1
|
Marques de Souza PR, Keenan CM, Wallace LE, Habibyan YB, Davoli-Ferreira M, Ohland C, Vicentini FA, McCoy KD, Sharkey KA. T cells regulate intestinal motility and shape enteric neuronal responses to intestinal microbiota. Gut Microbes 2025; 17:2442528. [PMID: 39704079 DOI: 10.1080/19490976.2024.2442528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
How the gut microbiota and immune system maintain intestinal homeostasis in concert with the enteric nervous system (ENS) remains incompletely understood. To address this gap, we assessed small intestinal transit, enteric neuronal density, enteric neurogenesis, intestinal microbiota, immune cell populations and cytokines in wildtype and T-cell deficient germ-free mice colonized with specific pathogen-free (SPF) microbiota, conventionally raised SPF and segmented filamentous bacteria (SFB)-monocolonized mice. SPF microbiota increased small intestinal transit in a T cell-dependent manner. SPF microbiota increased neuronal density in the myenteric and submucosal plexuses of the ileum and colon, similar to conventionally raised SPF mice, independently of T cells. SFB increased neuronal density in the ileum in a T cell-dependent manner, but independently of T cells in the colon. SPF microbiota stimulated enteric neurogenesis (Sox2 expression in enteric neurons) in the ileum in a T cell-dependent manner, but in the colon this effect was T cell-independent. T cells regulated nestin expression in the ENS. SPF colonization increased Th17 cells, RORγT+ Treg cells, and IL-1β and IL-17A levels in the ileum and colon. By neutralizing IL-1β and IL-17A, we observed that they control microbiota-mediated enteric neurogenesis but were not involved in the regulation of motility. Together, these findings provide new insights into the microbiota-neuroimmune dialog that regulates intestinal physiology.
Collapse
Affiliation(s)
- Patricia Rodrigues Marques de Souza
- Department of Health Education, Federal University of Sergipe, Aracaju, SE, Brazil
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie E Wallace
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yasaman Bahojb Habibyan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcela Davoli-Ferreira
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fernando A Vicentini
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Wang Y, Li D, Liu Y, Chen S, Dong Z. Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5. SCIENCE ADVANCES 2025; 11:eadp9894. [PMID: 39792675 PMCID: PMC11721569 DOI: 10.1126/sciadv.adp9894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance. We observed an increase in the population of ILC2s in Rag1-deficient mice. Homotypic engagement of SFRs between ILC2s and adaptive immune cells was identified as a potential mechanism. SFR deficiency led to an increase in ILC2s. Conditional deletion of SFRs on T and/or B cells led to an increased ILC2 abundance. Mechanistically, as ILC precursors differentiate into ILC2s, SFRs, primarily SLAMF3 and SLAMF5, are inhibitory, which impair IL-7-induced PI3K activation and enhance apoptosis via SHP-1. These findings reveal a mechanism by which adaptive immune cells negatively regulate the homeostasis of ILC2s and contribute to our understanding of the complex interplay between innate and adaptive immune cells in the regulation of immune responses.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Dan Li
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yehai Liu
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Lim M, Kim T, Kim H, Jang BG, Myung JK, Kim HY. Esophageal ILC2s mediate abnormal epithelial remodeling in eosinophilic esophagitis via Areg-EGFR signaling. Cell Mol Immunol 2025; 22:97-110. [PMID: 39653767 DOI: 10.1038/s41423-024-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic disorder characterized by eosinophilia and epithelial thickening, resulting in dysphagia. While emerging evidence implicates increased frequencies of group 2 innate lymphoid cells (ILC2s) and increased interleukin (IL)-33 expression in EoE pathogenesis, the precise mechanisms remain unclear. In this study, we investigated the role of ILC2s in EoE pathogenesis. We observed an abundance of KLRG1+ ILC2s in the esophagi of healthy mice, with their numbers significantly increasing in murine EoE models and humans. Using a murine EoE model, we demonstrated the recapitulation of EoE-associated features, including basal-cell hyperproliferation, epithelial thickening, and eosinophilia. Notably, these characteristics are absent in ILC-deficient mice, whereas mice lacking IL-5 or eosinophils display epithelial defects, highlighting the pivotal role of ILC2s in EoE pathogenesis. Further investigations revealed increased amphiregulin (Areg) production by esophageal ILC2s in mice. The administration of Areg induced epithelial defects similar to those observed in EoE. Mechanistic studies using human esophageal cell lines revealed Areg-induced phosphorylation of epidermal growth factor receptor (EGFR). Significatntly, treatment with anti-Areg agents and EGFR inhibitors effectively attenuated EoE development, highlighting the therapeutic potential of targeting the Areg-EGFR axis.
