioblastomas are among the most common and aggressive brain tumors. The high rate of recurrence and mortality associated with this cancer underscores the need for the development of new therapeutical targets. Galectins are among the new targets that have attracted the attention of many scientists working in the field of cancer. They form a group of small proteins found in many tissues where they accomplish various physiological roles, including regulation of immune response and resistance to cell death. In many types of cancer, however, production of abnormally high levels of galectins by cancer cells can be detrimental to patients. Elevated levels of galectins can, for example, suppress the ability of the host’s immune system to kill cancer cells. They can also provide cancer cells with resistance to drugs-induced cell death. Here, we review the recent progress that has contributed to a better understanding of the mechanisms of actions of galectins in glioblastoma. We also discuss recent development of anti-galectin drugs and the challenges associated with their use in clinical settings, with particular attention to their role in reducing the efficacy of immunotherapy, a promising treatment that exploits the capacity of the immune system to recognize and kill cancer cells. Abstract Traditional wisdom suggests that galectins play pivotal roles at different steps in cancer progression. Galectins are particularly well known for their ability to increase the invasiveness of cancer cells and their resistance to drug-induced cell death. They also contribute to the development of local and systemic immunosuppression, allowing cancer cells to escape the host’s immunological defense. This is particularly true in glioma, the most common primary intracranial tumor. Abnormally high production of extracellular galectins in glioma contributes to the establishment of a strong immunosuppressive environment that favors immune escape and tumor progression. Considering the recent development and success of immunotherapy in halting cancer progression, it is logical to foresee that galectin-specific drugs may help to improve the success rate of immunotherapy for glioma. This provides a new perspective to target galectins, whose intracellular roles in cancer progression have already been investigated thoroughly. In this review, we discuss the mechanisms of action of galectins at different steps of glioma progression and the potential of galectin-specific drugs for the treatment of glioma.
Collapse
|
23
|
Wechsler ME, Munitz A, Ackerman SJ, Drake MG, Jackson DJ, Wardlaw AJ, Dougan SK, Berdnikovs S, Schleich F, Matucci A, Chanez P, Prazma CM, Howarth P, Weller PF, Merkel PA. Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clin Proc 2021; 96:2694-2707. [PMID: 34538424 DOI: 10.1016/j.mayocp.2021.04.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Eosinophils play a homeostatic role in the body's immune responses. These cells are involved in combating some parasitic, bacterial, and viral infections and certain cancers and have pathologic roles in diseases including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic gastrointestinal disorders, and hypereosinophilic syndromes. Treatment of eosinophilic diseases has traditionally been through nonspecific eosinophil attenuation by use of glucocorticoids. However, several novel biologic therapies targeting eosinophil maturation factors, such as interleukin (IL)-5 and the IL-5 receptor or IL-4/IL-13, have recently been approved for clinical use. Despite the success of biologic therapies, some patients with eosinophilic inflammatory disease may not achieve adequate symptom control, underlining the need to further investigate the contribution of patient characteristics, such as comorbidities and other processes, in driving ongoing disease activity. New research has shown that eosinophils are also involved in several homeostatic processes, including metabolism, tissue remodeling and development, neuronal regulation, epithelial and microbiome regulation, and immunoregulation, indicating that these cells may play a crucial role in metabolic regulation and organ function in healthy humans. Consequently, further investigation is needed into the homeostatic roles of eosinophils and eosinophil-mediated processes across different tissues and their varied microenvironments. Such work may provide important insights into the role of eosinophils not only under disease conditions but also in health. This narrative review synthesizes relevant publications retrieved from PubMed informed by author expertise to provide new insights into the diverse roles of eosinophils in health and disease, with particular emphasis on the implications for current and future development of eosinophil-targeted therapies.
