1
|
Cherednichenko O, Demchenko G, Kapysheva U, Bakhtiyarova S, Pilyugina A, Azizbekova D, Kozhaniyazova U, Zhaksymov B. Trends in the cytogenetic and immunologic status of healthy persons; Kazakhstan, 2007-2022. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503822. [PMID: 39326940 DOI: 10.1016/j.mrgentox.2024.503822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Environmental pollution can affect immune health and genome stability. We have studied the immunological and cytogenetic status of healthy urban (Almaty City, which has high levels of air pollution) and rural residents of southern Kazakhstan, over the past 15 years. Differences between the groups in plasma immunoglobulin levels and chromosomal aberration frequencies were noted. Over the 15-year study period, decreases of immunoglobulin levels and increases of chromosomal aberration frequencies were observed and correlated with place of residence and ecological status of the region of residence; both ecological deterioration and the coronavirus pandemic are likely to have had negative effects.
Collapse
Affiliation(s)
- Oksana Cherednichenko
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty, Kazakhstan.
| | - Georgij Demchenko
- Laboratory of Physiology of the Lymphatic System, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Unzira Kapysheva
- Laboratory of Environmental Physiology of Humans and Animals, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Sholpan Bakhtiyarova
- Laboratory of Environmental Physiology of Humans and Animals, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Anastasiya Pilyugina
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Dinara Azizbekova
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Ulbosin Kozhaniyazova
- Laboratory of Physiology of the Lymphatic System, Institute of Genetics and Physiology, Almaty, Kazakhstan
| | - Bolatbek Zhaksymov
- Laboratory of Environmental Physiology of Humans and Animals, Institute of Genetics and Physiology, Almaty, Kazakhstan
| |
Collapse
|
2
|
Frusone V, Maurer K, Emanuel BS, McDonald-McGinn D, Sullivan KE. Inflammatory Proteomic Analysis of 22q11.2 Deletion Syndrome. J Clin Immunol 2024; 44:82. [PMID: 38488991 DOI: 10.1007/s10875-024-01689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Affiliation(s)
| | - Kelly Maurer
- Division of Allergy Immunology, ARC 1216-I CHOP Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donna McDonald-McGinn
- Division of Human Genetics, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Biology and Medical Genetics, Sapienza University, 00185, Rome, Italy
| | - Kathleen E Sullivan
- Division of Allergy Immunology, ARC 1216-I CHOP Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Costagliola G, Legitimo A, Bertini V, Alberio AMQ, Valetto A, Consolini R. Distinct Immunophenotypic Features in Patients Affected by 22q11.2 Deletion Syndrome with Immune Dysregulation and Infectious Phenotype. J Clin Med 2023; 12:7579. [PMID: 38137647 PMCID: PMC10743584 DOI: 10.3390/jcm12247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The clinical expression of 22q11.2 deletion syndrome (22q11.2 DS) is extremely variable, as patients can present with recurrent or severe infections, immune dysregulation, atopic diseases, or extra-immunological manifestations. The immunological background underlying the different disease manifestations is not completely elucidated. The aim of this study was to identify the immunophenotypic peculiarities of 22q11.2 DS patients presenting with different disease expressions. This study included 34 patients with 22q11.2 DS, divided into three groups according to the clinical phenotype: isolated extra-immunological manifestations (G1), infectious phenotype with increased/severe infections (G2), and immune dysregulation (G3). The patients underwent extended immunophenotyping of the T and B lymphocytes and analysis of the circulating dendritic cells (DCs). In patients with an infectious phenotype, a significant reduction in CD3+ and CD4+ cells and an expansion of CD8 naïve cells was evidenced. On the other hand, the immunophenotype of the patients with immune dysregulation showed a skewing toward memory T cell populations, and reduced levels of recent thymic emigrants (RTEs), while the highest levels of RTEs were detected in the patients with isolated extra-immunological manifestations. This study integrates the current literature, contributing to elucidating the variability in the immune status of patients with 22q11.2DS with different phenotypic expressions, particularly in those with infectious phenotype and immune dysregulation.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Annalisa Legitimo
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Veronica Bertini
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | | | - Angelo Valetto
- Section of Cytogenetics, Department of Laboratory Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (V.B.); (A.V.)