Collapse
Affiliation(s)
- MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Biological Sciences, SRC Center for Immune Research on Nonlymphoid Organs, Sungkyunkwan University, Suwon, South Korea
| | - Taesoo Kim
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hyesung Kim
- Jeju National University College of Medicine, Jeju, South Korea
| | - Bo Gun Jang
- Department of Pathology, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, South Korea
| | - Jae Kyung Myung
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- Department of Life Science and Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
4
|
Hashemi E, McCarthy C, Rao S, Malarkannan S. Transcriptomic diversity of innate lymphoid cells in human lymph nodes compared to BM and spleen. Commun Biol 2024; 7:769. [PMID: 38918571 PMCID: PMC11199704 DOI: 10.1038/s42003-024-06450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue-resident, mostly described within the mucosal tissues. However, their presence and functions in the human draining lymph nodes (LNs) are unknown. Our study unravels the tissue-specific transcriptional profiles of 47,287 CD127+ ILCs within the human abdominal and thoracic LNs. LNs contain a higher frequency of CD127+ ILCs than in BM or spleen. We define independent stages of ILC development, including EILP and pILC in the BM. These progenitors exist in LNs in addition to naïve ILCs (nILCs) that can differentiate into mature ILCs. We define three ILC1 and four ILC3 sub-clusters in the LNs. ILC1 and ILC3 subsets have clusters with high heat shock protein-encoding genes. We identify previously unrecognized regulons, including the BACH2 family for ILC1 and the ATF family for ILC3. Our study is the comprehensive characterization of ILCs in LNs, providing an in-depth understanding of ILC-mediated immunity in humans.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | | | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, MCW, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, MCW, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, MCW, Milwaukee, WI, USA.
- Division of Hematology and Oncology, Department of Medicine, MCW, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Sudan R, Gilfillan S, Colonna M. Group 1 ILCs: Heterogeneity, plasticity, and transcriptional regulation. Immunol Rev 2024; 323:107-117. [PMID: 38563448 PMCID: PMC11102297 DOI: 10.1111/imr.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Group 1 innate lymphoid cells (ILCs), comprising ILC1s and natural killer cells (NK cells), belong to a large family of developmentally related innate lymphoid cells that lack rearranged antigen-specific receptors. NK cells and ILC1s both require the transcription factor T-bet for lineage commitment but additionally rely on Eomes and Hobit, respectively, for their development and effector maturation programs. Both ILC1s and NK cells are essential for rapid responses against infections and mediate cancer immunity through production of effector cytokines and cytotoxicity mediators. ILC1s are enriched in tissues and hence generally considered tissue resident cells whereas NK cells are often considered circulatory. Despite being deemed different cell types, ILC1s and NK cells share many common features both phenotypically and functionally. Recent studies employing single cell RNA sequencing (scRNA-seq) technology have exposed previously unappreciated heterogeneity in group 1 ILCs and further broaden our understanding of these cells. Findings from these studies imply that ILC1s in different tissues and organs share a common signature but exhibit some unique characteristics, possibly stemming from tissue imprinting. Also, data from recent fate mapping studies employing Hobit, RORγt, and polychromic reporter mice have greatly advanced our understanding of the developmental and effector maturation programs of these cells. In this review, we aim to outline the fundamental traits of mouse group 1 ILCs and explore recent discoveries related to their developmental programs, phenotypic heterogeneity, plasticity, and transcriptional regulation.
Collapse
Affiliation(s)
- Raki Sudan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
6
|
Martinez-Gonzalez I, Takei F. New insights into ILC2 memory. Immunol Rev 2024; 323:118-125. [PMID: 38506432 DOI: 10.1111/imr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) are innate lymphocytes involved in type 2 immunity. ILC2s are abundant at the barrier tissues and upon allergen exposure, respond to epithelial-derived alarmins by producing type 2 cytokines (e.g., IL-5 and IL-13). Upon activation, some of these activated ILC2s acquire immunological memory and can mount enhanced responses upon further allergen encounters. Here, we review recent findings of the cellular and molecular mechanisms underlying immune memory in ILC2s both in mice and humans and discuss the implications of memory ILC2s in the context of allergic diseases.