Collapse
Affiliation(s)
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland
| | - David J Jackson
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Trust, London, United Kingdom; Asthma UK Centre, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Andrew J Wardlaw
- Institute for Lung Health, University of Leicester, Leicester, United Kingdom
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I(3), Research Group, University of Liege, Belgium
| | - Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, C2VN INSERM INRAE Aix-Marseille University, Marseille, France
| | | | - Peter Howarth
- Respiratory Medical Franchise, GSK, Brentford, United Kingdom
| | - Peter F Weller
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter A Merkel
- Division of Rheumatology, Department of Medicine, and Division of Clinical Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
| |
Collapse
|
24
|
Miyabe Y, Kobayashi Y, Fukuchi M, Saga A, Moritoki Y, Saga T, Akuthota P, Ueki S. Eosinophil-mediated inflammation in the absence of eosinophilia. Asia Pac Allergy 2021; 11:e30. [PMID: 34386406 PMCID: PMC8331253 DOI: 10.5415/apallergy.2021.11.e30] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
The increase of eosinophil levels is a hallmark of type-2 inflammation. Blood eosinophil counts act as a convenient biomarker for asthma phenotyping and the selection of biologics, and they are even used as a prognostic factor for severe coronavirus disease 2019. However, the circulating eosinophil count does not always reflect tissue eosinophilia and vice versa. The mismatch of blood and tissue eosinophilia can be seen in various clinical settings. For example, blood eosinophil levels in patients with acute eosinophilic pneumonia are often within normal range despite the marked symptoms and increased number of eosinophils in bronchoalveolar lavage fluid. Histological studies using immunostaining for eosinophil granule proteins have revealed the extracellular deposition of granule proteins coincident with pathological conditions, even in the absence of a significant eosinophil infiltrate. The marked deposition of eosinophil granule proteins in tissue is often associated with cytolytic degranulation. Recent studies have indicated that extracellular trap cell death (ETosis) is a major mechanism of cytolysis. Cytolytic ETosis is a total cell degranulation in which cytoplasmic and nuclear contents, including DNA and histones that act as alarmins, are also released. In the present review, eosinophil-mediated inflammation in such mismatch conditions is discussed.
Collapse
Affiliation(s)
- Yui Miyabe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshiki Kobayashi
- Airway Disease Section, Department of Otorhinolaryngology, Kansai Medical University, Hirakata, Japan.,Allergy Center, Kansai Medical University, Hirakata, Japan
| | - Mineyo Fukuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomoo Saga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
25
|
Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci 2021; 22:ijms22137091. [PMID: 34209362 PMCID: PMC8268949 DOI: 10.3390/ijms22137091] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.
Collapse
Affiliation(s)
- Timothée Fettrelet
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany
- Correspondence: ; Tel.: +41-31-632-3281
| |
Collapse
|
26
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
27
|
Isolated Eosinophilic Myometritis: A Case Report of an Extremely Rare Phenomenon. Int J Gynecol Pathol 2021; 41:e3-e7. [PMID: 33935159 DOI: 10.1097/pgp.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increased number of eosinophils in the uterus has been reported under physiological and pathologic conditions. However, eosinophilic infiltration limited to the myometrium is very unusual. A rare finding of isolated eosinophilic infiltration in the myometrium without involvement of endometrium or pathologies in the cervix or ovaries was observed in a 31-yr-old woman seeking medical attention for unexplained infertility, abnormal uterine bleeding, and dysmenorrhea. The patient had no allergies, parasitic disease, or other systemic disorders. This rare manifestation of eosinophilic infiltration expands the differential diagnosis of inflammatory conditions of the myometrium in patients with gynecological issues.
Collapse
|
28
|
Aegerter H, Smole U, Heyndrickx I, Verstraete K, Savvides SN, Hammad H, Lambrecht BN. Charcot-Leyden crystals and other protein crystals driving type 2 immunity and allergy. Curr Opin Immunol 2021; 72:72-78. [PMID: 33873124 DOI: 10.1016/j.coi.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
Protein crystals derived from innate immune cells have been synonymous with a Type-2 immune response in both mouse and man for over 150 years. Eosinophilic Galectin-10 (Charcot-Leyden) crystals in humans, and Ym1/Ym2 crystals in mice are frequently found in the context of parasitic infections, but also in diseases such as asthma and chronic rhinosinusitis. Despite their notable presence, these crystals are often overlooked as trivial markers of Type-2 inflammation. Here, we discuss the source, context, and role of protein crystallization. We focus on similarities observed between Galectin-10 and Ym1/2 crystals in driving immune responses; the subsequent benefit to the host during worm infection, and conversely the detrimental exacerbation of inflammation and mucus production during asthma.