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
5
|
Sams L, Wijetilleka S, Ponsford M, Gennery A, Jolles S. Atopic manifestations of inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:478-490. [PMID: 37755421 PMCID: PMC10621644 DOI: 10.1097/aci.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Allergy and atopic features are now well recognized manifestations of many inborn errors of immunity (IEI), and indeed may be the hallmark in some, such as DOCK8 deficiency. In this review, we describe the current IEI associated with atopy, using a comprehensive literature search and updates from the IUIS highlighting clinical clues for underlying IEI such as very early onset of atopic disease or treatment resistance to enable early and accurate genetic diagnosis. RECENT FINDINGS We focus on recently described genes, their categories of pathogenic mechanisms and the expanding range of potential therapies. SUMMARY We highlight in this review that patients with very early onset or treatment resistant atopic disorders should be investigated for an IEI, as targeted and effective therapies exist. Early and accurate genetic diagnosis is crucial in this cohort to reduce the burden of disease and mortality.
Collapse
Affiliation(s)
- Laura Sams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Sonali Wijetilleka
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Mark Ponsford
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Andrew Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
6
|
Jindal AK. Editorial on case reports in pediatric immunology 2022. Front Pediatr 2023; 11:1242258. [PMID: 37664551 PMCID: PMC10469500 DOI: 10.3389/fped.2023.1242258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Biggs SE, Gilchrist B, May KR. Chromosome 22q11.2 Deletion (DiGeorge Syndrome): Immunologic Features, Diagnosis, and Management. Curr Allergy Asthma Rep 2023; 23:213-222. [PMID: 36897497 PMCID: PMC9999075 DOI: 10.1007/s11882-023-01071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE OF REVIEW This review focuses on immunologic findings, relationships among immunologic findings and associated conditions of autoimmunity and atopy, and management of immunologic disease in chromosome 22q11.2 deletion syndrome (22q11.2DS, historically known as DiGeorge syndrome). RECENT FINDINGS The implementation of assessment of T cell receptor excision circles (TRECs) in newborn screening has led to increased detection of 22q11.2 deletion syndrome. While not yet applied in clinical practice, cell-free DNA screening for 22q11.2DS also has the potential to improve early detection, which may benefit prompt evaluation and management. Multiple studies have further elucidated phenotypic features and potential biomarkers associated with immunologic outcomes, including the development of autoimmune disease and atopy. The clinical presentation of 22q11.2DS is highly variable particularly with respect to immunologic manifestations. Time to recovery of immune system abnormalities is not well-defined in current literature. An understanding of the underlying causes of immunologic changes found in 22q11.2DS, and the progression and evolution of immunologic changes over the lifespan have expanded over time and with improved survival. An included case highlights the variability of presentation and potential severity of T cell lymphopenia in partial DiGeorge syndrome and demonstrates successful spontaneous immune reconstitution in partial DiGeorge syndrome despite initial severe T cell lymphopenia.