Collapse
Affiliation(s)
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Lu HF, Zhou YC, Luo DD, Yang DH, Wang XJ, Cheng BH, Zeng XH. ILC2s: Unraveling the innate immune orchestrators in allergic inflammation. Int Immunopharmacol 2024; 131:111899. [PMID: 38513576 DOI: 10.1016/j.intimp.2024.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen 518172, China
| | - Dan-Dan Luo
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| |
Collapse
|
8
|
Wu Z, Lin X, Yuan G, Li N, Xu R. Innate lymphoid cells: New players in osteoimmunology. Eur J Immunol 2024; 54:e2350381. [PMID: 38234001 DOI: 10.1002/eji.202350381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Innate lymphoid cells (ILCs) are the most recently identified immune cell types existing in lymphoid and nonlymphoid organs. Albeit they lack the expression of antigen receptors, ILCs play vital roles in innate immune responses by producing multiple effector cytokines. The ILC family includes conventional natural killer cells and cytokine-producing ILCs, which are divided into group 1, group 2, and group 3 ILCs based on their effector cytokines and developmental requirements. Emerging evidence has indicated that ILCs are essential immune regulators of bone homeostasis, playing a critical role in osteoimmunology. In this mini-review, we discuss recent advances in the understanding of ILC functions in bone homeostasis under physiological and pathological conditions, with an emphasis on the communication between ILCs and bone cells including osteoclasts and osteoblasts, as well as the underlying immunoregulatory networks involving ILC-derived cytokines and growth factors. This review also discusses future research directions and the potential of targeting ILCs for the treatment of inflammation-associated bone disorders.
Collapse
Affiliation(s)
- Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Cha J, Kim TG, Bhae E, Gwak HJ, Ju Y, Choe YH, Jang IH, Jung Y, Moon S, Kim T, Lee W, Park JS, Chung YW, Yang S, Kang YK, Hyun YM, Hwang GS, Lee WJ, Rho M, Ryu JH. Skin microbe-dependent TSLP-ILC2 priming axis in early life is co-opted in allergic inflammation. Cell Host Microbe 2024; 32:244-260.e11. [PMID: 38198924 DOI: 10.1016/j.chom.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Euihyun Bhae
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, Korea
| | - Ho-Jin Gwak
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Young Ho Choe
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taehyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wuseong Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul 04763, Korea; Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
10
|
Pang XL, Li J, Wang J, Yan SS, Yang J. MiR-142-3p Regulates ILC1s by Targeting HMGB1 via the NF-κB Pathway in a Mouse Model of Early Pregnancy Loss. Curr Med Sci 2024; 44:195-211. [PMID: 38393528 DOI: 10.1007/s11596-024-2833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Innate lymphoid cells (ILCs) are a class of newly discovered immunocytes. Group 1 ILCs (ILC1s) are identified in the decidua of humans and mice. High mobility group box 1 (HMGB1) is predicted to be one of the target genes of miR-142-3p, which is closely related to pregnancy-related diseases. Furthermore, miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway. This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway. METHODS Mouse models of normal pregnancy and abortion were constructed, and the alterations of ILC1s, miR-142-3p, ILC1 transcription factor (T-bet), and pro-inflammatory cytokines of ILC1s (TNF-α, IFN-γ and IL-2) were detected in mice from different groups. The targeting regulation of HMGB1 by miR-142-3p in ILC1s, and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated. In addition, the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8, Annexin-V/PI, ELISA, and RT-PCR, respectively. Furthermore, changes of the NF-κB signaling pathway in ILC1s were examined in the different groups. For the in vivo studies, miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface, and further detect the expression of HMGB1, pro-inflammatory cytokines, and the NF-κB signaling pathway. RESULTS The number of ILC1s was significantly increased, the level of HMGB1 was significantly upregulated, and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice (all P<0.05). In addition, miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway (P<0.05). The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group (all P<0.05). CONCLUSION miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway, and attenuate the inflammation at the maternal-fetal interface in abortive mice.