Collapse
Affiliation(s)
- Helena Aegerter
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ines Heyndrickx
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Jiang W, Chetry M, Pan S, Wang L, Zhu X. Overexpression of Galectin10 Predicts a Better Prognosis in Human Ovarian Cancer. J Cancer 2021; 12:2654-2664. [PMID: 33854625 PMCID: PMC8040711 DOI: 10.7150/jca.54595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
To explore the prognosis of Galectins (LGALS) expression on patients with ovarian cancer, the prognosis of LGALS members in ovarian cancer was retrieved and analyzed by using 'Kaplan-Meier plotter' database. The relation of LGALS to overall survival (OS) was evaluated according to histological subtypes, clinical stages and pathological grade. Quantitative real-time polymerase chain reaction and western blot were used to detect the mRNA and protein expression of LGALS in ovarian cancer and normal ovarian cells. Immunohistochemistry was applied to evaluate the different expression of LGALS between cancer and normal tissues. In total patients with ovarian cancer, LGALS4, LGALS8, LGALS10 and LGALS13 mRNA levels were related to a better OS, and LGALS1 to a worse OS. LGALS1 predicted a worse OS in women with serous, stages III+IV or grade II ovarian cancer. LGALS4 predicted a better OS in patients with endometrioid, stages I+II or grade III ovarian cancer. LGALS10 predicted a longer OS in females with serous, all stages, or grade III cancer. LGALS8 overexpression was related to a better OS in all stages. Notably, mRNA and protein expressions of LGALS4, LGALS10 and LGALS13 were decreased in cancer cells than those in normal cells (P<0.05). Additionally, the immunostaining score of LGALS8, LGALS10 and LGALS13 expression were lower but LGALS1 was higher in caner tissues than those in normal tissues (P<0.001). In conclusion, LGALS10 possibly is a valuable biomarker for predicting a favorable prognosis in patients with ovarian cancer, especially with serous, all stages and grade III cancer.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Mandika Chetry
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Longyi Wang
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
30
|
Gigon L, Yousefi S, Karaulov A, Simon HU. Mechanisms of toxicity mediated by neutrophil and eosinophil granule proteins. Allergol Int 2021; 70:30-38. [PMID: 33277190 DOI: 10.1016/j.alit.2020.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils and eosinophils are granulocytes which are characterized by the presence of granules in the cytoplasm. Granules provide a safe storage site for granule proteins that play important roles in the immune function of granulocytes. Upon granulocytes activation, diverse proteins are released from the granules into the extracellular space and contribute to the fight against infections. In this article, we describe granule proteins of both neutrophils and eosinophils able to kill pathogens and review their anticipated mechanism of antimicrobial toxicity. It should be noted that an excess of granules protein release can lead to tissue damage of the host resulting in chronic inflammation and organ dysfunction.
Collapse
|
31
|
Doyle AD, Masuda MY, Kita H, Wright BL. Eosinophils in Eosinophilic Esophagitis: The Road to Fibrostenosis is Paved With Good Intentions. Front Immunol 2020; 11:603295. [PMID: 33335531 PMCID: PMC7736408 DOI: 10.3389/fimmu.2020.603295] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an antigen-driven disease associated with epithelial barrier dysfunction and chronic type 2 inflammation. Eosinophils are the defining feature of EoE histopathology but relatively little is known about their role in disease onset and progression. Classically defined as destructive, end-stage effector cells, eosinophils (a resident leukocyte in most of the GI tract) are increasingly understood to play roles in local immunity, tissue homeostasis, remodeling, and repair. Indeed, asymptomatic esophageal eosinophilia is observed in IgE-mediated food allergy. Interestingly, EoE is a potential complication of oral immunotherapy (OIT) for food allergy. However, we recently found that patients with peanut allergy may have asymptomatic esophageal eosinophilia at baseline and that peanut OIT induces transient esophageal eosinophilia in most subjects. This is seemingly at odds with multiple studies which have shown that EoE disease severity correlates with tissue eosinophilia. Herein, we review the potential role of eosinophils in EoE at different stages of disease pathogenesis. Based on current literature we suggest the following: (1) eosinophils are recruited to the esophagus as a homeostatic response to epithelial barrier disruption; (2) eosinophils mediate barrier-protective activities including local antibody production, mucus production and epithelial turnover; and (3) when type 2 inflammation persists, eosinophils promote fibrosis.
Collapse
Affiliation(s)
- Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Mia Y Masuda
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States.,Division of Pulmonology, Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|