Collapse
Affiliation(s)
- Sarah E Biggs
- Division of Allergy-Immunology & Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Bailee Gilchrist
- Division of Allergy-Immunology & Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kathleen R May
- Division of Allergy-Immunology & Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
Mustillo PJ, Sullivan KE, Chinn IK, Notarangelo LD, Haddad E, Davies EG, de la Morena MT, Hartog N, Yu JE, Hernandez-Trujillo VP, Ip W, Franco J, Gambineri E, Hickey SE, Varga E, Markert ML. Clinical Practice Guidelines for the Immunological Management of Chromosome 22q11.2 Deletion Syndrome and Other Defects in Thymic Development. J Clin Immunol 2023; 43:247-270. [PMID: 36648576 PMCID: PMC9892161 DOI: 10.1007/s10875-022-01418-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/04/2022] [Indexed: 01/18/2023]
Abstract
Current practices vary widely regarding the immunological work-up and management of patients affected with defects in thymic development (DTD), which include chromosome 22q11.2 microdeletion syndrome (22q11.2del) and other causes of DiGeorge syndrome (DGS) and coloboma, heart defect, atresia choanae, retardation of growth and development, genital hypoplasia, ear anomalies/deafness (CHARGE) syndrome. Practice variations affect the initial and subsequent assessment of immune function, the terminology used to describe the condition and immune status, the accepted criteria for recommending live vaccines, and how often follow-up is needed based on the degree of immune compromise. The lack of consensus and widely varying practices highlight the need to establish updated immunological clinical practice guidelines. These guideline recommendations provide a comprehensive review for immunologists and other clinicians who manage immune aspects of this group of disorders.
Collapse
Affiliation(s)
- Peter J Mustillo
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ivan K Chinn
- Division of Immunology, Allergy, and Retrovirology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Infectious Diseases and Immunology, CHU Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - E Graham Davies
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3HJ, UK
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA
| | - Nicholas Hartog
- Spectrum Health Helen DeVos Children's Hospital Department of Allergy and Immunology, Michigan State University College of Human Medicine, East Lansing, USA
| | - Joyce E Yu
- Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Winnie Ip
- Department of Immunology, Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, WC1N 3JH, UK
| | - Jose Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Eleonora Gambineri
- Department of "NEUROFARBA", Section of Child's Health, University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Scott E Hickey
- Division of Genetic & Genomic Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Elizabeth Varga
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - M Louise Markert
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Campbell IM, Crowley TB, Jobaliya C, Bailey A, McGinn DE, Gaiser K, Bassett A, Gur RE, Morrow B, Emanuel BS, Franco AT, French D, Zackai EH, McDonald-McGinn DM, Lambert MP. Platelet findings in 22q11.2 deletion syndrome correlate with disease manifestations but do not correlate with GPIb surface expression. Clin Genet 2023; 103:109-113. [PMID: 36075864 PMCID: PMC9742133 DOI: 10.1111/cge.14227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023]
Abstract
Prior studies have demonstrated that patients with chromosome 22q11.2 deletion syndrome (22q11.2DS) have lower platelet counts (PC) compared to non-deleted populations. They also have an increased mean platelet volume. The mechanism for this has been postulated to be haploinsufficiency of the GPIBB gene. We examined platelet parameters, deletion size and factors known to influence counts, including status of thyroid hormone and congenital heart disease (CHD), in a population of 825 patients with 22q11.2DS. We also measured surface expression of GPIB-IX complex by flow cytometry. The major determinant of PC was deletion status of GP1BB, regardless of surface expression or other factors. Patients with nested distal chromosome 22q11.2 deletions (those with GP1BB present) had higher PCs than those with proximal deletions where GP1BB is deleted. Patients with 22q11.2DS also demonstrated an accelerated PC decrease with age, occurring in childhood. These data demonstrate that genes within the proximal deletion segment drive PC differences in 22q11.2DS and suggest that PC reference ranges may need to be adjusted for age and deletion size in 22q11.2DS populations. Bleeding did not correlate with either platelet count or GPIb expression. Further studies into drivers of expression of GPIb and associations with severe thrombocytopenia and immune thrombocytopenia are needed to inform clinical care.