Collapse
Affiliation(s)
- Xiang-Li Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China
| | - Jing Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si-Si Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Clinic Research Center for Assisted Reproductive Technology and Embryonic Development in Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
11
|
Huang L, Yang S, Yu X, Fang F, Zhu L, Wang L, Zhang X, Yang C, Qian Q, Zhu T. Association of different cell types and inflammation in early acne vulgaris. Front Immunol 2024; 15:1275269. [PMID: 38357543 PMCID: PMC10864487 DOI: 10.3389/fimmu.2024.1275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis. Inflammation plays a central role in the pathogenesis of acne vulgaris. During the inflammatory process, the innate and adaptive immune systems are coordinately activated to induce immune responses. Understanding the infiltration and cytokine secretion of differential cells in acne lesions, especially in the early stages of inflammation, will provide an insight into the pathogenesis of acne. The purpose of this review is to synthesize the association of different cell types with inflammation in early acne vulgaris and provide a comprehensive understanding of skin inflammation and immune responses.
Collapse
Affiliation(s)
- Lei Huang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, Yunnan, China
| | - Xiuqin Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fumin Fang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Wang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Zhang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changzhi Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Wang X, Wu H, Fang C, Li Z. Insights into innate immune cell evasion by Chlamydia trachomatis. Front Immunol 2024; 15:1289644. [PMID: 38333214 PMCID: PMC10850350 DOI: 10.3389/fimmu.2024.1289644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Chlamydia trachomatis, is a kind of obligate intracellular pathogen. The removal of C. trachomatis relies primarily on specific cellular immunity. It is currently considered that CD4+ Th1 cytokine responses are the major protective immunity against C. trachomatis infection and reinfection rather than CD8+ T cells. The non-specific immunity (innate immunity) also plays an important role in the infection process. To survive inside the cells, the first process that C. trachomatis faces is the innate immune response. As the "sentry" of the body, mast cells attempt to engulf and remove C. trachomatis. Dendritic cells present antigen of C. trachomatis to the "commanders" (T cells) through MHC-I and MHC-II. IFN-γ produced by activated T cells and natural killer cells (NK) further activates macrophages. They form the body's "combat troops" and produce immunity against C. trachomatis in the tissues and blood. In addition, the role of eosinophils, basophils, innate lymphoid cells (ILCs), natural killer T (NKT) cells, γδT cells and B-1 cells should not be underestimated in the infection of C. trachomatis. The protective role of innate immunity is insufficient, and sexually transmitted diseases (STDs) caused by C. trachomatis infections tend to be insidious and recalcitrant. As a consequence, C. trachomatis has developed a unique evasion mechanism that triggers inflammatory immunopathology and acts as a bridge to protective to pathological adaptive immunity. This review focuses on the recent advances in how C. trachomatis evades various innate immune cells, which contributes to vaccine development and our understanding of the pathophysiologic consequences of C. trachomatis infection.
Collapse
Affiliation(s)
| | | | | | - Zhongyu Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, School of Nursing, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
13
|
Korchagina AA, Shein SA, Koroleva E, Tumanov AV. Transcriptional control of ILC identity. Front Immunol 2023; 14:1146077. [PMID: 36969171 PMCID: PMC10033543 DOI: 10.3389/fimmu.2023.1146077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are heterogeneous innate immune cells which participate in host defense, mucosal repair and immunopathology by producing effector cytokines similarly to their adaptive immune cell counterparts. The development of ILC1, 2, and 3 subsets is controlled by core transcription factors: T-bet, GATA3, and RORγt, respectively. ILCs can undergo plasticity and transdifferentiate to other ILC subsets in response to invading pathogens and changes in local tissue environment. Accumulating evidence suggests that the plasticity and the maintenance of ILC identity is controlled by a balance between these and additional transcription factors such as STATs, Batf, Ikaros, Runx3, c-Maf, Bcl11b, and Zbtb46, activated in response to lineage-guiding cytokines. However, how interplay between these transcription factors leads to ILC plasticity and the maintenance of ILC identity remains hypothetical. In this review, we discuss recent advances in understanding transcriptional regulation of ILCs in homeostatic and inflammatory conditions.
Collapse
|
14
|
Kogame T, Egawa G, Nomura T, Kabashima K. Waves of layered immunity over innate lymphoid cells. Front Immunol 2022; 13:957711. [PMID: 36268032 PMCID: PMC9578251 DOI: 10.3389/fimmu.2022.957711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) harbor tissue-resident properties in border zones, such as the mucosal membranes and the skin. ILCs exert a wide range of biological functions, including inflammatory response, maintenance of tissue homeostasis, and metabolism. Since its discovery, tremendous effort has been made to clarify the nature of ILCs, and scientific progress revealed that progenitor cells of ILC can produce ILC subsets that are functionally reminiscent of T-cell subsets such as Th1, Th2, and Th17. Thus, now it comes to the notion that ILC progenitors are considered an innate version of naïve T cells. Another important discovery was that ILC progenitors in the different tissues undergo different modes of differentiation pathways. Furthermore, during the embryonic phase, progenitor cells in different developmental chronologies give rise to the unique spectra of immune cells and cause a wave to replenish the immune cells in tissues. This observation leads to the concept of layered immunity, which explains the ontology of some cell populations, such as B-1a cells, γδ T cells, and tissue-resident macrophages. Thus, recent reports in ILC biology posed a possibility that the concept of layered immunity might disentangle the complexity of ILC heterogeneity. In this review, we compare ILC ontogeny in the bone marrow with those of embryonic tissues, such as the fetal liver and embryonic thymus, to disentangle ILC heterogeneity in light of layered immunity.
Collapse
|
15
|
Stem Cell Therapy and Innate Lymphoid Cells. Stem Cells Int 2022; 2022:3530520. [PMID: 35958032 PMCID: PMC9363162 DOI: 10.1155/2022/3530520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells have the capability to communicate with other immune cell types to coordinate the immune system functioning during homeostasis and inflammation. However, these cells behave differently at the functional level, unlike T cells, these cells do not need antigen receptors for activation because they are activated by the interaction of their receptor ligation. In hematopoietic stem cell transplantation (HSCT), T cells and NK cells have been extensively studied but very few studies are available on ILCs. In this review, an attempt has been made to provide current information related to NK and ILCs cell-based stem cell therapies and role of the stem cells in the regulation of ILCs as well. Also, the latest information on the differentiation of NK cells and ILCs from CD34+ hematopoietic stem cells is covered in the article.
Collapse
|
16
|
Sun J, Zhou GP, Li SP, Chen XJ, Zhang JM, Jiang YZ, Cui B, Zhang HM, Sun LY, Zhu ZJ. Potential correlation of allograft infiltrating group 2 innate lymphoid cells with acute rejection after liver transplantation. Front Immunol 2022; 13:953240. [PMID: 35967423 PMCID: PMC9367675 DOI: 10.3389/fimmu.2022.953240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates the critical roles of group 2 innate lymphoid cells (ILC2s) in immunoregulation. However, the role of ILC2s in acute rejection after liver transplantation (LT) remains elusive. In this study, we analyzed the frequency, counts, and signature cytokines of ILC2s in liver transplant recipients by flow cytometric analysis and multiplex immunofluorescence assay. We also assessed the spatial distribution and correlation between hepatic ILC2s and Treg cells. The changes of ILC2s were dynamically monitored in the mouse LT model. We found that the frequencies of circulating ILC2s were comparable in liver transplant recipients with either rejection or non-rejection compared with the control group. The hepatic ILC2s counts were significantly increased in the rejection group than in the non-rejection and control groups, and a similar trend was observed for Treg cells. In the mouse LT model, allograft infiltrating ILC2s dramatically increased within 14 days post-transplant. The frequency of ILC2s in bone marrow significantly increased at 7 days post-transplant and rapidly decreased at 14 days after LT. Similarly, there was a significant increase in the frequency of splenic ILC2s within two weeks post-transplant. Multiplex immunofluorescence assay showed a close correlation between hepatic ILC2s and Treg cells by analyzing their spatial distribution and distance. In conclusion, the number of allograft infiltrating ILC2s was closely related to rejection after LT. Allograft infiltrating ILC2s may play inhibitory roles in posttransplant immune homeostasis, favoring resolution of liver allograft rejection by interacting with Treg cells or promoting the migration of Tregs cells into the liver allograft.