Collapse
Affiliation(s)
- Ian M. Campbell
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - T. Blaine Crowley
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chintan Jobaliya
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alice Bailey
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel E. McGinn
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kimberly Gaiser
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anne Bassett
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bernice Morrow
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Beverly S. Emanuel
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Aime T. Franco
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Deborah French
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Elaine H. Zackai
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna M. McDonald-McGinn
- Division of Human Genetics and 22q and You Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michele P. Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Bleesing J. Gain-of-function defects in toll-like receptor 8 shed light on the interface between immune system and bone marrow failure disorders. Front Immunol 2022; 13:935321. [PMID: 36119097 PMCID: PMC9479092 DOI: 10.3389/fimmu.2022.935321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
In this article, we will share lessons that patients with gain-of-function defects in Toll-like receptor 8 (TLR8-GOF) can teach us about the interface between bone marrow failure (BMF) disorders and inborn errors of immunity (IEI), subsequently referred to as “Interface Disorders”. TLR8-GOF is a relatively young entity (from a discovery standpoint) that—through both similar and dissimilar disease characteristics—can increase our understanding of interface disorders, for example, as it pertains to pathophysiology, the genetic mechanism of disease, and related diagnostics and therapeutics. From a genetics point of view, TLR8-GOF joins a growing list of (interface) disorders that can cause disease both with germline and somatic (mosaic) genetic variants. This not only has repercussions for the diagnostic workup of these disorders, inasmuch that routine genetic testing may miss somatic variants, but has therapeutic implications as well, for example, with the approach to curative treatment, such as hematopoietic stem cell transplantation. Following an introduction and schematic rendering of the interface, we will review the salient features of TLR8-GOF, with the understanding that the phenotype of this new disorder is likely not written in stone yet. In keeping with the principle of “Form Follows Function”, we will discuss specific immunological biomarkers that can be measured in clinical laboratories and highlight key disease features that pertain to TLR8-GOF, and can be found in several interface disorders. As can be seen from a schematic representation, the interface provides not only opportunities for learning and collaboration with respect to shared diagnostics but also the potential for drug repurposing and precision therapeutics. Ideally, collaboration also focuses on education and teaching, such that cross-fertilization and collaboration across these disciplines can create a framework for complementary research.
Collapse
Affiliation(s)
- Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Jack Bleesing,
| |
Collapse
|
11
|
Kotcher RE, Chait DB, Heckert JM, Crowley TB, Forde KA, Ahuja NK, Mascarenhas MR, Emanuel BS, Zackai EH, McDonald-McGinn DM, Reynolds JC. Gastrointestinal Features of 22q11.2 Deletion Syndrome Include Chronic Motility Problems From Childhood to Adulthood. J Pediatr Gastroenterol Nutr 2022; 75:e8-e14. [PMID: 35641891 PMCID: PMC9329196 DOI: 10.1097/mpg.0000000000003491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion syndrome and has a multisystemic presentation including gastrointestinal features that have not yet been fully described. Our aim was to examine lifetime gastrointestinal problems in a large cohort of patients with 22q11.2DS. METHODS All patients followed in the 22q and You Center at the Children's Hospital of Philadelphia (n = 1421) were retrospectively screened for: 1) age ≥ 17 years, 2) documented chromosomal microdeletion within the 22q11.2 LCR22A-LCR22D region, and 3) sufficient clinical data to characterize the adult gastrointestinal phenotype. Gastrointestinal problems in childhood, adolescence, and adulthood were summarized. Statistical association testing of symptoms against other patient characteristics was performed. RESULTS Included patients (n = 206; 46% female; mean age, 27 years; median follow-up, 21 years) had similar clinical characteristics to the overall cohort. Genetic distribution was also similar, with 96% having deletions including the critical LCR22A-LCR22B segment (95% in the overall cohort). Most patients experienced chronic gastrointestinal symptoms in their lifetime (91%), but congenital gastrointestinal malformations (3.5%) and gastrointestinal autoimmune diseases (1.5%) were uncommon. Chronic symptoms without anatomic or pathologic abnormalities represented the vast burden of illness. Chronic symptoms in adulthood are associated with other chronic gastrointestinal symptoms and psychiatric comorbidities ( P < 0.01) but not with deletion size or physiologic comorbidities ( P > 0.05). One exception was increased nausea/vomiting in hypothyroidism ( P = 0.002). CONCLUSIONS Functional gastrointestinal disorders (FGIDs) are a common cause of ill health in children and adults with 22q11.2DS. Providers should consider screening for the deletion in patients presenting with FGIDs and associated comorbidities such as neuropsychiatric illness, congenital heart disease, and palatal abnormalities.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly A. Forde