Collapse
Affiliation(s)
- Jie Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Shi-Peng Li
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Jin-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cui
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Hai-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhi-Jun Zhu, ; Li-Ying Sun,
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- *Correspondence: Zhi-Jun Zhu, ; Li-Ying Sun,
| |
Collapse
|
17
|
Xie M, Zhang M, Dai M, Yue S, Li Z, Qiu J, Lu C, Xu W. IL-18/IL-18R Signaling Is Dispensable for ILC Development But Constrains the Growth of ILCP/ILCs. Front Immunol 2022; 13:923424. [PMID: 35874724 PMCID: PMC9304618 DOI: 10.3389/fimmu.2022.923424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) develop from ILC progenitors in the bone marrow. Various ILC precursors (ILCPs) with different ILC subset lineage potentials have been identified based on the expression of cell surface markers and ILC-associated key transcription factor reporter genes. This study characterized an interleukin (IL)-7Rα+IL-18Rα+ ILC progenitor population in the mouse bone marrow with multi-ILC lineage potential on the clonal level. Single-cell gene expression analysis revealed the heterogeneity of this population and identified several subpopulations with specific ILC subset-biased gene expression profiles. The role of IL-18 signaling in the regulation of IL-18Rα+ ILC progenitors and ILC development was further investigated using Il18- and Il18r1-deficient mice, in vitro differentiation assay, and adoptive transfer model. IL-18/IL-18R-mediated signal was found to not be required for early stages of ILC development. While Il18r1-/- lymphoid progenitors were able to generate all ILC subsets in vitro and in vivo like the wild-type counterpart, increased IL-18 level, as often occurred during infection or under stress, suppressed the growth of ILCP/ILC in an IL-18Ra-dependent manner via inhibiting proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Mengying Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingying Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyuan Dai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shan Yue
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| |
Collapse
|
18
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
19
|
Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases. Int Immunopharmacol 2022; 110:108937. [PMID: 35779490 DOI: 10.1016/j.intimp.2022.108937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) and macrophages are tissue-resident cells that play important roles in tissue-immune homeostasis and immune regulation. ILCs are mainly distributed on the barrier surfaces of mammals to ensure immunity or tissue homeostasis following host, microbial, or environmental stimulation. Their complex relationships with different organs enable them to respond quickly to disturbances in environmental conditions and organ homeostasis, such as during infections and tissue damage. Gradually emerging evidence suggests that ILCs also play complex and diverse roles in macrophage development, homeostasis, polarization, inflammation, and viral infection. In turn, macrophages also determine the fate of ILCs to some extent, which indicates that network crossover between these interactions is a key determinant of the immune response. More work is needed to better define the crosstalk of ILCs with macrophages in different tissues and demonstrate how it is affected during inflammation and other diseases. Here, we summarize current research on the functional interactions between ILCs and macrophages and consider the potential therapeutic utility of these interactions for the benefit of human health.
Collapse
|
20
|
Arora J, Wang J, Weaver V, Zhang Y, Cantorna MT. Novel insight into the role of the vitamin D receptor in the development and function of the immune system. J Steroid Biochem Mol Biol 2022; 219:106084. [PMID: 35202799 PMCID: PMC8995385 DOI: 10.1016/j.jsbmb.2022.106084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
Immune cells express the vitamin D receptor (VDR) and are therefore vitamin D targets. The Vdr protein can be readily measured in the kidney using antibodies to the Vdr and western blot. It is much more difficult to measure Vdr protein in the spleen because of the low level of VDR expression in resting immune cells. In order to more sensitively measure VDR expression, the Cre enzyme was inserted in the 3rd exon of the VDR gene and a reporter mouse that irreversibly expresses tdTomato was made. Mice that express one copy of the VDRCre gene were confirmed to be VDR +/- and mice that express two copies were confirmed to be VDR -/-. Initial characterization of the immune cells from the VDR +/-/VDRtdTomato+ mice, compared to VDR+/+ wildtype (WT) littermates, showed no effect of being hemizygous for the VDR on immune cell frequencies. High tdTomato expression was shown to be present in the bone marrow (BM) and thymus immune cell precursors. In the periphery, monocytes, neutrophils and macrophages had very high tdTomato+ (88-98%) expression while lymphocytes ranged from 60% to 70% tdTomato+. Tissue resident innate lymphoid cell (ILC) 1 and 3 cells were about 60-80% tdTomoto+, while ILC2 cells had very low tdTomato expression. Stimulation of VDRtdTomato+ splenocytes showed that the tdTomato- CD4+ and CD8+ T cells proliferated more than their tdTomato+ counterparts. T cells were sorted for tdTomato+ and tdTomato- and then activated for 72 h. Sorted tdTomato+ T cells expressed the VDR protein only after 72 h post-activation. The sorted tdTomato- T cells proliferated more than the sorted tdTomato+ T cells. Interestingly, activation of the tdTomato- T cells failed to induce new tdTomato expression. The data suggest that an early immune precursor expresses the VDR. In the periphery, neutrophils and monocytes are almost all tdTomato+, while some immune cells (ILC2 and some T cells) may never express the VDR.
Collapse
Affiliation(s)
- Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Jinpeng Wang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Veronika Weaver
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Yongwei Zhang
- Gene Modification Facility, Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
21
|
Jacquelot N, Ghaedi M, Warner K, Chung DC, Crome SQ, Ohashi PS. Immune Checkpoints and Innate Lymphoid Cells-New Avenues for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5967. [PMID: 34885076 PMCID: PMC8657134 DOI: 10.3390/cancers13235967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoints (IC) are broadly characterized as inhibitory pathways that tightly regulate the activation of the immune system. These molecular "brakes" are centrally involved in the maintenance of immune self-tolerance and represent a key mechanism in avoiding autoimmunity and tissue destruction. Antibody-based therapies target these inhibitory molecules on T cells to improve their cytotoxic function, with unprecedented clinical efficacies for a number of malignancies. Many of these ICs are also expressed on innate lymphoid cells (ILC), drawing interest from the field to understand their function, impact for anti-tumor immunity and potential for immunotherapy. In this review, we highlight ILC specificities at different tissue sites and their migration potential upon inflammatory challenge. We further summarize the current understanding of IC molecules on ILC and discuss potential strategies for ILC modulation as part of a greater anti-cancer armamentarium.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.G.); (K.W.); (D.C.C.)
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| |
Collapse
|
22
|
Jegatheeswaran S, Mathews JA, Crome SQ. Searching for the Elusive Regulatory Innate Lymphoid Cell. THE JOURNAL OF IMMUNOLOGY 2021; 207:1949-1957. [PMID: 34607908 DOI: 10.4049/jimmunol.2100661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
The complex nature of the innate lymphoid cell (ILC) family and wide range of ILC effector functions has been the focus of intense research. In addition to important roles in host defense, ILCs have central roles in maintaining tissue homeostasis and can promote immune tolerance. Alterations within the microenvironment can impart new functions on ILCs, and can even induce conversion to a distinct ILC family member. Complicating current definitions of ILCs are recent findings of distinct regulatory ILC populations that limit inflammatory responses or recruit other immunosuppressive cells such as regulatory T cells. Whether these populations are distinct ILC family members or rather canonical ILCs that exhibit immunoregulatory functions due to microenvironment signals has been the subject of much debate. In this review, we highlight studies identifying regulatory populations of ILCs that span regulatory NK-like cells, regulatory ILCs, and IL-10-producing ILC2s.
Collapse
Affiliation(s)
- Sinthuja Jegatheeswaran
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and.,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica A Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and .,Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Wang Z, Wang J. Innate lymphoid cells and gastrointestinal disease. J Genet Genomics 2021; 48:763-770. [PMID: 34419616 DOI: 10.1016/j.jgg.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Innate lymphoid cells (ILCs) are a group of innate immune cells, which constitute the first line of defense in the immune system, together with skin and mucous membrane. ILCs also play an important role in maintaining the homeostasis of the body, particularly in the complex and diverse environment of the intestine. ILCs respond to different microenvironments, maintaining homeostasis directly or indirectly through cytokines. As a result, ILCs, with complex and pleiotropic characteristics, are associated with many gastrointestinal diseases. Their ability of transition among those subgroups makes them function as both promoting and inhibiting cells, thus affecting homeostasis and disease progressing to either alleviation or deterioration. With these special characteristics, ILCs theoretically can be used in the new generation of immunotherapy as an alternative and supplement to current tumor therapy. Our review summarizes the characteristics of ILCs with respect to category, function, and the relationship with intestinal homeostasis and gastrointestinal diseases. In addition, potential tumor immunotherapies involving ILCs are also discussed to shed light on the perspectives of immunotherapy.
Collapse
Affiliation(s)
- Ziyu Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|