- Perelman School of Medicine, University of Pennsylvania
- Division of Gastroenterology, University of Pennsylvania
| | - Nitin K. Ahuja
- Perelman School of Medicine, University of Pennsylvania
- Division of Gastroenterology, University of Pennsylvania
| | - Maria R. Mascarenhas
- Perelman School of Medicine, University of Pennsylvania
- 22q and You Center, Children’s Hospital of Philadelphia
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia
| | - Beverly S. Emanuel
- Perelman School of Medicine, University of Pennsylvania
- 22q and You Center, Children’s Hospital of Philadelphia
- Division of Human Genetics, Children’s Hospital of Philadelphia
| | - Elaine H. Zackai
- Perelman School of Medicine, University of Pennsylvania
- 22q and You Center, Children’s Hospital of Philadelphia
- Division of Human Genetics, Children’s Hospital of Philadelphia
| | - Donna M. McDonald-McGinn
- Perelman School of Medicine, University of Pennsylvania
- 22q and You Center, Children’s Hospital of Philadelphia
- Division of Human Genetics, Children’s Hospital of Philadelphia
| | - James C. Reynolds
- Perelman School of Medicine, University of Pennsylvania
- Division of Gastroenterology, University of Pennsylvania
| |
Collapse
|
12
|
Warren JT, Di Paola J. Genetics of inherited thrombocytopenias. Blood 2022; 139:3264-3277. [PMID: 35167650 PMCID: PMC9164741 DOI: 10.1182/blood.2020009300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 01/19/2023] Open
Abstract
The inherited thrombocytopenia syndromes are a group of disorders characterized primarily by quantitative defects in platelet number, though with a variety demonstrating qualitative defects and/or extrahematopoietic findings. Through collaborative international efforts applying next-generation sequencing approaches, the list of genetic syndromes that cause thrombocytopenia has expanded significantly in recent years, now with over 40 genes implicated. In this review, we focus on what is known about the genetic etiology of inherited thrombocytopenia syndromes and how the field has worked to validate new genetic discoveries. We highlight the important role for the clinician in identifying a germline genetic diagnosis and strategies for identifying novel causes through research-based endeavors.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jorge Di Paola
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Seth N, Tuano KS, Chinen J. Inborn errors of immunity: Recent progress. J Allergy Clin Immunol 2021; 148:1442-1450. [PMID: 34688776 DOI: 10.1016/j.jaci.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Recent advances in the field of inborn errors of immunity (IEIs) have been wide in scope, including progress in mechanisms of disease, diagnosis, and management. New gene defects affecting the immune response continue to be reported, as many as 26 in the year 2020. It was noted that the presentation of IEIs might not include recurrent infections in 9% of cases, and that current diagnostic methods can identify molecular causes in 92% of patients with severe combined immunodeficiency. Progress in immunopathogenesis explained mechanisms leading to symptoms of autosomal-recessive hyper-IgE syndrome. There was an emphasis on research in primary antibody deficiencies. The benefit of antibiotic prophylaxis to reduce the frequency of infections was demonstrated in these patients. The regimen of rituximab and azathioprine or mycophenolate was proven effective for chronic granulocytic interstitial pneumonia. The efficacy and adverse events of hematopoietic stem cell transplant in different IEI conditions were reported, as well as different strategies to improve outcomes, supporting its use in immunodeficiency and immunodysregulatory syndromes. The recent pandemic of coronavirus disease 2019 affected patients with IEIs, in particular those with deficiency in the interferon-mediated activation of the immune response. Initial data suggest that coronavirus disease 2019 vaccines might elicit anti-coronavirus disease 2019-neutralizing antibody responses in some patients with IEI conditions.
Collapse
Affiliation(s)
- Neha Seth
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Karen S Tuano
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex
| | - Javier Chinen
- Division of Immunology, Allergy and Retrovirology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, The Woodlands, Tex.
| |
Collapse
|